ADA4937-2_15 [ADI]

Ultralow Distortion Differential ADC Driver;
ADA4937-2_15
型号: ADA4937-2_15
厂家: ADI    ADI
描述:

Ultralow Distortion Differential ADC Driver

文件: 总29页 (文件大小:959K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion  
Differential ADC Driver  
Data Sheet  
ADA4937-1/ADA4937-2  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Extremely low harmonic distortion (HD)  
−112 dBc HD2 @ 10 MHz  
−84 dBc HD2 @ 70 MHz  
−77 dBc HD2 @ 100 MHz  
−102 dBc HD3 @ 10 MHz  
−91 dBc HD3 @ 70 MHz  
ADA4937-1  
12 PD  
–FB  
+IN  
–IN  
1
2
3
4
11 –OUT  
10 +OUT  
+FB  
9
V
OCM  
−84 dBc HD3 @ 100 MHz  
Low input voltage noise: 2.2 nV/√Hz  
High speed  
−3 dB bandwidth of 1.9 GHz, G = 1  
Slew rate: 6000 V/µs, 25% to 75%  
Fast overdrive recovery of 1 ns  
0.5 mV typical offset voltage  
Externally adjustable gain  
Differential-to-differential or single-ended-to-differential  
operation  
Adjustable output common-mode voltage  
Single-supply operation: 3.3 V to 5 V  
Figure 1. ADA4937-1  
–IN1  
+FB1  
1
18 +OUT1  
17 V  
2
3
4
5
6
OCM1  
16 –V  
15  
14  
+V  
S2  
S2  
S1  
ADA4937-2  
–V  
+V  
S1  
–FB2  
+IN2  
PD2  
13 –OUT2  
APPLICATIONS  
ADC drivers  
Single-ended-to-differential converters  
IF and baseband gain blocks  
Differential buffers  
Figure 2. ADA4937-2  
–55  
–60  
HD2, V = 5.0V  
S
HD3, V = 5.0V  
HD2, V = 3.3V  
HD3, V = 3.3V  
Line drivers  
S
S
–65  
S
GENERAL DESCRIPTION  
–70  
The ADA4937-xis a low noise, ultralow distortion, high speed  
differential amplifier. It is an ideal choice for driving high  
performance ADCs with resolutions up to 16 bits from dc to  
100 MHz. The adjustable level of the output common mode  
allows the ADA4937-x to match the input of the ADC. The  
internal common-mode feedback loop also provides exceptional  
output balance as well as suppression of even-order harmonic  
distortion products.  
–75  
–80  
–85  
–90  
–95  
–100  
–105  
–110  
–115  
With the ADA4937-x, differential gain configurations are easily  
realized with a simple external feedback network of four resis-  
tors that determine the closed-loop gain of the amplifier.  
1
10  
100  
FREQUENCY (MHz)  
Figure 3. Harmonic Distortion vs. Frequency  
The ADA4937-x is available in a Pb-free, 3 mm × 3 mm, 16-lead  
LFCSP (ADA4937-1, single) or a Pb-free, 4 mm × 4 mm, 24-lead  
LFCSP (ADA4937-2, dual). The pinout has been optimized to  
facilitate PCB layout and minimize distortion. The ADA4937-x  
is specified to operate over the automotive (−40°C to +105°C)  
temperature range and between 3.3 V and 5 V supplies.  
The ADA4937-x is fabricated using Analog Devices, Inc., proprie-  
tary silicon-germanium (SiGe), complementary bipolar process,  
enabling it to achieve very low levels of distortion with an input  
voltage noise of only 2.2 nV/√Hz. The low dc offset and excellent  
dynamic performance of the ADA4937-x make it well-suited  
for a wide variety of data acquisition and signal processing appli-  
cations.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
IMPORTANT LINKS for the ADA4937-1_4937-2*  
Last content update 08/29/2013 11:25 am  
PARAMETRIC SELECTION TABLES  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
ADI DiffAmpCalc™  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
ADA4937 SPICE Macro Model  
DOCUMENTATION  
PRODUCT RECOMMENDATIONS & REFERENCE DESIGNS  
CN-0051: Driving the AD9233/9246/9254 ADCs in AC-Coupled  
Baseband Applications  
AN-1026: High Speed Differential ADC Driver Design Considerations  
AN-0990: Terminating a Differential Amplifier in Single-Ended Input  
Applications  
AN-0992: Active Filter Evaluation Board for Differential Amplifiers  
AN-282: Fundamentals of Sampled Data Systems  
DESIGN COLLABORATION COMMUNITY  
AN-649: Using the Analog Devices Active Filter Design Tool  
AN-584: Using the AD813X Differential Amplifier  
AN-589: Ways to Optimize the Performance of a Difference Amplifie  
MT-218: Multiple Feedback Band-Pass Design Example  
MT-076: Differential Driver Analysis  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
MT-075: Differential Drivers for High Speed ADCs Overview  
Designing 1-ppm DAC Accuracy into Instrumentation Applications  
Part 1  
Designing 1-ppm DAC Accuracy into Instrumentation Applications  
Part 2  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
“Rules of the Road” for High-Speed Differential ADC Drivers  
RF Source Booklet  
FOR THE ADA4937-1  
Telephone our Customer Interaction Centers toll free:  
CN-0051: Driving the AD9233/9246/9254 ADCs in AC-Coupled  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
Baseband Applications  
A Stress-Free Method for Choosing High-Speed Op Amps  
India:  
1800-419-0108  
8-800-555-45-90  
UG-132: Evaluation Board User Guide for the ADA492x-1 and  
ADA493x-1 Family of Differential Amplifiers  
Russia:  
Ask The Application Engineer 36, Wideband A/D Converter Front-End  
Design Considerations II: Amplifier-or Transformer Drive for the ADC?  
Quality and Reliability  
Lead(Pb)-Free Data  
FOR THE ADA4937-2  
UG-018: Evaluation Board for Dual High Speed Differential Amplifiers  
SAMPLE & BUY  
ADA4937-1  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
ADA4937-2  
View the Evaluation Boards and Kits page for the ADA4937-1  
View Price & Packaging  
View the Evaluation Boards and Kits page for the ADA4937-2  
Symbols and Footprints for the ADA4937-1  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
Symbols and Footprints for the ADA4937-2  
Find Local Distributors  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
ADA4937-1/ADA4937-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analyzing an Application Circuit ............................................ 18  
Setting the Closed-Loop Gain .................................................. 18  
Estimating the Output Noise Voltage...................................... 18  
Impact of Mismatches in the Feedback Networks................. 19  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Operation ............................................................................... 3  
3.3 V Operation ............................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits..................................................................................... 16  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
Calculating the Input Impedance for an Application  
Circuit .......................................................................................... 19  
Input Common-Mode Voltage Range in Single-Supply  
Applications ................................................................................ 20  
Setting the Output Common-Mode Voltage .......................... 20  
Power-Down Operation............................................................ 20  
Layout, Grounding, and Bypassing.............................................. 22  
High Performance ADC Driving ................................................. 23  
3.3 V Operation.......................................................................... 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
REVISION HISTORY  
8/13—Rev. C to Rev. D  
11/07—Rev. 0 to Rev. A  
Changes to Input Bias Current Parameter, Table 1...................... 3  
Changes to Input Bias Current Parameter, Table 3...................... 5  
Updated Outline Dimensions ....................................................... 26  
Added the ADA4937-2......................................................Universal  
Changes to Features ..........................................................................1  
Changes to Specifications.................................................................3  
Changes to Figure 4...........................................................................7  
Changes to Typical Performance Characteristics..........................9  
Inserted Figure 44........................................................................... 15  
Added the Terminating a Single-Ended Input Section ............. 19  
Changes to Table 10 and Table 11 ................................................ 21  
Changes to Layout, Grounding, and Bypassing Section ........... 22  
Inserted Figure 59, Figure 60, and Figure 61 .............................. 22  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide.......................................................... 26  
3/10—Rev. B to Rev. C  
Changes to Table 2, Power Supply Parameter............................... 4  
Changes to Table 4, Power Supply Parameter............................... 6  
Changes to Figure 43...................................................................... 15  
Added the Power-Down Operation Section............................... 20  
10/09—Rev. A to Rev. B  
Changes to General Description Section ...................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Operating Temperature Range Parameter, Table 2.. 4  
Changes to Table 3............................................................................ 5  
Changes to Figure 4.......................................................................... 7  
Changes to Figure 5 and Figure 6................................................... 8  
Added EP Row to Table 7 and EP Row to Table 8........................ 8  
Added Figure 46, Figure 47, and Figure 48; Renumbered  
Sequentially ..................................................................................... 15  
Changes to Table 9.......................................................................... 18  
Changes to Input Common-Mode Voltage Range in Single-  
Supply Applications Section.......................................................... 20  
Changes to Ordering Guide .......................................................... 26  
5/07—Revision 0: Initial Version  
Rev. D | Page 2 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
SPECIFICATIONS  
5 V OPERATION  
TA = 25°C, +VS = 5 V, VS = 0 V, V OCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kΩ, unless otherwise noted. All specifica-  
tions refer to single-ended input and differential outputs, unless otherwise noted.  
±±IN to ±OUT Performance  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 2 V p-p  
VOUT, dm = 2 V p-p; 25% to 75%  
VOUT, dm = 2 V p-p  
1900  
200  
1700  
6000  
7
MHz  
MHz  
MHz  
V/µs  
ns  
Settling Time  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 0 V to 1.5 V step; G = 3.16  
See Figure 51 for distortion test circuit  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
f1 = 70 MHz; f2 = 70.1 MHz; VOUT, dm = 2 V p-p  
f = 100 kHz  
<1  
ns  
−112  
−84  
−77  
−102  
−91  
−84  
−91  
2.2  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
dB  
Third Harmonic  
IMD  
Voltage Noise (RTI)  
Input Current Noise  
Noise Figure  
Crosstalk (ADA4937-2)  
INPUT CHARACTERISTICS  
Offset Voltage  
f = 100 kHz  
4
15  
−72  
G = 4; RT = 136 Ω; RF = 200 Ω; RG = 37 Ω; f = 100 MHz  
f = 100 MHz  
dB  
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = 2.5 V  
TMIN to TMAX variation  
−2.5  
−50  
−2  
0.5  
1
−30  
0.01  
+0.5  
6
3
1
+2.5  
−10  
+2  
mV  
µV/°C  
µA  
µA/°C  
µA  
MΩ  
MΩ  
pF  
Input Bias Current  
TMIN to TMAX variation  
Input Offset Current  
Input Resistance  
Differential  
Common mode  
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
0.3 to 3.0  
−80  
V
dB  
∆VOUT, dm/∆VIN, cm; ∆VIN, cm = 1 V  
−69  
0.9  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
Maximum ∆VOUT; single-ended output; RF = RG = 10 kΩ  
Per amplifier; RL, dm = 20 Ω; f = 10 MHz  
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V; f = 10 MHz;  
see Figure 50 for test circuit  
4.1  
V
mA  
dB  
70  
−61  
Rev. D | Page 3 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
VOCM to ±OUT Performance  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
440  
1150  
7.5  
MHz  
V/µs  
nV/√Hz  
VIN = 1.5 V to 3.5 V; 25% to 75%  
f = 100 kHz  
1.2  
8
3.8  
12  
7.1  
V
10  
2
0.5  
−75  
0.98  
kΩ  
mV  
µA  
dB  
V/V  
VOS, cm = VOUT, cm; VDIN+ = VDIN− = +VS/2  
ΔVOUT, dm/ΔVOCM; ΔVOCM = 1 V  
ΔVOUT, cm/ΔVOCM; ΔVOCM = 1 V  
−70  
0.97  
Gain  
1.00  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
3.0  
38.0  
5.25  
42.0  
V
Enabled  
39.5  
17  
0.3  
mA  
µA/°C  
mA  
dB  
TMIN to TMAX variation  
Powered down  
ΔVOUT, dm/ΔVS; ΔVS = 1 V  
0.02  
−70  
0.5  
Power Supply Rejection Ratio  
POWER-DOWN (PD)  
−90  
PD Input Voltage  
Powered down  
Enabled  
≤1  
≥2  
1
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
200  
PD Bias Current per Amplifier  
Enabled  
PD = 5 V  
PD = 0 V  
10  
30  
50  
µA  
µA  
°C  
Powered Down  
−300  
−40  
−200  
−150  
+105  
OPERATING TEMPERATURE RANGE  
Rev. D | Page 4 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
3.3 V OPERATION  
TA = 25°C, +VS = 3.3 V, VS = 0 V, V OCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = 1, RL, dm = 1 kΩ, unless otherwise noted. All  
specifications refer to single-ended input and differential outputs, unless otherwise noted.  
±±IN to ±OUT Performance  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 2 V p-p  
VOUT, dm = 2 V p-p; 25% to 75%  
VOUT, dm = 2 V p-p  
1800  
200  
1300  
4000  
7
MHz  
MHz  
MHz  
V/µs  
ns  
Settling Time  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 0 V to 1.0 V step; G = 3.16  
See Figure 51 for distortion test circuit  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
f1 = 70 MHz; f2 = 70.1 MHz; VOUT, dm = 2 V p-p  
f = 100 kHz  
<1  
ns  
−113  
−85  
−77  
−95  
−77  
−71  
−87  
2.2  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
dB  
Third Harmonic  
IMD  
Voltage Noise (RTI)  
Input Current Noise  
Noise Figure  
Crosstalk (ADA4937-2)  
INPUT CHARACTERISTICS  
Offset Voltage  
f = 100 kHz  
4
15  
−72  
G = 4; RT = 136 Ω; RF = 200 Ω; RG = 37 Ω; f = 100 MHz  
f = 100 MHz  
dB  
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = +VS/2  
TMIN to TMAX variation  
−2.5  
−50  
0.5  
1
−30  
0.01  
6
3
1
+2.5  
−10  
mV  
µV/°C  
µA  
µA/°C  
MΩ  
MΩ  
pF  
Input Bias Current  
Input Resistance  
TMIN to TMAX variation  
Differential  
Common mode  
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
0.3 to 1.2  
−80  
V
dB  
∆VOUT, dm/∆VIN, cm; ∆VIN, cm = 1 V  
−67  
0.8  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
Maximum ∆VOUT; single-ended output; RF = RG = 10 kΩ  
Per amplifier; RL, dm = 20 Ω; f = 10 MHz  
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V; f = 10 MHz;  
see Figure 50 for test circuit  
2.5  
V
mA  
dB  
47  
−61  
Rev. D | Page 5 of 28  
 
ADA4937-1/ADA4937-2  
Data Sheet  
VOCM to ±OUT Performance  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
440  
900  
7.5  
MHz  
V/µs  
nV/√Hz  
VIN = 0.9 V to 2.4 V; 25% to 75%  
f = 100 kHz  
1.2  
2.1  
7.1  
V
10  
2
0.5  
−75  
0.98  
kΩ  
mV  
µA  
dB  
V/V  
VOS, cm = VOUT, cm; VDIN+ = VDIN− = 1.67 V  
∆VOUT, dm/∆VOCM; ∆VOCM = 1 V  
∆VOUT, cm/∆VOCM; ∆VOCM = 1 V  
−70  
0.97  
Gain  
1.00  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
3.0  
36  
5.25  
40  
V
Enabled  
38  
17  
0.2  
−90  
mA  
µA/°C  
mA  
dB  
TMIN to TMAX variation  
Powered down  
∆VOUT, dm/∆VS; ∆VS = 1 V  
0.02  
−70  
0.5  
Power Supply Rejection Ratio  
POWER-DOWN (PD)  
PD Input Voltage  
Powered down  
Enabled  
≤1  
≥2  
1
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
200  
PD Bias Current per Amplifier  
Enabled  
PD = 3.3 V  
PD = 0 V  
10  
20  
30  
µA  
µA  
°C  
Powered Down  
−200  
−40  
−120  
−100  
+105  
OPERATING TEMPERATURE RANGE  
Rev. D | Page 6 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive. The quiescent power is the voltage  
between the supply pins (VS) times the quiescent current (IS).  
The power dissipated due to the load drive depends upon the  
particular application. The power due to load drive is calculated  
by multiplying the load current by the associated voltage drop  
across the device. RMS voltages and currents must be used in  
these calculations.  
Table 5.  
Parameter  
Rating  
Supply Voltage  
5.5 V  
Power Dissipation  
See Figure 4  
−65°C to +125°C  
−40°C to +105°C  
300°C  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package  
leads/exposed pad from metal traces, through holes, ground,  
and power planes reduces θJA.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the ADA4937-1 single  
16-lead LFCSP (95°C/W), and the ADA4937-2 dual 24-lead  
LFCSP (67°C/W) on a JEDEC standard 4-layer board.  
3.5  
THERMAL RESISTANCE  
θJA is specified for the device (including exposed pad) soldered  
to a high thermal conductivity 2s2p circuit board, as described  
in EIA/JESD51-7.  
3.0  
2.5  
Table 6. Thermal Resistance  
Package Type  
ADA4937-2  
θJA  
95  
67  
Unit  
°C/W  
°C/W  
2.0  
16-Lead LFCSP (Exposed Pad)  
24-Lead LFCSP (Exposed Pad)  
1.5  
ADA4937-1  
1.0  
Maximum Power ±issipation  
The maximum safe power dissipation in the ADA4937-x packages  
is limited by the associated rise in junction temperature (TJ) on  
the die. At approximately 150°C, which is the glass transition  
temperature, the plastic changes its properties. Even temporarily  
exceeding this temperature limit can change the stresses that the  
package exerts on the die, permanently shifting the parametric  
performance of the ADA4937-x. Exceeding a junction  
0.5  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature, 4-Layer Board  
ESD CAUTION  
temperature of 150°C for an extended period can result in  
changes in the silicon devices, potentially causing failure.  
Rev. D | Page 7 of 28  
 
 
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
–IN1  
+FB1  
1
2
3
4
5
6
18 +OUT1  
17 V  
12 PD  
–FB  
+IN  
–IN  
1
2
3
4
OCM1  
11 –OUT  
10 +OUT  
ADA4937-1  
TOP VIEW  
(Not to Scale)  
16 –V  
+V  
ADA4937-2  
TOP VIEW  
(Not to Scale)  
S2  
S2  
S1  
–V  
15  
14  
+V  
S1  
–FB2  
+IN2  
PD2  
+FB  
9 V  
OCM  
13 –OUT2  
NOTES  
1. EXPOSED PADDLE. THE EXPOSED PAD IS NOT  
ELECTRICALLY CONNECTED TO THE DEVICE. IT IS  
TYPICALLY SOLDERED TO GROUND OR A POWER  
PLANE ON THE PCB THAT IS THERMALLY CONDUCTIVE.  
NOTES  
1. EXPOSED PADDLE. THE EXPOSED PAD IS NOT  
ELECTRICALLY CONNECTED TO THE DEVICE. IT IS  
TYPICALLY SOLDERED TO GROUND OR A POWER  
PLANE ON THE PCB THAT IS THERMALLY CONDUCTIVE.  
Figure 5. ADA4937-1 Pin Configuration  
Figure 6. ADA4937-2 Pin Configuration  
Table 7. ADA4937-1 Pin Function Descriptions  
Table 8. ADA4937-2 Pin Function Descriptions  
Pin No. Mnemonic Description  
Pin No.  
Mnemonic  
Description  
1
−FB  
Negative Output for Feedback  
Component Connection.  
Positive Input Summing Node.  
Negative Input Summing Node.  
Positive Output for Feedback  
Component Connection.  
Positive Supply Voltage.  
Output Common-Mode Voltage.  
Positive Output for Load Connection.  
Negative Output for Load Connection.  
Power-Down Pin.  
1
2
3, 4  
5
6
7
8
9, 10  
11  
12  
−IN1  
+FB1  
+VS1  
−FB2  
+IN2  
−IN2  
+FB2  
+VS2  
VOCM2  
+OUT2  
−OUT2  
PD2  
Negative Input Summing Node 1.  
Positive Output Feedback Pin 1.  
Positive Supply Voltage 1.  
Negative Output Feedback Pin 2.  
Positive Input Summing Node 2.  
Negative Input Summing Node 2.  
Positive Output Feedback Pin 2.  
Positive Supply Voltage 2.  
Output Common-Mode Voltage 2.  
Positive Output 2.  
2
3
4
+IN  
−IN  
+FB  
5 to 8  
9
10  
11  
12  
+VS  
VOCM  
+OUT  
−OUT  
PD  
13  
14  
Negative Output 2.  
Power-Down Pin 2.  
13 to 16 −VS  
EP  
Negative Supply Voltage.  
Exposed Paddle. The exposed pad is not  
electrically connected to the device. It is  
typically soldered to ground or a power  
plane on the PCB that is thermally  
conductive.  
15, 16  
17  
18  
19  
20  
−VS2  
Negative Supply Voltage 2.  
Output Common-Mode Voltage 1.  
Positive Output 1.  
Negative Output 1.  
Power-Down Pin 1.  
VOCM1  
+OUT1  
−OUT1  
PD1  
21, 22  
23  
24  
−VS1  
−FB1  
+IN1  
Negative Supply Voltage 1.  
Negative Output Feedback Pin 1.  
Positive Input Summing Node 1.  
EP  
Exposed Paddle. The exposed pad is  
not electrically connected to the  
device. It is typically soldered to  
ground or a power plane on the PCB  
that is thermally conductive.  
Rev. D | Page 8 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, +VS = 5 V, VS = 0 V, V OUT, dm = 2 V p-p, VOCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = 1, RL, dm = 1 kΩ, unless otherwise  
noted. Refer to Figure 49 for the test setup circuit.  
6
6
3
3
0
0
–3  
–6  
–9  
–12  
–15  
–3  
–6  
–9  
–12  
–15  
G = +1, R = 200Ω  
G = +1, R = 200Ω  
F
F
G = +2, R = 402Ω  
G = +2, R = 402Ω  
F
F
G = +5, R = 402Ω  
G = +5, R = 402Ω  
F
F
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
Figure 7. Small Signal Frequency Response for Various Gains,  
VOUT, dm = 100 mV p-p  
Figure 10. Large Signal Frequency Response for Various Gains  
6
6
V
V
= 3.3V  
= 5.0V  
V
V
= 3.3V  
= 5.0V  
S
S
S
S
3
0
3
0
–3  
–3  
–6  
–6  
–9  
–9  
–12  
–15  
–12  
–15  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Large Signal Frequency Response for Various Supplies  
Figure 8. Small Signal Frequency Response for Various Supplies,  
VOUT, dm = 100 mV p-p  
6
6
+105°C  
+105°C  
+25°C  
+25°C  
–40°C  
–40°C  
3
3
0
–3  
0
–3  
–6  
–6  
–9  
–9  
–12  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Small Signal Frequency Response for Various Temperatures,  
VOUT, dm = 100 mV p-p  
Figure 12. Large Signal Frequency Response for Various Temperatures  
Rev. D | Page 9 of 28  
 
ADA4937-1/ADA4937-2  
Data Sheet  
6
6
3
R
R
R
= 1kΩ  
= 100Ω  
= 200Ω  
R
R
R
= 1kΩ  
= 100Ω  
= 200Ω  
L
L
L
L
L
L
3
0
0
–3  
–6  
–9  
–3  
–6  
–9  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Small Signal Frequency Response for Various Loads,  
VOUT, dm = 100 mV p-p  
Figure 16. Large Signal Frequency Response for Various Loads  
6
3
6
3
0
0
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
V
V
V
= 3.3V, G = +1, R = 200Ω  
F
V
V
V
= 3.3V, G = +1, R = 200Ω  
F
S
S
S
S
S
S
= 3.3V, G = +2, R = 402Ω  
= 3.3V, G = +2, R = 402Ω  
F
F
= 3.3V, G = +5, R = 402Ω  
= 3.3V, G = +5, R = 402Ω  
F
F
–15  
–15  
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
Figure 17. Large Signal Frequency Response for Various Gains, VS = 3.3 V  
Figure 14. Small Signal Frequency Response for Various Gains,  
VS = 3.3 V, VOUT, dm = 100 mV p-p  
6
6
3
3
0
0
–3  
–6  
–9  
–3  
–6  
–9  
–12  
–12  
–15  
G = +1, R = 348Ω  
G = +1, R = 348Ω  
F
F
G = +2, R = 348Ω  
G = +2, R = 348Ω  
F
F
G = +5, R = 348Ω  
G = +5, R = 348Ω  
F
F
–15  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
Figure 15. Small Signal Frequency Response for Various Gains,  
OUT, dm = 100 mV p-p, RF = 348 Ω  
Figure 18. Large Signal Frequency Response for Various Gains, RF = 348 Ω  
V
Rev. D | Page 10 of 28  
Data Sheet  
ADA4937-1/ADA4937-2  
3
–50  
–60  
HD2, G = +1, R = 200Ω  
V
= 1.0V  
= 2.5V  
= 3.9V  
F
OCM  
HD3, G = +1, R = 200Ω  
V
V
F
OCM  
OCM  
HD2, G = +2, R = 402Ω  
F
HD3, G = +2, R = 402Ω  
0
–3  
F
–70  
–80  
–90  
–6  
–100  
–110  
–120  
–9  
–12  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. Small Signal Frequency Response  
for Various VOCM  
Figure 22. Harmonic Distortion vs. Frequency and Gain  
–50  
HD2, R = 1kΩ  
L
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
HD3, R = 1kΩ  
L
R
R
R
R
= 1kΩ, ADA4937-1  
= 100Ω, ADA4937-1  
= 1kΩ, ADA4937-2  
= 100Ω, ADA4937-2  
L
L
L
L
HD2, R = 200Ω  
–60  
–70  
L
HD3, R = 200Ω  
L
–80  
–90  
–100  
–110  
–120  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 23. Harmonic Distortion vs. Frequency and Load  
Figure 20. 0.1 dB Flatness Response for Various Loads  
–50  
HD2, V = 3.3V  
S
–55  
–60  
HD3, V = 3.3V  
HD2, V = 5.0V  
S
S
–60  
–70  
HD2, V = 5.0V  
S
HD3, V = 5.0V  
S
HD3, V = 5.0V  
HD2, V = 3.3V  
S
S
–65  
HD3, V = 3.3V  
S
–70  
–80  
–75  
–80  
–90  
–85  
–100  
–110  
–120  
–130  
–90  
–95  
–100  
–105  
–110  
–115  
–1  
0
1
2
3
4
5
6
7
1
10  
100  
V
(V)  
OUT  
FREQUENCY (MHz)  
Figure 24. Harmonic Distortion vs. VOUT and Supply Voltage  
Figure 21. Harmonic Distortion vs. Frequency and Supply Voltage  
Rev. D | Page 11 of 28  
ADA4937-1/ADA4937-2  
Data Sheet  
–30  
0
–20  
HD2, f = 10MHz  
HD3, f = 10MHz  
HD2, f = 75MHz  
HD3, f = 75MHz  
–40  
–50  
–60  
–70  
–40  
–60  
–80  
–90  
–80  
–100  
–110  
–120  
–100  
–120  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
69.4  
69.6  
69.8  
70.0  
70.2  
70.4  
70.6  
V
(V)  
FREQUENCY (MHz)  
OCM  
Figure 25. Harmonic Distortion vs. VOCM and Frequency  
Figure 28. 70 MHz Intermodulation Distortion  
–30  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD2, f = 30MHz  
HD3, f = 30MHz  
HD2, f = 75MHz  
HD3, f = 75MHz  
R
= 200Ω  
L
1
10  
100  
1000  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
(V)  
1.7  
1.8  
1.9  
2.0  
FREQUENCY (MHz)  
V
OCM  
Figure 29. CMRR vs. Frequency  
Figure 26. Harmonic Distortion vs. VOCM and Frequency, VS = 3.3 V  
–10  
–20  
–30  
–40  
–50  
–60  
–50  
HD2, 1V p-p  
HD3, 1V p-p  
HD2, 2V p-p  
R
= 200Ω  
L
–60  
HD3, 2V p-p  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Harmonic Distortion vs. Frequency and VOUT, VS = 3.3 V  
Figure 30. Output Balance vs. Frequency  
Rev. D | Page 12 of 28  
Data Sheet  
ADA4937-1/ADA4937-2  
–30  
V
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
PSRR, V = 3.3V  
G = +1  
G = +2  
G = +4  
OUT, dm  
S
V
PSRR, V = 5.0V  
S
OUT, dm  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. PSRR vs. Frequency, RL = 200 Ω  
Figure 34. Noise Figure vs. Frequency  
0
5
4
3
2
1
0
S11  
S22  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
V
× 3.16  
IN  
V
OUT, dm  
–1  
–2  
–3  
–4  
–5  
1
10  
100  
1000  
TIME (4ns/DIV)  
FREQUENCY (MHz)  
Figure 32. Return Loss (S11, S22) vs. Frequency  
Figure 35. Overdrive Recovery Time (Pulse Input)  
5
4
–55  
–60  
SFDR, R = 1kΩ  
L
V
V
× 3  
IN  
OUT, dm  
SFDR, R = 200Ω  
L
–65  
3
–70  
2
–75  
1
–80  
–85  
0
–90  
–1  
–2  
–3  
–4  
–5  
–95  
–100  
–105  
–110  
–115  
+V = +2.5V  
S
–V = –2.5V  
S
0
100  
200  
300  
400  
500  
600  
1
10  
FREQUENCY (MHz)  
100  
TIME (ns)  
Figure 33. Spurious-Free Dynamic Range vs. Frequency and Load  
Figure 36. Overdrive Amplitude Characteristics (Triangle Wave Input)  
Rev. D | Page 13 of 28  
ADA4937-1/ADA4937-2  
Data Sheet  
60  
55  
50  
45  
40  
35  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+105°C  
+55°C  
+25°C  
0°C  
30  
+25°C  
+105°C  
25  
+55°C  
20  
0°C  
15  
–40°C  
–40°C  
10  
5
0
1.0  
0
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
POWER-DOWN VOLTAGE (V)  
POWER-DOWN VOLTAGE (V)  
PD  
PD  
for Various Temperatures, VS = 3.3 V  
Figure 37. Supply Current vs.  
for Various Temperatures  
Figure 40. Supply Current vs.  
0.20  
3.5  
3.0  
+V = +2.5V  
+V = +2.5V  
S
S
V
V
= 4V p-p  
= 2V p-p  
OUT, dm  
–V = –2.5V  
–V = –2.5V  
S
S
OUT, dm  
0.15  
0.10  
0.05  
0
V
= 0V  
V = 0V  
OCM  
OCM  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–0.05  
–0.10  
–0.15  
–0.20  
TIME (1ns/DIV)  
TIME (1ns/DIV)  
Figure 41. Large Signal Pulse Response  
Figure 38. Small Signal Pulse Response  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
V
= +5V  
S
V
= +5V  
S
G = 1  
G = 1  
R
= 1kΩ  
L, dm  
R
= 1kΩ  
L, dm  
TIME (2ns/DIV)  
TIME (2ns/DIV)  
Figure 42. Large Signal VOCM Pulse Response  
Figure 39. Small Signal VOCM Pulse Response  
Rev. D | Page 14 of 28  
Data Sheet  
ADA4937-1/ADA4937-2  
10  
9
8
7
6
5
4
3
2
1
0
10  
G = 1  
POWER-DOWN PULSE  
1
OUTPUT  
0.1  
0.01  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0.1  
1
10  
100  
1k  
TIME (ms)  
FREQUENCY (MHz)  
PD  
Figure 46. Closed-Loop Output Impedance  
Figure 43.  
Response vs. Time  
2
1
1.0  
–40  
–50  
–60  
V
IN  
INPUT2, OUTPUT1  
0.5  
0.1  
–70  
SETTLING ERROR  
–80  
0
0
–0.1  
–90  
–100  
–110  
–120  
–130  
–140  
INPUT1, OUTPUT2  
–1  
–2  
–0.5  
–1.0  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
TIME (1ns/DIV)  
Figure 44. Crosstalk vs. Frequency for ADA4937-2  
Figure 47. 0.1% Settling Time  
100  
10  
1
70  
50  
PHASE  
60  
50  
0
GAIN  
–50  
–100  
–150  
–200  
–250  
–300  
40  
30  
20  
10  
0
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k 100k 1M 10M 100M 1G 10G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. Voltage Spectral Noise Density, RTI  
Figure 48. Open-Loop Gain and Phase vs. Frequency  
Rev. D | Page 15 of 28  
ADA4937-1/ADA4937-2  
TEST CIRCUITS  
Data Sheet  
200  
5V  
50Ω  
200Ω  
V
V
IN  
OCM  
61.9Ω  
ADA4937  
1kΩ  
200Ω  
27.5Ω  
200Ω  
Figure 49. Equivalent Basic Test Circuit  
200Ω  
5V  
50Ω  
200Ω  
50Ω  
V
V
IN  
OCM  
61.9Ω  
ADA4937  
200Ω  
50Ω  
27.5Ω  
200Ω  
Figure 50. Test Circuit for Output Balance  
200  
5V  
0.1µF  
412Ω  
50Ω  
200Ω  
FILTER  
FILTER  
61.9Ω  
V
V
IN  
OCM  
ADA4937  
0.1µF  
200Ω  
412Ω  
27.5Ω  
200Ω  
Figure 51. Test Circuit for Distortion Measurements  
Rev. D | Page 16 of 28  
 
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
TERMINOLOGY  
–FB  
Common-Mode Voltage  
Common-mode voltage refers to the average of two node  
voltages. The output common-mode voltage is defined as  
R
F
R
G
+IN  
–OUT  
+D  
IN  
V
R
V
OUT, dm  
OCM  
L, dm  
ADA4937  
V
OUT, cm = (V+OUT + V−OUT)/2  
–D  
IN  
–IN  
+OUT  
R
G
R
F
Output Balance  
+FB  
Output balance is a measure of how close the differential signals  
are to being equal in amplitude and opposite in phase. Output  
balance is most easily determined by placing a well-matched  
resistor divider between the differential voltage nodes and  
comparing the magnitude of the signal at the midpoint of the  
divider with the magnitude of the differential signal (see Figure  
50). By this definition, output balance is the magnitude of the  
output common-mode voltage divided by the magnitude of the  
output differential mode voltage.  
Figure 52. Circuit Definitions  
Differential Voltage  
Differential voltage refers to the difference between two node  
voltages. For example, the output differential voltage (or  
equivalently, output differential-mode voltage) is defined as  
V
OUT, dm = (V+OUT V−OUT)  
where V+OUT and V−OUT refer to the voltages at the +OUT and  
−OUT terminals with respect to a common reference.  
VOUT, cm  
Output Balance Error =  
VOUT, dm  
Rev. D | Page 17 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
THEORY OF OPERATION  
The ADA4937-x differs from conventional op amps in that it  
has two outputs whose voltages move in opposite directions.  
Like an op amp, it relies on open-loop gain and negative feed-  
back to force these outputs to the desired voltages. The ADA4937-  
x behaves much like a standard voltage feedback op amp, which  
makes it easier to perform single-ended-to-differential conversions,  
common-mode level shifting, and amplifications of differential  
signals. Also like an op amp, the ADA4937-x has high input  
impedance and low output impedance.  
SETTING THE CLOSED-LOOP GAIN  
The differential-mode gain of the circuit in Figure 52 can be  
determined by  
VOUT, dm  
RF  
RG  
=
VIN, dm  
This assumes that the input resistors (RG) and feedback resistors  
(RF) on each side are equal.  
Two feedback loops control the differential and common-mode  
output voltages. The differential feedback loop, set with external  
resistors, controls only the differential output voltage. The  
common-mode feedback loop controls only the common-mode  
output voltage. This architecture makes it easy to set the output  
common-mode level to any arbitrary value. It is forced, by  
internal common-mode feedback, to be equal to the voltage  
applied to the VOCM input without affecting the differential  
output voltage.  
ESTIMATING THE OUTPUT NOISE VOLTAGE  
The differential output noise of the ADA4937-x can be esti-  
mated using the noise model in Figure 53. The input-referred  
noise voltage density, vnIN, is modeled as a differential input, and  
the noise currents, inIN− and inIN+, appear between each input and  
ground. The noise currents are assumed to be equal and produce  
a voltage across the parallel combination of the gain and feedback  
resistances. vn, cm is the noise voltage density at the VOCM pin. Each  
of the four resistors contributes (4kTRx)1/2.  
The ADA4937-x architecture results in outputs that are highly  
balanced over a wide frequency range without requiring tightly  
matched external components. The common-mode feedback  
loop forces the signal component of the output common-mode  
voltage to zero. This results in nearly perfectly balanced differential  
outputs that are identical in amplitude and are exactly 180° apart  
in phase.  
Table 9 summarizes the input noise sources, the multiplication  
factors, and the output-referred noise density terms.  
V
V
nRG1  
nRF1  
R
R
F1  
G1  
inIN+  
+
V
nIN  
V
nOD  
inIN–  
ADA4937  
ANALYZING AN APPLICATION CIRCUIT  
V
OCM  
The ADA4937-x uses open-loop gain and negative feedback to  
force its differential and common-mode output voltages in such  
a way as to minimize the differential and common-mode error  
voltages. The differential error voltage is defined as the voltage  
between the differential inputs labeled +IN and −IN (see  
Figure 52). For most purposes, this voltage can be assumed  
to be zero. Similarly, the difference between the actual output  
common-mode voltage and the voltage applied to VOCM can  
also be assumed to be zero. Starting from these two assumptions,  
any application circuit can be analyzed.  
V
nCM  
R
R
F2  
G2  
V
V
nRG2  
nRF2  
Figure 53. ADA4937-x Noise Model  
Table 9. Output Noise Voltage Density Calculations  
Input Noise  
Voltage Density  
Output  
Multiplication Factor  
Output Noise  
Voltage Density Term  
Input Noise Contribution  
Differential Input  
Inverting Input  
Noninverting Input  
VOCM Input  
Gain Resistor RG1  
Gain Resistor RG2  
Feedback Resistor RF1  
Feedback Resistor RF2  
Input Noise Term  
vnIN  
inIN−  
inIN+  
vn, cm  
vnRG1  
vnRG2  
vnRF1  
vnRF2  
vnIN  
GN  
GN  
GN  
vnO1 = GN(vnIN)  
vnO2 = GN[inIN− × (RG2||RF2)]  
vnO3 = GN[inIN+ × (RG1||RF1)]  
inIN− × (RG2||RF2)  
inIN+ × (RG1||RF1)  
vn, cm  
(4kTRG1)1/2  
(4kTRG2)1/2  
(4kTRF1)1/2  
(4kTRF2)1/2  
GN1 − β2)  
GN(1 − β1)  
GN(1 − β2)  
1
1
vnO4 = GN1 − β2)(vn, cm)  
vnO5 = GN(1 − β1)(4kTRG1)1/2  
vnO6 = GN(1 − β2)(4kTRG2)1/2  
vnO7 = (4kTRF1)1/2  
vnO8 = (4kTRF2)1/2  
Rev. D | Page 18 of 28  
 
 
 
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
R
F
Similar to the case of a conventional op amp, the output noise  
voltage densities can be estimated by multiplying the input-  
referred terms at +IN and −IN by the appropriate output factor,  
ADA4937  
+V  
S
R
R
G
+IN  
+D  
–D  
IN  
where:  
2
V
OCM  
V
OUT, dm  
GN  
is the circuit noise gain.  
IN  
–IN  
β1 β2  
RG1  
G
R
F
RG2  
β1   
and β2   
are the feedback factors.  
RF1 RG1  
RF2 RG2  
Figure 54. ADA4937-x Configured for Balanced (Differential) Inputs  
For an unbalanced, single-ended input signal (see Figure 55),  
the input impedance is  
When RF1/RG1 = RF2/RG2, then β1 = β2 = β, and the noise gain  
becomes  
1
β
RF  
RG  
GN  
1  
RG  
RF  
RG RF  
RIN, cm  
Note that the output noise from VOCM goes to zero in this case.  
The total differential output noise density, vnOD, is the root-sum-  
square of the individual output noise terms.  
1   
2   
R
F
+V  
S
8
vnOD  
v2  
R
R
G
S
nOi  
i1  
R
V
OCM  
T
V
ADA4937  
OUT, dm  
IMPACT OF MISMATCHES IN THE FEEDBACK  
NETWORKS  
R
G
R
R
T
S
As previously mentioned in the Setting the Closed-Loop Gain  
section), even if the external feedback networks (RF/RG) are  
mismatched, the internal common-mode feedback loop still  
forces the outputs to remain balanced. The amplitudes of the  
signals at each output remain equal and 180° out of phase. The  
input-to-output differential mode gain varies proportionately to  
the feedback mismatch, but the output balance is unaffected.  
R
F
Figure 55. ADA4937-x Configured for Unbalanced (Single-Ended) Input  
The input impedance of the circuit is effectively higher than it  
would be for a conventional op amp connected as an inverter  
because a fraction of the differential output voltage appears at  
the inputs as a common-mode signal, partially bootstrapping  
the voltage across the Input Gain Resistor RG.  
As well as causing a noise contribution from VOCM, ratio matching  
errors in the external resistors result in a degradation of the  
ability of the circuit to reject input common-mode signals, much  
the same as for a four-resistor difference amplifier made from  
a conventional op amp.  
Terminating a Single-Ended Input  
This section explains how to properly terminate a single-ended  
input to the ADA4937-x. Using a simple example with an input  
source of 2 V and a source resistor of 50 Ω, four simple steps  
must be followed.  
In addition, if the dc levels of the input and output common-  
mode voltages are different, matching errors result in a small  
differential-mode output offset voltage. When G = 1, with a  
ground referenced input signal and the output common-mode  
level set to 2.5 V, an output offset of as much as 25 mV (1%  
of the difference in common-mode levels) can result if 1% toler-  
ance resistors are used. Resistors of 1% tolerance result in a  
worst-case input CMRR of approximately 40 dB, a worst-case  
differential-mode output offset of 25 mV due to 2.5 V level  
shift, and no significant degradation in output balance error.  
1. The input impedance must be calculated using the formula  
RG  
RF  
200  
200  
2 (200 200)  
RIN  
267 ꢀ  
1   
1   
2 (RG RF )  
R
F
R
267  
200Ω  
+V  
IN  
S
R
S
R
G
CALCULATING THE INPUT IMPEDANCE FOR AN  
APPLICATION CIRCUIT  
50Ω  
200Ω  
V
2V  
S
V
OCM  
ADA4937  
R
V
O
L
The effective input impedance of a circuit depends on whether  
the amplifier is being driven by a single-ended or differential  
signal source. For balanced differential input signals, as shown  
in Figure 54, the input impedance (RIN, dm) between the inputs  
(+DIN and −DIN) is simply RIN, dm = 2 × RG.  
R
G
200Ω  
–V  
S
R
F
200Ω  
Figure 56. Single-Ended Input Impedance RIN  
Rev. D | Page 19 of 28  
 
 
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
R
F
2. For the source termination to be 50 Ω, the termination  
resistor (RT) is calculated using RT||RIN = 50 Ω, which  
makes RT equal to 61.9 Ω.  
+V  
S
R
R
S
G
R
F
50  
200Ω  
R
61.9Ω  
T
200Ω  
+V  
V
2V  
S
50Ω  
V
OCM  
ADA4937  
R
V
O
L
S
R
G
R
R
S
G
200Ω  
R
TS  
27.4Ω  
50Ω  
200Ω  
R
61.9Ω  
T
V
S
V
OCM  
ADA4937  
–V  
S
R
V
O
2V  
L
R
F
R
G
200Ω  
Figure 60. Complete Single-Ended-to-Differential System  
–V  
S
INPUT COMMON-MODE VOLTAGE RANGE IN  
SINGLE-SUPPLY APPLICATIONS  
R
F
200Ω  
Figure 57. Adding Termination Resistor RT  
The ADA4937-x is optimized for level-shifting ground-referenced  
input signals. As such, the center of the input common-mode  
range is shifted approximately 1 V down from midsupply. For  
5 V single-supply operation, the input common-mode range at  
the summing nodes of the amplifier is 0.3 V to 3.0 V, and 0.3 V  
to 1.2 V with a 3.3 V supply. To avoid clipping at the outputs,  
the voltage swing at the +IN and −IN terminals must be confined  
to these ranges.  
3. To compensate for the imbalance of the gain resistors,  
a correction resistor (RTS) is added in series with the  
inverting Input Gain Resistor RG. RTS is equal to the  
Thevenin equivalent of the Source Resistance RS||RT.  
R
R
S
TH  
50  
R
61.9Ω  
27.4Ω  
T
V
V
S
2V  
TH  
1.1V  
SETTING THE OUTPUT COMMON-MODE VOLTAGE  
The VOCM pin of the ADA4937-x is internally biased at a voltage  
approximately equal to the midsupply point, [(+VS) + (−VS)]/2.  
Relying on this internal bias results in an output common-mode  
voltage that is within about 100 mV of the expected value.  
Figure 58. Calculating Thevenin Equivalent  
RTS = RTH = RS||RT = 27.4 Ω. Note that VTH is not equal to VS/2,  
which would be the case if the termination were not affected by  
the amplifier circuit.  
In cases where more accurate control of the output common-  
mode level is required, it is recommended that an external source,  
or resistor divider (10 kΩ or greater resistors), be used. The  
output common-mode offset listed in Table 2 and Table 4 assumes  
that the VOCM input is driven by a low impedance voltage source.  
R
F
200  
+V  
S
R
R
TH  
G
27.4Ω  
200Ω  
V
TH  
1.1V  
V
O
V
OCM  
ADA4937  
R
0.97V  
L
It is also possible to connect the VOCM input to a common-mode  
level (CML) output of an ADC. However, care must be taken to  
ensure that the output has sufficient drive capability. The input  
impedance of the VOCM pin is approximately 10 kΩ. If multiple  
ADA4937-x devices share one reference output, it is recommended  
that a buffer be used.  
R
G
200Ω  
R
TS  
27.4Ω  
–V  
S
R
F
200Ω  
Figure 59. Balancing Gain Resistor RG  
Table 10 and Table 11 list several common gain settings, asso-  
ciated resistor values, input impedances, and output noise density  
values for both balanced and unbalanced input configurations.  
4. The feedback resistor is calculated to adjust the output  
voltage.  
a. To make the output voltage VOUT = 1 V, RF must be  
calculated using the following formula:  
POWER-DOWN OPERATION  
The ADA4937-x power-down pin features an internal 25 kꢀ  
pull-up resistor to the positive supply (+VS). This ensures that,  
with the power-down pin left unconnected (floating), the  
ADA4937-x turns on. Applying a voltage of ≤1 V turns the  
ADA4937-x off.  
VOUT (RG RTS )  
1 (200 27.4)  
RF   
207 ꢀ  
VTH  
1.1  
b. To make VO = VS = 2 V to recover the loss due to the  
input termination, RF should be  
VOUT (RG RTS )  
2 (200 27.4)  
RF  
414 ꢀ  
VTH  
1.1  
Rev. D | Page 20 of 28  
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
Table 10. Differential Ground-Referenced Input, DC-Coupled, 1 kΩ Load; See Figure 54  
Nominal Gain (dB)  
RF (Ω)  
RG (Ω) RIN, dm (Ω) Differential Output Noise Density (nV/√Hz)  
0
6
10  
14  
200  
402  
402  
402  
200  
200  
127  
80.6  
400  
400  
254  
161  
5.8  
9.6  
12.1  
16.2  
Table 11. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω, RL = 1 kΩ; See Figure 55  
Nominal Gain (dB)  
RF (Ω) RG1 (Ω)  
RT (Ω) RIN, cm (Ω)  
RG2 (Ω)1  
226  
228  
155  
Differential Output Noise Density (nV/√Hz)  
0
6
10  
14  
200  
402  
402  
402  
200  
200  
127  
80.6  
61.9  
60.4  
66.5  
76.8  
267  
301  
205  
138  
5.5  
8.6  
10.1  
12.2  
111  
1 RG2 = RG1 + (RS||RT)  
Rev. D | Page 21 of 28  
 
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
LAYOUT, GROUNDING, AND BYPASSING  
As a high speed device, the ADA4937-x is sensitive to the  
PCB environment in which it operates. Realizing its superior  
performance requires attention to the details of high speed  
PCB design. This section shows a detailed example of how  
the design issues of the ADA4937-1 were addressed.  
Bypass the power supply pins as close to the device as possible  
and directly to a nearby ground plane. Use high frequency ceramic  
chip capacitors. It is recommended that two parallel bypass capaci-  
tors (1000 pF and 0.1 μF) be used for each supply with the 1000 pF  
capacitor placed closer to the device; further away, provide low  
frequency bypassing using 10 μF tantalum capacitors from each  
supply to ground.  
The first requirement is a solid ground plane that covers as  
much of the board area around the ADA4937-1 as possible.  
However, the area near the feedback resistors (RF), input gain  
resistors (RG), and the input summing nodes (Pin 2 and Pin 3)  
should be cleared of all ground and power planes (see Figure 61).  
Clearing the ground and power planes minimizes any stray capa-  
citance at these nodes and prevents peaking of the response of  
the amplifier at high frequencies.  
Signal routing should be short and direct to avoid parasitic  
effects. Wherever complementary signals exist, provide a sym-  
metrical layout to maximize balanced performance. When  
routing differential signals over a long distance, keep PCB  
traces close together and twist any differential wiring to mini-  
mize loop area. Doing this reduces radiated energy and makes  
the circuit less susceptible to interference.  
The thermal resistance, θJA, is specified for the device, including  
the exposed pad, soldered to a high thermal conductivity 4-layer  
circuit board, as described in EIA/JESD 51-7.  
1.30  
0.80  
1.30 0.80  
Figure 62. Recommended PCB Thermal Attach Pad Dimensions (mm)  
Figure 61. Ground and Power Plane Voiding in Vicinity of RF and RG  
1.30  
TOP METAL  
GROUND PLANE  
0.30  
PLATED  
VIA HOLE  
POWER PLANE  
BOTTOM METAL  
Figure 63. Cross-Section of 4-layer PCB Showing Thermal Via Connection to Buried Ground Plane (Dimensions in mm)  
Rev. D | Page 22 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
HIGH PERFORMANCE ADC DRIVING  
The ADA4937-x is ideally suited for broadband IF applications.  
The circuit in Figure 64 shows a front-end connection for an  
ADA4937-1 driving an AD9445, 14-bit, 105 MSPS ADC. The  
AD9445 achieves its optimum performance when driven dif-  
ferentially. The ADA4937-x eliminates the need for a transformer  
to drive the ADC and performs a single-ended-to-differential  
conversion and buffering of the driving signal.  
The signal generator has a symmetric, ground-referenced bipolar  
output. The VOCM pin of the ADA4937-x remains unconnected  
allowing the internal divider to set the output common-mode  
voltage at midsupply; one half of the common-mode voltage is  
fed back to the summing nodes, biasing −IN and +IN at 1.25 V. For  
a common-mode voltage of 2.5 V, each ADA4937-x output swings  
between 2.0 V and 3.0 V, providing a 2 V p-p differential output.  
The ADA4937-x is configured with a single 5 V supply and unity  
gain for a single-ended input to differential output. The 61.9 Ω  
termination resistor, in parallel with the single-ended input imped-  
ance of 267 Ω, provides a 50 Ω termination for the source. The  
additional 26 Ω (226 Ω total) at the inverting input balances the  
parallel impedance of the 50 Ω source and the termination resistor  
driving the noninverting input.  
The output of the amplifier is ac-coupled to the ADC through a  
second-order, low-pass filter with a cutoff frequency of 100 MHz.  
This reduces the noise bandwidth of the amplifier and isolates  
the driver outputs from the ADC inputs.  
The AD9445 is configured for a 2 V p-p full-scale input by  
connecting the SENSE pin to AGND, as shown in Figure 64.  
5V (A) 3.3V (A) 3.3V (D)  
200  
5V  
AVDD2 AVDD1 DRVDD  
30nH  
0.1µF  
0.1µF  
200Ω  
50Ω  
VIN–  
47pF  
VIN+  
AD9445  
+
BUFFER T/H  
24.3Ω  
24.3Ω  
V
61.9Ω  
OCM  
ADA4937-1  
14  
ADC  
SIGNAL  
GENERATOR  
30nH  
226Ω  
CLOCK/  
TIMING  
REF  
200Ω  
AGND  
SENSE  
Figure 64. Driving an AD9445, 14-Bit, 105 MSPS ADC  
Rev. D | Page 23 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
The circuit in Figure 66 shows a simplified front-end connection  
for an ADA4937-1 driving an AD9246, 14-bit, 125 MSPS ADC.  
The AD9246 achieves its optimum performance when driven  
differentially. The ADA4937-x performs the single-ended-to-  
differential conversion, eliminating the need for a transformer  
to drive the ADC.  
The AD9246 is set for a 2 V p-p full-scale input by connecting  
the SENSE pin to AGND. The inputs of the AD9246 are biased  
at 1 V by connecting the CML output, as shown in Figure 66.  
The circuit was tested with a −1 dBFS signal at various frequencies.  
Figure 65 shows a plot of the second- and third-order harmonic  
distortion (HD2/HD3) vs. frequency.  
The ADA4937-x is configured with a single 5 V supply and a  
gain of ~2 V/V for a single-ended input to differential output.  
The 76.8 Ω termination resistor, in parallel with the single-ended  
input impedance of 137 Ω, provides a 50 Ω ac termination for the  
source. The additional 30 Ω (120 Ω total) at the inverting input  
balances the parallel ac impedance of the 50 Ω source and the  
termination resistor driving the noninverting input.  
–75  
G = +2  
–80  
HD3  
–85  
HD2  
–90  
The signal generator has a symmetric, ground-referenced bipolar  
output. The VOCM pin of the ADA4937-x remains unconnected;  
therefore, the internal pull-ups set the output common-mode  
voltage to midsupply. A portion of this is fed back to the summing  
nodes, biasing −IN and +IN at 0.55 V. For a common-mode vol-  
tage of 2.5 V, each ADA4937-x output swings between 2.0 V and  
3.0 V, providing a 2 V p-p differential output.  
–95  
–100  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
Figure 65. HD2/HD3 for Combination of ADA4937-x and AD9246 ADC  
The output is ac-coupled to a single-pole, low-pass filter. This  
reduces the noise bandwidth of the amplifier and provides some  
level of isolation from the switched capacitor inputs of the ADC.  
200  
1.8V  
5V  
76.8Ω  
10µF  
10µF  
50Ω  
33Ω  
10pF  
90Ω  
AVDD DRVDD  
VIN–  
+
200Ω  
200Ω  
D13 TO  
V
IN  
AD9246  
D0  
ADA4937-1  
10µF  
90Ω  
VIN+  
AGND SENSE CML  
33Ω  
10µF  
50Ω  
76.8Ω  
200Ω  
Figure 66. Driving an AD9246, 14-Bit, 125 MSPS ADC  
Rev. D | Page 24 of 28  
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
59 Ω termination resistor, in parallel with the single-ended input  
impedance of 306 Ω, provides a 50 Ω termination for the source.  
The additional 26 Ω (226 Ω total) at the inverting input balances  
the parallel impedance of the 50 Ω source and the termination  
resistor that drives the noninverting input. The signal generator  
has a symmetric, ground-referenced bipolar output. The VOCM pin  
is connected to the CML output of the AD9230, and sets the out-  
put common mode of the ADA4937-x at 1.4 V. One third of the  
output common-mode voltage of the amplifier is fed back to the  
summing nodes, biasing −IN and +IN at ~0.5 V. For a common-  
mode voltage of 1.4 V, each ADA4937-x output swings between  
1.09 V and 1.71 V, providing a 1.25 V p-p differential output.  
3.3 V OPERATION  
The ADA4937-x provides excellent performance in 3.3 V  
single-supply applications. Significant power savings can be  
realized when the ADA4937-x is used in combination with  
a low voltage ADC.  
The circuit in Figure 67 is an example of the ADA4937-1  
driving an AD9230, 12-bit, 250 MSPS ADC that is specified  
to operate with a single 1.8 V supply. The performance of the  
ADC is optimized when it is driven differentially, making the  
best use of the signal swing available within the 1.8 V supply.  
The ADA4937-x performs the single-ended-to-differential  
conversion, common-mode level-shifting, and buffering of  
the driving signal.  
A third-order, 125 MHz, low-pass filter between the ADA4937-x  
and the AD9230 reduces the noise bandwidth of the amplifier  
and isolates the driver outputs from the ADC inputs.  
The ADA4937-x is configured with a single 3.3 V supply and a  
gain of 2 V/V for a single-ended input to differential output. The  
453  
1.8V  
3.3V  
56nH  
50Ω  
33Ω  
200Ω  
AVDD DRVDD  
+
VIN–  
V
D11 TO  
D0  
59Ω  
OCM  
V
AD9230  
10pF  
30pF  
ADA4937-1  
IN  
VIN+  
AGND  
CML  
33Ω  
56nH  
226Ω  
453Ω  
Figure 67. Driving an AD9230, 12-Bit, 250 MSPS ADC  
Rev. D | Page 25 of 28  
 
 
ADA4937-1/ADA4937-2  
OUTLINE DIMENSIONS  
Data Sheet  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.45  
13  
16  
1
0.45  
1.30 SQ  
1.15  
12  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
0.50  
BSC  
8
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 68. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-2)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
0.60 MAX  
2.50 REF  
3.90  
0.60 MAX  
PIN 1  
INDICATOR  
19  
24  
18  
13  
1
0.50  
BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
3.75 BSC  
SQ  
EXP OSED  
PAD  
6
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
BOTTOM VIEW  
TOP VIEW  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
Figure 69. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-16-2  
CP-16-2  
CP-16-2  
CP-24-1  
Ordering Quantity  
Branding  
H1S  
H1S  
ADA4937-1YCPZ-R2  
ADA4937-1YCPZ-RL  
ADA4937-1YCPZ-R7  
ADA4937-2YCPZ-R2  
ADA4937-2YCPZ-RL  
ADA4937-2YCPZ-R7  
ADA4937-1YCP-EBZ  
ADA4937-2YCP-EBZ  
250  
5,000  
1,500  
250  
5,000  
1,500  
H1S  
CP-24-1  
CP-24-1  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. D | Page 26 of 28  
 
 
 
Data Sheet  
NOTES  
ADA4937-1/ADA4937-2  
Rev. D | Page 27 of 28  
ADA4937-1/ADA4937-2  
NOTES  
Data Sheet  
©2007–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06591-0-8/13(D)  
Rev. D | Page 28 of 28  

相关型号:

ADA4938-1

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1ACPZ-R2

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1ACPZ-R7

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1ACPZ-RL

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-R2

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-R7

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-RL

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_06

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_07

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_15

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-1_16

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2

Operational Amplifiers Selection Guide
ADI