AD9911BCPZ-REEL7 [ADI]

500 MSPS Direct Digital Synthesizer with 10-Bit DAC; 500 MSPS直接数字频率合成器, 10位DAC
AD9911BCPZ-REEL7
型号: AD9911BCPZ-REEL7
厂家: ADI    ADI
描述:

500 MSPS Direct Digital Synthesizer with 10-Bit DAC
500 MSPS直接数字频率合成器, 10位DAC

转换器 数模转换器
文件: 总44页 (文件大小:949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500 MSPS Direct Digital Synthesizer  
with 10-Bit DAC  
AD9911  
FEATURES  
Patented SpurKiller technology  
GENERAL DESCRIPTION  
The AD9911 is a complete direct digital synthesizer (DDS).  
This device includes a high speed DAC with excellent wideband  
and narrowband spurious-free dynamic range (SFDR) as well as  
three auxiliary DDS cores without assigned digital-to-analog  
converters (DACs). These auxiliary channels are used for spur  
reduction, multitone generation, or test-tone modulation.  
Multitone generation  
Test-tone modulation  
Up to 800 Mbps data throughput  
Matched latencies for frequency/phase/amplitude changes  
Linear frequency/phase/amplitude sweeping capability  
Up to 16 levels of FSK, PSK, ASK  
Programmable DAC full-scale current  
32-bit frequency tuning resolution  
14-bit phase offset resolution  
10-bit output amplitude-scaling resolution  
Software-/hardware-controlled power-down  
Multiple device synchronization  
Selectable 4× to 20× REF_CLK multiplier (PLL)  
Selectable REF_CLK crystal oscillator  
56-lead LFCSP  
The AD9911 is the first DDS to incorporate SpurKiller  
technology and multitone generation capability. Multitone  
mode enables the generation up to four concurrent carriers;  
frequency, phase and amplitude can be independently  
programmed. Multitone generation can be used for system  
tests, such as inter-modulation distortion and receiver blocker  
sensitivity. SpurKilling enables customers to improve SFDR  
performance by reducing the magnitude of harmonic  
components and/or the aliases of those harmonic components.  
APPLICATIONS  
Agile local oscillator  
Test and measurement equipment  
Commercial and amateur radio exciter  
Radar and sonar  
Test-tone generation  
Fast frequency hopping  
Clock generation  
Test-tone modulation efficiently enables sine wave modulation  
of amplitude on the output signal using one of the auxiliary  
DDS cores.  
The AD9911 can perform modulation of frequency, phase, or  
amplitude (FSK, PSK, ASK). Modulation is implemented by  
storing profiles in the register bank and applying data to the  
profile pins. In addition, the AD9911 supports linear sweep of  
frequency, phase, or amplitude for applications such as radar  
and instrumentation.  
(continued on Page 3)  
500MSPS  
DDS CORE  
RECONSTRUCTED  
10-BIT DAC  
SINE WAVE  
SPUR REDUCTION/  
MULTITONE  
MODULATION CONTROL  
SYSTEM  
CLOCK  
SOURCE  
REF CLOCK  
INPUT CIRCUITRY  
TIMING AND  
CONTROL  
USER INTERFACE  
Figure 1. Basic Block Diagram  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD9911  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Sweep and Phase Accumulator Clearing Functions.............. 26  
Output Amplitude Control ....................................................... 26  
Synchronizing Multiple AD9911 Devices................................... 28  
Operation .................................................................................... 28  
Automatic Mode Synchronization........................................... 28  
Manual Software Mode Synchronization................................ 28  
Manual Hardware Mode Synchronization.............................. 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Equivalent Input and Output Circuits....................................... 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Application Circuits ....................................................................... 17  
Theory of Operation ...................................................................... 18  
Primary DDS Core..................................................................... 18  
SpurKiller/Multitone Mode and Test-Tone Modulation....... 18  
D/A Converter ............................................................................ 18  
Modes of Operation ....................................................................... 19  
Single-Tone Mode ...................................................................... 19  
SpurKiller/Multitone Mode ...................................................... 19  
Test-tone Mode ........................................................................... 20  
Reference Clock Modes ............................................................. 20  
Scalable DAC Reference Current Control Mode ................... 21  
Power-Down Functions............................................................. 21  
Shift Keying Modulation ........................................................... 21  
Shift Keying Modulation Using SDIO Pins for RU/RD ........ 23  
Linear Sweep (Shaped) Modulation Mode ............................. 23  
Linear Sweep No Dwell Mode .................................................. 25  
I/O_Update, SYNC_CLK, and System Clock  
Relationships............................................................................... 29  
I/O Port............................................................................................ 30  
Overview ..................................................................................... 30  
Instruction Byte Description .................................................... 30  
I/O Port Pin Description........................................................... 31  
I/O Port Function Description................................................. 31  
MSB/LSB Transfer Description ................................................ 31  
I/O Modes of Operation............................................................ 31  
Register Maps.................................................................................. 35  
Control Register Map ................................................................ 35  
Channel Register Map ............................................................... 36  
Profile Register Map................................................................... 37  
Control Register Descriptions ...................................................... 38  
Channel Select Register (CSR) ................................................. 38  
Channel Function Register (CFR) Description...................... 39  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
REVISION HISTORY  
5/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
AD9911  
GENERAL DESCRIPTION  
The DDS acts as a high resolution frequency divider with the  
REF_CLK as the input and the DAC providing the output. The  
REF_CLK input can be driven directly or used in combination  
with an integrated REF_CLK multiplier (PLL). The REF_CLK  
input also features an oscillator circuit to support an external  
crystal as the REF_CLK source. The crystal can be used in  
combination with the REF_CLK multiplier.  
Flexibility is provided by four data pins (Pin SDIO_0,  
Pin SDIO_1, Pin SDIO_2, and Pin SDIO_3) that allow four  
programmable modes of I/O operation.  
The DAC output is supply referenced and must be terminated  
into AVDD by a resistor and an AVDD center-tapped trans-  
former. The DAC has its own programmable reference to enable  
different full-scale currents.  
The AD9911 I/O port offers multiple configurations to provide  
significant flexibility. The I/O port offers an SPI-compatible  
mode of operation that is virtually identical to the SPI operation  
found in earlier Analog Devices DDS products.  
The DDS core (the AVDD pins and the DVDD pins) is powered  
by a 1.8 V supply. The digital I/O interface (SPI) operates at  
3.3 V and requires that the Pin DVDD_I/O (Pin 49) be  
connected to 3.3 V.  
FUNCTIONAL BLOCK DIAGRAM  
AD9911  
IOUT  
DAC  
COS(X)  
Σ
Σ
IOUT  
Σ
Σ
32  
32  
15  
10  
10  
SCALABLE  
DAC REF  
CURRENT  
PHASE/  
ΔPHASE  
AMP/  
ΔAMP  
DAC_RSET  
32  
14  
10  
FTW/  
ΔFTW  
SPURKILLER/  
MULTI-TONE  
MUX  
DDS  
CORE  
DDS  
CORE  
DDS  
CORE  
SYNC_IN  
SYNC_OUT  
I/O_UPDATE  
TIMING AND CONTROL LOGIC  
PWR_DWN_CTL  
MASTER_RESET  
SYSTEM  
CLK  
CONTROL  
REGISTERS  
÷4  
SYNC_CLK  
SCLK  
CS  
I/O  
PORT  
BUFFER  
REF CLOCK  
MULTIPLIER  
4× TO 20×  
REF_CLK  
REF_CLK  
CHANN  
EL  
MUX  
SDIO_0  
SDIO_1  
SDIO_2  
SDIO_3  
REGISTE  
RS  
BUFFER/  
XTAL  
OSCILLATOR  
PROFILE  
REGISTERS  
1.8V  
1.8V  
3.3V  
AVDD  
DVDD  
P0 P1 P2 P3  
DVDD_I/O  
CLK_MODE_SEL  
LOOP FILTER  
Figure 2. Functional Block Diagram  
Rev. 0 | Page 3 of 44  
 
AD9911  
SPECIFICATIONS  
AVDD and DVDD = 1.8 V 5ꢀ; DVDD_I/O = 3.3 V 5ꢀ; RSET = 1.91 kΩ; external reference clock frequency = 500 MSPS (REF_CLK  
multiplier bypassed), unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REF CLOCK INPUT CHARACTERISTICS  
Frequency Range  
REF_CLK Multiplier Bypassed  
REF_CLK Multiplier Enabled  
Internal VCO Output Frequency Range  
VCO Gain Bit Set1  
1
10  
255  
500  
125  
500  
MHz  
MHz  
MHz  
Internal VCO Output Frequency Range  
VCO Gain Bit Cleared  
100  
160  
MHz  
Crystal REF_CLK Source Range  
Input Power Sensitivity  
20  
30  
+3  
MHz  
dBm  
V
pF  
Ω
Measured at the pin (single-ended)  
5  
Input Voltage Bias Level  
Input Capacitance  
Input Impedance  
1.15  
2
1500  
Duty Cycle with REF_CLK Multiplier Bypassed  
Duty Cycle with REF_CLK Multiplier Enabled  
CLK Mode Select (Pin 24) Logic 1 V  
CLK Mode Select (Pin 24) Logic 0 V  
DAC OUTPUT CHARACTERISTICS  
Full-Scale Output Current  
Gain Error  
45  
35  
1.25  
55  
65  
1.8  
0.5  
%
%
V
V
1.8 V digital input logic  
1.8 V digital input logic  
Must be referenced to AVDD  
10 mA is set by RSET = 1.91 kΩ  
10  
mA  
%FS  
μA  
+10  
25  
10  
Output Current Offset  
1
Differential Nonlinearity  
Integral Nonlinearity  
Output Capacitance  
0.5  
1.0  
3
LSB  
LSB  
pF  
Voltage Compliance Range  
AVDD –  
0.50  
AVDD +  
0.50  
V
WIDEBAND SFDR  
The frequency range for wideband SFDR is  
defined as dc to Nyquist  
1 MHz to 20 MHz Analog Output  
20 MHz to 60 MHz Analog Output  
60 MHz to 100 MHz Analog Output  
100 MHz to 150 MHz Analog Output  
150 t MHz to 200 MHz Analog Output  
dBc  
dBc  
dBc  
dBc  
dBc  
65  
62  
59  
56  
53  
WIDEBAND SFDR Improvement  
Spur Reduction Enabled  
Programs devices on an individual basis to  
enable spur reduction. See the  
SpurKiller/Multitone Mode section.  
60 MHz to 100 MHz Analog Output  
100 MHz to 150 MHz Analog Output  
150 MHz to 200 MHz Analog Output  
8
15  
12  
dBc  
dBc  
dBc  
Rev. 0 | Page 4 of 44  
 
 
AD9911  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
NARROWBAND SFDR  
1.1 MHz Analog Output ( 10 kHz)  
1.1 MHz Analog Output ( 50 kHz)  
1.1 MHz Analog Output ( 250 kHz)  
1.1 MHz Analog Output ( 1 MHz)  
15.1 MHz Analog Output ( 10 kHz)  
15.1 MHz Analog Output ( 50 kHz)  
15.1 MHz Analog Output ( 250 kHz)  
15.1 MHz Analog Output ( 1 MHz)  
40.1 MHz Analog Output ( 10 kHz)  
40.1 MHz Analog Output ( 50 kHz)  
40.1 MHz Analog Output ( 250 kHz)  
40.1 MHz Analog Output ( 1 MHz)  
75.1 MHz Analog Output ( 10 kHz)  
75.1 MHz Analog Output ( 50 kHz)  
75.1 MHz Analog Output ( 250 kHz)  
75.1 MHz Analog Output ( 1 MHz)  
100.3 MHz Analog Output ( 10 kHz)  
100.3 MHz Analog Output ( 50 kHz)  
100.3 MHz Analog Output ( 250 kHz)  
100.3 MHz Analog Output ( 1 MHz)  
200.3 MHz Analog Output ( 10 kHz)  
200.3 MHz Analog Output ( 50 kHz)  
200.3 MHz Analog Output ( 250 kHz)  
200.3 MHz Analog Output ( 1 MHz)  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
90  
88  
86  
85  
90  
87  
85  
83  
90  
87  
84  
82  
87  
85  
83  
82  
87  
85  
83  
81  
87  
85  
83  
81  
PHASE NOISE CHARACTERISTICS  
Residual Phase Noise @ 15.1 MHz (fOUT  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
Residual Phase Noise @ 40.1 MHz (fOUT  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
Residual Phase Noise @ 75.1 MHz (fOUT  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
)
)
)
–150  
–159  
–165  
–165  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
–142  
–151  
–160  
–162  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
–135  
–146  
–154  
–157  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 100.3 MHz (fOUT  
)
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–134  
–144  
–152  
–154  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. 0 | Page 5 of 44  
AD9911  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Residual Phase Noise @ 15.1 MHz (fOUT) with  
REF_CLK Multiplier Enabled 5×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–139  
–149  
–153  
–148  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 40.1 MHz (fOUT  
)
with REF_CLK Multiplier Enabled 5×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–130  
–140  
–145  
–139  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 75.1 MHz (fOUT) with  
REF_CLK Multiplier Enabled 5×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–123  
–134  
–138  
–132  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 100.3 MHz(fOUT) with  
REF_CLK Multiplier Enabled 5×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–120  
–130  
–135  
–129  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 15.1 MHz (fOUT  
)
with REF_CLK Multiplier Enabled 20×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–127  
–136  
–139  
–138  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 40.1 MHz (fOUT  
)
with REF_CLK Multiplier Enabled 20×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–117  
–128  
–132  
–130  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 75.1 MHz (fOUT  
)
with REF_CLK Multiplier Enabled 20×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–110  
–121  
–125  
–123  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Residual Phase Noise @ 100.3 MHz (fOUT) with  
REF_CLK Multiplier Enabled 20×  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–107  
–119  
–121  
–119  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. 0 | Page 6 of 44  
AD9911  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
I/O PORT TIMING CHARACTERISTICS  
Maximum Frequency Clock (SCLK)  
Minimum SCLK Pulse Width Low (tPWL  
Minimum SCLK Pulse Width High (tPWH  
Minimum Data Set-Up Time (tDS)  
Minimum Data Hold Time  
200  
MHz  
ns  
ns  
ns  
ns  
)
1.6  
2.2  
2.2  
0
)
Minimum CSB Set-Up Time (tPRE  
)
1.0  
ns  
Minimum Data Valid Time for Read Operation 12  
MISCELLANEOUS TIMING CHARACTERISTICS  
ns  
Master_Reset Minimum Pulse Width  
I/O_Update Minimum Pulse Width  
Minimum Set-Up Time (I/O_Update to  
SYNC_CLK)  
Minimum Hold Time (I/O_Update to  
SYNC_CLK)  
Minimum Set-Up Time (Profile Inputs to  
SYNC_CLK)  
1
1
4.8  
Minimum pulse width = 1 sync clock period  
Minimum pulse width = 1 sync clock period  
Rising edge to rising edge  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
Rising edge to rising edge  
5.4  
0
Minimum Hold Time (Profile Inputs to  
SYNC_CLK)  
Minimum Set-Up Time (SDIO Inputs to  
SYNC_CLK)  
Minimum Hold Time (SDIO Inputs to  
SYNC_CLK)  
Propagation Delay Between REF_CLK and  
SYNC_CLK  
2.5  
0
2.25  
3.5  
5.5  
CMOS LOGIC INPUT  
VIH  
VIL  
2.0  
2.7  
V
V
μA  
μA  
pF  
0.8  
12  
Logic 1 Current  
Logic 0 Current  
3
12  
2
Input Capacitance  
CMOS LOGIC OUTPUTS (1 mA Load)  
VOH  
VOL  
V
V
0.4  
POWER SUPPLY  
Total Power Dissipation—Single-Tone Mode  
Total Power Dissipation—With Sweep  
Accumulator  
241  
241  
mW  
mW  
Dominated by supply variation  
Dominated by supply variation  
Total Power Dissipation—3 Spur  
Reduction/Multitone Channels Active  
Total Power Dissipation—Test-Tone  
Modulation  
351  
264  
mW  
mW  
Dominated by supply variation  
Dominated by supply variation  
Total Power Dissipation—Full Power Down  
IAVDD—Single-Tone Mode  
IAVDD— Sweep Accumulator, REF_CLK  
1.8  
73  
73  
mW  
mA  
mA  
Multiplier, and 10-Bit Output Scalar Enabled  
IDVDD—Single-Tone Mode  
IDVDD—Sweep Accumulator, REF_CLK  
50  
50  
mA  
mA  
Multiplier, and 10-Bit Output Scalar Enabled  
IDVDD_I/O  
40  
30  
0.7  
1.1  
mA  
mA  
mA  
mA  
IDVDD = read  
IDVDD = write  
IDVDD_I/O  
IAVDD Power-Down Mode  
IDVDD Power-Down Mode  
Rev. 0 | Page 7 of 44  
AD9911  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DATA LATENCY (PIPELINE DELAY) SINGLE-  
TONE MODE2, 3  
Frequency, Phase, and Amplitude Words to  
DAC Output with Matched Latency Enabled  
29  
29  
25  
17  
SYSCLK  
cycles  
SYSCLK  
cycles  
SYSCLK  
cycles  
SYSCLK  
cycles  
Frequency Word to DAC Output with  
Matched Latency Disabled  
Phase Offset Word to DAC Output with  
Matched Latency Disabled  
Amplitude Word to DAC Output with  
Matched Latency Disabled  
DATA LATENCY (PIPELINE DELAY)  
MODULATION MODE4  
Frequency Word to DAC Output  
Phase Offset Word to DAC Output  
Amplitude Word to DAC Output  
34  
29  
21  
SYSCLK  
Cycles  
SYSCLK  
Cycles  
SYSCLK  
Cycles  
DATA LATENCY (PIPELINE DELAY) LINEAR  
SWEEP MODE4  
Frequency Rising/Falling Delta Tuning Word  
to DAC Output  
41  
37  
29  
SYSCLK  
Cycles  
SYSCLK  
Cycles  
SYSCLK  
Cycles  
Phase Offset Rising/Falling Delta Tuning  
Word to DAC Output  
Amplitude Rising/Falling Delta Tuning Word  
to DAC Output  
1 For the VCO frequency range of 160 MHz to 255 MHz, the appropriate setting for the VCO gain bit is dependent upon supply, temperature and process. Therefore, in a  
production environment this frequency band must be avoided.  
2 Data latency is reference to the I/O_UPDATE pin.  
3 Data latency is fixed and the units are system clock (SYSCLK) cycles  
4 Data latency is referenced to a profile change.  
Rev. 0 | Page 8 of 44  
 
 
 
AD9911  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Maximum Junction Temperature  
DVDD_I/O (Pin 49)  
150°C  
4 V  
AVDD, DVDD  
2 V  
Digital Input Voltage (DVDD_I/O = 3.3 V)  
Digital Output Current  
Storage Temperature  
Operating Temperature  
Lead Temperature (10 sec Soldering)  
θJA  
−0.7 V to +4 V  
5 mA  
–65°C to +150°C  
–40°C to +85°C  
300°C  
21°C/W  
2°C/W  
θJC  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
EQUIVALENT INPUT AND OUTPUT CIRCUITS  
REF_CLK INPUTS  
AVDD  
Z
Z
1.5k  
1.5kΩ  
DAC OUTPUTS  
REF_CLK  
AVDD  
REF_CLK  
AVDD  
CMOS  
DIGITAL INPUTS  
DVDD_I/O = 3.3V  
IOUT  
IOUT  
AMP  
OSC  
INPUT  
OUTPUT  
NOTES  
1. TERMINATE OUTPUTS  
INTO AVDD.  
2. DO NOT EXCEED  
OUTPUTS VOLTAGE  
COMPLIANCE.  
NOTES  
1. REF_CLK INPUTS ARE INTERNALLY BIASED AND  
NEED TO BE AC-COUPLED.  
2. OSC INPUTS ARE DC-COUPLED.  
NOTES  
1. AVOID OVERDRIVING DIGITAL  
INPUTS.  
Figure 3. CMOS Digital Inputs  
Figure 5. REF_CLK Inputs  
Figure 4. DAC Outputs  
Rev. 0 | Page 9 of 44  
 
AD9911  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SYNC_IN  
SYNC_OUT  
MASTER_RESET  
PWR_DWN_CTL  
AVDD  
1
2
3
4
5
6
7
8
9
PIN 1  
INDICATOR  
42 P2  
41 P1  
40 P0  
39 AVDD  
38 AGND  
37 AVDD  
36 IOUT  
35 IOUT  
34 AGND  
33 AVDD  
32 NC  
NC  
AD9911  
AVDD  
TOP VIEW  
AVDD  
AVDD  
(Not to Scale)  
NC 10  
AVDD 11  
NC 12  
31 AVDD  
30 AVDD  
29 AVDD  
AVDD 13  
AVDD  
14  
NC = NO CONNECT  
NOTES  
1. THE EXPOSED EPAD ON BOTTOM SIDE OF PACKAGE IS  
AN ELECTRICAL CONNECTION AND MUST BE  
SOLDERED TO GROUND.  
2. PIN 49 IS DVDD_I/O AND IS TIED TO 3.3V.  
Figure 6. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
I/O  
Description  
1
SYNC_IN  
I
Synchronizes Multiple AD9911 Devices. Connects to the SYNC_OUT pin of the master  
AD9911 device.  
2
3
4
SYNC_OUT  
O
I
Synchronizes Multiple AD9911 Devices. Connects to the SYNC_IN pin of the slave  
AD9911 device.  
Active High Reset Pin. Asserting this pin forces the internal registers to the default  
state shown in the Register Map section.  
External Power-Down Control. See the Power Down Functions section for details.  
Analog Power Supply Pins (1.8 V).  
MASTER_RESET  
PWR_DWN_CTL  
I
I
5, 7, 8, 9, 11, 13, 14, AVDD  
15, 19, 21, 26, 29,  
30, 31, 33, 37, 39  
18, 20, 25, 34, 38  
AGND  
DVDD  
DGND  
IOUT  
I
I
I
O
O
I
Analog Ground Pins.  
Digital Power Supply Pins (1.8 V).  
Digital Power Ground Pins.  
Complementary DAC Output. Terminates into AVDD.  
True DAC Output. Terminates into AVDD.  
Establishes the Reference Current for the DAC. A 1.91 kΩ resistor (nominal) is  
connected from Pin 17 to AGND.  
45, 55  
44, 56  
35  
36  
17  
IOUT  
DAC_RSET  
22  
23  
24  
27  
REF_CLK  
I
I
I
I
Complementary Reference Clock/Oscillator Input. When the REF_CLK is operated in  
single-ended mode, this pin should be decoupled to AVDD or AGND with a  
0.1 μF capacitor.  
Reference Clock/Oscillator Input. When the REF_CLK operates in single-ended mode,  
Pin 23 is the input. See the Modes of Operation section for the reference clock  
configuration.  
Control Pin for the Oscillator. CAUTION: Do not drive this pin beyond 1.8 V. When high  
(1.8 V), the oscillator is enabled to accept a crystal as the REF_CLK source. When low,  
the oscillator is bypassed.  
Connects to the External Zero Compensation Network of the PLL Loop Filter. Typically,  
the network consists of a 0 Ω resistor in series with a 680 pF capacitor tied to AVDD.  
REF_CLK  
CLK_MODE_SEL  
LOOP_FILTER  
Rev. 0 | Page 10 of 44  
 
AD9911  
Pin No.  
Mnemonic  
NC  
P0, P1, P2, P3  
I/O  
N/A  
I
Description  
6, 10, 12, 16, 28, 32  
40, 41, 42, 43  
No Connection. Analog Devices recommends leaving these pins floating.  
These data pins are used for modulation (FSK, PSK, ASK), start/stop for the sweep  
accumulator, and ramping up/down the output amplitude. Any toggle of these data  
inputs is equivalent to an I/O_UPDATE. The data is synchronous to the SYNC_CLK (Pin  
54). The data inputs must meet the set-up and hold time requirements to the  
SYNC_CLK. This guarantees a fixed pipeline delay of data to the DAC output;  
otherwise, a 1 SYNC_CLK period of uncertainty occurs. The functionality of these  
pins is controlled by profile pin configuration (PPC) bits in Register FR1 <12:14>.  
46  
I/O_UPDATE  
I
A rising edge triggers data transfer from the I/O port buffer to active registers.  
I/O_UPDATE is synchronous to the SYNC_CLK (Pin 54). I/O_UPDATE must meet the  
set-up and hold time requirements to the SYNC_CLK to guarantee a fixed pipeline  
delay of data to DAC output. If not, a 1 SYNC_CLK period of uncertainty occurs. The  
minimum pulse width is one SYNC_CLK period.  
47  
48  
CS  
I
I
The active low chip select allows multiple devices to share a common I/O bus (SPI).  
SCLK  
Data Clock for I/O Operations. Data bits are written on the rising edge of SCLK and  
read on the falling edge of SCLK.  
49  
50  
51, 52, 53  
DVDD_I/O  
SDIO_0  
SDIO_1, SDIO_2,  
SDIO_3  
I
3.3 V Digital Power Supply for SPI Port and Digital I/O.  
Data pin SDIO_0 is dedicated to the I/O port only.  
Data pins SDIO_1:3 can be used for the I/O port or to initiate a ramp up/ramp down  
(RU/RD) of the DAC output amplitude.  
I/O  
I/O  
54  
SYNC_CLK  
O
The SYNC_CLK, which runs at ¼ the system clock rate, can be disabled. I/O_UPDATE  
and profile changes (Pin 40 to Pin 43) are synchronous to the SYNC_CLK. To guarantee  
a fixed pipeline delay of data to DAC output, I/O_UPDATE and profile changes (Pin 40  
to Pin 43) must meet the set-up and hold time requirements to the rising edge of  
SYNC_CLK. If not, a 1 SYNC_CLK period of uncertainty exists.  
Rev. 0 | Page 11 of 44  
AD9911  
TYPICAL PERFORMANCE CHARACTERISTICS  
DELTA 1 (T1)  
–71.73dB  
RBW  
VBW  
SWT  
20kHz  
20kHz  
1.6s  
RF ATT  
20dB  
REF LVL  
0dBm  
DELTA 1 (T1)  
–69.47dB  
30.06012024MHz SWT  
RBW  
VBW  
20kHz  
20kHz  
1.6s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
4.50901804MHz  
UNIT  
dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
A
1
1
1AP  
1AP  
1
1
START 0Hz  
25MHz/DIV  
STOP 250MHz  
START 0Hz  
25MHz/DIV  
STOP 250MHz  
Figure 7. fOUT = 1.1 MHz, fCLK = 500 MSPS, Wideband SFDR  
Figure 10. fOUT = 15.1 MHz, fCLK = 500 MSPS, Wideband SFDR  
REF Lv]  
0dBm  
DELTA 1 (T1)  
–60.13dB  
75.15030060MHz SWT  
RBW  
VBW  
20kHz  
20kHz  
1.6s  
RF ATT  
UNIT  
20dB  
dB  
DELTA 1 (T1)  
–62.84dB  
40.08016032MHz SWT  
RBW  
VBW  
20kHz  
20kHz  
1.6s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
1
1
A
1AP  
1AP  
1
1
START 0Hz  
25MHz/DIV  
STOP 250MHz  
START 0Hz  
25MHz/DIV  
STOP 250Hz  
Figure 11. fOUT = 75.1 MHz, fCLK = 500 MSPS, Wideband SFDR  
Figure 8. fOUT = 40.1 MHz, fCLK = 500 MSPS, Wideband SFDR  
DELTA 1 (T1)  
–59.04dB  
100.70140281MHz  
RBW  
VBW  
SWT  
20kHz  
20kHz  
1.6s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
DELTA 1 (T1)  
–53.84dB  
–101.20240481MHz SWT  
RBW  
VBW  
20kHz  
20kHz  
1.6s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
A
1
1AP  
1AP  
1
1
START 0Hz  
25MHz/DIV  
STOP 250MHz  
START 0Hz  
25MHz/DIV  
STOP 250MHz  
Figure 9. fOUT = 100.3 MHz, fCLK = 500 MSPS, Wideband SFDR  
Figure 12. fOUT = 200.3 MHz, fCLK = 500 MSPS, Wideband SFDR  
Rev. 0 | Page 12 of 44  
 
AD9911  
REF LVL  
0dBm  
DELTA 1 (T1)  
–84.73dB  
254.50901604kHz  
RBW  
VBW  
SWT  
500Hz  
500Hz  
20s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
DELTA 1 (T1)  
–84.86dB  
–200.40080160kHz  
RBW  
VBW  
SWT  
500Hz  
500Hz  
20s  
RF ATT  
UNIT  
20dB  
dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
A
A
1
1AP  
1AP  
1
1
CENTER 1.1MHz  
100kHz/DIV  
SPAN 1MHz  
CENTER 15.1MHz  
100kHz/DIV  
SPAN 1MHz  
Figure 13. fOUT = 1.1 MHz, fCLK = 500 MSPS, NBSFDR, 1 MHz  
Figure 16. fOUT = 15.1 MHz, fCLK = 500 MSPS, NBSFDR, 1 MHz  
REF LVL  
0dBm  
DELTA 1 (T1)  
–84.10dB  
120.24048096kHz SWT  
RBW  
VBW  
500Hz  
500Hz  
20s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
DELTA 1 (T1)  
–86.03dB  
262.56513026kHz  
RBW  
VBW  
SWT  
500Hz  
500Hz  
20s  
RF ATT  
UNIT  
20dB  
dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
A
A
1
1AP  
1AP  
1
1
CENTER 40.1MHz  
100kHz/DIV  
SPAN 1MHz  
CENTER 75.1MHz  
100kHz/DIV  
SPAN 1MHz  
Figure 17. fOUT = 75.1 MHz, fCLK = 500 MSPS, NBSFDR, 1 MHz  
Figure 14. fOUT = 40.1 MHz, fCLK = 500 MSPS, NBSFDR, 1 MHz  
REF LVL  
0dBm  
DELTA 1 (T1)  
–83.72dB  
–400.80160321kHz  
RBW  
VBW  
SWT  
500Hz  
500Hz  
20s  
RF ATT  
UNIT  
20dB  
dB  
REF LVL  
0dBm  
DELTA 1 (T1)  
–82.63dB  
400.80160321kHz  
RBW  
VBW  
SWT  
500Hz  
500Hz  
20s  
RF ATT  
UNIT  
20dB  
dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
A
1
1
1AP  
1AP  
1
1
CENTER 200.3MHz  
100kHz/DIV  
SPAN 1MHz  
CENTER 100.3MHz  
100kHz/DIV  
SPAN 1MHz  
Figure 18. fOUT = 200.3MHz, fCLK = 500 MSPS, NBSFDR, 1 MHz  
Figure 15. fOUT = 100.3 MHz, fCLK = 500 MSPS, NBSFDR, 1 MHz  
Rev. 0 | Page 13 of 44  
AD9911  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
235  
215  
195  
175  
155  
135  
115  
95  
75.1MHz  
100.3MHz  
40.1MHz  
15.1MHz  
1k  
–170  
10  
75  
100  
100  
10k  
100k  
1M  
10M  
150  
200  
250  
300  
350  
400  
450  
500  
CLOCK FREQUENCY (MHz)  
FREQUENCY OFFSET (Hz)  
Figure 19. Residual Phase Noise (SSB) with fOUT = 15.1 MHz, 40.1 MHz,  
75.1 MHz, 100.3 MHz, fCLK = 500 MHz with REF_CLK Multiplier Bypassed  
Figure 22. Power vs. System Clock Frequency  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
–100  
100.3MHz  
–110  
75.1MHz  
–120  
–130  
–140  
40.1MHz  
–150  
15.1MHz  
–160  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
CENTER 50.17407705MHz 1.5MHz/  
SPAN 15MHz  
FREQUENCY OFFSET (Hz)  
Figure 23. Amplitude Modulation Using Primary Channel  
(CH1 = 50 MHz) and One Auxiliary Channel (CH0 = 1 MHz)  
Figure 20. Residual Phase Noise (SSB) with fOUT = 15.1 MHz, 40.1 MHz,  
75.1 MHz, 100.3 MHz, fCLK = 500 MHz with REF_CLK Multiplier = 5×  
–70  
–80  
–90  
0
1
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100.3MHz  
75.1MHz  
40.1MHz  
15.1MHz  
10  
100  
1k  
10k  
100k  
1M  
10M  
CENTER 10.2MHz  
75kHz/  
SPAN 750kHz  
FREQUENCY OFFSET (Hz)  
Figure 21. Residual Phase Noise(SSB) with fOUT = 15.1 MHz, 40.1 MHz,  
75.1 MHz, 100.3 MHz, fCLK = 500 MHz with REF_CLK Multiplier = 20×  
Figure 24. Two-Tone Generation Using Primary Channel (CH1 = 10.1 MHz)  
and One Auxiliary Channel (CH0 = 10.3 MHz)  
Rev. 0 | Page 14 of 44  
 
AD9911  
–45  
–50  
–55  
–60  
–65  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
fOUT = 197.7MHz  
fOUT = 143.7MHz  
2
3
1
fOUT = 98.7MHz  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
START 0Hz  
25MHz/  
STOP 250MHz  
POWER SUPPLY VOLTAGE (V)  
Figure 25. SpurKiller Disabled and Three Spurs Identified  
Figure 28. SFDR vs. Supply Voltage (AVDD)  
–40  
–45  
–50  
–55  
–60  
–65  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
fOUT = 197.7MHz  
fOUT = 143.7MHz  
1
fOUT = 98.7MHz  
0
0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000  
DAC OUTPUT CURRENT LEVEL (% of Fullscale)  
START 0Hz  
25MHz/  
STOP 250MHz  
Figure 26. SpurKiller Enabled with Three Spurs Reduced (see Figure 25)  
Figure 29. SFDR vs. DAC Output Current  
–50  
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–66  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
fOUT = 197.7MHz  
fOUT = 143.7MHz  
fOUT = 98.7MHz  
–40  
-20  
0
20  
40  
60  
80  
CENTER 20MHz  
4MHz/  
SPAN 40MHz  
TEMPERATURE (°C)  
Figure 27. Three Auxiliary Channels Perform Two-Level FSK with Profile Pins.  
The three carriers are set to 10 MHz, 20 MHz, and 30 MHz using all three  
auxiliary channels.  
Figure 30. SFDR vs. Temperature  
Rev. 0 | Page 15 of 44  
 
 
AD9911  
1
CH1 100mV  
M50.0ns  
CH1  
–4mV  
Figure 31. Primary Channel (62 MHz) 100% Amplitude Modulated  
by CH0 (4 MHz)  
Rev. 0 | Page 16 of 44  
AD9911  
APPLICATION CIRCUITS  
AD9510, AD9511, ADF4106  
÷
÷
CHARGE  
PUMP  
LOOP  
FILTER  
PHASE  
COMPARATOR  
VCO  
REFERENCE  
REF CLK  
AD9911  
LPF  
Figure 32. DDS in PLL Feedback Locking to Reference Offering Fine Frequency and Delay Adjust Tuning  
AD9510  
CLOCK DISTRIBUTOR  
CLOCK  
SOURCE  
WITH  
DELAY EQUALIZATION  
REF_CLK  
AD9510  
SYNCHRONIZATION  
DELAY EQUALIZATION  
SYNC_OUT  
C1  
S1AD9911  
DATA  
A1  
FPGA  
(MASTER)  
SYNC_CLK  
C2  
DATA  
S2AD9911  
A2  
FPGA  
(SLAVE 1)  
SYNC_CLK  
CENTRAL  
CONTROL  
C3  
S3AD9911  
DATA  
A3  
FPGA  
(SLAVE 2)  
SYNC_CLK  
C4  
DATA  
S4AD9911  
A4  
FPGA  
(SLAVE 3)  
SYNC_CLK  
A_END  
Figure 33. Synchronizing Multiple Devices to Increase Channel Capacity Using the AD9510 as a Clock Distributor for the Reference and SYNC Clock  
PROGRAMMABLE 1 TO 32  
DIVIDER AND DELAY ADJUST  
CLOCK OUTPUT  
SELECTION(S)  
AD9515  
LVPECL  
LVDS  
CMOS  
CH 2  
AD9514  
AD9513  
AD9512  
AD9911  
n
LPF  
REF CLK  
n = DEPENDANT ON PRODUCT SELECTION.  
Figure 34. Clock Generation Circuit Using the AD951x Series of Clock Distribution Chips  
Rev. 0 | Page 17 of 44  
 
 
AD9911  
THEORY OF OPERATION  
frequency or the tuning word for Channel 1. A nonharmonic  
spur may be impossible to match frequency.  
PRIMARY DDS CORE  
The AD9911 has one complete DDS (Channel 1) that consists  
of a 32-bit phase accumulator, a phase-to-amplitude converter,  
and 10-bit DAC. Together, these digital blocks generate a sine  
wave when the phase accumulator is clocked and the phase  
increment value (frequency tuning word) is greater than 0. The  
phase-to-amplitude converter translates phase information to  
amplitude information by a cos (θ) operation.  
Spur reduction is not as effective at lower fundamental  
frequencies where SFDR performance is already very good. The  
benefits of SpurKiller channels are virtually nonexistent when  
the output frequency is less than 20ꢀ of the sampling  
frequency.  
Test-tone modulation is similar to amplitude modulation  
options of a signal generator. For test-tone modulation,  
auxiliary DDS Channel 0 is assigned to implement amplitude  
sinusoidal modulated waveforms of the primary channel. This  
function is programmed using internal registers.  
The output frequency (fO) of the DDS is a function of the  
rollover rate of the phase accumulator. The exact relationship is  
shown in the following equation:  
(FTW)( fS )  
fO  
=
with 0 FTW 231  
232  
D/A CONVERTER  
The AD9911 incorporates a 10-bit current output DAC. The  
DAC converts a digital code (amplitude) into a discrete analog  
quantity. The DAC current outputs can be modeled as a current  
source with high output impedance (typically 100 kΩ). Unlike  
many DACs, these current outputs require termination into  
AVDD via a resistor or a center-tapped transformer for  
expected current flow.  
where:  
fS = the system clock rate.  
FTW = the frequency tuning word.  
232 represents the capacity of the phase accumulator.  
The DDS core architecture also supports the capability to phase  
offset the output signal. This is performed by the channel phase  
offset word (CPOW). The CPOW is a 14-bit register that stores  
a phase offset value. This value is added to the output of the  
phase accumulator to offset the current phase of the output  
signal. The exact value of phase offset is given by the following  
equation:  
The DAC has complementary outputs that provide a combined  
full-scale output current (IOUT + IOUTB). The outputs always sink  
current.  
The full-scale current is controlled by means of an external  
resistor (RSET) and the scalable DAC current control bits  
discussed in the Modes of Operation section. The Resistor RSET  
is connected between the DAC_RSET pin and analog ground  
(AGND). The full-scale current is inversely proportional to the  
resistor value as follows:  
CPOW  
Φ =  
× 360°  
214  
SPURKILLER/MULTITONE MODE AND TEST-TONE  
MODULATION  
The AD9911 is equipped with three auxiliary DDS cores  
(Channel 0, Channel 2, and Channel 3). Because these channels  
do not have a DAC, there is no direct output. Instead, these  
channels are designed to implement either spur reduction/  
multiple tones or test-tone modulation on the output spectrum  
for Channel 1.  
18.91  
RSET  
IOUT  
=
Limiting the output to 10 mA with an RSET of 1.9 kΩ provides  
optimal spurious-free dynamic range (SFDR) performance. The  
DAC output voltage compliance range is AVDD + 0.5 V to  
AVDD − 0.5 V. Voltages developed beyond this range can cause  
excessive harmonic distortion. Proper attention should be paid  
to the load termination to keep the output voltage within its  
compliance range. Exceeding this range could damage the DAC  
output circuitry.  
When using multitone mode, the device can output up to four  
distinct carriers concurrently. This is possible via the summing  
node for all four DDS cores. The frequency, phase and  
amplitude of each tone is adjustable. The maximum amplitude  
of the auxiliary channels is −12 db below the primary channels  
maximum amplitude to prevent overdriving the DAC input.  
The primary channels amplitude can be adjusted down to  
achieve equal amplitude for all carriers.  
I
OUT  
1:1  
LPF  
AVDD  
DAC  
50  
I
OUT  
When using SpurKiller mode, up to three spurs in the output  
spectrum for Channel 1 are reducible (one per auxiliary  
channel). To match an exact frequency using the three channels,  
the spur must be harmonically related to the fundamental  
Figure 35. Typical DAC Output Termination Configuration  
Rev. 0 | Page 18 of 44  
 
 
AD9911  
MODES OF OPERATION  
SINGLE-TONE MODE  
For multitone mode, the digital content of the three auxiliary  
DDS channels are summed with the primary channel. Each  
tone can be individually programmed for frequency, phase and  
amplitude as well as individually modulated using the profile  
pins in shift-keying modulation. See Figure 24 and Figure 27 for  
examples.  
To configure the AD9911 in single-tone mode, the auxiliary  
DDS cores (CH0, CH2, and CH3) must be disabled by using the  
channel enable bits and digital powering down (CSR bit <7>)  
the three auxiliary DDS cores. Only CH1 remains enabled. See  
the Register Maps section for a description of the channel  
enable bits in the channel select register or CSR (Register 0x00).  
The channel enable bits are enabled or disabled immediately  
after the CSR data byte is written. An I/O_UPDATE is not  
required for channel enable bits.  
Note the data align bits in Register 0x03 Bits <18:16>, provide a  
coarse amplitude adjust setting for the auxiliary channels. These  
bits default to clear; for multitone mode these bit should  
typically be set.  
The two main registers used in this mode, Register 0x04 and  
Register 0x05, contain the frequency tuning word and the phase  
offset word for CH1. The following is a basic protocol to program a  
frequency tuning word and/or phase offset word for CH1.  
For SpurKiller mode, the digital contents of the three auxiliary  
DDS channels are attenuated and summed with the primary  
channel. In this manner, harmonic spurs from the DAC can be  
reduced. This is accomplished by matching the frequency of the  
harmonic component, the amplitude, and the phase (180°  
offset) of the desired spur on one of the SpurKiller channels.  
1. Power up the AD9911 and issue a master reset. A master  
reset places the part in single-bit mode for serial  
programming operations (refer to the I/O Modes of  
Operation section). The frequency tuning word and phase  
offset word for CH1 defaults to 0.  
Bench level observations and manipulation are required to  
establish the optimal parameter settings for the SpurKiller  
channel(s). The parameters are dependent on the fundamental  
frequency and system clock frequency. The repeatability of  
these settings on a unit-to-unit basis depends directly on the  
SFDR variation of the DAC. The DAC on the AD9911 has  
enough part-to-part SFDR variation that using a set of fixed  
programming values across multiple devices will not  
consistently improve SFDR.  
2. Disable CH0, CH2, CH3 and enable CH1 using the  
channel enable bits in Register 0x00.  
3. Using the I/O port, program the desired frequency tuning  
word (Register 0x04) and/or the phase offset word  
(Register 0x05) for CH1.  
4. Send an I/O update signal. CH1 should output its  
programmed frequency and/or phase offset value, after a  
pipeline delay (see Table 1).  
Spur reduction performance on an individual device is stable  
over supply and temperature. The SpurKiller/multitone mode  
configuration is illustrated in Figure 36.  
Single-Tone Mode—Matched Pipeline Delay  
The amplitude of the auxiliary channels uses coarse and fine  
adjustments to match the amplitude of the targeted spur. The  
coarse adjust is implemented via the data align bits in Register  
0x03 Bits <18:16>. The approximate amplitude of the auxiliary  
channel is programmable between −60 dB and −12 dB com-  
pared to the full-scale fundamental, per the following equation:  
In single-tone mode, the AD9911 offers matched pipeline delay  
to the DAC input for all frequency, phase, and amplitude  
changes. The result is that frequency, phase, and amplitude  
changes arrive at the DAC input simultaneously. The feature is  
enabled by asserting the match pipeline delay bit found in the  
channel function register (CSR) (Register 0x03). This feature is  
available in single-tone mode only.  
AMP = −60 dB + (D × 6 dB)  
where AMP is the amplitude and D is the decimal value (0-7) of  
the data align bits  
SPURKILLER/MULTITONE MODE  
For both SpurKiller and multitone mode, the frequency, phase  
and amplitude settings of the auxiliary channels and the  
primary channel use Register 0x04 Bits <31:0> for frequency  
and Register 0x05 Bits <13:0> for phase. Note the channel  
enable bits in the CSR register must be use to distinguish the  
content of each channel. See the I/O Port section for details.  
For fine amplitude adjustments, the 10-bit output scalar  
(multiplier) of the auxiliary channel in Register 0x06 Bit <0:9>  
is used. The multiplier is enabled by Register 0x06 Bit <12>.  
A single active SpurKiller channel targeting the second  
harmonic is expressed as  
f
OUT = A × cos(ωt + Φ1) + B × cos(2ωt + Φ2) + B  
× cos(2ωt + Φ2 + 180°) + (all other spurious components)  
where B × cos(2ωt + Φ2 + 180°) represents the fundamental  
tone of the SpurKiller channel.  
Rev. 0 | Page 19 of 44  
 
 
 
 
AD9911  
10  
10  
10  
10  
COS(X)  
COS(X)  
COS(X)  
COS(X)  
DAC 1  
DDS CORE 1  
DDS CORE 0  
DDS CORE 2  
DDS CORE 3  
10-BIT DAC  
MUX  
10  
0
DATA  
ALIGN  
3
CFR <18:16>  
10  
10  
10  
DATA  
ALIGN  
3
CFR <18:16>  
10  
DATA  
ALIGN  
3
CFR <18:16>  
Figure 36. SpurKiller/Multitone Mode Configuration  
Enabling the PLL allows multiplication of the reference clock  
frequency from 4× to 20×, in integer steps. The PLL multiplica-  
tion value is 5-bits located in the Function Register 1 (FR1) Bits  
<22:18>. For further information, refer to the Register Map  
section.  
TEST-TONE MODE  
Test-tone mode enables sinusoidal amplitude modulation of the  
carrier (CH1). Setting Bit 2 in Register 0x01 enables test-tone  
mode. Auxiliary CH2 and CH3 should both be disabled using  
the channel enable bits (CSR Bit <7>). The frequency of  
modulation is set using the frequency tuning word  
When FR1 <22:18> is programmed with values ranging from 4 to  
20 (decimal), the clock multiplier is enabled. The integer value in  
the register represents the multiplication factor. The system clock  
rate with the clock multiplier enabled is equal to the reference clock  
rate times the multiplication factor. If FR1 <22:18> is programmed  
with a value less than 4 or greater than 20, the clock multiplier is  
disabled. Note that the output frequency of the PLL has a restricted  
frequency range. There is a VCO gain bit that must be set  
appropriately. The VCO gain bit (FR1<23>) defines two ranges  
(low/high) of frequency output. See the Register Map section for  
configuration directions and defaults.  
(Register 0x04 Bits <31:0>) of auxiliary CH0. Auxiliary CH0  
output scalar (Register 0x06 Bits <0:9>) sets the magnitude of  
the modulating signal. See Figure 37 for a diagram of the test-  
tone mode configuration.  
DDS CORE 1  
10  
10  
COS(X)  
DAC 1  
10  
10  
DDS CORE 0  
COS(X)  
The charge pump current in the PLL defaults to 75 μA, which  
typically produces the best phase noise characteristics.  
Increasing charge pump current typically degrades phase noise,  
but decreases the lock time and alters the loop bandwidth. The  
charge pump control bits (FR1 <17:16>) function is described  
in the Register Map section.  
14  
PHASE OFFSET  
AMPLITUDE  
Figure 37. Test-Tone Mode Configuration  
REFERENCE CLOCK MODES  
The AD9911 supports several methods for generating the  
internal system clock. An on-chip oscillator circuit is available  
for initiating the low frequency reference signal by connecting  
a crystal to the clock input pins. The system clock can also be  
generated using the internal, PLL-based reference clock  
multiplier, allowing the part to operate with a low frequency  
clock source while still providing a high sample rate for the  
DDS and DAC. For best phase noise performance, a clean,  
stable clock with a high slew rate is required.  
To enable the on-chip oscillator for crystal operation, drive  
CLK_MODE_SEL (Pin 24) high. The CLKMODESEL pin is  
considered an analog input, operating on 1.8 V logic. With the  
on-chip oscillator enabled, connection of an external crystal to  
the REF_CLK and REF_CLKB inputs is made producing a low  
frequency reference clock. The crystal frequency must be in the  
range of 20 MHz to 30 MHz. summarizes the clock mode  
options. See the Register Maps section for more details.  
Rev. 0 | Page 20 of 44  
 
 
 
AD9911  
Table 4.  
System Clock  
(fSYS CLK  
Min/Max Frequency  
Range (MHz)  
CLK_MODE_SEL Pin 24  
High = 1.8 V Logic  
High = 1.8 V Logic  
Low  
FR1 <22:18> PLL, Bits = M  
4 ≤ M ≤ 20  
Oscillator Enabled  
)
Yes  
Yes  
No  
No  
fSYSCLK = fOSC × M  
fSYSCLK = fOSC  
100 < fSYSCLK < 500  
20 < fSYSCLK < 30  
100 < fSYSCLK < 500  
0 < fSYSCLK < 500  
M < 4 or M > 20  
4 ≤ M ≤ 20  
fSYSCLK = fREF CLK × M  
fSYSCLK = fREF CLK  
Low  
M < 4 or M > 20  
Table 5.  
CFR <9:8>  
Reference Clock Input Circuitry  
LSB Current State  
The reference clock input circuitry has two modes of operation.  
The first mode (logic low) configures the circuitry as an input  
buffer. In this mode, the reference clock must be ac-coupled to  
the input due to internal dc biasing. This mode supports either  
differential or single-ended configurations. If single-ended  
mode is desired, the complementary reference clock input  
(Pin 23) should be decoupled to AVDD or AGND via a 0.1 μF  
capacitor. The following three figures exemplify common  
reference clock configurations for the AD9911.  
1
0
1
0
1
1
0
0
Full-scale  
Half-scale  
Quarter-scale  
Eighth-scale  
POWER-DOWN FUNCTIONS  
The AD9911 supports pin-controlled power-down plus numer-  
ous software selectable power-down modes. Software controlled  
power-down allows the input clock circuitry, DAC, and the  
digital logic (for the primary and auxiliary DDS cores) to be  
individually powered.  
0.1µF  
REF_CLK  
1:1  
PIN 23  
BALUN  
25Ω  
REFERENCE  
CLOCK  
0.1µF  
When the PWR_DWN_CTL input pin is high, the AD9911  
enters power-down mode based on the FR1 <6> bit. When the  
PWR_DWN_CTL input pin is low, the individual power-down  
bits (CFR <7:4>) control the power-down modes of operation.  
See the Control Register Descriptions section for further details.  
REF_CLK  
PIN 22  
SOURCE  
25Ω  
Figure 38. Typical Reference Clock Configuration for Sine Wave Source  
The reference clock inputs can also support an LVPECL or  
PECL driver as the reference clock source.  
SHIFT KEYING MODULATION  
The AD9911 can perform 2-/4-/8- or 16-level modulation of  
frequency, phase, or amplitude (FSK, PSK, ASK) by applying  
data to the profile pins. SYNC_CLK must be enabled when  
performing FSK, PSK, or ASK, while the auxiliary DDS cores  
must be disabled. Digital power down (CSR Bit <7>) of the  
auxiliary channels is recommended.  
0.1µF  
REF_CLK  
PIN 23  
LVPECL/  
PECL  
DRIVER  
TERMINATION  
REF_CLK  
PIN 22  
0.1µF  
Figure 39. Typical Reference Clock Configuration for LVPECL/PECL Source  
For external crystal operation, both clock inputs must be dc-  
coupled via the crystal leads and bypassed. Figure 40 shows the  
configuration when a crystal is used.  
In addition, the AD9911 has the ability to ramp up or ramp  
down the output amplitude before, during, or after a  
modulation (FSK, PSK only) sequence. This is accomplished by  
using the 10-bit output scalar. Profile pins or SDIO_1:3 pins can  
be configured to initiate the ramp up/ramp down (RU/RD)  
operation. See the Output Amplitude Control section for  
further details.  
39pF  
REF_CLK  
PIN 23  
25MHz  
XTAL  
REF_CLK  
PIN 22  
39pF  
In modulation mode, a set of control bits (CFR<23:22>)  
determines the type (frequency, phase, or amplitude) of  
modulation. The primary channel (CH1) has 16 profile  
registers. Register Address 0x0A through Register Address 0x18  
are profile registers for modulation of frequency, phase, or  
amplitude. Register 0x04, Register 0x05, and Register 0x06 are  
dedicated registers for frequency, phase, and amplitude,  
respectively.  
Figure 40. Crystal Configuration for Reference Clock Source  
SCALABLE DAC REFERENCE CURRENT CONTROL  
MODE  
Set the full-scale output current using bits CFR <9:8>, as shown  
in Table 5.  
These registers contain the initial frequency, phase offset and  
amplitude word. Frequency modulation is 32-bit resolution,  
phase modulation is 14 bit, and amplitude is 10 bit. When  
Rev. 0 | Page 21 of 44  
 
 
 
 
 
AD9911  
modulating phase or amplitude, the word value must be MSB-  
aligned in the profile registers; excess bits are ignored. In  
modulation mode, bits CFR <23:22> and FR1 <9:8> configure  
the modulation type and level. See Table 6 and Table 7 for  
settings. Note that the linear sweep enable bit must be set to  
Logic 0 in modulation mode.  
As shown in Table 9, only Profile Pin P1 can be used to  
modulate CH1. If Pin P1 is Logic 0 and FSK modulation is  
desired, then Profile Register 0 (Register 0x04) frequency is  
chosen. If Pin P1 is Logic 1, then Profile Register 1  
(Register 0x0A) frequency is chosen.  
4-Level Modulation—No RU/RD  
Table 6.  
Modulation level bits are set to 01 (4-level). AFP bits are set to  
the desired modulation. RU/RD bits and the linear sweep bit are  
disabled. Table 10 displays how the profile pins are assigned.  
CFR <23:22>  
CFR <14>  
Description  
0
0
1
1
0
1
0
1
x
0
0
0
Modulation disabled  
Amplitude modulation  
Frequency modulation  
Phase modulation  
Table 10. 4-Level Modulation—No RU/RD  
Profile Pin Configuration (PPC) Bits  
FR1 <14:12>  
P0  
P1  
P2  
P3  
Table 7.  
FR1 <9:8>  
0
1
1
CH1 CH1 N/A N/A  
Description  
For this condition, the profile register chosen is based on the  
2 bit value presented to profile pins <P0:P1>. For example, if  
PPC = 011 and <P0:P1>= 11, then the contents of Profile  
Register 3 (Register 0x0C) are presented to CH1 output.  
0
0
1
1
0
1
0
1
2-level modulation  
4-level modulation  
8-level modulation  
16-level modulation  
When both modulation and the RU/RD feature are desired,  
unused profile pins or SDIO pins can be assigned. SDIO pins  
can only be used for RU/RD.  
8-Level Modulation—No RU/RD  
Modulation level bits are set to 10 (8-level). AFP bits are set to  
the desired modulation. RU/RD bits and the linear sweep bit are  
disabled. Table 11 shows the assignment of profile pins and  
channels.  
Table 8.  
RU/RD Bits  
FR1 <11:10> Description  
Table 11. 8-Level Modulation—No RU/RD  
0
0
0
1
RU/RD disabled.  
Profile Pin 2 and Pin 3 configured for RU/RD  
operation.  
Profile Pin Config. Bits  
FR1 <14:12>  
P0  
P1  
P2  
P3  
x
0
1
CH1  
CH1  
CH1  
x
1
1
0
1
Profile Pin 3 configured for RU/RD operation.  
For this condition, the profile register (1 of 8) chosen is based  
on the 3-bit value presented to the Profile Pin P0 to Pin P2. For  
example, if PPC = x01 and <P0:P2> = 111, then the contents of  
Profile Register 7 (Register 0x10) are presented to CH1 output.  
SDIO Pin 1, Pin 2, and Pin 3 configured for  
RU/RD operation. Forces the I/O to be used only  
in 1-bit mode.  
If profile pins are used for RU/RD, Logic 0 sets for ramp up and  
Logic 1 sets for ramp down.  
16-Level Modulation—No RU/RD  
Modulation level bits are set to 11 (16-level). AFP bits are set to  
the desired modulation. RU/RD bits and the linear sweep bit are  
disabled. Table 12 displays how the profile pins and channels are  
assigned.  
To support RU/RD flexibility, it is necessary to assign the profile  
pins and/or SDIO Pin 1 to Pin 3 to CH1 operation. This is  
controlled by the profile pin configuration (PPC) or PPC bits  
(FR1 <14:12>). The modulation descriptions that follow include  
data pin assignment. In the modulation descriptions, an “x”  
indicates that it does not matter.  
Table 12. 16-Level Modulation—No RU/RD  
Profile Pin Config. (PPC) Bits  
FR1 <14:12>  
P0  
P1  
P2  
P3  
2-Level Modulation—No RU/RD  
x
0
1
CH1  
CH1  
CH1  
CH1  
Modulation level bits are set to 00 (2-level). AFP bits are set to  
the desired modulation. RU/RD bits and the linear sweep bit are  
disabled. Table 9 displays how the profile pins are assigned.  
For these conditions, the profile register chosen is based on the  
4-bit value presented to Profile Pin P0 to Pin P3. For example, if  
PPC = x01 and <P0:P3>= 1110, then the contents of Profile  
Register 14 (Register 0x17) are presented to CH1 output.  
Table 9. 2-Level ModulationNo RU/RD  
Bits FR1<14:12>  
P0  
P1  
P2  
P3  
2-Level Modulation Using Profile Pins for RU/RD  
x
x
x
N/A  
CH1  
N/A  
N/A  
When the RU/RD bits = 01, either Profile Pin P2 or Pin P3 are  
available for RU/RD. Note that only a modulation level of two is  
available when RU/RD bits = 01. See Table 13 for available pin  
assignments.  
Rev. 0 | Page 22 of 44  
 
 
 
 
 
 
 
 
AD9911  
Table 13. 2-Level Modulation—RU/RD  
16-Level Modulation Using SDIO Pins for RU/RD  
Profile Pin Config. Bits  
FR1<14:12>  
RU/RD = 11 (SDIO Pin 1 available for RU/RD) and the level is  
set to 16. See the pin assignment shown in Table 18.  
P0  
P1  
P2  
P3  
0
0
0
1
0
1
N/A CH1 N/A  
CH1  
RU/RD  
Table 18.  
Profile Pin  
CH1 N/A CH1  
N/A  
Config. Bits  
RU/RD  
(FR1<14:12>) P0  
CH1 CH1 CH1 CH1 CH1  
RU/RD  
P1  
P2  
P3  
SDIO_1 SDIO_2 SDIO_3  
x
0
1
N/A N/A  
8-Level Modulation Using a Profile Pin for RU/RD  
For the configuration shown in Table 18, the profile register is  
chosen based on the 4-bit value presented to <P0:P3>. For  
example, if PPC = x01 and <P0:P3> = 1101, then the contents of  
Profile Register 13 (Register 0x16) are presented to CH1 output.  
The SDIO_1 pin provides the RU/RD function.  
When the RU/RD bits = 10, Profile Pin P3 is available for  
RU/RD. Note that only a modulation level of eight is available  
when the RU/RD bits = 10. See Table 14 for available pin  
assignments.  
Table 14. 8-Level Modulation—RU/RD  
Profile Pin Config. Bits FR1  
<14:12>  
LINEAR SWEEP (SHAPED) MODULATION MODE  
P0  
CH1 CH1 CH1 CH1  
RU/RD  
P1  
P2  
P3  
Linear sweep enables the user to sweep frequency, phase, or  
amplitude from a starting point (S0) to an endpoint (E0). The  
purpose of linear sweep mode is to provide better bandwidth  
containment compared to direct modulation mode by enabling  
more gradual, user-defined changes between S0 and E0. Note  
that SYNC_CLK must be enabled when using Linear Sweep  
while the auxiliary DDS cores must be disabled. Digital power  
down (CSR bit <7>) of the auxiliary channels is recommended.  
Figure 41 depicts the linear sweep block diagram.  
x
0
1
SHIFT KEYING MODULATION USING SDIO PINS  
FOR RU/RD  
For RU/RD bits = 11, SDIO Pin 1, Pin 2, and Pin 3 are available  
for RU/RD. In this mode, modulation levels of 2, 4, and 16 are  
available. Note that the I/O port can only be used in 1-bit serial  
mode.  
Table 15. 2-Level Modulation Using SDIO Pins for RU/RD  
In linear sweep mode, S0 is loaded into Profile Register 0  
(Profile 0 is represented by Register 0x04, Register 0x05, or  
Register 0x06, depending on the parameter being swept) and E0  
is always loaded into Profile Register 1 (Register 0x0A). If E0 is  
configured for frequency sweep, the resolution is 32-bits. For  
phase sweep, the resolution is 14 bits and for amplitude sweep,  
the resolution is 10 bits. When sweeping phase or amplitude,  
the word value must be MSB-aligned in Profile Register 1;  
unused bits are ignored. Profile Pin1 triggers and controls the  
direction (up/down) of the linear sweep for frequency, phase, or  
amplitude.  
Profile Pin Config. Bits  
FR1 <14:12>  
P0  
P1  
P2  
P3  
x
x
x
N/A  
CH1  
N/A  
N/A  
In this case, the SDIO pins can be used for the RU/RD function,  
as described in Table 16.  
Table 16. SDIO Pins  
1
0
0
2
1
1
3
0
1
Description  
Triggers the ramp-up function for CH1  
Triggers the ramp-down function for CH1  
4-Level Modulation Using SDIO Pins for RU/RD  
The AD9911 can be programmed to ramp up or ramp down the  
output amplitude (using the 10-bit output scalar) before and  
after a linear sweep. If the RU/RD feature is desired, profile pins  
or SDIO_1:3 pins can be configured to control the RU/RD  
operation. For further details, refer to the Output Amplitude  
Control section. To enable linear sweep mode, AFP bits (CFR  
<23:22>), modulation level bits (FR1 <9:8>), and the linear  
sweep enable bit (CFR <14>) must be programmed. The AFP  
bits determine the type of linear sweep to be performed (see  
Table 19). The modulation level bits must be set to 00 (2-level).  
For RU/RD = 11 (SDIO Pin 1 and Pin 2 are available for  
RU/RD), the modulation level is set to four. See Table 17 for pin  
assignments, including SDIO pin assignments.  
Table 17.  
Profile Pin  
Config. Bits  
(FR1<14:12>) P0  
P1  
P2  
P3  
SDIO_1 SDIO_2 SDIO_3  
0
0
0
1
0
1
N/A  
N/A  
CH1 CH1 N/A  
CH1  
RU/RD  
N/A  
CH1 CH1 N/A  
N/A  
CH1  
N/A  
N/A  
RU/RD  
Table 19.  
For the configuration shown in Table 17, the profile register is  
chosen based on the 2-bit value presented to <P0:P1> or  
<P2:P3>. For example, if PPC = 011, <P0:P1> = 11, then the  
contents of Profile Register 3 (Register 0x0C) are presented to  
CH1 output. SDIO Pin 1 and Pin 2 provide the RU/RD function.  
AFP  
CFR <23:22>  
Linear Sweep Enable  
CFR <14>  
Description  
N/A  
Amplitude sweep  
Frequency sweep  
Phase sweep  
0
0
1
1
0
1
0
1
1
1
1
1
Rev. 0 | Page 23 of 44  
 
 
 
 
 
 
 
 
AD9911  
PHASE  
ACCUMULATOR  
PHASE OFFSET  
ADDER  
32  
15  
10  
–1  
Z
DAC  
COS(X)  
FREQ SWEEP EN  
PHASE SWEEP EN  
AMP SWEEP EN  
MUX  
MUX  
MUX  
1
0
1
0
1
0
CTW0  
ACR  
CPW0  
RU/RD LOGIC  
SWEEP FUNCTION LOGIC  
Figure 41. Linear Sweep Capability  
For a piecemeal or a nonlinear transition between S0 and E0,  
the delta tuning words and ramp rate words can be repro-  
grammed during the transition.  
Setting the Rate of the Linear Sweep  
The rate of the linear sweep is set by the intermediate step size  
(delta-tuning word) between S0 and E0 (see Figure 42) and the  
time spent (sweep ramp rate word) at each step. The resolution  
of the delta-tuning word is 32 bits for frequency, 14 bits for  
phase, and 10 bits for amplitude. The resolution for the delta  
ramp rate word is 8 bits.  
The formulae for calculating the step size of RDW or FDW are  
RDW  
Δf =  
× SYNC _CLK (Hz)  
232  
In linear sweep, the user programs a rising delta word (RDW,  
Register 0x08) and a rising sweep ramp rate word (RSRR,  
Register 0x07). These settings apply when sweeping from F0 to  
E0. The falling delta word (FDW, Register 0x09) and falling  
sweep ramp rate (FSRR, Register 0x07) apply when sweeping  
from E0 to S0.  
RDW  
ΔΦ =  
×360°  
214  
RDW  
DAC full-scale current  
×
Δa =  
210  
The formula for calculating delta time from RSRR or FSRR is  
Δt = RSRR /SYNC _CLK(Hz)  
When programming, note that attention is required to prevent  
overflow of the sweep. If the sweep accumulator is allowed to  
overflow, an uncontrolled, continuous sweep operation occurs.  
To avoid this, the magnitude of the rising or falling delta word  
should be smaller than the difference between full scale and the  
E0 value (full scale − E0). For a frequency sweep, full scale is  
231−1. For a phase sweep, full scale is 214 −1. For an amplitude  
sweep, full scale is 210−1.  
(
)
At 500 MSPS operation (SYNC_CLK =125 MHz), the  
minimum time interval between steps is 1/125 MHz × 1 = 8 ns.  
The maximum time interval is (1/125 MHz) × 255 = 2.04 μs.  
Frequency Linear Sweep Example  
This section provides an example of a frequency linear sweep  
followed by a description.  
The graph in Figure 42 displays a linear sweep up and then  
down using a profile pin. Note that the no dwell bit is cleared. If  
the no dwell bit (CFR<15>) is set, the sweep accumulator  
returns to 0 upon reaching E0. For more information, see the  
Linear Sweep No Dwell Mode section.  
AFP CFR<23:22> =10, modulation level FR1<9:8> = 00, sweep  
enable CFR<14> = 1, linear sweep no-dwell CFR<15> = 0.  
In linear sweep mode, when the profile pin transitions from low  
to high, the RDW is applied to the input of the sweep accumu-  
lator and the RSRR register is loaded into the sweep rate timer.  
EO  
The RDW accumulates at the rate given by the ramp rate  
(RSRR) until the output equals the CTW1 register value. The  
sweep is then complete and the output held constant in  
frequency.  
RDW  
Δf,p,a  
FDW  
Δf,p,a  
RSRR  
FSRR  
When the profile pin transitions from high to low, the FDW is  
applied to the input of the sweep accumulator and the FSRR  
register is loaded into the sweep rate timer.  
Δt  
Δt  
SO  
PROFILE PIN  
The FDW accumulates at the rate given by the ramp rate  
(FSRR) until the output equals the CTW0 register value. The  
TIME  
Figure 42. Linear Sweep Mode  
Rev. 0 | Page 24 of 44  
 
 
AD9911  
sweep is then complete and the output held constant in  
frequency. See Figure 43 for the linear sweep circuitry.  
Figure 45 depicts a frequency sweep with no-dwell mode  
disabled. In this mode, the output follows the state of the profile  
pin. A phase or amplitude sweep works in the same manner  
with fewer bits.  
rising delta tuning word, until it reaches E0. The output then  
reverts to the S0 and stalls until high is detected on the  
profile pin.  
Figure 44 demonstrates the no-dwell mode. The points labeled  
A indicate where a rising edge is detected on the profile pin.  
Points labeled B indicate at which points where the AD9911 has  
determined that the output has reached E0 and reverts to S0.  
LINEAR SWEEP NO DWELL MODE  
To enable linear sweep no dwell mode, set CFR <15>. The rising  
sweep is started by setting the profile input pin to 1. The  
frequency, phase or amplitude continues to sweep up at the rate  
set by the rising sweep ramp rate and the resolution set by the  
The falling ramp rate register and the falling delta word are  
unused in this mode.  
SWEEP ACCUMULATOR  
SWEEP ADDER  
0
0
N
N
N
N
–1  
0
Z
MUX  
1
FDW  
RDW  
0
N
0
MUX  
1
MUX  
1
MUX  
1
0
N
PROFILE PIN  
CTW0  
RAMP RATE TIMER:  
8-BIT LOADABLE DOWN COUNTER  
ACCUMULATOR RESET  
LOGIC  
LIMIT LOGICTO  
KEEP SWEEP BETWEEN  
S0 AND E0  
8
N
PROFILE PIN  
CTW1  
MUX  
1
0
RATE TIME  
LOAD CONTROL  
LOGIC  
FSRR RSRR  
Figure 43. Linear Sweep Block Circuitry  
fOUT  
B
B
B
FTW1  
A
A
A
FTW0  
TIME  
SINGLE–TONE  
MODE  
PS<1> = 0  
PS<1> = 1 PS<1> = 0 PS<1> = 1  
PS<1> = 0  
PS<1> = 1  
Figure 44. Linear Sweep Mode Enabled—No Dwell Bit Set  
Rev. 0 | Page 25 of 44  
 
 
 
 
 
 
AD9911  
fOUT  
B
FTW1  
A
FTW0  
TIME  
SINGLE–TONE  
MODE  
LINEAR SWEEP MODE  
PS<1> = 1  
PS<1> = 0  
PS<1> = 0  
Figure 45. Linear Sweep Enabled-No Dwell Bit Cleared  
SWEEP AND PHASE ACCUMULATOR CLEARING  
FUNCTIONS  
The RU/RD feature is used to control an on/off emission from  
the DAC. This helps reduce the adverse spectral impact of  
abrupt burst transmissions of digital data. The multiplier can be  
bypassed by clearing the multiplier enable bit (ACR <12> = 0).  
The AD9911 provides two different clearing functions. The first  
function is a continuous zeroing of the sweep logic and phase  
accumulator (clear and hold). CFR <3> clears the sweep  
accumulator and CFR <1> clears the phase accumulator  
Automatic and manual RU/RD modes are supported. The  
automatic mode generates a zero to full-scale (10-bits) linear  
ramp at a rate set using the amplitude ramp rate control register  
(ACR <23:16>). Ramp initiation and direction (up/down) is  
controlled using either the profile pins or the SDIO1:3 pins.  
See Table 21. Manual mode is selected by programming ACR  
<12:11> = 10. In this mode, the user sets the output amplitude  
by writing to the amplitude scale factor value in the amplitude  
control register (Register 0x06 Bits <9:0>).  
The second function is a clear and release or automatic zeroing  
function. CFR <4> is the automatic clear sweep accumulator bit  
and CFR <2> is the automatic clear phase accumulator bit.  
Continuous Clear Bits  
The continuous clear bits are static control signals that, when  
high, hold the respective accumulator at 0. When the bit is  
programmed low, the respective accumulator is released.  
Automatic RU/RD Mode Operation  
Clear and Release Bits  
The automatic RU/RD mode is entered by setting ACR <12:11>  
= 11. In this mode, the scale factor is internally generated and  
applied to the multiplier input port for scaling the output. The  
scale factor is the output of a 10-bit counter that increments/  
decrements at a rate set by the 8-bit output ramp rate in Register  
0x06 Bits <23:16>. The scale factor increments if the external  
pin is high and decrements if the pin is low. The scale factor  
step size is selected using the ACR<15:14>. Table 20 details the  
step size options available.  
The auto clear sweep accumulator bit, when set, clears and  
releases the sweep accumulator upon an I/O update or a change  
in the profile input pins. The auto clear phase accumulator,  
when set, clears and releases the phase accumulator upon an  
I/O update or a change in the profile pins. The automatic clear-  
ing function is repeated for every subsequent I/O update or  
change in profile pins until the clear and release bits are cleared  
via the I/O port.  
OUTPUT AMPLITUDE CONTROL  
Table 20.  
The output amplitude may be controlled via one of four  
methods. Output amplitude control is implemented by the use  
of the 10-bit output scale factor (multiplier). See Figure 46 for  
output amplitude control configurations. For further details on  
the corresponding methods, see the Shift Keying Modulation  
section and the Linear Sweep (Shaped) Modulation Mode  
sections. The remaining methods (Manual and Automatic  
RU/RD) are described in this section.  
Autoscale Factor Step Size  
ASF <15:14> (Binary)  
Increment/Decrement Size  
00  
01  
10  
11  
1
2
4
8
The amplitude scale factor register allows the device to ramp to  
a value less than full scale.  
Rev. 0 | Page 26 of 44  
 
 
 
 
AD9911  
AMPLITUDE  
MULTIPLIER ENABLE  
ACR <12>  
DDS CORE  
COS(X)  
0
1
DAC  
AUTO RAMP  
UP/DOWN  
(RU/RD)  
10  
MUX  
RAMP UP/DOWN  
(RU/RD)  
PROFILE/SDIO_1:3  
PINS  
ENABLE  
ACR <11>  
10  
10  
10  
LINEAR SWEEP  
10  
ACCUMULATOR  
LOAD ARR  
TIMER  
SYNC_CLK  
BIT ACR <10>  
PROFILE REGISTERS  
FOR  
ASK MODULATION  
0
1
AMPLITUDE  
RAMP RATE  
REGISTER  
10  
10  
0
1
(ACR BITS <23:16>)  
TEST TONE  
MODULATION  
0
8
HOLD  
UP/DN  
INC/DEC EN  
AMPLITUDE SCALE  
FACTOR  
OUT  
DATA  
EN  
LOAD  
10  
2
REGISTER  
(ACR) <0:9>  
SYNC  
CLOCK  
INCREMENT/  
DECREMENT  
STEP SIZE  
8-BIT BINARY  
DOWN  
COUNTER  
10-BIT BINARY  
UP/DOWN  
COUNTER  
MANUAL  
RAMP UP/DOWN  
(RU/RD)  
ACR <15:14>  
Figure 46. Output Amplitude Control Configurations  
Ramp Rate Timer  
The ramp rate timer is loaded with the value of the ASF every  
time the counter reaches 1 (decimal). This load and count down  
operation continues for as long as the timer is enabled unless  
the timer is forced to load before reaching a count of 1.  
The ramp rate timer is a loadable 8-bit down counter. It  
generates the clock signal to the 10-bit counter, which in turn  
generates the internal scale factor. The formula for calculating  
the amplitude ramp rate time is  
If the load ARR timer bit ACR <10> is set, the ramp rate timer  
is loaded if any of the following three incidents transpire: an I/O  
update occurs, a profile pin changes, or the timer reaches a  
Δt = x /SYNC _CLK(Hz)  
( )  
Where x is the decimal value in Register 00x06 Bits <23:16>.  
See through Table 13 through Table 18 for RU/RD pin  
assignments.  
At 500 MSPS operation (SYNC_CLK =125 MHz), the  
minimum time interval between steps is 1/125 MHz × 1 = 8 ns.  
The maximum time interval is (1/125 MHz) × 255 = 2.04 μs.  
Rev. 0 | Page 27 of 44  
 
AD9911  
SYNCHRONIZING MULTIPLE AD9911 DEVICES  
The AD9911 allows easy synchronization of multiple AD9911  
devices. At power-up, the phase of SYNC_CLK may be offset  
between multiple devices. There are three options (one  
automatic mode and two manual modes) to compensate for this  
offset and align the SYNC_CLK edges. These modes force the  
internal state machines of multiple devices to a common state,  
which aligns SYNC_CLKs.  
If the propagation time is greater than one system clock period,  
the time should be measured and the appropriate offset  
programmed. Table 21 describes the delays required per system  
clock offset value.  
Table 21.  
System Clock  
Offset Value  
SYNC_OUT/SYNC_IN  
Propagation Delay  
00  
01  
10  
11  
0 ≤ delay ≤ 1  
1 ≤ delay ≤ 2  
2 ≤ delay ≤ 3  
3 ≤ delay ≤ 4  
Any mismatch in REF_CLK phase between devices results in a  
corresponding phase mismatch on the SYNC_CLKs.  
OPERATION  
The first step is to program the master and slave devices for  
their respective roles. Configure the master device by setting its  
master enable bit (FR2 <6>). This causes the SYNC_OUT of the  
master device to output a pulse whose pulse width equals one  
system clock period and whose frequency equals ¼ of the  
system clock frequency. Configuring device(s) as slaves is  
performed by setting the slave enable bit (FR2 <7>).  
Automatic Synchronization Status Bit  
If a slave device falls out of sync, the sync status bit is set. This  
bit can be read through the I/O port bit (FR2 <5>). It clears  
automatically when read. If the device reacquires sync before  
the bit is read, the alarm will remain high. The bit does not  
necessarily reflect the current state of the device. The status bit  
can be masked by writing Logic 1 to the synchronization status  
mask bit (FR2 <4>). When masked, the bit is held low.  
AUTOMATIC MODE SYNCHRONIZATION  
MANUAL SOFTWARE MODE SYNCHRONIZATION  
In automatic mode, synchronization is achieved by connecting  
the SYNC_OUT pin on the master device to the SYNC_IN pin  
of the slave device(s). Devices are configured as master or slave  
through programming bits, accessible via the I/O port.  
The manual software mode is enabled by setting the manual  
synchronization bit (FR1 <0>). In this mode, the I/O update  
that resets the Manual SW synchronization bit stalls the state  
machine of the clock generator for one system clock cycle.  
Stalling the clock generation state machine by one cycle changes  
the phase relationship of SYNC_CLK between devices by one  
system clock period (90°).  
A configuration for synchronizing multiple AD9911 devices in  
automatic mode is shown in the Application Circuits section. In  
this configuration, the AD9510 provides coincident REF_CLK  
and SYNC_IN to all devices.  
Note that the user may repeat this process until the devices have  
the corresponding SYNC_CLK signals in the desired phase  
relationship. The SYNC_IN input can be left floating since this  
input has an internal pull-up. The SYNC_OUT is not used.  
In this mode, slave devices sample SYNC_OUT pulses from the  
master device and a comparison of all state machines is made  
by the auto-synchronization circuitry. If the slave device(s) state  
machines are not identical to the master, the slave device(s)  
state machines stall for one system clock cycle. This procedure  
synchronizes the slave device(s) within three SYNC_CLK  
periods.  
MANUAL HARDWARE MODE SYNCHRONIZATION  
Manual hardware mode is enabled by setting the manual SW  
synchronization bit (FR1 <1>). In this mode, the SYNC_CLK  
stalls by one system clock cycle each time a rising edge is  
detected on the SYNC_IN input. Stalling the SYNC_CLK state  
machine by one cycle changes the phase relationship of  
SYNC_CLK between devices by one system clock period (90°).  
Delay Time Between SYNC_OUT and SYNC_IN  
When the delay between SYNC_OUT and SYNC_IN exceeds  
one system clock period, phase offset bits (FR2 <1:0>) are used  
to compensate. Without the compensation factor, a phase error  
of 90°, 180°, or 270° might exist. The default state of these bits is  
00, which implies that the SYNC_OUT of the master and the  
SYNC_IN of the slave have a propagation delay of less than one  
system clock period.  
Note that the process can be repeated until the devices have  
SYNC_CLK signals in the desired phase relationship. The  
SYNC_IN input can be left floating since this input has an  
internal pull-up. The SYNC_OUT is not used.  
Rev. 0 | Page 28 of 44  
 
 
 
AD9911  
If the set-up time between these signals is met, then constant  
I/O_UPDATE, SYNC_CLK, AND SYSTEM CLOCK  
RELATIONSHIPS  
latency (pipeline) to the DAC output exists. For example, if  
repetitive changes to phase offset via the SPI port is desired, the  
latency of those changes to the DAC output is constant,  
otherwise a time uncertainty of one SYNC_CLK period will be  
present.  
I/O_UPDATE and SYNC_CLK are used together to transfer  
data from the I/O buffer to the active registers in the device.  
Data in the I/O buffer is inactive.  
SYNC_CLK is a rising edge active signal. It is derived from  
the system clock and a divide-by frequency divider of 4. The  
SYNC_CLK is provided externally to synchronize external  
hardware to the AD9911 internal clocks.  
The I/O UPDATE is sampled on the rising edge of the  
SYNC_CLK. Therefore, I/O_UPDATE must have a minimum  
pulse width greater than one SYNC_CLK period.  
The timing diagram shown in Figure 47 depicts when data in  
the I/O buffer is transferred to the active registers.  
I/O_UPDATE initiates the start of a buffer transfer. It can be  
sent synchronously or asynchronously relative to the  
SYNC_CLK.  
The I/O UPDATE is set up and held around the rising edge of  
SYNC_CLK and has zero hold time and 4.8 ns setup time.  
SYSCLK  
A
B
SYNC_CLK  
I/O UPDATE  
DATA IN  
REGISTERS  
N
N + 1  
N – 1  
DATA IN  
I/O BUFFERS  
N
N + 1  
N + 2  
THE DEVICE REGISTERS AN I/O UPDATE AT POINT A. THE DATA IS TRANSFERRED FROM THE ASYNCHRONOUSLY LOADED I/O BUFFERS AT POINT B.  
Figure 47. I/O_UPDATE Timing  
Rev. 0 | Page 29 of 44  
 
 
 
AD9911  
I/O PORT  
Upon completion of a communication cycle, the AD9911 I/O  
port controller expects the next set of rising SCLK edges to be  
the instruction byte for the next communication cycle. Data  
writes occur on the rising edge of SCLK. Data reads occur on  
the falling edge of SCLK. See Figure 43 and Figure 44.  
OVERVIEW  
The AD9911 I/O port offers multiple configurations to provide  
significant flexibility. The I/O port includes an SPI-compatible  
mode of operation. Flexibility is provided by four data  
(SDIO_0:3) pins supporting four programmable modes of I/O  
operation.  
An I/O_UPDATE transfers data from the I/O port buffer to  
active registers. The I/O_UPDATE can either be sent for each  
communication cycle or when all I/O operations are complete.  
Data remains inactive until an I/O_UPDATE is sent, with the  
exception of the channel enable bits in the Channel Select  
Register (CSR). These bits require no I/O_UPDATE to be  
enabled.  
Three of the four data pins (SDIO_1:3) can be used for  
functions other than I/O port operation. These pins may be set  
to initiate a ramp-up or ramp-down (RU/RD) of the 10-bit  
amplitude output scalar. One of these pins (SDIO_3) may be  
used to provide the SYNC_I/O function.  
The maximum speed of the I/O port SCLK is 200 MHz. The  
maximum data throughput of 800 Mbps is achieved by using all  
SDIO_0:3 pins.  
tPRE  
tSCLK  
CS  
tDSU  
tSCLKPWL  
There are four sets of addresses (0x03 to 0x18) that channel  
enable bits can access to provide channel independence when  
using the auxiliary DDS cores for either test-tone generation or  
spur killing. See the Control Register Descriptions section for  
further discussion of programming channels that are common  
or independent from one another.  
SCLK  
tSCLKPWH  
tDHLD  
SDIO  
SYMBOL  
DEFINITION  
MIN  
t
t
t
t
t
t
PRE  
CS SETUP TIME  
PERIOD OF SERIAL DATA CLOCK  
SERIAL DATA SETUP TIME  
SERIAL DATA CLOCK PULSE WIDTH HIGH 2.2ns  
SERIAL DATA CLOCK PULSE WIDTH LOW 1.6ns  
SERIAL DATA HOLD TIME  
1.0ns  
5.0ns  
2.2ns  
SCLK  
I/O operation of the AD9911 occurs at the register level, not the  
byte level; the controller expects that all byte(s) contained in the  
register address are accessed. The SYNC_I/O function can be  
used to abort an I/O operation, thereby not allowing all bytes to  
be accessed. This feature can be used to program only a part of  
the addressed register. Note that only completed bytes are  
stored.  
DSU  
SCLKPWH  
SCLKPWL  
DHLD  
0ns  
Figure 48. Set-Up and Hold Timing for the I/O Port  
CS  
SCLK  
SDIO  
There are two phases to a communications cycle. The first is the  
instruction phase, which writes the instruction byte into the  
AD9911. Each bit of the instruction byte is registered on each  
corresponding rising edge of SCLK. The instruction byte  
defines whether the upcoming data transfer is a write or read  
operation and contains the serial address of the address register.  
SDO (SDIO_2)  
tDV  
SYMBOL  
tDV  
DEFINITION  
DATA VALID TIME  
MIN  
Phase 2 of the I/O cycle is of the data transfer (write/read)  
between the I/O port controller and the I/O port buffer. The  
number of bytes transferred during this phase of the communi-  
cation cycle is a function of the register being accessed. The  
actual number of additional SCLK rising edges required for the  
data transfer and instruction byte depends on the number of  
byte(s) in the register and the I/O mode of operation.  
12ns  
Figure 49. Timing Diagram for Data Read for I/O Port  
INSTRUCTION BYTE DESCRIPTION  
The instruction byte contains the information displayed in  
Table 22 where x = don’t care.  
Table 22.  
MSB  
For example, when accessing Function Register 1, (FR1), which  
is three bytes wide, Phase 2 of the I/O cycle requires that three  
bytes are transferred. After transferring all data bytes per the  
instruction byte, the communication cycle is complete.  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
R/Wb  
x
x
A4  
A3  
A2  
A1  
A0  
Rev. 0 | Page 30 of 44  
 
 
 
AD9911  
Example  
Bit 7 of the instruction byte (R/Wb) determines whether a read  
or write data transfer occurs after the instruction byte write. set  
indicates a read operation; Cleared indicates a write operation.  
Bit 4 to Bit 0 of the instruction byte determine which register is  
accessed during the data transfer portion of the  
To write the Function Register 1 (FR1) in MSB-first format,  
apply an instruction byte of MSB > 00000001 < LSB, starting  
with the MSB. The internal controller recognizes a write  
transfer of three bytes starting with the MSB, Bit <23>, in the  
FR1 address (Register 0x01). Bytes are written on each  
consecutive rising SCLK edge until Bit<0> is transferred. This  
indicates the I/O communication cycle is complete and the next  
byte is considered an instruction byte.  
communications cycle. The internal byte addresses are  
generated by the AD9911.  
I/O PORT PIN DESCRIPTION  
Data Clock (SCLK)  
The clock pin is used to synchronize data to and from the  
internal state machines of the AD9911.  
To write the Function Register 1 (FR1) in LSB-first format,  
apply an instruction byte of MSB > 00000001 < LSB, starting  
with the LSB. The internal controller recognizes a write transfer  
of three bytes, starting with the LSB, Bit <0>, in the FR1 address  
(Register 0x01). Bytes are written on each consecutive rising  
SCLK edge until Bit <23> is transferred. Once the last data bit is  
written, the I/O communication cycle is complete and the next  
byte is considered an instruction byte.  
CS  
Chip Select (  
)
The chip select pin allows more than one AD9911 device to be  
on the same communications lines. The chip select is an active  
low enable pin. Defined SDIO inputs go to a high impedance  
CS  
CS  
state when  
is high. If  
is driven high during any  
CS  
communications cycle, that cycle is suspended until  
reactivated low.  
is  
I/O MODES OF OPERATION  
There are four selectable modes of I/O port operation:  
Data I/O (SDIO_0:3)  
Single-bit serial 2-wire mode (default mode).  
Single-bit, 3-wire mode.  
Of the four SDIO pins, only the SDIO_0 pin is dedicated to this  
function. SDIO_1:3 can be used to control the ramping of the  
output amplitude. Bits <2:1> in the channel select register (CSR  
Register 0x00) control the configuration of these pins. See the  
I/O Modes of Operation section for more information.  
2-bit mode.  
4-bit mode (SYNC_I/O not available).  
I/O PORT FUNCTION DESCRIPTION  
Table 23 displays the function of all six I/O interface pins,  
depending on the mode of I/O operation selected.  
Serial Data Out (SDO)  
The SDO function is available in single-bit (3-wire) mode only.  
In SDO mode, data is read from the SDIO_2 pin for protocols  
that use separate lines for reading and writing data (see Table 23  
for pin configuration options). Bits <2:1> in the CSR register  
(Register 0x00) control the configuration of this pin. The SDO  
function is not available in 2-bit and 4-bit I/O modes.  
Table 23. I/O Port Pin Function vs. I/O Mode  
Single Bit, Single Bit,  
Pin  
Name  
2-Wire  
Mode  
3-Wire  
Mode  
2-Bit Mode 4-Bit Mode  
SCLK  
CSB  
I/O  
Clock  
Chip  
I/O  
Clock  
Chip  
I/O  
Clock  
Chip  
I/O  
Clock  
Chip Select  
SYNC_I/O  
Select  
Select  
Select  
The SYNC_I/O function is available in 1-bit and 2-bit modes.  
SDIO_3 serves as the SYNC_I/O pin, as configured by Bits  
<2:1> in the CSR register (Register 0x00). Otherwise, the  
SYNC_I/O function is used to synchronize the I/O port state  
machines without affecting the addressable register contents.  
An active high input on the SYNC_I/O pin causes the current  
communication cycle to abort. After SDIO_3 returns low (Logic  
0), another communication cycle can begin. The SYNC_I/O  
function is not available in 4-bit I/O mode.  
SDIO_0 Data I/O  
SDIO_1 Not used  
for SDIO1  
SDIO_2 Not used  
for SDIO1  
SDIO_3 SYNC_I/O  
Data In  
Not used  
for SDIO1  
Serial Data Not used  
Out (SDO) for SDIO1  
SYNC_I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Serial Data  
I/O  
Serial Data  
I/O  
SYNC_I/O  
1In this mode, these pins can be used for RU/RD operation.  
The two bits, CSR <2:1>, in the channel select register set the  
I/O mode of operation. These bits are defined as follows:  
MSB/LSB TRANSFER DESCRIPTION  
The AD9911 I/O port supports either MSB or LSB first data  
formats. This functionality is controlled by CSR <0> in the  
channel select register (CSR). MSB-first is the default. When  
CSR <0> is set, the I/O port is LSB-first. The instruction byte  
must be written in the manner selected by CSR <0>.  
CSR <2:1> = 00. Single bit serial mode (2-wire mode)  
CSR <2:1> = 01. Single bit serial mode (3-wire mode)  
CSR <2:1> = 10. 2-bit mode  
CSR <2:1> = 11. 4-bit mode  
Rev. 0 | Page 31 of 44  
 
 
 
 
AD9911  
Single-Bit Serial (2- and 3-Wire) Modes  
This reduces by 75ꢀ the number of cycles required to program  
the device. Note that when reprogramming the device for 4-bit  
mode, it is important to keep the SDIO_3 pin at Logic 0 until  
the device is programmed out of the single bit serial mode.  
Failure to do so can result in the I/O port controller being out of  
sequence.  
The single-bit serial mode interface allows read/write access to  
all registers that configure the AD9911. MSB-first or LSB-first  
transfer formats and the SYNC_I/O function are supported.  
In 2-wire mode, the SDIO_0 pin is the single serial data I/O pin.  
In 3-wire mode, the SDIO_0 pin is the serial data input pin and  
the SDIO_2 pin is the output. For both modes, the SDIO_3 pin  
is configured as an input and operates as the SYNC_I/O pin.  
The SDIO_1 pin is unused.  
Figure 50 through Figure 52 are write timing diagrams for the  
I/O modes available. Both MSB and LSB-first modes are shown.  
LSB-first bits are shown in parenthesis. The clock stall low/high  
feature shown is not required, but rather is used to show that  
data (SDIO) must have the proper setup time relative to the  
rising edge of SCLK.  
2-Bit Mode  
The SPI port operation in 2-bit mode is identical to the SPI port  
operation in single bit mode, except that two bits of data are  
registered on each rising edge of SCLK, cutting in half the  
number of cycles required to program the device. The SDIO_0  
pin contains the even numbered data bits using the notation D  
<7:0> while the SDIO_1 pin contains the odd numbered data  
bits regardless of whether in MSB- or LSB-first format (see  
Figure 47).  
Figure 53 through Figure 56 are read timing diagrams for each  
I/O mode available. Both MSB and LSB-first modes are shown.  
LSB-first bits are shown in parenthesis. The clock stall low/high  
feature shown is not required. It is used to show that data  
(SDIO) must have the proper set-up time relative to the rising  
edge of SCLK for the instruction byte and the read data that  
follows the falling edge of SCLK.  
4-Bit Mode  
The SPI port in 4-bit mode is identical to the SPI port in single  
bit mode, except that four bits of data are registered on each  
rising edge of SCLK.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
I7  
(I0)  
I6  
(I1)  
I5  
(I2)  
I4  
(I3)  
I3  
(I4)  
I2  
(I5)  
I1  
(I6)  
I0  
(I7)  
D7  
(D0)  
D6  
(D1)  
D5  
(D2)  
D4  
(D3)  
D3  
(D4)  
D2  
(D5)  
D1  
(D6)  
D0  
(D7)  
SDIO_0  
Figure 50. Single-Bit Serial Mode Write Timing—Clock Stall Low  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
I7  
I5  
I3  
I1  
D7  
D5  
D3  
D1  
SDIO_1  
SDIO_0  
(I1)  
(I3)  
(I5)  
(I7)  
(D1)  
(D3)  
(D5)  
(D7)  
I6  
(I0)  
I4  
(I2)  
I2  
(I4)  
I0  
(I6)  
D6  
(D0)  
D4  
(D2)  
D2  
(D4)  
D0  
(D6)  
Figure 51. 2-Bit Mode Write Timing—Clock Stall Low  
Rev. 0 | Page 32 of 44  
 
AD9911  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
I7  
(I3)  
I3  
(I7)  
D7  
(D3)  
D3  
(D7)  
SDIO_3  
I6  
I2  
D6  
D2  
SDIO_2  
SDIO_1  
(I2)  
(I6)  
(D2)  
(D6)  
I5  
(I1)  
I1  
(I5)  
D5  
(D1)  
D1  
(D5)  
I4  
(I0)  
I0  
(I4)  
D4  
(D0)  
D0  
(D4)  
SDIO_0  
Figure 52. 4-Bit Mode Write Timing—Clock Stall Low  
DATA TRANSFER CYCLE  
INSTRUCTION CYCLE  
CS  
SCLK  
I7  
(I0)  
I6  
(I1)  
I5  
(I2)  
I4  
(I3)  
I3  
(I4)  
I2  
(I5)  
I1  
(I6)  
I0  
(I7)  
D7  
(D0)  
D6  
(D1)  
D5  
(D2)  
D4  
(D3)  
D3  
(D4)  
D2  
(D5)  
D1  
(D6)  
D0  
(D7)  
SDIO_0  
Figure 53. Single-Bit Serial Mode (2-Wire) Read Timing—Clock Stall High  
DATA TRANSFER CYCLE  
INSTRUCTION CYCLE  
CS  
SCLK  
I7  
(I0)  
I6  
(I1)  
I5  
(I2)  
I4  
(I3)  
I3  
(I4)  
I2  
(I5)  
I1  
(I6)  
I0  
(I7)  
DON'T CARE  
SDIO_0  
SDO  
D7  
(D0)  
D6  
(D1)  
D5  
(D2)  
D4  
(D3)  
D3  
(D4)  
D2  
(D5)  
D1  
(D6)  
D0  
(D7)  
(SDIO_2 PIN)  
Figure 54. Single-Bit Serial Mode (3-Wire) Read Timing—Clock Stall Low  
Rev. 0 | Page 33 of 44  
 
 
AD9911  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
D7  
D5  
D3  
D1  
I7  
I5  
I3  
I1  
SDIO_1  
SDIO_0  
(D1)  
(D3)  
(D5)  
(D7)  
(I1)  
(I3)  
(I5)  
(I7)  
I6  
(I0)  
I4  
(I2)  
I2  
(I4)  
I0  
(I6)  
D6  
(D0)  
D4  
(D2)  
D2  
(D4)  
D0  
(D6)  
Figure 55. 2-Bit Mode Read Timing—Clock Stall High  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO_3  
SDIO_2  
SDIO_1  
SDIO_0  
I7  
I3  
D7  
D3  
(I3)  
(I7)  
(D3)  
(D7)  
I6  
(I2)  
I2  
(I6)  
D6  
(D2)  
D2  
(I6)  
I5  
(I1)  
I1  
(I5)  
D5  
(D1)  
D1  
(D5)  
I4  
(I0)  
I0  
(I4)  
D4  
(D0)  
D0  
(D4)  
Figure 56. 4-Bit Mode Read Timing—Clock Stall High  
Rev. 0 | Page 34 of 44  
 
AD9911  
REGISTER MAPS  
CONTROL REGISTER MAP  
Table 24.  
Register  
Name  
(Address)  
Bit  
Range  
Default  
Value  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Channel  
Select  
Register  
(CSR)  
<7:0>  
Auxiliary  
Auxiliary  
Primary Channel 1 Auxiliary  
Must  
be 0  
I/0 mode select <2:1>  
LSB first  
0xF0  
Channel 3  
Channel 2  
(W/R enable1)  
Channel 0  
(W/R enable1 )  
(W/R enable1)  
(W/R enable1)  
(0x00)  
Function  
Register 1  
(FR1)  
<7:0>  
Reference clock  
input power  
down  
External power  
down mode  
Sync clock  
disable  
DAC reference  
power down  
Open  
Test-  
tone  
enable  
Manual  
hardware  
synchronization  
Manual software  
synchronization  
0x00  
0x00  
(0x01)  
<15:8>  
Open  
Profile pin configuration <14:12>  
PLL divider ratio <22:18>  
Ramp up/ramp  
down <11:10>  
Modulation Level <9:8>  
<23:16>  
<7:0>  
VCO gain control  
Charge pump control <17:16>  
System clock offset <1:0>  
0x00  
0x00  
Function  
Register 2  
(FR2)  
Multidevice  
synchronization  
slave enable  
Multidevice  
synchronization  
master enable  
Multidevice  
synchronization  
status  
Multidevice  
synchronization  
mask  
Open <3:2>  
(0x02)  
<15:8>  
All channels auto  
clear sweep  
accumulator  
All channels  
clear sweep  
accumulator  
All channels auto  
clear phase  
accumulator  
All channels  
clear phase  
accumulator  
Open <11:10>  
Open <9:8>  
0x00  
1 Channel enable bits do not require an I/O update to be activated. These bits are active immediately after the byte containing the bits is written. All other bits need an  
I/O update to become active. The channel enable bits determine if the channel registers and/or profile registers are written to or not.  
Rev. 0 | Page 35 of 44  
 
 
 
AD9911  
CHANNEL REGISTER MAP  
Table 25.  
Register Name  
(Address)  
Bit  
Range  
(LSB)  
Bit 0  
Default  
Value  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Channel  
<7:0>  
Digital power-  
down  
DAC  
power  
down  
Matched  
pipe delays  
active  
Auto clear  
sweep  
accumulator  
Clear sweep  
accumulator  
Auto clear  
phase  
accumulator  
Clear phase  
Sine  
wave  
output  
enable  
0x02  
Function1 (CFR)  
(0x03)  
accumulator2  
<15:8>  
Linear sweep  
no-dwell  
Linear  
sweep  
enable  
Load SRR  
at I/O  
Update  
Open  
Open  
Must be 0  
DAC full-scale current  
control <9:8>  
0x03  
<23:16>  
Amplitude frequency  
phase select <23:22>  
Open <21:19>  
Data align bits for SpurKiller mode  
<18:16>  
0x00  
0x00  
Channel  
<7:0>  
Frequency Tuning Word 0 <7:0>  
Frequency Tuning Word 0 <15:8>  
Frequency Tuning Word 0 <23:16>  
Frequency Tuning Word 0 <31:24>  
Phase Offset Word 0  
Frequency Tuning  
Word 01 (CTW0)  
(0x04)  
<15:8>  
<23:16>  
<31:24>  
<7:0>  
Channel Phase1  
Offset Word 0  
(CPOW0) (0x05)  
0x00  
0x00  
<15:8>  
Open <15:14>  
Phase Offset Word 0 <13:8>  
Amplitude  
Control (ACR)  
(0x06)  
<7:0>  
Amplitude scale factor  
0x00  
0x00  
<15:8>  
Increment/decrement  
step size <15:14>  
Open  
Amplitude  
Ramp-up/  
ramp-down  
enable  
Load ARR at I/O  
update  
Amplitude scale  
factor <9:8>  
multiplier  
enable  
<23:16>  
<7:0>  
Amplitude ramp rate <23:16>  
Linear Sweep  
Ramp Rate1 (LSR)  
(0x07)  
Linear sweep rising ramp rate (RSRR) <7:0>  
Linear sweep falling ramp rate (FSRR) <15:8>  
<15:8>  
LSR Rising Delta1  
(RDW) (0x08)  
<7:0>  
Rising delta word <7:0>  
<15:8>  
<23:16>  
<31:24>  
<7:0>  
Rising delta word <15:8>  
Rising delta word <23:16>  
Rising delta word <31:24>  
Falling delta word <7:0>  
LSR Falling Delta1  
(FDW) (0x09)  
<15:8>  
Falling delta word <15:8>  
Falling delta word <23:16>  
Falling delta word <31:24>  
<23:16>  
<31:24>  
1 There are four sets of channel registers and profile registers, one per channel. This is not shown in the channel or profile register maps because the addresses of all  
channel registers and profile registers are the same for each channel. Therefore, the channel enable bits determine if the channel registers and/or profile registers are  
written to or not.  
2 The clear accumulator bit is set after a master reset. It self clears when an I/O update is asserted.  
Rev. 0 | Page 36 of 44  
 
 
AD9911  
PROFILE REGISTER MAP  
Table 26.  
Bit MSB  
Range Bit 7  
LSB  
Bit 0  
Default  
Value  
Register Name (address)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Channel Word 1 (CTW1) (0x0A)  
Channel Word 2 (CTW2) (0x0B)  
Channel Word 3 (CTW3) (0x0C)  
Channel Word 4 (CTW4) (0x0D)  
Channel Word 5 (CTW5) (0x0E)  
Channel Word 6 (CTW6) (0x0F)  
Channel Word 7 (CTW7) (0x10)  
Channel Word 8 (CTW8) (0x11)  
Channel Word 9 (CTW9) (0x12)  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
<31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Channel Word 10 (CTW10) (0x13) <31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Channel Word 11 (CTW11) (0x14) <31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Channel Word 12 (CTW12) (0x15) <31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Channel Word 13 (CTW13) (0x16) <31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Channel Word 14 (CTW14) (0x17) <31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Channel Word 15 (CTW15) (0x18) <31:0> Frequency tuning word <31:0> or phase word <31:18> or amplitude word <31:22>  
Rev. 0 | Page 37 of 44  
 
AD9911  
CONTROL REGISTER DESCRIPTIONS  
synchronization feature is active. See Synchronizing Multiple  
AD9911 Devices section for details.  
CHANNEL SELECT REGISTER (CSR)  
The CSR register determines if channels are enabled or disabled  
by the status of the channel enable bits. Channels are enabled by  
default. The CSR register also determines which mode and  
format (MSB-first or LSB-first) of operation is active.  
FR1 <1> Manual hardware synchronization bit.  
FR1 <1> = 0 (default), the manual hardware synchronization  
feature is inactive. FR1 <1> = 1, the manual hardware  
synchronization feature is active. See the Synchronizing  
Multiple AD9911 Devices +section for details.  
The CSR is comprised of one byte located in Register 0x00.  
CSR <0> LSB-first  
FR1 <2> Test-tone modulation enable.  
FR1 <2> = 0 (default) disables and 1 enables.  
FR1 <3> open.  
CSR <0> = 0 (default), the serial interface, accepts data in MSB-  
first format. CSR <0> = 1, the interface, accepts data in LSB-  
first format.  
CSR <2:1> I/O mode select  
FR1 <4> DAC reference power-down.  
CSR <2:1> 00 = single bit serial (2-wire mode).  
01 = single bit serial (3-wire mode).  
10 = 2-bit mode.  
FR1 <4> = 0 (default). The DAC reference is enabled.  
FR1 <4> = 1. DAC reference is disabled and powered down.  
11 = 4-bit mode.  
FR1 <5> SYNC_CLK disable.  
See the I/O Modes of Operation section for more details.  
CSR <3> = must be cleared to 0.  
FR1 <5> = 0 (default), the SYNC_CLK pin is active.  
FR1 <5> = 1. The SYNC_CLK pin assumes a static Logic 0  
state (disabled). The pin drive logic is shut down. The  
synchronization circuitry remains active internally (necessary  
for normal device operation.)  
CSR <7:4> channel enable bits.  
CSR <7:4> bits are active immediately once written. They do  
not require an I/O update to take effect.  
FR1 <6> external power-down mode.  
There are four sets of channel registers and profile registers, one  
per channel. This is not shown in the channel or profile register  
map. The addresses of all channel registers and profile registers  
are the same for each channel. Therefore, the channel enable  
bits distinguish the channel registers and profile registers values  
for each channel.  
FR1 <6> = 0 (default). The external power-down mode is in the  
fast recovery power-down mode. When the PWR_DWN_CTL  
input pin is high, the digital logic and the DAC digital logic are  
powered down. The DACs bias circuitry, PLL, oscillator, and  
clock input circuitry are not powered down.  
For example,  
FR1 <6> = 1. The external power down mode is in the full  
power-down mode. When the PWR_DWN_CTL input pin is  
high, all functions are powered down. This includes the DAC  
and PLL, which take a significant amount of time to power up.  
CSR <7:4> = 0010, only primary Channel 1 receives commands  
from the channel and profile registers.  
CSR <7:4> = 0000, only auxiliary Channel 0 receives commands  
from the channel registers and profile registers.  
FR1 <7> clock input power-down.  
FR1 <7> = 0 (default). The clock input circuitry is enabled for  
operation. FR1 <7> = 1. The clock input circuitry is disabled  
and is in a low power dissipation state.  
CSR <7:4> = 0011, both Channel 0 and Channel 1 receive  
commands from the channel registers and profile registers.  
Function Register 1 (FR1) Description  
FR1 <9:8> modulation level bits.  
FR1 is comprised of three bytes located in Register 0x01. The  
FR1 is used to control the mode of operation of the chip. The  
functionality of each bit is detailed as follows:  
The modulation (FSK, PSK, and ASK) level bits control the level  
(2/4/8/16) of modulation to be performed. See Table 7 for  
settings.  
FR1 <0> manual software synchronization bit.  
FR1 <11:10> RU/RD bits.  
FR1 <0> = 0 (default), the software manual synchronization  
feature is inactive. FR1 <0> = 1.The manual software  
The RU/RD bits control how the profile pins and SDIO_1:3 pins  
are assigned. See Table 8 for settings  
Rev. 0 | Page 38 of 44  
 
 
AD9911  
FR1 <12:14> profile pin configuration bits.  
FR2 <14> Clear sweep accumulator.  
The profile pin configuration bits assign the profile and SDIO  
pins for the different tasks. See the Shift Keying Modulation  
section for examples.  
FR2 <14> = 0 (default), the sweep accumulator functions as  
normal. FR2 <14> = 1, the sweep accumulator memory  
elements are asynchronously cleared.  
FR1 <15> inactive.  
FR2 <15> Auto clear sweep accumulator.  
FR1 <17:16> charge pump current control.  
FR2 <15> = 0 (default). A new delta word is applied to the  
input, as in normal operation, but not loaded into the accumu-  
lator. FR2 <15> = 1. This bit automatically synchronously clears  
(loads 0s) the sweep accumulator for one cycle upon reception  
of the I/O_UPDATE sequence indicator on both channels.  
FR1 <17:16> = 00 (default), the charge pump current is 75 μA.  
= 01 charge pump current is 100 μA.  
= 10 charge pump current is 125 μA.  
= 11 charge pump current is 150 μA.  
CHANNEL FUNCTION REGISTER (CFR)  
DESCRIPTION  
FR1 <22:18> PLL divider values.  
FR1 <22:18>, if the value is > 3 and < 21, the PLL is enabled and  
the value sets the multiplication factor. If the value is < 4 or >20  
the PLL is disabled.  
CFR <0> Enable sine function.  
CFR <0> = 0 (default). The angle-to-amplitude conversion logic  
employs a cosine function. CFR <0> = 1. The angle-to-  
amplitude conversion logic employs a sine function.  
FR1 <23> PLL VCO gain.  
FR1 <23> = 0 (default), the low range (system clock below  
160 MHz). FR1 <23> = 1, the high range (system clock above  
255 MHz).  
CFR <1> Clear phase accumulator.  
CFR <1> = 0 (default). The phase accumulator functions as  
normal. CFR <1> = 1. The phase accumulator memory  
elements are asynchronously cleared.  
Function Register 2 (FR2) Description  
The FR2 is comprised of two bytes located in Address 0x02.  
CFR <2> auto clear phase accumulator.  
The FR2 is used to control the various functions, features, and  
modes of the AD9911. The functionality of each bit is as  
follows:  
CFR <2> = 0 (default). A new frequency tuning word is applied  
to the inputs of the phase accumulator, but not loaded into the  
accumulator. CFR <2> = 1. This bit automatically synchro-  
nously clears (loads 0s) the phase accumulator for one cycle  
upon reception of the I/O_UPDATE sequence indicator.  
FR2<1:0> system clock offset. See the Synchronizing Multiple  
AD9911 Devices section for more details.  
CFR <3> clear sweep accumulator.  
FR2 <3:2> inactive.  
CFR <3> = 0 (default). The sweep accumulator functions as  
normal. CFR <3> = 1. The sweep accumulator memory  
elements are asynchronously cleared.  
FR2 <4:7>. Multidevice synchronization bits. See the  
Synchronizing Multiple AD9911 Devices section for more  
details.  
CFR <4> auto clear sweep accumulator.  
FR2 <11:8> inactive.  
CFR <4> = 0 (default). A new delta word is applied to the input,  
as in normal operation, but not loaded into the accumulator.  
CFR <4> = 1. This bit automatically synchronously clears (loads  
0s) the sweep accumulator for one cycle upon reception of the  
I/O_UPDATE sequence indicator.  
FR2 <12> Clear phase accumulator.  
FR2 <12> = 0 (default), the phase accumulator functions as  
normal. FR2 <12> = 1, the phase accumulator memory  
elements are asynchronously cleared.  
FR2 <13> Auto clear phase accumulator.  
CFR <5> match pipe delays active.  
FR2 <13> = 0 (default). A new frequency tuning word is applied  
to the inputs of the phase accumulator, but not loaded into the  
accumulator.  
CFR <5> = 0 (default), match pipe delay mode is inactive.  
CFR <5> = 1, match pipe delay mode is active. See the Single-  
Tone Mode—Matched Pipeline Delay section for details.  
FR2 <13> = 1. This bit automatically synchronously clears  
(loads zeros into) the phase accumulator for one cycle upon  
reception of the I/O update sequence indicator on both  
channels.  
CFR <6> DAC power-down.  
Rev. 0 | Page 39 of 44  
 
AD9911  
CFR <6> = 0 (default). The DAC is enabled for operation.  
CFR <6> = 1. The DAC is disabled and held in its lowest power  
dissipation state.  
Channel Phase Offset Word 0 (CPOW0) Description  
CPOW0 <13:0> Phase Offset Word 0 for each channel.  
CPOW0 <15:14> inactive.  
CFR <7> digital power-down.  
Amplitude Control Register (ACR) Description  
CFR <7> = 0 (default). The digital core is enabled for operation.  
ACR <9:0> amplitude scale factor.  
CFR <7> = 1. The digital core is disabled and is in its lowest  
power dissipation state.  
ACR <10> amplitude ramp rate load control bit.  
ACR <10> = 0 (default). The amplitude ramp rate timer is  
loaded only upon timeout (timer = 1) and is not loaded by an  
I/O_UPDATE input signal (or change in the profile select bits).  
CFR <9:8>. DAC LSB control (see Table 5).  
CFR <9:8> = 00 (default).  
ACR <10> = 1. The amplitude ramp rate timer is loaded upon  
timeout (timer =1) or at the time of an I/O_UPDATE input  
signal (or change in profile select bits).  
CFR <10> must be cleared to 0.  
CFR <13> linear sweep ramp rate load at I/O_UPDATE.  
CFR <13> = 0 (default). The linear sweep ramp rate timer is  
loaded only upon timeout (timer = 1); it is not loaded by the  
I/O_UPDATE input signal.  
ACR <11> auto RU/RD enable (only valid when ACR <12> is  
active high).  
ACR <11> = 0 (default). When ACR <12> is active, Logic 0 on  
ACR <11> enables the manual RU/RD operation. See the  
Output Amplitude Control section of this document for details.  
ACR <11> = 1. If ACR <12> is active, a Logic 1 on ACR <11>  
enables the AUTO RU/RD operation. See the Output  
Amplitude Control section for details.  
CFR <13> = 1. The linear sweep ramp rate timer is loaded upon  
timeout (timer = 1) or at the time of an I/O_UPDATE input  
signal.  
CFR <14> linear sweep enable.  
CFR <14> = 0 (default). The linear sweep capability of the  
AD9911 is inactive. CFR <14> = 1. The linear sweep capability  
of the AD9911 is active. The delta frequency tuning word is  
applied to the frequency accumulator at the programmed  
ramp rate.  
ACR <12> amplitude multiplier enable.  
ACR <12> = 0 (default). Amplitude multiplier is disabled. The  
associated clocks are stopped for power saving; the data from  
the DDS core is routed around the multipliers.  
CFR <15> linear sweep no-dwell.  
ACR <12> = 1, amplitude multiplier is enabled.  
ACR <13> inactive.  
CFR <15> = 0 (default). The linear sweep no-dwell function is  
inactive. CFR <15> = 1. The linear sweep no-dwell function is  
active. See the Linear Sweep (Shaped) Modulation Mode  
section for details. If CFR <14> is clear, this bit is ignored.  
ACR <15:14> amplitude increment/decrement step size. See  
Table 20 for details.  
ACR <23:16> amplitude ramp rate value.  
CFR <18:16> Data align bits for SpurKiller mode. See the  
SpurKiller/Multitone Mode section for details.  
Channel Linear Sweep Register (LSR) Description  
LSR <15:0> linear sweep rising ramp rate.  
CFR <21:19> inactive.  
Channel Linear Sweep Rising Delta Word Register (RDW)  
Description  
CFR <23:22> amplitude/frequency/phase select controls, the  
type of modulation is to be performed for that channel. See the  
Shift Keying Mode section for examples.  
RDW <31:0> 32-bit rising delta tuning word.  
Channel Frequency Tuning Word 0 (CFTW0) Description  
Channel Linear Sweep Falling Delta Word Register  
(FDW) Description  
CFTW0 <32:0> Frequency Tuning Word 0 for each channel.  
FDW <31:0> 32-bit falling delta tuning word.  
Rev. 0 | Page 40 of 44  
AD9911  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
8.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
43  
42  
56  
1
PIN 1  
INDICATOR  
6.25  
6.10 SQ  
5.95  
TOP  
VIEW  
EXPOSED  
7.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
29  
28  
14  
15  
0.25 MIN  
6.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.50 BSC  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2  
Figure 57. 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
8 mm × 8 mm Body, Very Thin Quad  
(CP-56-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9911BCPZ1  
AD9911BCPZ-REEL71  
AD9911/PCB  
Temperature Range  
Package Description  
Package Option  
CP-56-1  
CP-56-1  
–40°C to +85°C  
–40°C to +85°C  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 41 of 44  
 
 
AD9911  
NOTES  
Rev. 0 | Page 42 of 44  
AD9911  
NOTES  
Rev. 0 | Page 43 of 44  
AD9911  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05785-0-5/06(0)  
Rev. 0 | Page 44 of 44  

相关型号:

AD9912

1 GSPS Direct Digital Synthesizer w/ 14-bit DAC
ADI

AD9912A/PCBZ

1 GSPS Direct Digital Synthesizer with 14-Bit DAC
ADI

AD9912ABCPZ

1 GSPS Direct Digital Synthesizer with 14-Bit DAC
ADI

AD9912ABCPZ-REEL7

1 GSPS Direct Digital Synthesizer with 14-Bit DAC
ADI

AD9912BCPZ

1 GSPS Direct Digital Synthesizer with 14-Bit DAC
ADI

AD9913

Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer
ADI

AD9913/PCBZ1

Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer
ADI

AD9913BCPZ

PARALLEL, WORD INPUT LOADING, 10-BIT DAC, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32
ROCHESTER

AD9913BCPZ-REEL7

PARALLEL, WORD INPUT LOADING, 10-BIT DAC, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32
ROCHESTER

AD9913BCPZ-REEL71

Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer
ADI

AD9913BCPZ1

Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer
ADI

AD9914

3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC
ADI