ADG3241BRY-REEL7 [ADI]

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66; 2.5 V / 3.3 V , 1位, 2端口电平转换器总线采用SOT- 66开关
ADG3241BRY-REEL7
型号: ADG3241BRY-REEL7
厂家: ADI    ADI
描述:

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
2.5 V / 3.3 V , 1位, 2端口电平转换器总线采用SOT- 66开关

转换器 电平转换器 开关 逻辑集成电路 光电二极管 驱动
文件: 总12页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 1-Bit, 2-Port  
Level Translator Bus Switch in SOT-66  
ADG3241  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
225 ps Propagation Delay through the Switch  
4.5 Switch Connection between Ports  
Data Rate 1.5 Gbps  
A
B
2.5 V/3.3 V Supply Operation  
Selectable Level Shifting/Translation  
Level Translation  
BE  
3.3 V to 2.5 V  
3.3 V to 1.8 V  
2.5 V to 1.8 V  
Small Signal Bandwidth 770 MHz  
Tiny 6-Lead SC70 Package and 6-Lead SOT-66 Package  
APPLICATIONS  
3.3 V to 1.8 V Voltage Translation  
3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Voltage Translation  
Bus Switching  
Bus Isolation  
Hot Swap  
Hot Plug  
Analog Switch Applications  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3241 is a 2.5 V or 3.3 V, single digital switch. It is  
designed on a low voltage CMOS process, which provides low  
power dissipation yet gives high switching speed and very low on  
resistance. This allows the input to be connected to the output  
without additional propagation delay or generating additional  
ground bounce noise.  
1. 3.3 V or 2.5 V supply operation.  
2. Extremely low propagation delay through switch.  
3. 4.5 switches connect inputs to outputs.  
4. Level/voltage translation.  
5. Tiny SC70 package and SOT-66 package.  
The switch is enabled by means of the bus enable (BE) input  
signal. This digital switch allows a bidirectional signal to be  
switched when ON. In the OFF condition, signal levels up to  
the supplies are blocked.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from 3.3 V  
inputs to 2.5 V outputs is allowed. Similarly, if the device is  
operated from a 2.5 V supply and 2.5 V inputs are applied, the  
device will translate the outputs to 1.8 V. In addition to this, a  
level translating select pin (SEL) is included. When SEL is low,  
V
CC is reduced internally, allowing for level translation between  
3.3 V inputs and 1.8 V outputs. This makes the device suited to  
applications requiring level translation between different supplies,  
such as converter to DSP/microcontroller interfacing.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
(VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless  
ADG3241–SPECIFICATIONS1 otherwise noted.)  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
µA  
µA  
µA  
V
V
V
Input Low Voltage  
0.8  
0.7  
1
1
1
2.7  
2.1  
2.1  
Input Leakage Current  
0.01  
0.01  
0.01  
2.5  
1.8  
1.8  
OFF State Leakage Current  
ON State Leakage Current  
Maximum Pass Voltage  
IOZ  
0 A, B VCC  
0 A, B VCC  
VA/VB = VCC = SEL = 3.3 V, IO = –5 µA  
VA/VB = VCC = SEL = 2.5 V, IO = –5 µA  
VA/VB = VCC = 3.3 V, SEL = 0 V, IO = –5 µA  
VP  
2.2  
1.5  
1.5  
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
CA OFF  
f = 1 MHz  
f = 1 MHz  
3.5  
3.5  
7
pF  
pF  
pF  
pF  
C
B OFF  
CA, CB ON f = 1 MHz  
CIN  
f = 1 MHz  
4
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
4
tPHL, tPLH  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
CL = 50 pF, VCC = SEL = 3 V  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = 2.3 V to 2.7 V; SEL = VCC  
0.225 ns  
Bus Enable Time BE to A or B5  
Bus Disable Time BE to A or B5  
Bus Enable Time BE to A or B5  
Bus Disable Time BE to A or B5  
Bus Enable Time BE to A or B5  
Bus Disable Time BE to A or B5  
Maximum Data Rate  
1
1
1
1
1
1
3.2  
3
3
2.5  
3
2.5  
1.5  
45  
4.6  
4
ns  
ns  
4
ns  
3.8  
4
ns  
ns  
3.4  
ns  
V
CC = SEL = 3.3 V; VA/VB = 2 V  
Gbps  
ps p-p  
Channel Jitter  
VCC = SEL = 3.3 V; VA/VB = 2 V  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
4.5  
12  
5
9
5
8
28  
9
18  
8
V
CC = 3 V, SEL = VCC, VA = 1.7 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
V
CC = 3 V, SEL = 0 V, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 1 V, IBA = 8 mA  
12  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
0.2  
8
V
ICC  
Digital Inputs = 0 V or VCC; SEL = VCC  
Digital Inputs = 0 V or VCC; SEL = 0 V  
VCC = 3.6 V, BE = 3.0 V; SEL = VCC  
0.01  
0.1  
0.15  
µA  
mA  
µA  
Increase in ICC per Input6  
NOTES  
ICC  
1Temperature range is as follows: B Version: –40°C to +85°C.  
2Typical values are at 25°C, unless otherwise stated.  
3Guaranteed by design, not subject to production test.  
4The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5See Timing Measurement Information section.  
6This current applies to the control pin BE only. The A and B ports contribute no significant ac or dc currents as they transition.  
Specifications subject to change without notice.  
–2–  
REV. A  
ADG3241  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
Table I. Truth Table  
BE SEL* Function  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Output Current . . . . . . . . . . . . . . . . . 25 mA per Channel  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
SC70 Package  
L
L
H
L
H
X
A = B, 3.3 V to 1.8 V Level Shifting  
A = B, 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting  
Disconnect  
*SEL = 0 V only when VDD = 3.3 V 10%.  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 332°C/W  
SOT-66 Package  
JA Thermal Impedance . . . . . . . . . 191°C/W (4-Layer Board)  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 sec) . . . . . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3241 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. A  
–3–  
ADG3241  
PIN CONFIGURATION  
6-Lead SC70  
Table II. Pin Function Descriptions  
SOT-66 Mnemonic Description  
Pin No.  
SC70  
1
2
3
6
5
4
SEL  
BE  
GND  
A
ADG3241  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
6
4
3
5
1
2
BE  
GND  
A
B
VCC  
SEL  
Bus Enable (Active Low)  
Ground Reference  
Port A, Input or Output  
Port B, Input or Output  
Positive Power Supply Voltage  
Level Translation Select  
V
CC  
B
6-Lead SOT-66  
1
2
3
6
5
4
V
BE  
B
CC  
ADG3241  
TOP VIEW  
(Not to Scale)  
SEL  
A
GND  
ORDERING GUIDE  
Package  
Temperature  
Range  
Model  
Description  
Package  
Branding  
ADG3241BKS-REEL  
ADG3241BKS-REEL7  
ADG3241BKS-500RL7  
ADG3241BRY-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Transistor Package (SC70)  
Thin Shrink Small Outline Transistor Package (SC70)  
Thin Shrink Small Outline Transistor Package (SC70)  
Small Outline Transistor Package (SOT-66)  
KS-6  
KS-6  
KS-6  
RY-6-1  
SKA  
SKA  
SKA  
00  
TERMINOLOGY  
VCC  
GND  
VINH  
VINL  
II  
Positive Power Supply Voltage.  
Ground (0 V) Reference.  
Minimum Input Voltage for Logic 1.  
Maximum Input Voltage for Logic 0.  
Input Leakage Current at the Control Inputs.  
IOZ  
IOL  
OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.  
ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.  
VP  
Maximum Pass Voltage. The maximum pass voltage relates to the clamped output voltage of an NMOS device when  
the switch input voltage is equal to the supply voltage.  
RON  
Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified  
amount of current through the switch.  
CX OFF  
CX ON  
CIN  
OFF Switch Capacitance.  
ON Switch Capacitance.  
Control Input Capacitance. This consists of BE and SEL.  
ICC  
Quiescent Power Supply Current. This current represents the leakage current between the VCC and ground pins.  
It is measured when all control inputs are at a logic high or low level and the switches are OFF.  
ICC  
Extra power supply current component for the BE control input when the input is not driven at the supplies.  
t
t
t
PLH, tPHL  
PZH, tPZL  
PHZ, tPLZ  
Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant  
RON × CL, where CL is the load capacitance.  
Bus Enable Times. These are the times taken to cross the VT voltage at the switch output when the switch turns on  
in response to the control signal, BE.  
Bus Disable Times. This is the time taken to place the switch in the high impedance OFF state in response to the control  
signal. It is measured as the time taken for the output voltage to change by Vfrom the original quiescent level,  
with reference to the logic level transition at the control input. (Refer to Figure 3 for enable and disable times.)  
Max Data Rate Maximum Rate at which Data Can Be Passed through the Switch.  
Channel Jitter  
Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.  
–4–  
REV. A  
Typical Performance Characteristics–ADG3241  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
5
40  
V = 3V  
CC  
V
= 3V  
V
= 2.3V  
CC  
T
= 25C  
CC  
T
= 25C  
A
T
= 25C  
35  
30  
25  
20  
15  
10  
5
A
A
SEL = 0V  
SEL = V  
SEL = V  
CC  
CC  
V
= 3.3V  
= 3.6V  
V
= 3.3V  
V
= 2.5V  
= 2.7V  
CC  
CC  
CC  
20  
15  
10  
5
V
CC  
V
CC  
V
= 3.6V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
)
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
/V (V  
2.5  
3.0 3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
/V (V  
V
)
A
B
V
/V (V)  
A
B
A
B
TPC 1. On Resistance vs.  
Input Voltage  
TPC 3. On Resistance vs.  
Input Voltage  
TPC 2. On Resistance vs.  
Input Voltage  
3.0  
2.5  
20  
15  
10  
5
15  
10  
5
V
= 3.6V  
T
= 25C  
CC  
V
= 3.3V  
A
CC  
V
= 2.5V  
CC  
SEL = V  
CC  
= –5A  
SEL = V  
CC  
SEL = V  
I
CC  
O
2.0  
1.5  
V
= 3.3V  
CC  
85C  
V
= 3V  
CC  
85C  
1.0  
0.5  
0
40C  
25C  
25C  
40C  
0
0
0
0.5  
1.0  
1.5  
2.0 2.5  
/V (V)  
3.0 3.5  
1.0  
/V (V)  
2.0  
0
0.5  
1.5  
0
0.5  
V
1.0  
1.2  
V
V
A
B
A
B
/V (V)  
A
B
TPC 6. Pass Voltage vs. VCC  
TPC 4. On Resistance vs. Input  
TPC 5. On Resistance vs. Input  
Voltage for Different Temperatures  
Voltage for Different Temperatures  
2.5  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.5  
T
= 25C  
A
T
= 25C  
A
V
= 2.7V  
= 2.5V  
T
= 25C  
CC  
A
V
= 3.6V  
SEL = V  
CC  
CC  
= –5A  
SEL = 0V  
= –5A  
2.0  
1.5  
1.0  
0.5  
I
O
2.0  
1.5  
1.0  
0.5  
I
O
V
= SEL = 3.3V  
CC  
V
CC  
V
= 3.3V  
CC  
V
= 3.3V  
CC  
V
= 2.3V  
CC  
V
= 3V  
CC  
SEL = 0V  
V
= SEL = 2.5V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.0 3.5  
0
5
10 15 20 25 30 35 40 45 50  
ENABLE FREQUENCY (MHz)  
V
A
B
V
A
B
TPC 7. Pass Voltage vs. VCC  
TPC 9. ICC vs. Enable Frequency  
TPC 8. Pass Voltage vs. VCC  
REV. A  
–5–  
ADG3241  
3.0  
3.0  
2.5  
2.0  
1.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
T
= 25C  
T
V
= 25C  
= V  
CC  
T
= 25C  
A
A
A
V
= 0V  
SEL = V  
A
A
CC  
V
= 2.5V  
CC  
2.5  
2.0  
1.5  
1.0  
ON OFF  
= 1nF  
BE = 0  
BE = 0  
C
L
V
= SEL = 3.3V  
CC  
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 3.3V  
CC  
V
= 3.3V  
CC  
1.0  
V
= SEL = 2.5V  
CC  
0.5  
0
0.5  
0
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 2.5V  
CC  
0
0.02  
0.04  
0.06  
(A)  
0.08  
0.10  
–0.10 –0.08  
–0.06  
–0.04  
I (A)  
O
–0.02  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
I
O
V
/V (V)  
A
B
TPC 10. Output Low Characteristic  
TPC 11. Output High Characteristic  
TPC 12. Charge Injection vs.  
Source Voltage  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2
1
T
V
= 25C  
A
ENABLE  
DISABLE  
V
= SEL = 3.3V  
CC  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3.3V/2.5V  
CC  
SEL =V  
CC  
= 0dBm  
0
V
IN  
N/W ANALYZER:  
–1  
–2  
–3  
R
= R = 50ꢀ  
L
S
ENABLE  
DISABLE  
T
V
= 25C  
V
= 3.3V, SEL = 0V  
CC  
–4  
–5  
–6  
–7  
–8  
A
= 3.3V/2.5V  
CC  
SEL = V  
V
N/W ANALYZER:  
R
CC  
= 0dBm  
IN  
= R = 50ꢀ  
L
S
–40  
–20  
0
20  
40  
60  
80  
0.1  
1
10  
100  
1000  
0.03 0.1  
1.0  
10  
100  
1000  
FREQUENCY (MHz)  
TEMPERATURE (C)  
FREQUENCY (MHz)  
TPC 13. Bandwidth vs. Frequency  
TPC 14. Off Isolation vs.  
Frequency  
TPC 15. Enable/Disable Time  
vs. Temperature  
4.0  
3.5  
100  
100  
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
95  
90  
85  
80  
75  
20dB ATTENUATION  
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
ENABLE  
3.0  
V
IN  
V
= SEL = 2.5V  
20dB ATTENUATION  
CC  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DISABLE  
70  
65  
60  
55  
50  
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) 100%  
–40  
–20  
0
20  
40  
60  
80  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
DATA RATE (Gbps)  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
TEMPERATURE (C)  
DATA RATE (Gbps)  
TPC 16. Enable/Disable Time  
vs. Temperature  
TPC 17. Jitter vs. Data Rate;  
PRBS 31  
TPC 18. Eye Width vs. Data  
Rate; PRBS 31  
–6–  
REV. A  
ADG3241  
V
= 2.5V  
V
= 3.3V  
20dB  
ATTENUATION  
CC  
SEL = 2.5V  
= 1.5V p-p  
20dB  
ATTENUATION  
CC  
SEL = 3.3V  
= 1.5V p-p  
20mV/DIV  
200ps/DIV  
50mV/DIV  
200ps/DIV  
V
V
T
= 25C  
T = 25C  
IN  
IN  
A
A
TPC 19. Eye Pattern; 1.5 Gbps,  
CC = 3.3 V, PRBS 31  
TPC 20. Eye Pattern; 1.244 Gbps,  
VCC = 2.5 V, PRBS 31  
V
REV. A  
–7–  
ADG3241  
TIMING MEASUREMENT INFORMATION  
For the following load circuit and waveforms, the notation that is used is VIN and VOUT where  
VIN = VA and VOUT = VB or VIN = VB and VOUT = VA  
V
V
IH  
CC  
2 V  
CC  
CONTROL  
INPUT BE  
SW1  
V
T
0V  
GND  
tPLH  
tPLH  
R
L
V
V
H
T
V
V
OUT  
IN  
V
PULSE  
GENERATOR  
OUT  
DUT  
V
L
R
R
C
L
L
T
Figure 2. Propagation Delay  
NOTES  
PULSE GENERATOR FOR ALL PULSES: tR Յ 2.5ns, tF Յ 2.5ns,  
FREQUENCY Յ 10MHz.  
C
R
INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
ISTHETERMINATION RESISTOR, SHOULD BE EQUALTO Z  
L
T
OUT  
OFTHE PULSE GENERATOR.  
Figure 1. Load Circuit  
Test Conditions  
Symbol  
VCC = 3.3 V 0.3 V (SEL = VCC  
)
VCC = 2.5 V 0.2 V (SEL = VCC  
)
VCC = 3.3 V 0.3 V (SEL = 0 V) Unit  
RL  
V⌬  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
mV  
pF  
V
1.5  
0.9  
0.9  
DISABLE  
ENABLE  
V
INH  
V
CONTROL INPUT BE  
T
Table III. Switch Position  
0V  
tPZL  
tPLZ  
Test  
S1  
V
CC  
V
CC  
V
OUT  
tPLZ, tPZL  
tPHZ, tPZH  
2 × VCC  
GND  
V
V
= 0V  
= V  
T
IN  
V
V
+V  
L
L
SW1 @ 2V  
CC  
tPZH  
tPHZ  
V
V
H
V
OUT  
V
–V  
V
IN  
CC  
H
T
SW1 @ GND  
0V  
0V  
Figure 3. Enable and Disable Times  
–8–  
REV. A  
ADG3241  
BUS SWITCH APPLICATIONS  
2.5 V to 1.8 V Translation  
Mixed Voltage Operation, Level Translation  
When VCC is 2.5 V (SEL = 2.5 V) and the input signal range is  
0 V to VCC, the maximum output signal will, as before, be clamped  
to within a voltage threshold below the VCC supply. In this case,  
the output will be limited to approximately 1.8 V, as shown  
in Figure 8.  
Bus switches can provide an ideal solution for interfacing  
between mixed voltage systems. The ADG3241 is suitable for  
applications where voltage translation from 3.3 V technology to  
a lower voltage technology is needed. This device can translate  
from 3.3 V to 1.8 V, from 2.5 V to 1.8 V, or bidirectionally  
from 3.3 V directly to 2.5 V.  
2.5V  
Figure 4 shows a block diagram of a typical application in which  
a user needs to interface between a 3.3 V ADC and a 2.5 V  
microprocessor. The microprocessor may not have 3.3 V toler-  
ant inputs, therefore placing the ADG3241 between the two  
devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, thus introducing  
minimal propagation delay, timing skew, or noise.  
ADG3241  
2.5V  
1.8V  
Figure 7. 2.5 V to 1.8 V Voltage Translation, SEL = 2.5 VCC  
3.3V  
3.3V  
2.5V  
V
OUT  
2.5V SUPPLY  
SEL = 2.5V  
2.5V  
3.3V ADC  
1.8V  
MICROPROCESSOR  
Figure 4. Level Translation between a 3.3 V ADC  
and a 2.5 V Microprocessor  
V
IN  
3.3 V to 2.5 V Translation  
0V  
SWITCH  
INPUT  
2.5V  
When VCC is 3.3 V (SEL = 3.3 V) and the input signal range is  
0 V to VCC, the maximum output signal will be clamped to  
within a voltage threshold below the VCC supply.  
Figure 8. 2.5 V to 1.8 V Voltage Translation, SEL = VCC  
3.3 V to 1.8 V Translation  
The ADG3241 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through use of the  
SEL pin. The SEL pin is an active low control pin. SEL acti-  
vates internal circuitry in the ADG3241 that allows voltage  
translation between 3.3 V devices and 1.8 V devices.  
3.3V  
3.3V  
2.5V  
2.5V  
2.5V  
ADG3241  
3.3V  
Figure 5. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
3.3V  
ADG3241  
1.8V  
In this case, the output will be limited to 2.5 V, as shown in  
Figure 6. This device can be used for translation from 2.5 V to  
3.3 V devices and also between two 3.3 V devices.  
V
OUT  
3.3V SUPPLY  
SEL = 3.3V  
Figure 9. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal will be clamped to 1.8 V, as shown in  
Figure 9. To do this, the SEL pin must be tied to Logic 0. If  
2.5V  
SEL is unused, it should be tied directly to VCC  
.
V
V
OUT  
IN  
3.3V SUPPLY  
0V  
SWITCH  
INPUT  
3.3V  
SEL = 0V  
1.8V  
Figure 6. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
Figure 10. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
REV. A  
–9–  
ADG3241  
Bus Isolation  
There are many systems, such as docking stations, PCI boards  
for servers, and line cards for telecommunications switches, that  
require the ability to handle hot swapping. If the bus can be  
isolated prior to insertion or removal, there is more control over  
the hot swap event. This isolation can be achieved using bus  
switches. The bus switches are positioned on the hot swap card  
between the connector and the devices. During hot swap, the  
ground pin of the hot swap card must connect to the ground pin  
of the backplane before any other signal or power pins.  
A common requirement of bus architectures is low capacitance  
loading of the bus. Such systems require bus bridge devices that  
extend the number of loads on the bus without exceeding the  
specifications. Because the ADG3241 is designed specifically for  
applications that do not need drive yet require simple logic  
functions, it solves this requirement. The device isolates access  
to the bus, thus minimizing capacitance loading.  
LOAD A  
LOAD C  
Analog Switching  
Bus switches can be used in many analog switching applications,  
for example, video graphics. Bus switches can have lower on  
resistance, smaller ON and OFF channel capacitance, and thus  
improved frequency performance than their analog counterparts.  
The bus switch channel itself, consisting solely of an NMOS  
switch, limits the operating voltage (see TPC 1 for a typical  
plot), but in many cases, this does not present an issue.  
BUS/  
BACKPLANE  
LOAD B  
LOAD D  
BUS SWITCH  
LOCATION  
Figure 11. Location of Bus Switched in a Bus  
Isolation Application  
High Impedance During Power-Up/Power-Down  
To ensure the high impedance state during power-up or power-  
down, BE should be tied to VCC through a pull-up resistor; the  
minimum value of the resistor is determined by the current-  
sinking capability of the driver.  
Hot Plug and Hot Swap Isolation  
The ADG3241 is suitable for hot swap and hot plug applications.  
The output signal of the ADG3241 is limited to a voltage that is  
below the VCC supply, as shown in Figures 6, 8, and 10. Therefore  
the switch acts like a buffer to take the impact from hot insertion,  
protecting vital and expensive chipsets from damage.  
In hot plug applications, the system cannot be shut down when  
new hardware is being added. To overcome this, a bus switch can  
be positioned on the backplane between the bus devices and the  
hot plug connectors. The bus switch is turned off during hot plug.  
Figure 12 shows a typical example of this type of application.  
PLUG-IN  
CARD I/O  
CARD (1)  
CPU  
RAM  
PLUG-IN  
CARD I/O  
CARD (2)  
Figure 12. ADG3241 in a Hot Plug Application  
–10–  
REV. A  
ADG3241  
OUTLINE DIMENSIONS  
6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
2.00 BSC  
6
1
5
2
4
3
2.10 BSC  
1.25 BSC  
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
1.10 MAX  
0.22  
0.08  
0.46  
0.36  
0.26  
8ꢁ  
4ꢁ  
0ꢁ  
0.30  
0.15  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AB  
6-Lead Small Outline Transistor Package [SOT-66]  
(RY-6-1)  
Dimensions shown in millimeters  
1.70  
1.66  
1.50  
0.20  
0.26  
0.19  
0.11  
MIN  
6
4
3
5
1.70  
1.65  
1.50  
1.30  
1.20  
1.10  
BOTTOM  
VIEW  
TOP VIEW  
PIN 1  
1
2
0.10 NOM  
0.05 MIN  
0.30  
0.23  
0.10  
0.50  
BSC  
12MAX  
0.60  
0.57  
0.53  
0.25 MAX  
0.17 MIN  
0.18  
0.17  
0.13  
SEATING  
PLANE  
0.34 MAX  
0.27 NOM  
REV. A  
–11–  
ADG3241  
Revision History  
Location  
Page  
10/04—Data Sheet changed from REV. 0 to REV. A.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to PRODUCT HIGHLIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to PIN CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
–12–  
REV. A  

相关型号:

ADG3241BRYZ-REEL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, SOT-66, 6 PIN
ROCHESTER

ADG3242

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BCZ-SF3

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI

ADG3242BRJ-R2

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BRJ-REEL

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BRJ-REEL7

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BRJZ-REEL7

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI

ADG3242_06

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI

ADG3243

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-R2

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-REEL

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-REEL7

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI