ADATE302-02BSVZ [ADI]

500 MHz Dual Integrated DCL;
ADATE302-02BSVZ
型号: ADATE302-02BSVZ
厂家: ADI    ADI
描述:

500 MHz Dual Integrated DCL

文件: 总59页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500 MHz Dual Integrated DCL with Differential  
Drive/Receive, Level Setting DACs, and Per Pin PMU  
ADATE302-02  
FEATURES  
GENERAL DESCRIPTION  
Driver  
The ADATE302-02 is a complete, single-chip solution that  
3-level driver with high-Z mode and built-in clamps  
Precision trimmed output resistance  
Low leakage mode (typically <10 nA)  
Voltage range: −2.0 V to +6.0 V  
1.0 ns minimum pulse width, 1 V terminated  
Comparator  
Window and differential comparator  
>1 GHz input equivalent bandwidth  
Load  
performs the pin electronic functions of the driver, the compa-  
rator, and the active load (DCL), per pin PMU, and dc levels for  
ATE applications. The device also contains an HVOUT driver  
with a VHH buffer capable of generating up to 13.5 V.  
The driver features three active states: data high mode, data low  
mode, and term mode, as well as an inhibit state. The inhibit  
state, in conjunction with the integrated dynamic clamp, facilitates  
the implementation of a high speed active termination. The output  
voltage range is −2.0 V to +6.0 V to accommodate a wide  
variety of test devices.  
12 mA maximum current capability  
Per pin PMU  
Force voltage range: −2.0 V to +6.0 V  
5 current ranges: 25 mA, 2 mA, 200 μA, 20 μA, and 2 μA  
Levels  
14-bit DAC for DCL levels  
Typically < 5 mV INL (calibrated)  
16-bit DAC for PMU levels  
Typically < 1.5 mV INL (calibrated) linearity in FV mode  
HVOUT output buffer  
0 V to 13.5 V output range  
The ADATE302-02 can be used as either a dual single-ended  
drive/receive channel or a single differential drive/receive  
channel. Each channel of the ADATE302-02 features a high  
speed window comparator for functional testing as well as a per  
pin PMU with FV or FI and MV or MI functions. All necessary  
dc levels for DCL functions are generated by on-chip 14-bit  
DACs. The per pin PMU features an on-chip 16-bit DAC for  
high accuracy and contains integrated range resistors to  
minimize external component counts.  
Packages  
84-ball, 9 mm × 9 mm, flip-chip BGA  
100-lead TQFP_EP  
1.7 W per channel with no load  
The ADATE302-02 uses a serial bus to program all functional  
blocks and has an on-board temperature sensor for monitoring  
the device temperature.  
APPLICATIONS  
Automatic test equipment  
Semiconductor test systems  
Board test systems  
Instrumentation and characterization equipment  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved.  
 
ADATE302-02* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all ADATE302-02 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
ADATE302-02: 500 MHz Dual Integrated DCL with  
Differential Drive/Receive, Level Setting DACs, and Per Pin  
PMU Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DESIGN RESOURCES  
ADATE302-02 Material Declaration  
PCN-PDN Information  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADATE302-02  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ......................................................... 20  
Thermal Resistance.................................................................... 20  
Explanation of Test Levels......................................................... 20  
ESD Caution................................................................................ 20  
Pin Configuration and Function Descriptions........................... 21  
Typical Performance Characteristics........................................... 27  
Serial Peripheral Interface Details................................................ 39  
Definition of SPI Word.............................................................. 40  
Write Operation.......................................................................... 41  
Read Operation .......................................................................... 42  
Reset Operation.......................................................................... 43  
Register Map ................................................................................... 44  
Details of Registers......................................................................... 45  
User Information............................................................................ 47  
Details of DACs vs. Levels......................................................... 48  
Recommended PMU Mode Switching Sequences ................ 50  
Block Diagrams............................................................................... 53  
Outline Dimensions....................................................................... 57  
Ordering Guide .......................................................................... 58  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Total Function............................................................................... 4  
Driver ............................................................................................. 5  
Reflection Clamp.......................................................................... 7  
Normal Window Comparator .................................................... 7  
Differential Comparator.............................................................. 9  
Active Load.................................................................................. 11  
PMU............................................................................................. 12  
External Sense (PMUS_CHx)................................................... 16  
DUTGND Input ......................................................................... 17  
Serial Peripheral Interface......................................................... 17  
HVOUT Driver........................................................................... 17  
Overvoltage Detector (OVD) ................................................... 18  
16-Bit DAC Monitor Mux ......................................................... 19  
REVISION HISTORY  
4/09—Rev. 0 to Rev. A  
Added 100-Lead TQFP_EP Package........................... Throughout  
Added Figure 3, Renumbered Figures Sequentially................... 22  
Added Table 17, Renumbered Tables Sequentially .................... 22  
Updated Outline Dimensions....................................................... 52  
Changes to Ordering Guide .......................................................... 53  
6/08—Revision 0: Initial Version  
Rev. A | Page 2 of 58  
 
ADATE302-02  
FUNCTIONAL BLOCK DIAGRAM  
CH1  
PMU_FLAG  
PMU  
16-BIT DAC  
*
MUX  
MUX  
DAC16_MON  
*
OVD  
OVD_CH0  
MUX  
MEASOUT01  
PMUS_CH0  
CH1  
VCH  
VCL  
VH  
VT  
VL  
R
OUT  
DATA0P  
(TRIMMED)  
100  
100Ω  
DRV  
DUT0  
DATA0N  
RCV0P  
*
WINDOW  
DIFF.  
C
RCV0N  
OTHER CHANNEL  
DUT1  
*
COMP_VTT0  
VHH  
HVOUT  
50Ω  
COMP_QH0P  
COMP_QH0N  
C
C
VOH  
VOL  
COMP_QL0P  
COMP_QL0N  
*
G
IOL  
IOH  
ADATE302-02  
SDIN  
*
RST  
SCLK  
CS  
VCOM  
*
14-BIT DAC  
SPI  
TEMPERATURE  
SENSOR  
TEMPSENSE  
SDOUT  
*
ONE PER DEVICE.  
Figure 1. Functional Block Diagram with One of Two Channels Shown  
Rev. A | Page 3 of 58  
 
ADATE302-02  
SPECIFICATIONS  
VDD = 10.0 V, VCC = 3.3 V, VSS = −5.75 V, VPLUS = 16.75 V, VCOMP_VTTx = 1.5 V, VREF = 5.0 V, VREF_GND = 0.0 V. All default test conditions are as  
defined in Table 38. All specified values are at TJ = 80°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted.  
Temperature coefficients are measured at TJ = 80°C 20°C, unless otherwise noted. Typical values are based on design, simulation  
analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test  
Levels section.  
TOTAL FUNCTION  
Table 1.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
TOTAL FUNCTION  
Output Leakage Current  
PE Disable, Range E  
−20.0 +6.0  
7.5  
+20.0 nA  
nA  
P
−2.0 V < VDUTx < +6.0 V; PMU and PE disabled via SPI;  
VCH = 7.0 V, VCL = −2.5 V  
−2.0 V < VDUTx < +6.0 V; PMU and PE disabled via SPI;  
VCH = 7.0 V, VCL = −2.5 V  
−2.0 V < VDUTx < +6.0 V; PMU disabled and PE enabled via  
SPI; RCVx pins active, VCH = 7.0 V, VCL = −2.5V  
PE Disable, Range A, B, C, D  
High-Z Mode  
CT  
P
−400 +15  
+400 nA  
pF  
Output Capacitance  
DUT Pin Range  
4
S
D
VTERM mode operation  
−2.0  
+6.0  
V
POWER SUPPLIES  
Total Supply Range, VPLUS to VSS  
VPLUS Supply, VPLUS  
Positive Supply, VDD  
Negative Supply, VSS  
Logic Supply, VCC  
Comparator Termination, VCOMP_VTTx  
VPLUS Supply Current, IPLUS  
VPLUS Supply Current, IPLUS  
Logic Supply Current, ICC  
Comparator Termination Current,  
ICOMP_VTTx  
22.5  
23.25  
V
V
V
V
V
V
mA  
mA  
mA  
mA  
D
D
D
D
D
D
P
P
P
P
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
16.25 16.75 17.25  
9.5  
−6.0  
3.1  
10.0  
−5.75 −5.5  
3.3  
1.5  
+1.3  
12.7  
2.7  
10.5  
3.5  
3.3  
+4.0  
17.0  
10.0  
70.0  
1
−1.0  
4.0  
1.0  
HVOUT disabled  
HVOUT enabled, RCVx pins active, no load, VHH = 12 V  
Quiescent (SPI is static)  
40.0  
46  
Positive Supply Current, IDD  
Negative Supply Current, ISS  
Total Power Dissipation  
140.0 190  
170.0 231  
200.0 272  
230.0 311  
256.0 mA  
311.0 mA  
406.0 mA  
461.0 mA  
P
P
P
P
P
P
Load power down (IOH = IOL = 0 mA)  
Load active off (IOH = IOL = 12 mA)  
Load power down (IOH = IOL = 0 mA)  
Load active off (IOH = IOL = 12 mA)  
Load power down (IOH = IOL = 0 mA)  
Load active off (IOH = IOL = 12 mA)  
2.5  
3.0  
3.55  
4.2  
4.0  
5.5  
W
W
TEMPERATURE MONITORS  
Temperature Sensor Gain  
Temperature Sensor Accuracy Without  
Calibration over 25°C to 100°C  
10  
6
mV/K CT  
°C  
CT  
Temperature voltage available on Pin A1 at all times and  
on Pin K1 when selected (see Table 25 and Table 37)  
VREF INPUT  
Reference Input Voltage Range for  
DACs (VREF Pin)  
Input Bias Current  
4.95  
5
5.05  
100  
V
D
P
Referenced to VREF_GND; not referenced to VDUTGND  
Tested with 5 V applied  
0.08  
μA  
Rev. A | Page 4 of 58  
 
ADATE302-02  
DRIVER  
VH − VL ≥ 200 mV (to meet dc/ac specifications).  
Table 2.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
High-Speed Differential Logic Input  
Characteristics (DATAx, RCVx)  
Input Termination Resistance  
92  
100  
108  
Ω
P
Push 6 mA into xP pins, force 1.3 V on xN pins; measure  
voltage from xP to xN, calculate resistance (V/I)  
Input Voltage Differential  
Common-Mode Voltage  
Input Bias Current  
0.2  
0.85  
−20.0 +4.0  
1.0  
3.5  
+20.0 μA  
V
V
PF  
PF  
P
Each pin tested at 2.85 V and 0.35 V, while other high speed  
pin left open  
Pin Output Characteristics  
Output High Range, VH  
Output Low Range, VL  
Output Term Range, VT  
Functional Amplitude (VH − VL)  
−1.9  
−2.0  
−2.0  
+6.0  
+5.9  
+6.0  
V
V
V
V
D
D
D
D
0.0  
8.0  
Amplitude can be programmed to VH = VL, accuracy  
specifications apply when VH − VL ≥ 200 mV  
DC Output Current Limit Source  
75  
100  
120  
mA  
P
Driver high, VH = 6.0 V, short DUTx pin to −2.0 V, measure  
current  
DC Output Current Limit Sink  
Output Resistance, 50 mA  
−120  
45.0  
−100  
48.5  
−75  
51.0  
mA  
Ω
P
P
Driver low, VL = −2.0 V, short DUTx pin to 6.0 V, measure current  
Source: driver high, VH = 3.0 V, IDUTx = 1 mA and 50 mA;  
sink: driver low, VL = 0.0 V, IDUTx = −1 mA and −50 mA; ΔVDUTx/ΔIDUTx  
ABSOLUTE ACCURACY  
VH tests done with VL = −2.5 V and VT = −2.5 V;  
VL tests done with VH = 7.5 V and VT = 7.5 V;  
VT tests done with VL = −2.5 V and VH = 7.5 V;  
unless otherwise specified  
VH, VL, VT Uncalibrated Accuracy  
VH, VL, VT Offset Tempco  
VH, VL, VT DNL  
−300  
−10  
75  
450  
1
+300  
mV  
μV/°C CT  
mV  
mV  
P
Error measured at calibration points of 0 V and 5 V  
Measured at calibration points  
After two-point gain/offset calibration  
After two-point gain/offset calibration; measured over driver  
output ranges  
After two-point gain/offset calibration; range/number of DAC  
bits as measured at calibration points of 0 V and 5 V  
Over 0.1 V range; measured at end points of VH, VL, and VT  
functional range  
VL = −2.0 V: VH = −1.9 V 6.0 V, VT = −2.0 V 6.0 V;  
VH = 6.0 V: VL = −2.0 V 5.9 V, VT = −2.0 V 6.0 V;  
VT = 1.5 V: VL = −2.0 V 5.9 V, VH = −1.9 V 6.0 V;  
dc crosstalk on VL, VH, VT output level when other driver  
DACs are varied  
CT  
P
VH, VL, VT INL  
2.5  
+10  
1
VH, VL, VT Resolution  
DUTGND Voltage Accuracy  
VH, VL, VT Crosstalk  
0.6  
1.3  
2
mV  
mV  
mV  
PF  
P
−7  
+7  
CT  
Overall Voltage Accuracy  
10  
15  
mV  
CT  
Sum of INL, crosstalk, DUTGND, and tempco over 5°C,  
after gain/offset calibration  
Measured at calibration points  
VH, VL, VT DC PSRR  
AC SPECIFICATIONS  
mV/V CT  
Rise/Fall Times  
Toggle DATAx pins  
0.2 V Programmed Swing  
1.0 V Programmed Swing  
1.8 V Programmed Swing  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
3.0 V Programmed Swing  
5.0 V Programmed Swing  
Rise to Fall Matching  
683  
521  
524  
531  
589  
811  
1105  
6
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
CB  
CB  
P/CB  
CB  
CB  
CB  
CB  
CB  
VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 1.8 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90%  
VH = 5.0 V, VL = 0.0 V, unterminated; 10% to 90%  
VH = 1.0 V, VL = 0.0 V, terminated; rise to fall within one channel  
430  
630  
Rev. A | Page 5 of 58  
 
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Minimum Pulse Width  
2.0 V Programmed Swing  
Toggle DATAx pins  
VH = 2.0 V, VL = 0.0 V, terminated; timing error 27 ps  
VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
1.2  
1.2  
ns  
ns  
CB  
CB  
1.0  
ns  
CB  
CB  
VH = 2.0 V, VL = 0.0 V, terminated; less than 20% amplitude  
degradation  
VH = 2.0 V, VH = 0.0 V, terminated, 18% amplitude degradation  
Toggle DATAx pins  
Maximum Toggle Rate  
Dynamic Performance, Drive  
(VH to VL and VL to VH)  
500  
MHz  
Propagation Delay Time  
Propagation Delay Tempco  
Delay Matching  
Edge to Edge  
Channel to Channel  
Delay Change vs. Duty Cycle  
Overshoot and Undershoot  
Settling Time (VH to VL)  
To Within 3% of Final Value  
To Within 1% of Final Value  
Dynamic Performance, VTERM  
(VH or VL to VT and VT to  
VH or VL)  
2.1  
4.5  
ns  
CB  
VH = 2.0 V, VL = 0.0 V, terminated  
VH = 1.8 V, VL = 0.0 V, terminated  
VH = 2.0 V, VL = 0.0 V, terminated  
Rising vs. falling  
Rising vs. rising, falling vs. falling  
VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz  
VH = 3.0 V, VL = 0.0 V, terminated  
Toggle DATAx pins  
ps/°C CT  
41  
15  
30  
48  
ps  
ps  
ps  
mV  
CB  
CB  
CB  
CB  
1.2  
14  
ns  
ns  
CB  
CB  
VH = 3.0 V, VL = 0.0 V, terminated  
VH = 3.0 V, VL = 0.0 V, terminated  
Toggle RCVx pins  
Propagation Delay Time  
Delay Matching, Edge to Edge  
Propagation Delay Tempco  
2.7  
59  
5.5  
ns  
ps  
CB  
CB  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated  
ps/°C CT  
Transition Time, Active to VT,  
VT to Active  
0.614  
ns  
CB  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80%  
Dynamic Performance,  
Toggle RCVx pins  
Inhibit (VH or VL to/from Inhibit)  
Propagation Delay Time  
Active to Inhibit  
Inhibit to Active  
Transition Time  
Active to Inhibit  
Inhibit to Active  
I/O Spike  
VH = +1.0 V, VL = −1.0 V, terminated  
2.7  
3.7  
ns  
ns  
CB  
CB  
VH = +1.0 V, VL = −1.0 V, terminated; 20% to 80%  
VH = 0.0 V, VL = 0.0 V, terminated  
1.3  
0.4  
157  
ns  
ns  
mV  
CB  
CB  
CB  
Rev. A | Page 6 of 58  
ADATE302-02  
REFLECTION CLAMP  
Clamp accuracy specifications apply when VCH > VCL.  
Table 3.  
Test  
Parameter  
VCH  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Range  
−1.0  
+6.0  
V
D
Uncalibrated Accuracy  
−200  
45  
+200  
mV  
P
Driver high-Z, sinking 1 mA; VCH error measured at  
calibration points of 0 V and 5 V  
Resolution  
0.6  
0.75  
mV  
PF  
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
calibration points of 0 V and 5 V  
DNL  
INL  
1
2
mV  
CT  
P
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration  
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration; measured over VCH range of −1 V to +6 V  
−40  
+40  
mV  
Tempco  
−0.5  
mV/°C  
CT  
Measured at calibration points  
VCL  
Range  
Uncalibrated Accuracy  
−2  
−200  
+5.0  
+200  
V
mV  
D
P
70  
Driver high-Z, sourcing 1 mA; VCL error measured at  
calibration points of 0 V and 5 V  
Resolution  
0.6  
0.75  
mV  
PF  
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
calibration points of 0 V and 5 V  
DNL  
INL  
1
2
mV  
CT  
P
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration  
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration; measured over VCL range of −2 V to +5 V  
−40  
+40  
mV  
Tempco  
0.6  
mV/°C  
CT  
Measured at calibration points  
DC CLAMP CURRENT LIMIT  
VCH  
VCL  
−120  
60  
−83  
86  
1
−60  
120  
+7  
mA  
mA  
mV  
P
P
P
Driver high-Z, VCH = 0 V, VCL = −2.0 V, VDUTx = 5 V  
Driver high-Z, VCH = 6.0 V, VCL= 5.0 V, VDUTx = 0.0 V  
DUTGND VOLTAGE ACCURACY  
−7  
Over 0.1 V range; measured at the end points of VCH  
and VCL functional range  
NORMAL WINDOW COMPARATOR  
VOH tests done with VOL = −2.0 V, VOL tests done with VOH = 6.0 V, unless otherwise specified.  
Table 4.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Range  
Differential Voltage Range  
−2.0  
0.1  
+6.0  
8.0  
V
V
D
D
Comparator Input Offset Voltage  
Accuracy, Uncalibrated  
−150  
30  
+150  
mV  
P
Offset measured at calibration points of 0 V and 5 V  
Comparator Threshold Resolution  
0.61  
1
mV  
PF  
After two-point gain/offset calibration; range/  
number of DAC bits as measured at calibration  
points of 0 V and 5 V  
Comparator Threshold DNL  
Comparator Threshold INL  
1
1.2  
mV  
mV  
CT  
P
After two-point gain/offset calibration  
After two-point gain/offset calibration; measured  
over VOH, VOL range of −2.0 V to +6.0 V  
−7  
+7  
Comparator Input Offset Voltage  
Tempco  
200  
ꢀV/°C CT  
Measured at calibration points  
Rev. A | Page 7 of 58  
 
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DUTGND Voltage Accuracy  
−7  
0.5  
+7  
mV  
P
Over 0.1 V range; measured at end points of VOH  
and VOL functional range  
Comparator Uncertainty Range  
5.3  
mV  
CB  
VDUTx = 0 V, sweep comparator threshold to  
determine uncertainty region  
DC Hysteresis  
DC PSRR  
0.5  
5
mV  
mV/V CT  
CB  
VDUTx = 0 V  
Measured at calibration points  
Digital Output Characteristics  
Internal Pull-Up Resistance to  
Comparator, COMP_VTTx Pin  
46  
1
50  
54  
Ω
P
Pull 1 mA and 10 mA from Logic 1 leg and measure  
ΔV to calculate resistance; measured ΔV/9 mA; done  
for both comparator logic states  
VCOMP_VTTx Range  
Common-Mode Voltage  
1.5  
VCOMP_VTTx  
− 0.3  
3.3  
V
V
D
CT  
Measured with 100 Ω differential termination  
Measured with no external termination  
VCOMP_VTTx  
− 0.5  
VCOMP_VTTx  
V
P
Differential Voltage  
250  
500  
222  
mV  
mV  
ps  
CT  
P
CB  
Measured with 100 Ω differential termination  
Measured with no external termination  
Measured with each comparator leg terminated  
50 Ω to GND  
450  
550  
Rise/Fall Time, 20% to 80%  
AC SPECIFICATIONS  
Input transition time = 600 ps, 10% to 90%;  
measured with each comparator leg terminated  
50 Ω to GND; unless otherwise specified  
Propagation Delay, Input to Output  
1.4  
4
ns  
CB  
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,  
VT = 0.0 V; high-side measurement: VOH = 0.5 V,  
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,  
VOL = 0.5 V  
VDUTx = 0 V to 0.9 V swing, driver VTERM mode,  
VT = 0.0 V; VOL = VOH = 0.45 V  
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,  
VT = 0.0 V; high-side measurement: VOH = 0.5 V,  
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,  
VOL = 0.5 V  
Propagation Delay Tempco  
Propagation Delay Matching  
ps/°C CT  
High Transition to Low Transition  
High to Low Comparator  
39  
30  
ps  
ps  
CB  
CB  
Propagation Delay Change with  
Respect to  
Slew Rate, 600 ps and 1 ns  
(10% to 90%)  
19  
65  
ps  
ps  
CB  
CB  
VDUTx = 0 V to 0.5 V swing, driver VTERM mode,  
VT = 0.0 V; high-side measurement: VOH = 0.25 V,  
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,  
VOL = 0.25 V  
Overdrive, 250 mV and 1.0 V  
For 250 mV: VDUTx = 0 V to 0.5 V swing; for 1.0 V: VDUTx =  
0 V to 1.25 V swing; driver VTERM mode, VT = 0.0 V;  
high-side measurement: VOH = 0.25 V, VOL = −2.0 V;  
low-side measurement: VOH = 6.0 V, VOL = 0.25 V;  
input transition time = 400 ps (10%/90%)  
Pulse Width, 1 ns, 5 ns, 10 ns, and  
15 ns  
27  
ps  
ps  
CB  
CB  
VDUTx = 0 V to 1.0 V swing @ 32.0 MHz, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V,  
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,  
VOL = 0.5 V; input transition time = 400 ps (10%/90%)  
VDUTx = 0 V to 1.0 V swing @ 1.0 MHz, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V,  
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,  
VOL = 0.5 V; input transition time = 400 ps (10%/90%)  
Duty Cycle, 5% to 95%  
11.8  
Rev. A | Page 8 of 58  
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Minimum Pulse Width  
1
ns  
CB  
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,  
VT = 0.0 V; less than 10% amplitude degradation  
measured by shmoo; input transition time = 400 ps  
(10%/90%)  
Input Equivalent Bandwidth,  
Terminated  
1000  
0.9  
MHz  
ns  
CB  
CB  
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,  
VT = 0.0 V; as measured by shmoo; input transition  
time = 400 ps (10%/90%)  
VDUTx = 0 V to 3.0 V swing, driver high-Z; as measured  
by shmoo  
ERT High-Z Mode, 3 V, 20% to 80%  
DIFFERENTIAL COMPARATOR  
VOH tests done with VOL = −1.1 V, VOL tests done with VOH = 1.1 V, unless otherwise specified.  
Table 5.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Range  
Operational Differential Voltage  
Range  
−1.5  
0.05  
+4.5  
1.1  
V
V
D
D
Maximum Differential Voltage Range  
8
V
D
Comparator Input Offset Voltage  
Accuracy, Uncalibrated  
−150  
25  
+150  
mV  
P
Offset measured at differential calibration points of  
+1 V and −1 V, with common mode = 0 V  
VOH, VOL Resolution  
0.61  
1
mV  
PF  
After two-point gain/offset calibration; range/number of  
DAC bits as measured at differential calibration points of  
+1 V and −1 V, with common mode = 0 V  
VOH, VOL DNL  
VOH, VOL INL  
1
mV  
mV  
CT  
P
After two-point gain/offset calibration; common mode =  
0 V  
After two-point gain/offset calibration; measured over  
VOH, VOL range of −1.1 V to +1.1 V, common mode = 0 V  
−7  
1.0  
+7  
VOH, VOL Offset Voltage Tempco  
Comparator Uncertainty Range  
200  
18  
ꢀV/°C CT  
Measured at calibration points  
VDUTx = 0 V, sweep comparator threshold to determine  
uncertainty region  
mV  
CB  
DC Hysteresis  
CMRR  
0.5  
mV  
mV/V  
CB  
P
VDUTx = 0 V  
1
Offset measured at common-mode voltage points of  
−1.5 V and +4.5 V, with differential voltage = 0 V  
DC PSRR  
15  
mV/V CT  
Measured at calibration points  
AC SPECIFICATIONS  
Input transition time = 600 ps, 10% to 90%, measured  
with each comparator leg terminated 50 Ω to GND  
Propagation Delay, Input to Output  
1.4  
ns  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
Propagation Delay Tempco  
Propagation Delay Matching  
4
ps/°C CT  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; VOL = VOH = 0.0 V; repeat for other DUT  
channel  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
High Transition to Low Transition  
High to Low Comparator  
27  
32  
ps  
ps  
CB  
CB  
Propagation Delay Change with  
Respect to  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
Rev. A | Page 9 of 58  
 
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
VOL = 0.0 V; repeat for other DUT channel  
Slew Rate, 400 ps and 1 ns  
(10% to 90%)  
25  
ps  
CB  
CB  
CB  
CB  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing;  
for 750 mV: VDUT1 = 0 V to 1.0 V swing, driver VTERM mode,  
VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel  
with comparator threshold = 0.25 V  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz,  
driver VTERM mode, VT = 0.0 V; high-side measurement:  
VOH = 0.0 V, VOL = −1.1 V; low-side measurement:  
VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, driver  
VTERM mode, VT = 0.0 V; high-side measurement:  
VOH = 0.0 V, VOL = −1.1 V; low-side measurement:  
VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel  
Overdrive, 250 mV and 750 mV  
79  
56  
16  
1
ps  
ps  
ps  
ns  
Pulse Width, 1 ns, 5 ns, 10 ns, and  
15 ns  
Duty Cycle, 5% to 95%  
Minimum Pulse Width  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V; less than 22% amplitude degradation  
measured by shmoo; repeat for other DUT channel  
Input Equivalent Bandwidth,  
Terminated  
500  
MHz  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,  
VOL = 0.0 V  
Rev. A | Page 10 of 58  
ADATE302-02  
ACTIVE LOAD  
See Table 30 for load control information.  
Table 6.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC SPECIFICATIONS  
Input Characteristics  
VCOM Voltage Range  
VDUTx Range  
Load active on, RCVx pins active, unless otherwise noted  
−1.75  
−2.0  
−200  
+5.75  
+6.0  
+200  
V
V
mV  
D
D
P
VCOM Accuracy, Uncalibrated  
25  
IOH = IOL = 6 mA, VCOM error measured at calibration  
points of 0 V and 5 V  
VCOM Resolution  
0.61  
1
mV  
PF  
IOH = IOL = 6 mA, after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
calibration points of 0 V and 5 V  
VCOM DNL  
VCOM INL  
1
2
mV  
mV  
CT  
P
IOH = IOL = 6 mA, after two-point gain/offset calibration  
−7  
−7  
+7  
+7  
IOH = IOL = 6 mA, after two-point gain/offset  
calibration; measured over VCOM range of −1.75 V to  
+5.75 V  
Over 0.1 V range; measured at end points of VCOM  
functional range  
DUTGND Voltage Accuracy  
1
mV  
P
Output Characteristics  
IOL  
Maximum Source Current  
Uncalibrated Offset  
12  
−600.0  
mA  
ꢀA  
D
P
100  
+600.0  
+12  
2
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset  
calculated from calibration points of 1 mA and 11 mA  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain  
Uncalibrated Gain  
Resolution  
−12  
1
%
P
calculated from calibration points of 1 mA and 11 mA  
1.5  
ꢀA  
PF  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point  
gain/offset calibration; range/number of DAC bits as  
measured at calibration points of 1 mA and 11 mA  
DNL  
INL  
3.0  
ꢀA  
ꢀA  
CT  
P
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-  
point gain/offset calibration  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-  
point gain/offset calibration; measured over IOL range  
of 0 mA to 12 mA  
−70  
20  
+70  
0.25  
90% Commutation Voltage  
V
P
IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL  
reference at VDUTx = −1.0 V, measure IOL current at  
VDUTx = 1.75 V, ensure >90% of reference current  
IOH  
Maximum Sink Current  
Uncalibrated Offset  
12  
−600.0  
mA  
ꢀA  
D
P
100  
1
+600.0  
+12  
2
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset  
calculated from calibration points of 1 mA and 11 mA  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain  
Uncalibrated Gain  
Resolution  
−12  
%
P
calculated from calibration points of 1 mA and 11 mA  
1.5  
ꢀA  
PF  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point  
gain/offset calibration; range/number of DAC bits as  
measured at calibration points of 1 mA and 11 mA  
DNL  
INL  
3.0  
20  
ꢀA  
ꢀA  
CT  
P
IOL = 0 mA, VCOM = 1.5V, VDUTx = 3.0 V, after two-point  
gain/offset calibration  
IOL = 0 mA, VCOM = 1.5V, VDUTx = 3.0 V, after two-point  
gain/offset calibration; measured over IOH range of  
0 mA to 12 mA  
−70  
+70  
0.25  
90% Commutation Voltage  
Output Current Tempco  
V
P
IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOH  
reference at VDUTx = 5.0 V, measure IOH current at  
VDUTx = 2.25 V, ensure >90% of reference current  
1.5  
ꢀA/°C  
CT  
Measured at calibration points  
Rev. A | Page 11 of 58  
 
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
AC SPECIFICATIONS  
Dynamic Performance  
Load active on, unless otherwise noted  
Propagation Delay, Load Active On  
to Load Active Off; 50%, 90%  
4.1  
ns  
CB  
CB  
Toggle RCVx pins, DUTx terminated 50 Ω to GND,  
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for  
IOL and VCOM = −1.25 V for IOH; measured from 50%  
point of RCVxP − RCVxN to 90% point of final output,  
repeat for drive low and high  
Toggle RCVx pins, DUTx terminated 50 Ω to GND,  
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for  
IOL and VCOM = −1.25 V for IOH; measured from 50%  
point of RCVxP − RCVxN to 90% point of final output,  
repeat for drive low and high  
Propagation Delay, Load Active Off  
to Load Active On; 50%, 90%  
11  
ns  
Propagation Delay Matching  
Load Spike  
6.9  
156  
1.6  
ns  
CB  
CB  
CB  
Toggle RCVx pins, DUTx terminated 50 Ω to GND,  
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for  
IOL and VCOM = −1.25 V for IOH; active on vs. active  
off, repeat for drive low and high  
Toggle RCVx pins, DUTx terminated 50 Ω to GND,  
IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for  
IOL and VCOM = −1.25 V for IOH; repeat for drive low  
and high  
Toggle RCVx pins, DUTx terminated 50 Ω to GND,  
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for  
IOL and VCOM= −1.25 V for IOH; measured at 90% of  
final value  
mV  
ns  
Settling Time to 90%  
PMU  
FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing.  
Table 7.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
FORCE VOLTAGE (FV)  
Current Range A  
Current Range B  
Current Range C  
Current Range D  
Current Range E  
25  
2
200  
20  
2
−2.0  
mA  
mA  
ꢀA  
ꢀA  
ꢀA  
V
D
D
D
D
D
D
Force Input Voltage Range at  
Output For All Ranges  
+6.0  
Force Voltage Uncalibrated  
Accuracy for Range C  
Force Voltage Uncalibrated  
Accuracy for All Ranges  
Force Voltage Offset Tempco  
for All Ranges  
Force Voltage Gain Tempco  
for All Ranges  
−100  
25  
25  
25  
75  
2
+100 mV  
mV  
P
PMU enabled, FV, PE disabled, error measured at calibration  
points of 0 V and 5 V  
PMU enabled, FV, PE disabled, error measured at calibration  
points of 0 V and 5 V; repeat for each PMU current range  
Measured at calibration points for each PMU current range  
CT  
CT  
ꢀV/°C  
ppm/°C CT  
Measured at calibration points for each PMU current range  
Forced Voltage INL  
−7  
+7  
mV  
P
PMU enabled, FV, Range C, PE disabled, after two-point gain/  
offset calibration; measured over output range of −2.0 V to  
+6.0 V  
Force Voltage Compliance vs.  
Current Load  
PMU enabled, FV, PE disabled, force −2.0 V, measure voltage  
while PMU sinking zero- and full-scale current; measure ꢁV;  
force 6.0 V, measure voltage while PMU sourcing zero- and full-  
scale current; measure ꢁV; repeat for each PMU current range  
Range A  
Range B to Range E  
4
1
mV  
mV  
CT  
CT  
Rev. A | Page 12 of 58  
 
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Current Limit, Source and Sink  
Range A  
108  
135  
180  
% FS  
P
P
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx  
to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V;  
Range A FS = 25 mA, 108% FS = 27 mA, 180% FS = 45 mA  
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to  
6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each  
PMU current range; example: Range B FS = 2 mA,  
120% FS = 2.4 mA, 180% FS = 3.6 mA  
Over 0.1 V range; measured at end points of FV functional  
range  
Range B to Range E  
120  
−7  
140  
1
180  
+7  
% FS  
mV  
DUTGND Voltage Accuracy  
MEASURE CURRENT (MI)  
P
VDUTx externally forced to 0.0 V, unless otherwise specified;  
ideal MEASOUT transfer functions:  
VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) + 2.5 + VDUTGND  
I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5  
Measure Current, Pin DUTx  
Voltage Range for All Ranges  
−2.0  
+6.0  
V
D
Measure Current Uncalibrated  
Accuracy  
Range A  
Range B  
Range C  
Range D  
Range E  
650  
ꢀA  
CT  
P
PMU enabled, FIMI, PE disabled, error at calibration points of  
−20 mA and 20 mA, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
−1.6 mA and 1.6 mA, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
)
−400  
20  
+400 ꢀA  
)
2.00  
0.20  
0.02  
ꢀA  
ꢀA  
ꢀA  
CT  
CT  
CT  
)
)
80% FS, error = (I(VMEASOUT01) − IDUTx  
)
Measure Current Offset Tempco  
Range A  
Range B  
Range C  
Range D and Range E  
2.5  
125  
20  
4
ꢀA/°C  
CT  
CT  
CT  
CT  
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
nA/°C  
nA/°C  
nA/°C  
Measure Current Gain Error,  
Nominal Gain = 1  
Range A  
−3.5  
%
%
%
CT  
P
PMU enabled, FIMI, PE disabled, gain error from calibration  
points of 80% FS  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points of 1.6 mA  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points of 80% FS  
Range B  
−20  
2
2
+20  
Range C to Range E  
CT  
Measure Current Gain Tempco  
Range A  
Range B to Range E  
Measure Current INL  
Range A  
Measured at calibration points  
300  
50  
ppm/°C CT  
ppm/°C CT  
0.05  
% FSR  
% FSR  
% FSR  
% FSR/V  
mV  
CT  
P
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration, measured over FSR output of −25 mA to +25 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/  
offset calibration measured over FSR output of −2 mA to +2 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output  
PMU enabled, FVMI, PE disabled, force −1 V and +5 V into load  
of 1 mA; measure ꢁI reported at MEASOUT01  
Over 0.1 V range; measured at end points of MI functional  
range  
Range B  
−0.02  
−0.01  
0.005 0.02  
0.005  
Range B to Range E  
CT  
P
FVMI DUT Pin Voltage Rejection  
DUTGND Voltage Accuracy  
0.01  
2.5  
CT  
Rev. A | Page 13 of 58  
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
FORCE CURRENT (FI)  
VDUTx externally forced to 0.0 V, unless otherwise specified  
Ideal force current transfer function:  
FORCE = (PMUDAC − 2.5) × (FSR/5)  
I
Force Current, DUTx Pin Voltage −2.0  
Range for All Ranges  
Force Current Uncalibrated  
Accuracy  
+6.0  
+5.0  
V
D
Range A  
Range B  
Range C  
Range D  
Range E  
−5.0  
−400  
−40  
−4  
0.5  
40  
4
mA  
P
P
P
P
P
PMU enabled, FIMI, PE disabled, error at calibration points of  
−20 mA and +20 mA  
PMU enabled, FIMI, PE disabled, error at calibration points of  
−1.6 mA and +1.6 mA  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS  
+400 ꢀA  
+40  
+4  
ꢀA  
ꢀA  
0.4  
75  
−400  
+400 nA  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS  
Force Current Offset Tempco  
Range A  
Range B  
Range C to Range E  
Forced Current Gain Error,  
Nominal Gain = 1  
1
80  
4
ꢀA/°C  
CT  
CT  
CT  
P
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points of 80% FS  
nA/°C  
nA/°C  
%
−20  
4
+20  
Forced Current Gain Tempco  
Range A  
Range B to Range E  
Force Current INL  
Range A  
Measured at calibration points  
−500  
75  
ppm/°C CT  
ppm/°C CT  
−0.3  
-0.2  
0.05  
+0.3  
% FSR  
% FSR  
P
P
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output of  
−25 mA to +25 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output  
Range B to Range E  
0.015 0.2  
Force Current Compliance vs.  
Voltage Load  
PMU enabled, FIMV, PE disabled; force positive full-scale  
current driving −2.0 V and +6.0 V, measure ꢁI @ DUTx pin;  
force negative full-scale current driving −2.0 V and +6.0 V,  
measure ꢁI @ DUTx pin  
Range A to Range D  
Range E  
−0.6  
−1.0  
0.06  
+ 0.1  
+0.6  
+1.0  
% FSR  
% FSR  
P
P
MEASURE VOLTAGE  
Measure Voltage Range  
Measure Voltage Uncalibrated  
Accuracy  
−2.0  
−25  
+6.0  
+25  
V
mV  
D
P
2.0  
PMU enabled, FVMV, Range B, PE disabled, error at calibration  
points of 0 V and 5 V, error = (VMEASOUT01 − VDUTx  
)
Measure Voltage Offset Tempco  
Measure Voltage Gain Error  
10  
0.01  
ꢀV/°C  
%
CT  
P
Measured at calibration points  
PMU enabled, FVMV, Range B, PE disabled, gain error from  
calibration points of 0 V and 5 V  
−2  
+2  
Measure Voltage Gain Tempco  
Measure Voltage INL  
25  
1
ppm/°C CT  
Measured at calibration points  
−7  
+7  
mV  
P
PMU enabled, FVMV, Range B, PE disabled, after two-point  
gain/offset calibration; measured over output range of −2.0 V  
to +6.0 V  
Rejection of Measure V vs. IDUTx  
−1.5  
0.1  
+1.5  
mV  
P
PMU enabled, FVMV, Range D, PE disabled, force 0 V into load  
of −10 ꢀA and +10 ꢀA; measure ꢁV reported at MEASOUT01  
Rev. A | Page 14 of 58  
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
MEASOUT01 DC CHARACTERISTICS  
MEASOUT01 Voltage Range  
DC Output Current  
MEASOUT01 Pin Output  
Impedance  
−2.0  
+6.0  
4
200  
V
mA  
Ω
D
D
P
25  
PMU enabled, FVMV, PE disabled; source resistance: PMU force  
6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force  
−2.0 V and load with 0 mA and −4 mA; resistance = ꢁV/ꢁI at  
MEASOUT01 pin  
Output Leakage Current When  
Tristated  
Output Short-Circuit Current  
−1  
+1  
ꢀA  
P
P
Tested at −2.0 V and +6.0 V  
−25  
+25  
mA  
PMU enabled, FVMV, PE disabled; source: PMU force 6.0 V,  
short MEASOUT01 to −2.0 V; sink: PMU force −2.0 V, short  
MEASOUT01 to 6.0 V  
VOLTAGE CLAMPS  
Low Clamp Range (VCL)  
High Clamp Range (VCH)  
Positive Clamp Voltage Droop  
−2.0  
0.0  
−300 +50  
+4.0  
6.0  
V
V
D
D
P
+300 mV  
+300 mV  
+250 mV  
PMU enabled, FIMI, Range A, PE disabled, PMU clamps  
enabled, VCH = 5 V, VCL = −1 V, PMU force 1 mA and 25 mA  
into open; ꢁV seen at DUTx pin  
PMU enabled, FIMI, Range A, PE disabled, PMU clamps  
enabled, VCH = 5 V, VCL = −1 V, PMU force −1 mA and −25 mA  
into open; ꢁV seen at DUTx pin  
PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled,  
PMU force 1 mA into open; VCH errors at calibration points of  
0 V and 5 V; VCL errors at the calibration points of 0 V and 4 V  
PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled,  
PMU force 1 mA into open; after two-point gain/offset  
calibration; measured over PMU clamp range  
Negative Clamp Voltage Droop  
Uncalibrated Accuracy  
INL  
−300 −50  
P
−250  
−70  
100  
P
5
1
+70  
mV  
mV  
P
DUTGND Voltage Accuracy  
SETTLING/SWITCHING TIMES  
CT  
Over 0.1 V range; measured at end points of PMU clamp  
functional range  
SCAP = 330 pF, FFCAP = 220 pF  
Voltage Force Settling Time to  
0.1% of Final Value  
PMU enabled, FV, PE disabled, program PMUDAC steps of  
500 mV and 5.0 V; simulation of worst case, 2000 pF load,  
PMUDAC step of 5.0 V  
Range A, 200 pF and  
2000 pF Load  
Range B, 200 pF and  
2000 pF Load  
Range C, 200 pF and  
2000 pF Load  
Range D, 200 pF and  
2000 pF Load  
15  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
S
S
S
S
S
20  
124  
1015  
3455  
Range E, 200 pF and  
2000 pF Load  
Voltage Force Settling Time to  
1.0% of Final Value  
PMU enabled, FV, PE disabled, start with PMUDAC  
programmed to 0.0 V, program PMUDAC to 500 mV  
Range A, 200 pF and  
2000 pF Load  
Range B, 200 pF and  
2000 pF Load  
Range C, 200 pF and  
2000 pF Load  
8.0  
8.0  
8.0  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
Range D, 200 pF Load  
Range D, 2000 pF Load  
Range E, 200 pF Load  
Range E, 2000 pF Load  
8.1  
585  
8.1  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
590  
Rev. A | Page 15 of 58  
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Voltage Force Settling Time to  
1.0% of Final Value  
PMU enabled, FV, PE disabled, start with PMUDAC  
programmed to 0.0 V, program PMUDAC to 5.0 V  
Range A, 200 pF and  
2000 pF Load  
4.2  
ꢀs  
CB  
Range B, 200 pF Load  
Range B, 2000 pF Load  
Range C, 200 pF Load  
Range C, 2000 pF Load  
Range D, 200 pF Load  
Range D, 2000 pF Load  
Range E, 200 pF Load  
Range E, 2000 pF Load  
4.4  
7.6  
6.3  
8.1  
130  
280  
390  
605  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
Current Force Settling Time to  
0.1% of Final Value  
PMU enabled, FI, PE disabled, start with PMUDAC  
programmed to 0 current, program PMUDAC to FS current  
Range A, 200 pF in Parallel  
with 120 Ω  
Range B, 200 pF in Parallel  
with 1.5 kΩ  
Range C, 200 pF in Parallel  
with 15.0 kΩ  
Range D, 200 pF in Parallel  
with 150 kΩ  
8.2  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
S
S
S
S
S
9.4  
30  
281  
2668  
Range E, 200 pF in Parallel  
with 1.5 MΩ  
Current Force Settling Time to  
1.0% of Final Value  
PMU enabled, FI, PE disabled, start with PMUDAC  
programmed to 0 current, program PMUDAC to FS current  
Range A, 200 pF in Parallel  
with 120 Ω  
Range B, 200 pF in Parallel  
with 1.5 kΩ  
Range C, 200 pF in Parallel  
with 15.0 kΩ  
Range D, 200 pF in Parallel  
with 150 kΩ  
3.3  
4.4  
8
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
CB  
205  
505  
Range E, 200 pF in Parallel  
with 1.5 MΩ  
INTERACTION AND CROSSTALK  
Measure Voltage Channel-to-  
Channel Crosstalk  
0.125  
% FSR  
% FSR  
CT  
CT  
PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into  
0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA  
into 0 V load; report ꢁV of MEASOUT01 pin under test;  
0.125% × 8.0 V = 10 mV  
PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into  
0 mA current load; other channel: Range E, forcing a step of 0 V  
to 5 V into 0 mA current load; report ꢁV of MEASOUT01 pin  
under test; 0.01% × 5.0 V = 0.5 mV  
Measure Current Channel-to-  
Channel Crosstalk  
0.01  
EXTERNAL SENSE (PMUS_CHx)  
Table 8.  
Test  
Parameter  
Min  
Typ  
Max  
+6.0  
+20  
Unit  
Level Conditions/Comments  
Voltage Range  
Input Leakage Current  
−2.0  
−20  
V
nA  
D
P
Tested at −2.0 V and +6.0 V  
Rev. A | Page 16 of 58  
 
ADATE302-02  
DUTGND INPUT  
Table 9.  
Test  
Parameter  
Min  
Typ  
Max  
+0.1  
100  
Unit  
V
μA  
Level Conditions/Comments  
Input Voltage Range, Referenced to GND  
Input Bias Current  
−0.1  
D
P
1
Tested at −100 mV and +100 mV  
SERIAL PERIPHERAL INTERFACE  
Table 10.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
V
V
μA  
MHz  
ns  
mV  
V
Level Conditions/Comments  
PF  
PF  
Serial Input Logic High  
Serial Input Logic Low  
Input Bias Current  
SCLK Clock Rate  
1.8  
0
−10  
VCC  
0.7  
+10  
+1  
50  
9
P
Tested at 0.0 V and 3.3 V  
PF  
CT  
CB  
PF  
PF  
D
SCLK Pulse Width  
SCLK Crosstalk on DUTx Pin  
Serial Output Logic High  
Serial Output Logic Low  
Update Time  
8
PE disabled, PMU FV enabled and forcing 0 V  
Sourcing 2 mA  
Sinking 2 mA  
Maximum delay time required for the part to enter  
a stable state after a serial bus command is loaded  
VCC − 0.4  
0
VCC  
0.8  
V
μs  
10  
HVOUT DRIVER  
Table 11.  
Test  
Parameter  
Min  
Typ  
Max  
VPLUS − 3.25  
Unit  
Level Conditions/Comments  
VHH BUFFER  
Voltage Range  
VHH = (VT + 1 V) × 2 + DUTGND  
5.9  
V
D
P
P
P
VPLUS = 16.75 V nominal; in this condition,  
HVOUT maximum = 13.5 V  
V
Output High  
13.5  
V
VHH mode enabled, RCVx pins active, VHH level = full  
scale, sourcing 15 mA  
VHH mode enabled, RCVx pins active, VHH level = zero  
scale, sinking 15 mA  
VHH mode enabled, RCVx pins active, VHVOUT error  
measured at calibration points of 7 V and 12 V  
Measured at calibration points  
VHH mode enabled, RCVx pins active, after two-point  
gain/offset calibration; range/number of DAC bits as  
measured at calibration points of 7 V and 12 V  
VHH mode enabled, RCVx pins active, after two-point gain/  
offset calibration; measured over VHH range of 5.9 V to 13.5 V  
Over 0.1 V range; measured at end points of VHH  
functional range  
VHH mode enabled, RCVx pins active, source: VHH = 10.0 V,  
Output Low  
5.9  
100 +500  
V
Accuracy Uncalibrated  
−500  
−30  
mV  
Offset Tempco  
Resolution  
1
1.21  
mV/°C  
mV  
CT  
PF  
1.5  
INL  
15  
1
+30  
mV  
mV  
Ω
P
DUTGND Voltage Accuracy  
Output Resistance  
CT  
P
1
10  
I
HVOUT = 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA  
and −15 mA; ꢁV/ꢁI  
DC Output Current Limit Source  
DC Output Current Limit Sink  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCVx pins active, VHH = 10.0 V, short  
HVOUT pin to 5.9 V, measure current  
VHH mode enabled, RCVx pins active, VHH = 6.5 V, short  
HVOUT pin to 14.1 V, measure current  
VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =  
VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low  
−100  
P
Rise Time (From VL or VH to  
VHH)  
175  
CB  
Rev. A | Page 17 of 58  
 
ADATE302-02  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
Fall Time (From VHH to VL or VH)  
23  
ns  
CB  
VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =  
VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low  
Preshoot, Overshoot, and  
Undershoot  
100  
mV  
CB  
VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =  
VH = 3.0 V; for DATAx high and DATAx low  
VL/VH BUFFER  
Voltage Range  
Accuracy Uncalibrated  
−0.1  
−500  
+6.0  
100 +500  
V
mV  
D
P
VHH mode enabled, RCVx pins inactive, error measured at  
calibration points of 0 V and 5 V  
Offset Tempco  
Resolution  
1
0.61  
mV/°C  
mV  
CT  
PF  
Measured at calibration points  
0.75  
+20  
VHH mode enabled, RCVx pins inactive, after two-point  
gain/offset calibration; range/number of DAC bits as  
measured at calibration points of 0 V and 5 V  
VHH mode enabled, RCVx pins inactive, after two-point  
gain/offset calibration; measured over range of −0.1 V to  
+6.0 V  
Over 0.1 V range; measured at end points of VH and VL,  
functional range  
VHH mode enabled, RCVx pins inactive, source: VH = 3.0 V,  
INL  
−20  
46  
4
mV  
P
DUTGND Voltage Accuracy  
Output Resistance  
2
mV  
Ω
CT  
P
48  
50  
I
HVOUT = 1 mA and 50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA  
and −50 mA; ꢁV/ꢁI  
DC Output Current Limit Source  
DC Output Current Limit Sink  
Rise Time (VL to VH)  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCVx pins inactive, VH = 6.0 V, short  
HVOUT pin to −0.1 V, DATAx high, measure current  
VHH mode enabled, RCVx pins inactive, VL = −0.1 V, short  
HVOUT pin to 6.0 V, DATAx low, measure current  
VHH mode enabled, RCVx pins inactive, VL = 0.0 V,  
VH = 3.0 V, toggle DATAx pins; 20% to 80%  
VHH mode enabled, RCVx pins inactive, VL = 0.0 V,  
VH = 3.0 V, toggle DATAx pins; 20% to 80%  
−100  
P
10.0  
11.3  
54  
CB  
CB  
CB  
Fall Time (VH to VL)  
ns  
Preshoot, Overshoot, and  
Undershoot  
mV  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATAx pins  
OVERVOLTAGE DETECTOR (OVD)  
Table 12.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC CHARACTERISTICS  
Programmable Voltage Range  
Accuracy Uncalibrated  
−3.0  
−200  
+7.0  
+200  
V
mV  
D
P
OVD offset errors measured at programmed levels of  
7.0 V and −3.0 V  
Hysteresis  
112  
mV  
CB  
LOGIC OUTPUT CHARACTERISTICS  
Off State Leakage  
10  
1000  
0.7  
nA  
V
P
Disable OVD alarm, apply 3.3 V to OVD_CHx pin,  
measure leakage current  
Activate alarm, force 100 μA into OVD_CHx, measure  
active alarm voltage  
For OVD high: DUTx = 0 V to 6 V swing, OVD_CHx high =  
3.0 V, OVD_CHx low = −3.0 V; for OVD_CHx low:  
DUTx = 0 V to 6 V swing, OVD_CHx high = 7.0 V,  
OVD_CHx low = 3.0 V  
Maximum On Voltage @100 μA  
Propagation Delay  
0.2  
1.8  
P
μs  
CB  
Rev. A | Page 18 of 58  
 
ADATE302-02  
16-BIT DAC MONITOR MUX  
Table 13.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions/Comments  
DC CHARACTERISTICS  
Programmable Voltage Range  
Output Resistance  
−2.5  
+7.5  
V
kΩ  
D
CT  
16  
PMUDAC = 0.0 V, FV, I = 0 μA, 200 μA; ꢁV/ꢁI  
Rev. A | Page 19 of 58  
 
ADATE302-02  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 14.  
Parameter  
Rating  
Supply Voltages  
Positive Supply Voltage (VDD to GND)  
Positive VCC Supply Voltage (VCC to GND)  
Negative Supply Voltage (VSS to GND)  
Supply Voltage Difference (VDD to VSS)  
Reference Ground (DUTGND to GND)  
AGND to DGND  
−0.5 V to +11.0 V  
−0.5 V to +4.0 V  
−6.25 V to +0.5 V  
−1.0 V to +16.5 V  
−0.5 V to +0.5 V  
−0.5 V to +0.5 V  
−0.5 V to +17.5 V  
THERMAL RESISTANCE  
Table 15. Thermal Resistance  
VPLUS Supply Voltage (VPLUS to GND)  
Input Voltages  
Package Type  
θJA  
θJC  
Unit  
Input Common-Mode Voltage  
Short-Circuit Voltage1  
High Speed Input Voltage2  
High Speed Differential Input Voltage3  
VREF  
VSS to VDD  
−3.0 V to +8.0 V  
0 to VCC  
0 to VCC  
−0.5 V to +5.5 V  
84-Ball CSP_BGA  
31.1  
0.51  
°C/W  
EXPLANATION OF TEST LEVELS  
D
Definition  
DUTx I/O Pin Current  
DCL Maximum Short-Circuit Current4  
Temperature  
Operating Temperature, Junction  
Storage Temperature Range  
S
Design verification simulation  
100% production tested  
140 mA  
P
125°C  
−65°C to +150°C  
PF  
CT  
CB  
Functionally checked during production test  
Characterized on tester  
1 RL = 0 Ω, VDUTx continuous short-circuit condition (VH, VL, VT, high-Z, VCOM,  
clamp modes).  
2 DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 Ω.  
3 DATAxP to DATAxN, RCVxP, RCVxN.  
Characterized on bench  
4 RL = 0 Ω, VDUTx = −3 V to +8 V; DCL current limit. Continuous short-circuit  
condition. ADATE302-02 must current limit and survive continuous short  
circuit.  
ESD CAUTION  
Rev. A | Page 20 of 58  
 
 
 
 
 
 
ADATE302-02  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
10  
9
8
7
6
5
4
3
2
1
VSSO_0  
(DRIVE)  
VDDO_0  
(DRIVE)  
VDDO_1  
(DRIVE)  
VSSO_1  
(DRIVE)  
HVOUT  
PMUS_CH0  
DUT0  
DUT1  
PMUS_CH1 TEMPSENSE  
A
B
C
D
E
F
VDD/VDD_  
TMPSNS  
VPLUS  
FFCAP_0B  
OVD_CH0  
FFCAP_0A  
AGND  
SCAP0  
AGND  
VDD  
VSS  
AGND  
VSS  
VDD  
VDD  
VDD  
VDD  
AGND  
VSS  
VSS  
SCAP1  
DATA0N  
DATA0P  
RCV0N  
RCV0P  
DATA1N  
DATA1P  
RCV1N  
RCV1P  
AGND  
VDD  
FFCAP_1B  
OVD_CH1  
FFCAP_1A  
AGND  
VSS  
VSS  
AGND  
AGND  
COMP_VTT1 COMP_QL1N COMP_QL1P  
COMP_QL0P COMP_QL0N COMP_VTT0  
G
H
J
VSS  
RST  
VCC  
VDD  
SDIN  
SCLK  
VDD  
DGND  
SDOUT  
VSS  
DAC16_MON  
CS  
AGND  
AGND  
AGND  
COMP_QH1N COMP_QH1P  
COMP_QH0P COMP_QH0N  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
VREF  
MEASOUT01/  
TEMPSENSE  
K
VREF_GND  
AGND  
DUTGND  
Figure 2. 84-Ball BGA Pin Configuration, Bottom Side (BGA Balls Are Visible)  
Table 16. Pin Function Descriptions  
BGA Designator  
Mnemonic  
TEMPSENSE  
PMUS_CH1  
VSSO_1 (Drive)  
DUT1  
VDDO_1 (Drive)  
VDDO_0 (Drive)  
DUT0  
VSSO_0 (Drive)  
PMUS_CH0  
HVOUT  
Description  
Temperature Sense Output  
PMU External Sense Path Channel 1  
Driver Output Supply −5.75 V Channel 1  
Device Under Test Channel 1  
Driver Output Supply +10.0 V Channel 1  
Driver Output Supply +10.0 V Channel 0  
Device Under Test Channel 0  
Driver Output Supply −5.75 V Channel 0  
PMU External Sense Path Channel 0  
High Voltage Driver Output  
Temperature Sense Supply +10.0 V  
PMU Stability Capacitor Connection Channel 1 (330 pF)  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
VDD/VDD_TMPSNS  
SCAP1  
Rev. A | Page 21 of 58  
 
ADATE302-02  
BGA Designator  
Mnemonic  
VSS  
Description  
Supply −5.75 V  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D8  
D9  
D10  
E1  
AGND  
VDD  
VDD  
AGND  
VSS  
SCAP0  
VPLUS  
FFCAP_1B  
AGND  
DATA1N  
VSS  
VDD  
VDD  
VSS  
DATA0N  
AGND  
FFCAP_0B  
OVD_CH1  
VDD  
DATA1P  
DATA0P  
VDD  
OVD_CH0  
FFCAP_1A  
VSS  
Analog Ground  
Supply +10.0 V  
Supply +10.0 V  
Analog Ground  
Supply −5.75 V  
PMU Stability Capacitor Connection Channel 0 (330 pF)  
Supply +16.75 V  
PMU Feedforward Capacitor Connection B Channel 1 (220 pF)  
Analog Ground  
Driver Data Input (Negative) Channel 1  
Supply −5.75 V  
Supply +10.0 V  
Supply +10.0 V  
Supply −5.75 V  
Driver Data Input (Negative) Channel 0  
Analog Ground  
PMU Feedforward Capacitor Connection B Channel 0 (220 pF)  
Overvoltage Detection Flag Output Channel 1  
Supply +10.0 V  
Driver Data Input (Positive) Channel 1  
Driver Data Input (Positive) Channel 0  
Supply +10.0 V  
Overvoltage Detection Flag Output Channel 0  
PMU Feedforward Capacitor Connection A Channel 1 (220 pF)  
Supply −5.75 V  
E2  
E3  
E8  
E9  
RCV1N  
RCV0N  
VSS  
Receive Data Input (Negative) Channel 1  
Receive Data Input (Negative) Channel 0  
Supply −5.75 V  
E10  
F1  
FFCAP_0A  
AGND  
PMU Feedforward Capacitor Connection A Channel 0 (220 pF)  
Analog Ground  
F2  
AGND  
Analog Ground  
F3  
F8  
F9  
RCV1P  
RCV0P  
AGND  
Receive Data Input (Positive) Channel 1  
Receive Data Input (Positive) Channel 0  
Analog Ground  
F10  
G1  
G2  
G3  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
AGND  
Analog Ground  
COMP_QL1P  
COMP_QL1N  
COMP_VTT1  
COMP_VTT0  
COMP_QL0N  
COMP_QL0P  
COMP_QH1P  
COMP_QH1N  
AGND  
VSS  
VDD  
VDD  
VSS  
Low-Side Comparator Output (Positive) Channel 1  
Low-Side Comparator Output (Negative) Channel 1  
Comparator Supply Termination Channel 1  
Comparator Supply Termination Channel 0  
Low-Side Comparator Output (Negative) Channel 0  
Low-Side Comparator Output (Positive) Channel 0  
High-Side Comparator Output (Positive) Channel 1  
High-Side Comparator Output (Negative) Channel 1  
Analog Ground  
Supply −5.75 V  
Supply +10.0 V  
Supply +10.0 V  
Supply −5.75 V  
AGND  
Analog Ground  
Rev. A | Page 22 of 58  
ADATE302-02  
BGA Designator  
Mnemonic  
COMP_QH0N  
COMP_QH0P  
AGND  
Description  
H9  
H10  
J1  
High-Side Comparator Output (Negative) Channel 0  
High-Side Comparator Output (Positive) Channel 0  
Analog Ground  
J2  
AGND  
Analog Ground  
J3  
AGND  
Analog Ground  
J4  
J5  
DAC16_MON  
DGND  
16-Bit DAC Monitor Mux Output  
Digital Ground  
J6  
J7  
SDIN  
RST  
Serial Peripheral Interface (SPI) Data In  
Serial Peripheral Interface (SPI) Reset  
Analog Ground  
J8  
AGND  
J9  
AGND  
Analog Ground  
J10  
K1  
AGND  
Analog Ground  
MEASOUT01/TEMPSENSE  
Muxed Output Shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1,  
Temperature Sense and Temperature Sense GND Reference  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
DUTGND  
AGND  
CS  
DUT Ground Reference  
Analog Ground  
Serial Peripheral Interface (SPI) Chip Select  
Serial Peripheral Interface (SPI) Data Out  
Serial Peripheral Interface (SPI) Clock  
Supply +3.3 V  
Analog Ground  
+5 V DAC Reference Voltage  
DAC Ground Reference  
SDOUT  
SCLK  
VCC  
AGND  
VREF  
VREF_GND  
Rev. A | Page 23 of 58  
ADATE302-02  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
NC  
NC  
1
NC  
NC  
PIN 1  
2
73 HVOUT  
TEMPSENSE  
3
72  
VPLUS  
4
VDD/VDD_TMPSNS  
SCAP1  
71  
SCAP0  
5
70  
FFCAP_0B  
6
FFCAP_1B  
VDD  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD  
7
OVD_CH0  
DATA0N  
8
OVD_CH1  
DATA1N  
9
DATA0P  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
DATA1P  
FFCAP_1A  
VSS  
FFCAP_0A  
VSS  
ADATE302-02  
TOP VIEW  
(Not to Scale)  
RCV0N  
RCV1N  
RCV0P  
RCV1P  
AGND  
AGND  
COMP_QL0P  
COMP_QL0N  
COMP_VTT0  
COMP_QH0P  
COMP_QH0N  
COMP_QL1P  
COMP_QL1N  
COMP_VTT1  
COMP_QH1P  
COMP_QH1N  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
NC  
NC  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD IS CONNEC TED TO V  
.
SS  
Figure 3. 100-Lead TQFP_EP Pin Configuration  
Table 17. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
NC  
NC  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
Temperature Sense Output.  
TEMPSENSE  
VDD/VDD_TMPSNS  
SCAP1  
FFCAP_1B  
VDD  
Temperature Sense Supply +10.0 V.  
PMU Stability Capacitor Connection Channel 1 (330 pF).  
PMU Feed Forward Capacitor Connection B Channel 1 (220 pF).  
Supply +10.0 V.  
8
9
10  
11  
12  
OVD_CH1  
DATA1N  
DATA1P  
FFCAP_1A  
VSS  
Overvoltage Detection Flag Output Channel 1.  
Driver Data Input (Negative) Channel 1.  
Driver Data Input (Positive) Channel 1.  
PMU Feedforward Capacitor Connection A Channel 1 (220 pF).  
Supply −5.75 V.  
Rev. A | Page 24 of 58  
ADATE302-02  
Pin No.  
13  
14  
Mnemonic  
RCV1N  
RCV1P  
Description  
Receive Data Input (Negative) Channel 1.  
Receive Data Input (Positive) Channel 1.  
Analog Ground.  
15  
AGND  
16  
17  
18  
19  
20  
21  
COMP_QL1P  
COMP_QL1N  
COMP_VTT1  
COMP_QH1P  
COMP_QH1N  
AGND  
Low-Side Comparator Output (Positive) Channel 1.  
Low-Side Comparator Output (Negative) Channel 1.  
Comparator Supply Channel 1.  
High-Side Comparator Output (Positive) Channel 1.  
High-Side Comparator Output (Negative) Channel 1.  
Analog Ground.  
22  
AGND  
Analog Ground.  
23  
AGND  
Analog Ground.  
24  
25  
26  
27  
NC  
NC  
NC  
NC  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
28  
MEASOUT01/TEMP SENSE  
Shared Muxed Output. Muxed output shared by PMU MEASOUT Channel 0, PMU  
MEASOUT Channel 1, and the temperature sense and temperature sense GND  
reference.  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
DUTGND  
AGND  
AGND  
CS  
Device Under Test Ground Reference.  
Analog Ground.  
Analog Ground.  
Serial Peripheral Interface (SPI®) Chip Select.  
16-Bit DAC Monitor Mux Output.  
Supply 5.75 V.  
Supply +10.0 V.  
Digital Ground.  
Serial Programmable Interface (SPI) Data Output.  
Serial Programmable Interface (SPI) Clock.  
Serial Programmable Interface (SPI) Data Input.  
Supply +10.0 V.  
Supply +3.3 V.  
Supply 5.75 V.  
Serial Peripheral Interface (SPI) Reset.  
Analog Ground.  
Analog Ground.  
Analog Ground.  
+5 V DAC Reference Voltage.  
DAC Ground Reference.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
Analog Ground.  
DAC16_MON  
VSS  
VDD  
DGND  
SDOUT  
SCLK  
SDIN  
VDD  
VCC  
VSS  
RST  
AGND  
AGND  
AGND  
VREF  
VREF_GND  
NC  
NC  
NC  
NC  
AGND  
AGND  
AGND  
Comp_QH0N  
Comp_QH0P  
Comp_VTT0  
Comp_QL0N  
Comp_QL0P  
Analog Ground.  
Analog Ground.  
High-Side Comparator Output (Negative) Channel 0.  
High-Side Comparator Output (Positive) Channel 0.  
Comparator Supply Channel 0.  
Low-Side Comparator Output (Negative) Channel 0.  
Low-Side Comparator Output (Positive) Channel 0.  
Rev. A | Page 25 of 58  
 
ADATE302-02  
Pin No.  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
EP  
Mnemonic  
AGND  
RCV0P  
RCV0N  
VSS  
FFCAP_0A  
DATA0P  
DATA0N  
OVD_CH0  
VDD  
FFCAP_0B  
SCAP0  
VPLUS  
HVOUT  
NC  
NC  
NC  
NC  
PMUS_CH0  
VSS  
VDD  
VSSO_0 (DRIVE)  
DUT0  
VDDO_0 (DRIVE)  
AGND  
AGND  
VSS  
VDD  
AGND  
VDD  
VSS  
AGND  
AGND  
VDDO_1 (DRIVE)  
DUT1  
VSSO_1 (DRIVE)  
VDD  
VSS  
PMUS_CH1  
NC  
NC  
Description  
Analog Ground.  
Receive Data Input (Positive) Channel 0.  
Receive Data Input (Negative) Channel 0.  
Supply 5.75 V.  
PMU Feedforward Capacitor Connection A Channel 0 (220 pF).  
Driver Data Input (Positive) Channel 0.  
Driver Data Input (Negative) Channel 0.  
Overvoltage Detection Flag Output Channel 0.  
Supply +10.0 V.  
PMU Feedforward Capacitor Connection B Channel 0 (220 pF).  
PMU Stability Capacitor Connection Channel 0 (330 pF).  
Supply +16.75 V.  
High Voltage Driver Output.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
PMU External Sense Path Channel 0.  
Supply 5.75 V.  
Supply +10.0 V.  
Driver Output Supply 5.75 V Channel 0.  
Device Under Test Channel 0.  
Driver Output Supply +10.0 V Channel 0.  
Analog Ground.  
Analog Ground.  
Supply 5.75 V.  
Supply +10.0 V.  
Analog Ground.  
Supply +10.0 V.  
Supply 5.75 V.  
Analog Ground.  
Analog Ground.  
Driver Output Supply +10.0 V Channel 1.  
Device Under Test Channel 1.  
Driver Output Supply 5.75 V Channel 1.  
Supply +10.0 V.  
Supply 5.75 V.  
PMU External Sense Path Channel 1.  
No Connect. No physical connection to die.  
No Connect. No physical connection to die.  
Exposed Pad. The exposed pad is connected to VSS.  
Rev. A | Page 26 of 58  
ADATE302-02  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.30  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.5V  
0.25  
0.20  
0.15  
0.2V  
0.10  
0.05  
0
–0.2  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
TIME (ns)  
TIME (ns)  
Figure 4. Driver Small Signal Response;  
VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Ω Termination  
Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;  
50 Ω Termination  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.2  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
12  
14  
16  
18  
TIME (ns)  
TIME (ns)  
Figure 5. Driver Large Signal Response;  
VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination  
Figure 8. 300 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;  
50 Ω Termination  
6
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4
3
2
1
0
–1  
0
2
4
6
8
10  
12  
14  
16  
18  
0
1
2
3
4
5
6
7
8
9
TIME (ns)  
TIME (ns)  
Figure 6. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0.0 V;  
500 Ω Termination  
Figure 9. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;  
50 Ω Termination  
Rev. A | Page 27 of 58  
 
ADATE302-02  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (ns)  
TIME (ns)  
Figure 13. Driver Active (VH/VL) to/from VTERM Transition;  
VH = 2.0 V; VT = 1.0 V; VL = 0.0 V  
Figure 10. 500 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;  
50 Ω Termination  
1.6  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (ns)  
TIME (ns)  
Figure 11. 600 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V; VL = 0.0 V;  
50 Ω Termination  
Figure 14. Driver Active (VH/VL) to/from VTERM Transition;  
VH = 3.0 V; VT = 1.5 V; VL = 0.0 V  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
NEGATIVE PULSE  
–10  
–20  
–30  
–40  
–50  
POSITIVE PULSE  
0
2
4
6
8
10  
12  
14  
16  
18  
1
10  
TIME (ns)  
PULSE WIDTH (ns)  
Figure 15. Driver Minimum Pulse Width;  
VH = 0.2 V; VL = 0.0 V  
Figure 12. Driver Active (VH/VL) to/from VTERM Transition;  
VH = 1.0 V; VT = 0.5 V; VL = 0.0 V  
Rev. A | Page 28 of 58  
ADATE302-02  
10  
0
10  
0
NEGATIVE PULSE  
NEGATIVE PULSE  
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
POSITIVE PULSE  
POSITIVE PULSE  
1
1
1
10  
1
10  
PULSE WIDTH (ns)  
PULSE WIDTH (ns)  
Figure 16. Driver Minimum Pulse Width;  
VH = 0.5 V; VL = 0.0 V  
Figure 19. Driver Minimum Pulse Width;  
VH = 3.0 V; VL = 0.0 V  
10  
0
1.5  
1.0  
0.5  
0
NEGATIVE PULSE  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–10  
–20  
–30  
POSITIVE PULSE  
10  
–2  
–1  
0
1
2
3
4
5
6
PULSE WIDTH (ns)  
DRIVER OUTPUT VOLTAGE (V)  
Figure 17. Driver Minimum Pulse Width;  
VH = 1.0 V; VL = 0.0 V  
Figure 20. Driver VH Linearity Error  
10  
0
2.0  
1.5  
1.0  
0.5  
NEGATIVE PULSE  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–10  
–20  
–30  
POSITIVE PULSE  
10  
–2  
–1  
0
1
2
3
4
5
6
PULSE WIDTH (ns)  
DRIVER OUTPUT VOLTAGE (V)  
Figure 18. Driver Minimum Pulse Width;  
VH = 2.0 V; VL = 0.0 V  
Figure 21. Driver VL Linearity Error  
Rev. A | Page 29 of 58  
ADATE302-02  
2.0  
1.5  
0.2  
0
1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–2  
–1  
0
1
2
3
4
5
5
5
6
6
6
–2  
–1  
0
1
2
3
4
5
6
60  
6
DRIVER OUTPUT VOLTAGE (V)  
PROGRAMMED VH DAC LEVEL (V)  
Figure 22. Driver VT Linearity Error  
Figure 25. Driver Interaction Error;  
VL = −2.0 V; VH Swept from −1.9 V to +6.0 V  
1.4  
53  
52  
51  
50  
49  
48  
47  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–2  
–1  
0
1
2
3
4
–60  
–40  
–20  
0
20  
40  
PROGRAMMED VL DAC LEVEL (V)  
DRIVER OUTPUT CURRENT (mA)  
Figure 23. Driver Interaction Error;  
Figure 26. Driver Output Resistance vs. Output Current  
VH = 6.0 V; VL Swept from −2.0 V to +5.9 V  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
120  
100  
80  
60  
40  
20  
0
–0.1  
–2  
–1  
0
1
2
3
4
–2  
–1  
0
1
2
3
4
5
PROGRAMMED VH DAC LEVEL (V)  
V
(V)  
DUTx  
Figure 24. Driver Interaction Error;  
VT = 1.5 V; VH Swept from −1.9 V to +6.0 V  
Figure 27. Driver Output Current Limit;  
Driver Programmed to −2.0 V; VDUTx Swept from −2.0 V to +6.0 V  
Rev. A | Page 30 of 58  
ADATE302-02  
6
4
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2
0
–2  
–4  
–6  
–8  
–10  
–12  
6
–1  
5
7
8
9
10  
11  
12  
13  
14  
–2  
–1  
0
1
2
3
4
5
6
VHH PROGRAMMED VOLTAGE (V)  
V
(V)  
DUTx  
Figure 31. HVOUT VHH Linearity Error  
Figure 28. Driver Output Current Limit;  
Driver Programmed to 6.0 V; VDUTx Swept from −2.0 V to +6.0 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
16  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
(V)  
HVOUT  
TIME (µs)  
Figure 32. HVOUT VH Current Limit;  
VH = −0.1 V; VHVOUT Swept from −0.1 V to +6.0 V  
Figure 29. HVOUT VHH Response;  
VHH = 13.5 V  
100  
80  
3
2
60  
1
40  
0
20  
0
–1  
–2  
–3  
–4  
–20  
–40  
–60  
–80  
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
0
1
2
3
4
5
6
V
VL PROGRAMMED VOLTAGE (V)  
HVOUT  
Figure 33. HVOUT VHH Current Limit;  
VHH = 10.0 V; VHVOUT Swept from 5.9 V to 14.1 V  
Figure 30. HVOUT VL Linearity Error  
Rev. A | Page 31 of 58  
ADATE302-02  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
30  
25  
20  
15  
10  
5
INPUT VOLTAGE SWING = 1V  
COMPARATOR THRESHOLD = 0.5V  
INPUT RISING EDGE  
INPUT EDGE  
SHMOO  
0.5  
0.4  
0.3  
0.2  
0.1  
0
INPUT FALLING EDGE  
–0.1  
0
0
1.2  
2.4  
TIME (ns)  
3.6  
4.8  
6.0  
0.4  
0.6  
0.8  
1.0  
INPUT SLEW RATE [10%/90%] (ns)  
Figure 34. Comparator Shmoo;  
1.0 V Swing; 200 ps (10%/90%)  
Figure 37.Comparator Slew Rate Dispersion  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
COMP_QH0P  
INPUT EDGE  
SHMOO  
COMP_QH0N  
–0.1  
0
1.2  
2.4  
TIME (ns)  
3.6  
4.8  
6.0  
TIME (ns)  
Figure 35. Comparator Shmoo;  
1.0 V Swing; 200 ps (10%/90%)  
Figure 38. Comparator Output Waveform; COMP_QH0P, COMP_QH0N  
0.4  
0.2  
10  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
POSITIVE PULSE  
–10  
–20  
–30  
NEGATIVE PULSE  
–2  
–1  
0
1
2
3
4
5
6
1
10  
PULSE WIDTH (ns)  
PROGRAM THRESHOLD VOLTAGE (V)  
Figure 39. Comparator Threshold Linearity  
Figure 36. Comparator Minimum Pulse Width Input;  
1.0 V Swing; 200 ps (10%/90%)  
Rev. A | Page 32 of 58  
ADATE302-02  
0.2  
0
8
6
4
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
2
0
–2  
–4  
–6  
–2  
–1  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
INPUT COMMON-MODE VOLTAGE (V)  
ACTIVE LOAD CURRENT (mA)  
Figure 40. Differential Comparator CMRR  
Figure 43. Active Load Current Linearity  
3
0
0.8  
0.6  
DRIVER ACTIVE LOW (VL)  
TO/FROM FULL LOAD CURRENT  
0.4  
0.2  
–3  
0
–6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–9  
–12  
–15  
FULL LOAD CURRENTTO/FROM  
DRIVER ACTIVE LOW (VL)  
0
10  
20  
30  
40  
50  
–2  
–1  
0
1
2
3
4
5
6
TIME (ns)  
VCOM VOLTAGE (V)  
Figure 41. Active Load Response  
Figure 44. Active Load VCOM Linearity  
15  
10  
5
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0
–5  
–10  
–15  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 42. Active Load Commutation Response;  
VCOM = 2.0 V; IOH = IOL = 12 mA  
Figure 45. DUTx Pin Leakage Current in Low Leakage Mode  
Rev. A | Page 33 of 58  
ADATE302-02  
6
30  
20  
4
10  
0
2
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–2  
–4  
–6  
–2  
–1  
0
1
2
3
4
5
6
–30  
–20  
–10  
0
10  
20  
30  
V
(V)  
PMU OUTPUT CURRENT (mA)  
DUTx  
Figure 49. PMU Force Current Range A Linearity  
Figure 46. DUTx Pin Leakage Current in High-Z Mode  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0
0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–0.1  
–0.2  
–0.3  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–0.20 –0.15 –0.10 –0.05  
0
0.05  
0.10  
0.15  
0.20  
PMU OUTPUT CURRENT (mA)  
DUTGND VOLTAGE (mV)  
Figure 47. DUTGND Voltage Effects  
Figure 50. PMU Force Current Range B Linearity  
0.04  
0.03  
0.02  
0.01  
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.20 –0.15 –0.10 –0.05  
0
0.05  
0.10  
0.15  
0.20  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
PMU OUTPUT CURRENT (mA)  
PMU OUTPUT VOLTAGE (V)  
Figure 51. PMU Force Current Range C Linearity  
Figure 48. PMU Force Voltage Linearity  
Rev. A | Page 34 of 58  
ADATE302-02  
0.004  
0.003  
0.002  
0.001  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.020 –0.015 –0.010 –0.005  
0
0.005 0.010 0.015 0.020  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
PMU OUTPUT CURRENT (mA)  
I
(mA)  
DUTx  
Figure 52. PMU Force Current Range D Linearity  
Figure 55. PMU Force Voltage Range B Output Voltage Error at −2.0 V vs.  
Output Current  
0.0004  
0.0002  
0
4
3
2
1
–0.0002  
–0.0004  
–0.0006  
–0.0008  
0
–1  
–2  
–3  
–4  
–0.0020 –0.0015 –0.0010 –0.0005  
0
0.0005 0.0010 0.0015 0.0020  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
PMU OUTPUT CURRENT (mA)  
I
(mA)  
DUTx  
Figure 53. PMU Force Current Range E Linearity  
Figure 56. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs.  
Output Current  
0.6  
0.4  
4
3
2
0.2  
1
0
0
–1  
–2  
–3  
–4  
–0.2  
–0.4  
–0.6  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
I
(mA)  
I
(mA)  
DUTx  
DUTx  
Figure 54. PMU Force Voltage Range B Output Voltage Error at 6.0 V vs.  
Output Current  
Figure 57. PMU Force Voltage Range A Output Voltage Error at −2.0 V vs.  
Output Current  
Rev. A | Page 35 of 58  
ADATE302-02  
2
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–2  
–4  
–6  
–8  
–10  
–0.2  
–0.4  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 58. PMU Force Current Range A Output Current Error at −25 mA vs.  
Output Voltage  
Figure 61. PMU Force Current Range B Output Current Error at 2 mA vs.  
Output Voltage; Output Voltage Is Pulled Externally  
10  
0
0.004  
0.003  
0.002  
0.001  
0
–10  
–20  
–30  
–40  
–50  
–60  
–0.001  
–0.002  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 59. PMU Force Current Range A Output Current Error at 25 mA vs.  
Output Voltage; Output Voltage Is Pulled Externally  
Figure 62. PMU Force Current Range E Output Current Error at −2 μA vs.  
Output Voltage; Output Voltage Is Pulled Externally  
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.0005  
–0.0010  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 63. PMU Force Current Range E Output Current Error at 2 μA vs.  
Output Voltage; Output Voltage Is Pulled Externally  
Figure 60. PMU Force Current Range B Output Current Error at −2 mA vs.  
Output Voltage; Output Voltage Is Pulled Externally  
Rev. A | Page 36 of 58  
ADATE302-02  
40  
30  
0.20  
0.15  
0.10  
0.05  
0
20  
10  
0
–10  
–20  
–30  
–40  
–0.05  
–0.10  
–2  
–1  
0
1
2
3
4
5
6
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
V
(V)  
I
(mA)  
DUTx  
DUTx  
Figure 64. PMU Range A Internal Current Limit, Programmed to Force 2.5 V;  
DUTx Swept from −2.0 V to +6.0 V  
Figure 67. PMU Range B Measure Current Linearity  
V
0.003  
0.002  
0.001  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.001  
–0.002  
–0.003  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 65. PMU Range E Internal Current Limit, Programmed to Force 2.5 V;  
DUTx Swept from −2.0 V to +6.0 V  
Figure 68. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI;  
Error of MI vs. External 1 mA  
V
0.05  
0.04  
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
1ns/DIV  
–2  
–1  
0
1
2
3
4
5
6
V
(V)  
DUTx  
Figure 66. PMU Range B Measure Voltage Linearity  
Figure 69. Eye Diagram, 200 Mbps, PRBS31;  
VH = 1.0 V; VL = 0.0 V  
Rev. A | Page 37 of 58  
ADATE302-02  
500ps/DIV  
200ps/DIV  
Figure 70. Eye Diagram, 400 Mbps, PRBS31;  
VH = 1.0 V; VL = 0.0 V  
Figure 73. Eye Diagram, 800 Mbps, PRBS31;  
VH = 2.0 V; VL= 0.0 V  
200ps/DIV  
500ps/DIV  
Figure 71. Eye Diagram, 400 Mbps, PRBS31;  
VH = 2.0 V; VL = 0.0 V  
Figure 74. Eye Diagram, 1000 Mbps, PRBS31;  
VH = 1.0 V; VL = 0.0 V  
200ps/DIV  
200ps/DIV  
Figure 72. Eye Diagram, 800 Mbps, PRBS31;  
VH = 1.0 V; VL = 0.0 V  
Figure 75. Eye Diagram, 1000 Mbps, PRBS31;  
VH = 2.0 V; VL = 0.0 V  
Rev. A | Page 38 of 58  
ADATE302-02  
SERIAL PERIPHERAL INTERFACE DETAILS  
tCH  
SCLK  
tCL  
tCSSA  
tCSSD  
tCSHA  
tCSHD  
CS  
tCSW  
tDH  
tDS  
DATA[15]  
DATA[14]  
ADDR[1]  
ADDR[0]  
CH[1]  
R/W  
LAST  
SDIN  
DO_15  
DO_14  
DO_13  
DO_12  
DO_2  
DO_1  
DO_0  
LAST  
SDOUT  
LAST  
LAST  
LAST  
LAST  
LAST  
t
DO  
Figure 76. SPI Timing Diagram  
Table 18. Serial Peripheral Interface Timing Requirements  
Symbol  
tCH  
tCL  
tCSHA  
tCSSA  
tCSHD  
tCSSD  
tDH  
Parameter  
SCLK minimum high  
SCLK minimum low  
Min  
9.0  
9.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
Max  
Unit  
ns  
ns  
ns  
assert hold  
CS  
CS  
CS  
CS  
assert setup  
deassert hold  
deassert setup  
ns  
ns  
ns  
SDIN hold  
SDIN setup  
ns  
ns  
tDS  
tDO  
tCSW  
SDOUT Data Out  
15.0  
ns  
minimum between assertions1  
2
SCLK cycles  
SCLK cycles  
SCLK cycles  
CS  
CS  
minimum directly after a read request  
3
tCSTP  
Minimum delay after is deasserted before SCLK can be  
CS  
16  
stopped (not shown in Figure 76); this allows any internal  
operations to complete  
1 Extra cycle is needed after read request to prime read data into SPI shift register.  
Rev. A | Page 39 of 58  
 
 
 
ADATE302-02  
DEFINITION OF SPI WORD  
The SPI can take variable length words, depending on the operation. At most, the word is 24 bits longs: 16 bits of data, two channel  
selects, one R/W selector, and a 5-bit address.  
Depending on the operation, the data can be smaller (or nonexistent in the case of a read operation).  
Example 1  
Write 16 bits of data to a register or DAC; unused MSBs are ignored. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0  
are applied to the 14-bit DAC.  
DATA[15:0]  
DATA[13:0]  
DATA[1:0]  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 77.  
Example 2  
Write 14 bits of data to the DAC.  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 78.  
Example 3a  
Write two bits of data to the 2-bit register.  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 79.  
Example 3b  
Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored, while Bit 1 through Bit 0 are applied to the register.  
DATA[15:0]  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 80.  
Example 4  
Read request and follow with a 2nd instruction (could be NOP) to clock out the data.  
CH[1:0]  
R/W = 0  
ADDR[4:0]  
ADDR[4:0]  
DATA[15:0]  
CH[1:0]  
R/W  
Figure 81.  
Table 19. Channel Selection  
Channel 1 Channel 0 Channel Selected  
Table 20. R/W Definition  
R/W  
Description  
0
0
NOP (no channel selected, no register  
changes)  
0
Current register specified by address is shifted out  
of SDOUT on next shift operation  
0
1
1
1
0
1
Channel 0 selected  
Channel 1 selected  
Channel 0 and Channel 1 selected  
1
Current data is written to register specified by  
address and channel select  
Rev. A | Page 40 of 58  
 
ADATE302-02  
WRITE OPERATION  
CS  
INPUT  
SCLK  
INPUT  
DATA[15] DATA[14] DATA[13]  
DATA[2] DATA[1] DATA[0] CH[1]  
CH[0]  
17  
R/W  
18  
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
X
SDIN  
INPUT  
0
1
2
13  
14  
15  
16  
19  
20  
21  
22  
23  
24  
25  
SDOUT  
OUTPUT  
X
R/W = 1  
Figure 82. 16-Bit SPI Write  
CS  
INPUT  
SCLK  
INPUT  
DATA[1] DATA[0] CH[1]  
CH[0]  
3
R/W  
4
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
X
SDIN  
INPUT  
0
1
2
5
6
7
8
9
10  
11  
SDOUT  
OUTPUT  
X
R/W = 1  
Figure 83. 2-Bit SPI Write  
Rev. A | Page 41 of 58  
 
ADATE302-02  
previous specified data. The NOP address can be used for this  
read if there is no need to write/read another register. It is  
strongly recommended that the NOP address be used for all  
reads for clarity of operations.  
READ OPERATION  
The read operation is a two-stage operation. First, a word is  
shifted in, specifying which register to read.  
three clock cycles, and then a second word is shifted in to get  
the readback data. This second word can be either another  
operation or an NOP address. If another operation is shifted in,  
it needs to shift in at least eight bits of data to read back the  
CS  
is deasserted for  
Any register read that is less than 16 bits has zeros filled in the  
top bits to make it a 16-bit word.  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
INPUT  
READ INSTRUCTION  
X
NOP  
X
SDOUT  
OUTPUT  
X
READ DATA  
X
Figure 84. SPI Read Overview  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
INPUT  
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
DATA[15:0], VALUE IS A DON’T CARE  
13 14  
CH[1]  
16  
CH[0]  
17  
R/W  
18  
X
0
1
2
15  
19  
20  
21  
22  
23  
24  
25  
SDOUT  
OUTPUT  
X
Figure 85. SPI Read—Details of Read Request  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
DATA[15:0], VALUE IS A DON’T CARE  
13 14  
CH[1]  
16  
CH[0]  
17  
R/W = 1  
18  
ADDR[4:0] = 0x00 (NOP)  
X
INPUT  
0
1
2
15  
19  
20  
21  
X
22  
23  
24  
25  
SDOUT  
OUTPUT  
RDATA[15] RDATA[14]  
RDATA[2] RDATA[1] RDATA[0]  
RDATA IS THE REGISTER VALUE BEING READ.  
Figure 86. SPI Read—Details of Read Out  
Rev. A | Page 42 of 58  
 
ADATE302-02  
RST  
by utilizing the  
pin. To initiate the reset operation, deassert  
RESET OPERATION  
The ADATE302-02 contains an asynchronous reset feature. The  
ADATE302-02 can be reset to the default values shown in Table 21  
RST  
CS  
pin  
the  
pin for a minimum of 100 ns and deassert the  
for a minimum of two SCLK cycles.  
100ns  
MINIMUM  
RST  
CS  
SCLK  
MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION.  
Figure 87. Reset Operation  
Rev. A | Page 43 of 58  
 
ADATE302-02  
REGISTER MAP  
The ADDR[4:0] bits determine the destination register of the data being written to the ADATE302-02.  
Table 21. Register Selection  
Data[15:0]  
N/A  
CH[1:0]  
N/A  
R/W  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
ADDR[4:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
Register Selected  
NOP  
VH DAC level  
VL DAC level  
VT/VCOM DAC level  
VOL DAC level  
VOH DAC level  
VCH DAC level  
VCL DAC level  
V(IOH ) DAC level  
V(IOL ) DAC level  
OVD high level  
OVD low level  
Reset State  
N/A  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[13:0]  
Data[15:0]  
Data[2:0]  
Data[2:0]  
Data[9:0]  
Data[2:0]  
Data[0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1]  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
16384d  
000b  
000b  
0d  
000b  
0b  
00b  
01b  
N/A  
N/A  
0x08  
0x09  
0x0A  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
CH[0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
N/A  
PMUDAC level  
PE/PMU enable  
Channel state  
PMU state  
PMU measure enable  
Differential comparator enable  
16-bit DAC monitor  
OVD_CHx alarm mask  
OVD_CHx alarm state  
Reserved  
Data[1:0]  
Data[1:0]  
Data[2:0]  
N/A  
0x13  
0x14 to 0x1F  
N/A  
Rev. A | Page 44 of 58  
 
 
ADATE302-02  
DETAILS OF REGISTERS  
Table 22. PE/PMU Enable (ADDR[4:0] = 0x0C)  
Bit  
Name  
Description  
Data[2]  
PMU enable  
0 = disable PMU force output and clamps, place PMU in MV mode  
1 = enable PMU force output  
When set to 0, the PMU State bits are ignored, except for PMU Sense Path (Data[7]).  
Data[1]  
Data[0]  
Force VT  
0 = normal driver operation  
1 = force driver to VT  
See Table 30 for complete functionality of this bit.  
0 = enable driver functions  
PE disable  
1 = disable driver (low leakage)  
See Table 30 for complete functionality of this bit.  
Table 23. Channel State (ADDR[4:0] = 0x0D)  
Bit  
Name  
Description  
Data[2]  
HVOUT mode select  
0 = HVOUT driver in low impedance  
1 = enable HVOUT driver  
This bit affects Channel 0 only. Ensure that Channel 0 bit in SPI write is active.  
Channel 1 bit in SPI write is don’t care.  
Data[1]  
Data[0]  
Load enable  
0 = disable load  
1 = enable load  
See Table 30 for complete functionality of this bit.  
0 = enable driver high-Z function  
Driver high-Z/VT  
1 = enable driver VTERM function  
See Table 30 for complete functionality of this bit.  
Table 24. PMU State (ADDR[4:0] = 0x0E)1, 2  
Bit  
Name  
Description  
Data[9:8]  
PMU input selection 00 = VDUTGND (calibrated for 0.0 V voltage reference)  
01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference)  
1X = PMUDAC  
Data[7]  
PMU sense path  
0 = internal sense  
1 = external sense  
Data[6]  
Data[5]  
Reserved  
PMU clamp enable  
0 = disable clamps  
1 = enable clamps  
Data[4]  
Data[3]  
Data[2:0]  
PMU measure V/I  
PMU force V/I  
PMU range  
0 = measure voltage mode  
1 = measure current mode  
0 = force voltage mode  
1 = force current mode  
0XX = Range E (2 μA)  
100 = Range D (20 μA)  
101 = Range C (200 μA)  
110 = Range B (2 mA)  
111 = Range A (25 mA)  
1 Note that when the ADDR[4:0] = 0x0C PMU enable bit (Data[2]) = 0, the PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage  
mode. Data[9:8] and Data[6:0] of the PMU state register are ignored, and only Data[7], the PMU sense path bit, is valid.  
2 X = don’t care.  
Rev. A | Page 45 of 58  
 
 
ADATE302-02  
Table 25. PMU Measure Enable (ADDR[4:0] = 0x0F)1  
Bit  
Name  
Description  
Data[2:1]  
MEASOUT01 select  
00 = PMU MEASOUT Channel 0  
01 = PMU MEASOUT Channel 1  
10 = Temp sensor ground reference  
11 = Temp sensor  
Data[0]  
MEASOUT01 output enable  
0 = MEASOUT01 is tristated  
1 = MEASOUT01 is enabled  
1 This register is written to or read from if either of the CH[1:0] bits is 1.  
Table 26. Differential Comparator Enable (ADDR[4:0] = 0x10)1  
Bit  
Name  
Description  
Data[0]  
Differential comparator enable  
0 = differential comparator is disabled, Channel 0 normal window comparator (NWC)  
outputs are on Channel 0  
1 = differential comparator is enabled, the differential comparator outputs are on Channel 0  
1 This register is written to or read from if either of the CH[1:0] bits is 1.  
Table 27. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11)1  
Bit  
Name  
Description  
Data[1]  
16-bit DAC mux enable  
0 = 16-bit DAC mux is tristated  
1 = 16-bit DAC mux is enabled  
Data[0]  
16-bit DAC mux select  
0 = 16-bit DAC Channel 0  
1 = 16-bit DAC Channel 1  
1 This register is written to or read from if either of the CH[1:0] bits is 1.  
Table 28. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12)  
Bit  
Name  
Description  
Data[1]  
PMU mask  
0 = disable PMU alarm flag  
1 = enable PMU alarm flag  
Data[0]  
OVD mask  
0 = disable OVD alarm flag  
1 = enable OVD alarm flag  
Table 29. OVD_CHx Alarm State (ADDR[4:0] = 0x13)1  
Bit  
Name  
Description  
Data[2]  
PMU clamp flag  
0 = PMU not clamped  
1 = PMU clamped  
Data[1]  
Data[0]  
OVD high flag  
OVD low flag  
0 = DUT voltage < OVD high voltage  
1 = DUT voltage > OVD high voltage  
0 = DUT voltage > OVD low voltage  
1 = DUT voltage < OVD low voltage  
1 This register is a read-only register.  
Rev. A | Page 46 of 58  
 
 
 
 
ADATE302-02  
USER INFORMATION  
Table 30. Driver and Load Truth Table1  
Registers  
Load Enable  
Data[1]  
Signals  
PE Disable  
Data[0]  
Force VT  
Data[1]  
Driver High-Z/VT  
Data[0]  
ADDR[4:0] = 0x0C ADDR[4:0] = 0x0C ADDR[4:0] = 0x0D ADDR[4:0] = 0x0D DATAx RCVx Driver State  
Load State  
1
X
X
X
X
X
High-Z without Power-down  
clamps  
0
0
0
1
0
0
X
0
0
X
0
0
X
0
0
X
0
1
VT  
VL  
Power-down  
Power-down  
Power-down  
High-Z with  
clamps  
0
0
0
0
0
0
0
0
1
1
0
1
VH  
Power-down  
Power-down  
High-Z with  
clamps  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
VL  
VT  
VH  
VT  
VL  
Power-down  
Power-down  
Power-down  
Power-down  
Active off  
High-Z with  
clamps  
Active on  
0
0
0
0
1
1
0
0
1
1
0
1
VH  
Active off  
Active on  
High-Z with  
clamps  
0
0
0
0
1
1
1
1
0
0
0
1
VL  
Active on  
Active on  
High-Z with  
clamps  
0
0
0
0
1
1
1
1
1
1
0
1
VH  
Active on  
Active on  
High-Z with  
clamps  
1 X = don’t care.  
Table 31. HVOUT Truth Table1  
HVOUT Mode Select  
Data[2]  
ADDR[4:0] = 0x0D  
Channel 0  
RCV  
Channel 0  
Data  
HVOUT Driver Output  
1
1
1
0
1
0
0
X
X
0
1
X
VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC)  
VL (Channel 0 VL DAC)  
VH (Channel 0 VH DAC)  
Disabled (HVOUT pin set to 0 V low impedance)  
1 X = don’t care.  
Table 32. Comparator Truth Table  
Differential  
Comparator Enable  
Data[0]  
ADDR[4:0] = 0x10  
COMP_QH0  
COMP_QL0  
COMP_QH1  
COMP_QL1  
0
Normal window mode  
Logic high: VOH0 < VDUT0  
Logic low: VOH0 > VDUT0  
Normal window mode  
Logic high: VOL0 < VDUT0  
Logic low: VOL0 > VDUT0  
Normal window mode  
Logic high: VOH1 < VDUT1 Logic high: VOL1 < VDUT1  
Logic low: VOH1 > VDUT1 Logic low: VOL1 > VDUT1  
Normal window mode  
1
Differential comparator mode Differential comparator mode Normal window mode  
Normal window mode  
Logic high: VOH0 < VDUT0 − VDUT1 Logic high: VOL0 < VDUT0 − VDUT1 Logic high: VOH1 < VDUT1 Logic high: VOL1 < VDUT1  
Logic low: VOH0 > VDUT0 − VDUT1  
Logic low: VOL0 > VDUT0 − VDUT1  
Logic low: VOH1 > VDUT1 Logic low: VOL1 > VDUT1  
Rev. A | Page 47 of 58  
 
 
 
 
ADATE302-02  
There is one 16-bit DAC per channel. This DAC provides the  
levels for the PMU. The output level is:  
DETAILS OF DACs vs. LEVELS  
There are ten 14-bit DACs per channel. These DACs provide  
levels for the driver, comparator, load currents, VHH buffer, OVD,  
and clamp levels. There are three versions of output levels:  
−2.5 V to +7.5 V; tracks DUTGND. Controls PMU levels.  
−2.5 V to +7.5 V; tracks DUTGND. Controls VH, VL,  
VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels.  
−3.0 V to +7.0 V; tracks DUTGND. Controls OVD levels.  
−2.5 V to +7.5 V; does not track DUTGND. Controls IOH  
and IOL levels.  
Table 33. Level Transfer Functions  
Programmable Range1  
DAC Transfer Function  
VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND) + VDUTGND  
(All 0s to All 1s)  
−2.5 V to +7.5 V  
Levels  
VH, VL, VT/VCOM,  
Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))]  
VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF − VREF_GND) + 2.0 + VDUTGND  
Code = [VOUT − VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF − VREF_GND))]  
VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.6 × (VREF − VREF_GND) + VDUTGND  
Code = [VOUT − VDUTGND + 0.6 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))]  
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND)] × (0.012/5.0)  
Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))]  
VOUT = 2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) + VDUTGND  
Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]  
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.050/5.0)  
Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]  
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.004/5.0)  
Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]  
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.0004/5.0)  
Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]  
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.00004/5.0)  
Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]  
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.000004/5.0)  
Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]  
VOL, VOH, VCH, VCL  
−3.0 V to +17.0 V  
−3.0 V to +7.0 V  
−6 mA to +18 mA  
−2.5 V to +7.5 V  
−50 mA to +50 mA  
−4 mA to +4 mA  
−400 μA to +400 μA  
−40 μA to +40 μA  
−4 μA to +4 μA  
VHH  
OVD  
IOH, IOL  
PMUDAC  
PMUDAC  
(PMU FI Range A)  
PMUDAC  
(PMU FI Range B)  
PMUDAC  
(PMU FI Range C)  
PMUDAC  
(PMU FI Range D)  
PMUDAC  
(PMU FI Range E)  
1 Programmable range includes margin outside of specified part performance, allowing for offset/gain calibration.  
Table 34. Load Transfer Functions  
Load Level  
IOL  
IOH  
Transfer Function1  
V(IOL)/5 V × 12 mA  
V(IOH)/5 V × 12 mA  
1 V(IOH), V(IOL) DAC levels are not referenced to DUTGND.  
Table 35. PMU Transfer Functions  
PMU Mode  
Transfer Function  
Force Voltage  
Measure Voltage  
Force Current  
Measure Current  
VOUT = PMUDAC  
VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense)  
IOUT = [PMUDAC − (VREF/2)]/(R1 × 5)  
VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1)  
1 R = 20 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E.  
Rev. A | Page 48 of 58  
 
 
 
 
ADATE302-02  
Table 36. PMU User Required Capacitors  
Capacitor  
Location  
220 pF  
220 pF  
330 pF  
Across Pin C10 (FFCAP_0B) and Pin E10 (FFCAP_0A)  
Across Pin C1 (FFCAP _1B) and Pin E1 (FFCAP_1A)  
Between GND and Pin B9 (SCAP0)  
330 pF  
Between GND and Pin B2 (SCAP1)  
Table 37. Temperature Sensor  
Temperature  
Output  
0 K  
0 V  
300 K  
x K  
3 V  
(x K) × 10 mV/K  
Table 38. Default Test Conditions  
Name  
Default Test Condition  
VH DAC Level  
2.0 V  
VL DAC Level  
0.0 V  
VT/VCOM DAC Level  
VOL DAC Level  
1.0 V  
−2.0 V  
VOH DAC Level  
6.0 V  
VCH DAC Level  
7.5 V  
VCL DAC Level  
−2.5 V  
IOH DAC Level  
0.0 A  
IOL DAC Level  
0.0 A  
OVD Low DAC Level  
OVD High DAC Level  
PMUDAC DAC Level  
PE/PMU Enable  
Channel State  
PMU State  
PMU Measure Enable  
Differential Comparator Enable  
16-Bit DAC Monitor  
OVD_CHx Alarm Mask  
Data Input  
−2.5 V  
6.5 V  
0.0 V  
0x0000: PMU disabled, not force VT, PE enabled  
0x0000: HVOUT mode disabled, load disabled, VTERM inactive  
0x0000: input of DUTGND, internal sense, clamps disabled, FVMV, Range E  
0x0000: MEASOUT01 pin tristated  
0x0000: normal window comparator mode  
0x0000: DAC16_MON tristated  
0x0000: disable alarm functions  
Logic low  
Receive Input  
Logic low  
DUTx Pin  
Unterminated  
Comparator Output  
Unterminated  
Rev. A | Page 49 of 58  
 
 
ADATE302-02  
RECOMMENDED PMU MODE SWITCHING SEQUENCES  
To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the  
following transitions:  
PMU disable to PMU enable  
PMU force voltage mode to PMU force current mode  
PMU force current mode to PMU force voltage mode.  
PMU Disable to PMU Enable  
Step 1: See Table 39 for state of registers in PMU disabled mode.  
Table 39.  
Register  
Bit  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
Data[2]  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
0
XX  
X
X
X
X
X
XXX  
Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 40).  
Table 40.  
Register  
Bit  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
1X or 00  
Set desired input selection  
X
X
X
X
0
This bit must be set to force voltage mode to  
reduce aberrations  
Data[2:0]  
XXX  
Set desired range  
Step 3: Write to Register ADDR[4:0] = 0x0C (see Table 41).  
Table 41.  
Register  
Bit  
Setting  
Comments  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
Data[2]  
1
PMU is now enabled in force voltage mode  
Rev. A | Page 50 of 58  
 
 
 
 
ADATE302-02  
PMU Force Voltage Mode to PMU Force Current Mode  
Step 1: See Table 42 for state of registers in force voltage mode.  
Table 42.  
Register  
Bit  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
Data[2]  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
1
XX  
X
X
X
X
0
XXX  
Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 43).  
Table 43.  
Register  
Bit  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
01  
X
Set 2.5 V + VDUTGND input selection  
X
X
X
1
Set to force current mode  
0XX  
2 μA range has the minimum offset current  
Step 3: Write to Register ADDR[4:0] = 0x0B (see Table 44).  
Table 44.  
Register  
Bit  
Setting  
Comments  
PMUDAC Level, ADDR[4:0] = 0x0B  
Data[15:0]  
X
Update the PMUDAC level register to the  
desired value  
Step 4: Write to Register ADDR[4:0] = 0x0E (see Table 45).  
Table 45.  
Register  
Bit  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
1X  
X
X
X
X
PMUDAC input selection  
1
XXX  
Set to force current mode  
Set to the desired current range  
Rev. A | Page 51 of 58  
 
 
 
 
ADATE302-02  
Transition from PMU Force Current Mode to PMU Force Voltage Mode  
Step 1: See Table 46 for state of registers in force current mode.  
Table 46.  
Register  
Bits  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
Data[2]  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
1
XX  
X
X
X
X
1
XXX  
Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 47).  
Table 47.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
00  
X
X
X
X
Set DUTGND input selection  
0
XXX  
Set to force voltage mode  
Set to the desired current range  
Step 3: Write to Register ADDR[4:0] = 0x0B (see Table 48).  
Table 48.  
Register  
Bits  
Setting  
Comments  
PMUDAC Level, ADDR[4:0] = 0x0B  
Data[15:0]  
X
Update the PMUDAC level register to the  
desired value  
Step 4: Write to Register ADDR[4:0] = 0x0E (see Table 49).  
Table 49.  
Register  
Bits  
Setting  
Comments  
PMU State Register, ADDR[4:0] = 0x0E  
Data[9:8]  
Data[7]  
Data[6]  
Data[5]  
Data[4]  
Data[3]  
Data[2:0]  
1X  
X
X
X
X
PMUDAC input selection  
0
XXX  
Force voltage mode  
Rev. A | Page 52 of 58  
 
 
 
 
ADATE302-02  
BLOCK DIAGRAMS  
PE DISABLE DATA[0] (ADDR[4:0] = 0x0C)  
FORCES SWITCH OPEN WHEN 1  
VCL VCH  
VH  
VL  
R
= 48ꢀ  
OUT  
(TRIMMED)  
DUT  
DRIVER  
DATA  
VT  
DRIVER HIGH-Z/VT DATA[0]  
(ADDR[4:0] = 0x0D)  
VT BUFFER WHEN 1  
HIGH-Z BUFFER WHEN 0  
V(IOH)  
RCV  
VCOM  
FORCE VT DATA[1] (ADDR[4:0] = 0x0C)  
OVERRIDES THE RCV PIN AND FORCES  
VTERM MODE ON THE DRIVER AND LOAD  
POWER-DOWN MODE  
V(IOL)  
LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D)  
FORCES SWITCHES OPEN AND POWERS  
DOWN LOAD WHEN 0  
Figure 88. Driver and Load Block Diagram  
~1ꢀ  
VHH = (VT + 1V) × 2 + DUTGND  
HVOUT  
VH  
VL  
48ꢀ  
DATA  
RCV (SHOWN IN  
RCV = 0 STATE)  
HV MODE SELECT DATA[2]  
(ADDR [4:0] = 0x0D) DISABLES  
HV DRIVER AND FORCES  
0V ON HVOUT WHEN 0  
Figure 89. HVOUT Driver Output Stage  
Rev. A | Page 53 of 58  
 
ADATE302-02  
VOH0  
VOH  
NWC  
+
DUT0  
COMP_QH0  
2:1  
MUX  
+
VOL  
NWC  
VOL0  
VOH0  
DIFFERENTIAL  
COMPARATOR ENABLE  
DATA[0] (ADDR[4:0] = 0x10)  
VOH  
DMC  
COMP_QL0  
2:1  
MUX  
+
DUT0–  
DUT1  
DUT1  
DIFFERENTIAL  
BUFFER  
+
VOL  
DMC  
VOL0  
NOTES  
1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0.  
Figure 90. Comparator Block Diagram  
COMP_VTT  
COMP_QP  
50  
50ꢀ  
COMP_QN  
10mA  
Figure 91. Comparator Output Scheme  
Rev. A | Page 54 of 58  
ADATE302-02  
PMU SENSE PATH DATA[7]  
(ADDR[4:0] = 0x0E)  
PMU MEASURE V/I DATA[4]  
(ADDR[4:0] = 0x0E)  
EXTERNAL DUT  
SENSE PIN  
MEASURE V  
MEASURE I  
MEASOUT01 SELECT DATA[2:1]  
(ADDR[4:0] = 0x0F)  
MUX  
MUX  
PMU FORCE V/I DATA[3]  
(ADDR[4:0] = 0x0E)  
MEASURE  
OUT  
CH[1] PMU V/I  
IN-AMP G = 5  
10kꢀ  
TEMP SENSE  
GND REF  
TEMP SENSE  
REF  
2.5 + DUTGND  
MUX  
MUX  
MEASOUT01 OUTPUT  
ENABLE DATA[0]  
(ADDR[4:0] = 0x0F)  
ONE PER DEVICE  
DUT  
225kꢀ  
22.5kꢀ  
2.25kꢀ  
250ꢀ  
20ꢀ  
2µA  
20µA  
200µA  
25mA BUFFER  
25mA  
2mA  
PMU INPUT SELECTION DATA[9:8]  
(ADDR[4:0] = 0x0E)  
MV  
VIN  
2.5V + DUTGND  
DUTGND  
FFCAP_A  
FFCAP_B  
330pF  
SCAP  
(EXTERNAL)  
MUX  
PMU CLAMP ENABLE DATA[5]  
(ADDR[4:0] = 0x0E)  
CRA = 220pF  
VCH  
MEASURE V  
(AT OUTPUT OF  
SENSE MUX)  
VCL  
NOTES  
1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE DATA[2] = 0 (ADDR[4:0] = 0x0C), ALL  
SWITCHES OPEN AND PMU POWERS DOWN.  
2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY.  
3. 25mA RANGE HAS ITS OWN OUTPUT BUFFER.  
4. 25mA BUFFER WILL BE TRISTATED WHEN NOT IN USE.  
Figure 92. PMU Block Diagram  
Rev. A | Page 55 of 58  
ADATE302-02  
(ADDR[4:0] = 0x12) DATA[0]  
OVD MASK ENABLES OVD  
FLAGS TO ALARM OVD_CHx PIN  
1
6.5V  
OVD HIGH LEVEL  
DAC (ADDR[4:0] = 0x0A, CH[1])  
OVD_CHx  
SHORT CIRCUIT  
CURRENT = 100µA  
DUT  
ADATE302-02  
1
–2.5V  
OVD LOW LEVEL  
DAC (ADDR[4:0] = 0x0A, CH[0])  
PMU  
V/I CLAMP  
FLAG  
(ADDR[4:0] = 0x12) DATA[1]  
PMU MASK ENABLES PMU V/I  
FLAG TO ALARM OVD_CHx PIN  
2
(ADDR[4:0] = 0x13) DATA[2] DATA[1] DATA[0]  
1
THE OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE  
LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED  
HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.)  
THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG.  
2
Figure 93. OVD Block Diagram  
Rev. A | Page 56 of 58  
ADATE302-02  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
6.731  
REF SQ  
7.20  
BSC SQ  
0.80  
BSC  
G
H
J
K
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
0.305 REF  
0.90 REF  
0.83  
0.76  
0.69  
*
1.20  
1.09  
1.00  
DETAIL A  
0.36  
REF  
0.38  
0.33  
0.28  
0.53  
0.48  
0.43  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-219 WITH  
EXCEPTION TO PACKAGE HEIGHT.  
Figure 94. 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-84-2)  
Dimensions shown in millimeters  
16.00 BSC SQ  
1.20  
MAX  
0.75  
0.60  
0.45  
14.00 BSC SQ  
76  
100  
1
75  
PIN 1  
8.00  
BSC SQ  
EXPOSED  
PAD  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
TOP VIEW  
(PINS DOWN)  
51  
25  
26  
7°  
50  
3.5°  
0.15  
0.05  
0°  
0.50 BSC  
LEAD PITCH  
VIEW A  
0.27  
0.22  
0.17  
SEATING  
PLANE  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.08 MAX  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
VIEW A  
ROTATED 90  
°
CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HU  
Figure 95. 100-Lead Thin Quad Flatpack, Exposed Pad [TQFP_EP]  
(SV-100-7)  
Dimensions shown in millimeters  
Rev. A | Page 57 of 58  
 
ADATE302-02  
ORDERING GUIDE  
Model  
ADATE302-02BBCZ1  
ADATE302-02BSVZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
100-Lead Thin Quad Flatpack, Exposed Pad [TQFP_EP]  
Package Option  
BC-84-2  
SV-100-7  
1 Z = RoHS Compliant Part.  
©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07278-0-4/09(A)  
Rev. A | Page 58 of 58  
 
 
 

相关型号:

ADATE302-02_17

500 MHz Dual Integrated DCL
ADI

ADATE304

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE304BBCZ

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE305

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE305BSVZ

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE318

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE318BCPZ

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE320

1.25 GHz Dual Integrated DCL
ADI

ADATE320-1KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADATE320KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADAU1301

Tape and Reel Packaging
ADI

ADAU1328

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI