ADG3242BRJ-REEL7 [ADI]

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch; 2.5 V / 3.3 V , 2位,普通的控制电平转换器总线开关
ADG3242BRJ-REEL7
型号: ADG3242BRJ-REEL7
厂家: ADI    ADI
描述:

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
2.5 V / 3.3 V , 2位,普通的控制电平转换器总线开关

总线驱动器 总线收发器 转换器 电平转换器 开关 逻辑集成电路 光电二极管
文件: 总12页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 2-Bit, Common Control  
Level Translator Bus Switch  
ADG3242  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
225 ps Propagation Delay through the Switch  
4.5 Switch Connection between Ports  
Data Rate 1.5 Gbps  
B0  
A0  
2.5 V/3.3 V Supply Operation  
Selectable Level Shifting/Translation  
Level Translation  
B1  
A1  
3.3 V to 2.5 V  
BE  
3.3 V to 1.8 V  
2.5 V to 1.8 V  
Small Signal Bandwidth 710 MHz  
8-Lead SOT-23 Package  
APPLICATIONS  
3.3 V to 2.5 V Voltage Translation  
3.3 V to 1.8 V Voltage Translation  
2.5 V to 1.8 V Voltage Translation  
Bus Switching  
Bus Isolation  
Hot Swap  
Hot Plug  
Analog Switch Applications  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3242 is a 2.5 V or 3.3 V, 2-bit, 2-port common-  
control digital switch. It is designed on a low voltage CMOS  
process, which provides low power dissipation yet gives high  
switching speed and very low on resistance. This allows the inputs  
to be connected to the outputs without additional propagation  
delay or generating additional ground bounce noise.  
1. 3.3 V or 2.5 V supply operation.  
2. Extremely low propagation delay through switch.  
3. 4.5 switches connect inputs to outputs.  
4. Level/voltage translation.  
5. Tiny SOT-23 package.  
These switches are enabled by means of a common bus enable  
(BE) input signal. This digital switch allows a bidirectional  
signal to be switched when ON. In the OFF condition, signal  
levels up to the supplies are blocked.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from 3.3 V  
inputs to 2.5 V outputs is allowed. Similarly, if the device is  
operated from a 2.5 V supply and 2.5 V inputs are applied, the  
device will translate the outputs to 1.8 V. In addition, a level  
translating select pin (SEL) is included. When SEL is low, VCC  
is reduced internally, allowing for level translation between 3.3  
V inputs and 1.8 V outputs. This makes the device suitable for  
applications requiring level translation between different supplies,  
such as converter to DSP/microcontroller interfacing.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless  
ADG3242–SPECIFICATIONS1 otherwise noted.)  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
µA  
µA  
µA  
V
V
V
Input Low Voltage  
0.8  
0.7  
1
1
1
2.9  
2.1  
2.1  
Input Leakage Current  
0.01  
0.01  
0.01  
2.5  
1.8  
1.8  
OFF State Leakage Current  
ON State Leakage Current  
Maximum Pass Voltage  
IOZ  
0 A, B VCC  
0 A, B VCC  
VA/VB = VCC = SEL = 3.3 V, IO = –5 µA  
VA/VB = VCC = SEL = 2.5 V, IO= –5 µA  
VA/VB = VCC = 3.3 V, SEL = 0 V, IO = –5 µA  
VP  
2.0  
1.5  
1.5  
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
CA OFF  
f = 1 MHz  
f = 1 MHz  
3.5  
3.5  
7
pF  
pF  
pF  
pF  
C
B OFF  
CA, CB ON f = 1 MHz  
CIN  
f = 1 MHz  
4
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
4
tPHL, tPLH  
CL = 50 pF, VCC = SEL = 3 V  
0.225 ns  
Propagation Delay Matching5  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Maximum Data Rate  
5
ps  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = SEL = 3.3 V; VA/VB = 2 V  
VCC = SEL = 3.3 V; VA/VB = 2 V  
1
1
1
1
1
1
3.2  
3
3
2.5  
3
2.5  
1.5  
45  
4.6  
4
ns  
ns  
4
ns  
3.8  
4
ns  
ns  
3.4  
ns  
Gbps  
ps p-p  
Channel Jitter  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 1.7 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
4.5  
12  
5
9
5
12  
0.1  
0.1  
8
28  
9
18  
8
V
CC = 2.3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 1 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 0 V, IA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 0 V, IA = 8 mA  
On Resistance Matching  
RON  
0.5  
0.5  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
0.2  
8
V
ICC  
Digital Inputs = 0 V or VCC; SEL = VCC  
Digital Inputs = 0 V or VCC ; SEL = 0 V  
VCC = 3.6 V, BE = 3.0 V; SEL = VCC  
0.01  
0.1  
0.15  
µA  
mA  
µA  
Increase in ICC per Input7  
NOTES  
ICC  
1Temperature range is as follows: B Version: –40°C to +85°C.  
2Typical values are at 25°C, unless otherwise stated.  
3Guaranteed by design, not subject to production test.  
4The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.  
6See Timing Measurement Information section.  
7This current applies to the control pin BE only. The A and B ports contribute no significant ac or dc currents as they transition.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADG3242  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
PIN CONFIGURATION  
8-Lead SOT-23  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Output Current . . . . . . . . . . . . . . . . . 25 mA per Channel  
Operating Temperature Range  
1
2
3
4
BE  
8
7
6
5
V
CC  
ADG3242  
SEL  
A0  
A1  
TOP VIEW  
(Not to Scale)  
B0  
B1  
GND  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
PIN FUNCTION DESCRIPTIONS  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 206°C/Ω  
Pin No.  
Mnemonic  
Description  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 sec) . . . . . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
1
2
3
4
5
6
7
8
BE  
A0  
A1  
GND  
B1  
B0  
SEL  
VCC  
Bus Enable (Active Low)  
Port A0, Input or Output  
Port A1, Input or Output  
Ground Reference  
Port B1, Input or Output  
Port B0, Input or Output  
Level Translation Select  
Positive Power Supply Voltage  
Table I. Truth Table  
BE SEL* Function  
L
L
H
L
A0 = B0, A1 = B1, 3.3 V to 1.8 V  
Level Shifting  
A0 = B0, A1 = B1, 3.3 V to 2.5 V/2.5 V to 1.8 V  
Level Shifting  
Disconnect  
H
X
*SEL = 0 V only when VDD = 3.3 V 10%.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package  
Branding  
ADG3242BRJ-R2  
ADG3242BRJ-REEL  
ADG3242BRJ-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
SOT-23 (Small Outline Transistor)  
SOT-23 (Small Outline Transistor)  
SOT-23 (Small Outline Transistor)  
RJ-8  
RJ-8  
RJ-8  
SCA  
SCA  
SCA  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3242 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–3–  
ADG3242  
TERMINOLOGY  
VCC  
GND  
VINH  
VINL  
II  
Positive Power Supply Voltage.  
Ground (0 V) Reference.  
Minimum Input Voltage for Logic 1.  
Maximum Input Voltage for Logic 0.  
Input Leakage Current at the Control Inputs.  
IOZ  
IOL  
OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.  
ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.  
VP  
Maximum Pass Voltage. The maximum pass voltage relates to the clamped output voltage of an NMOS device when  
the switch input voltage is equal to the supply voltage.  
RON  
Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified  
amount of current through the switch.  
RON  
ON Resistance Match between any two channels, i.e., RON max to RON min.  
OFF Switch Capacitance.  
ON Switch Capacitance.  
C
C
X OFF  
X ON  
CIN  
ICC  
Control Input Capacitance. This consists of BE and SEL.  
Quiescent Power Supply Current. This current represents the leakage current between the VCC and ground pins.  
It is measured when all control inputs are at a logic high or low level and the switches are OFF.  
ICC  
Extra power supply current component for the EN control input when the input is not driven at the supplies.  
t
t
t
PLH, tPHL  
PZH, tPZL  
PHZ, tPLZ  
Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant  
RON × CL, where CL is the load capacitance.  
Bus Enable Times. These are the times taken to cross the VT voltage at the switch output when the switch turns on  
in response to the control signal, BE.  
Bus Disable Times. These are the times taken to place the switch in the high impedance OFF state in response to  
the control signal. They are measured as the time taken for the output voltage to change by Vfrom the original  
quiescent level, with reference to the logic level transition at the control input. (Refer to Figure 3 for enable and  
disable times.)  
Max Data Rate Maximum Rate at which Data Can Be Passed through the Switch.  
Channel Jitter  
Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.  
–4–  
REV. 0  
Typical Performance Characteristics–ADG3242  
40  
35  
30  
25  
40  
40  
35  
30  
25  
20  
15  
10  
5
V
= 3V  
V
= 3V  
CC  
CC  
T
= 25؇C  
T
= 25؇C  
V
= 2.3V  
A
35  
30  
25  
20  
15  
10  
5
A
CC  
T
= 25؇C  
A
SEL = 0V  
SEL = V  
CC  
SEL = V  
CC  
V
= 3.3V  
= 3.6V  
V
= 3.3V  
V
= 2.5V  
= 2.7V  
CC  
CC  
CC  
20  
15  
10  
5
V
V
CC  
CC  
V
= 3.6V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
)
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
/V (V  
2.5  
3.0 3.5  
V
/V (V)  
V
/V (V  
A
B
V
)
A
B
A
B
TPC 2. On Resistance vs.  
Input Voltage  
TPC 1. On Resistance vs.  
Input Voltage  
TPC 3. On Resistance vs.  
Input Voltage  
15  
10  
5
3.0  
2.5  
20  
15  
10  
5
V
= 3.6V  
T
= 25؇C  
CC  
V
= 3.3V  
A
V
= 2.5V  
CC  
CC  
SEL = V  
CC  
= –5A  
SEL = V  
SEL = V  
CC  
CC  
I
O
2.0  
1.5  
V
= 3.3V  
CC  
؉85؇C  
V
= 3V  
CC  
؉85؇C  
1.0  
0.5  
0
؊40؇C  
؉25؇C  
؉25؇C  
؊40؇C  
0
0
0
0.5  
1.0  
1.5  
2.0 2.5  
/V (V)  
3.0 3.5  
1.0  
/V (V)  
2.0  
0
0.5  
1.5  
0
0.5  
V
1.0  
1.2  
V
V
A
B
/V (V)  
A
B
A
B
TPC 5. On Resistance vs. Input  
Voltage for Different Temperatures  
TPC 6. Pass Voltage vs. VCC  
TPC 4. On Resistance vs. Input  
Voltage for Different Temperatures  
2.5  
2.5  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25؇C  
A
T
= 25؇C  
T = 25؇C  
A
A
V
= 2.7V  
= 2.5V  
V
= 3.6V  
CC  
CC  
SEL = V  
SEL = 0V  
= –5A  
CC  
= –5A  
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
I
I
O
O
V
= SEL = 3.3V  
CC  
V
CC  
V
= 3.3V  
CC  
= 3V  
V
= 3.3V  
CC  
V
= 2.3V  
V
CC  
CC  
SEL = 0V  
V
= SEL = 2.5V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.0 3.5  
0
5
10 15 20 25 30 35 40 45 50  
ENABLE FREQUENCY (MHz)  
V
V
A
B
A
B
TPC 7. Pass Voltage vs. VCC  
TPC 8. Pass Voltage vs. VCC  
TPC 9. ICC vs. Enable Frequency  
REV. 0  
–5–  
ADG3242  
3.0  
3.0  
2.5  
2.0  
1.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
T
= 25؇C  
T
V
= 25؇C  
= V  
CC  
T
= 25؇C  
A
A
A
V
= 0V  
SEL = V  
A
A
CC  
V
= 2.5V  
CC  
2.5  
2.0  
1.5  
1.0  
ON OFF  
= 1nF  
BE = 0  
BE = 0  
C
L
V
= SEL = 3.3V  
CC  
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 3.3V  
CC  
V
= 3.3V  
CC  
1.0  
V
= SEL = 2.5V  
CC  
0.5  
0
0.5  
0
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 2.5V  
CC  
0
0.02  
0.04  
0.06  
(A)  
0.08  
0.10  
–0.10 –0.08  
–0.06  
–0.04  
I (A)  
O
–0.02  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
I
O
V
/V (V)  
A
B
TPC 10. Output Low Characteristic  
TPC 11. Output High Characteristic  
TPC 12. Charge Injection vs.  
Source Voltage  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2
1
0
T
V
= 25؇C  
A
T
V
= 25؇C  
A
= 3.3V/2.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CC  
= 3.3V/2.5V  
CC  
SEL =V  
CC  
= 0dBm  
SEL = V  
V
N/W ANALYZER  
R
0
CC  
V
IN  
N/W ANALYZER:  
= 0dBm  
IN  
–1  
–2  
–3  
R
= R = 50⍀  
L
S
= R = 50⍀  
L
S
T
V
= 25؇C  
–4  
–5  
–6  
–7  
–8  
A
= 3.3V/2.5V  
CC  
SEL = V  
V
N/W ANALYZER:  
R
CC  
= 0dBm  
IN  
= R = 50⍀  
L
S
0.03 0.1  
1.0  
10  
100  
1000  
0.03 0.1  
1.0  
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 13. Bandwidth vs. Frequency  
TPC 14. Crosstalk vs. Frequency  
TPC 15. Off Isolation vs. Frequency  
4.0  
100  
4.0  
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
ENABLE  
DISABLE  
V
= SEL = 3.3V  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
IN  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20dB ATTENUATION  
ENABLE  
DISABLE  
V
= SEL = 2.5V  
CC  
ENABLE  
DISABLE  
V
= 3.3V, SEL = 0V  
CC  
–40  
–20  
0
20  
40  
60  
80  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
DATA RATE (Gbps)  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (؇C)  
TEMPERATURE (؇C)  
TPC 16. Enable/Disable Time  
vs. Temperature  
TPC 17. Enable/Disable Time  
vs. Temperature  
TPC 18. Jitter vs. Data Rate;  
PRBS 31  
–6–  
REV. 0  
ADG3242  
100  
95  
90  
85  
80  
75  
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
V
IN  
20dB ATTENUATION  
70  
65  
60  
55  
50  
V
= 2.5V  
V
= 3.3V  
20dB  
ATTENUATION  
CC  
SEL = 2.5V  
= 1.5V p-p  
20dB  
ATTENUATION  
CC  
SEL = 3.3V  
= 1.5V p-p  
20mV/DIV  
200ps/DIV  
50mV/DIV  
200ps/DIV  
V
V
T
= 25؇C  
T = 25؇C  
IN  
IN  
A
A
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) 
؋
 100%  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
DATA RATE (Gbps)  
TPC 20. Eye Pattern; 1.5 Gbps,  
CC = 3.3 V, PRBS 31  
TPC 21. Eye Pattern; 1.244 Gbps,  
VCC = 2.5 V, PRBS 31  
TPC 19. Eye Width vs. Data  
Rate; PRBS 31  
V
REV. 0  
–7–  
ADG3242  
TIMING MEASUREMENT INFORMATION  
For the following load circuit and waveforms, the notation that  
is used is VIN and VOUT where  
VIN = VA and VOUT = VB or VIN = VB and VOUT = VA  
V
V
IH  
CC  
2 
؋
 V  
CC  
CONTROL  
INPUT BE  
SW1  
V
T
0V  
GND  
tPLH  
tPLH  
R
L
V
V
H
T
V
V
OUT  
IN  
V
PULSE  
GENERATOR  
OUT  
DUT  
V
L
R
R
C
L
L
T
Figure 2. Propagation Delay  
NOTES  
PULSE GENERATOR FOR ALL PULSES: tR Յ 2.5ns, tF Յ 2.5ns,  
FREQUENCY Յ 10MHz.  
C
INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
L
R
IS THE TERMINATION RESISTOR, SHOULD BE EQUAL TO Z  
T
OUT  
OF THE PULSE GENERATOR.  
Figure 1. Load Circuit  
Test Conditions  
Symbol  
VCC = 3.3 V ؎ 0.3 V (SEL = VCC  
)
VCC = 2.5 V ؎ 0.2 V (SEL = VCC  
)
VCC = 3.3 V ؎ 0.3 V (SEL = 0 V) Unit  
RL  
V⌬  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
mV  
pF  
V
1.5  
0.9  
0.9  
DISABLE  
ENABLE  
V
INH  
V
CONTROL INPUT BE  
T
Table II. Switch Position  
0V  
tPZL  
tPLZ  
Test  
S1  
V
CC  
V
CC  
V
OUT  
tPLZ, tPZL  
tPHZ, tPZH  
2 × VCC  
GND  
V
V
= 0V  
= V  
T
IN  
V
V
+V  
L
L
SW1 @ 2V  
CC  
tPZH  
tPHZ  
V
V
H
H
V
OUT  
V
–V  
V
IN  
CC  
T
SW1 @ GND  
0V  
0V  
Figure 3. Enable and Disable Times  
–8–  
REV. 0  
ADG3242  
BUS SWITCH APPLICATIONS  
2.5 V to 1.8 V Translation  
Mixed Voltage Operation, Level Translation  
When VCC is 2.5 V (SEL = 2.5 V) and the input signal range is  
0 V to VCC, the maximum output signal will, as before, be clamped  
to within a voltage threshold below the VCC supply. In this case,  
the output will be limited to approximately 1.8 V, as shown  
in Figure 8.  
Bus switches can provide an ideal solution for interfacing  
between mixed voltage systems. The ADG3242 is suitable for  
applications where voltage translation from 3.3 V technology to  
a lower voltage technology is needed. This device can translate  
from 3.3 V to 1.8 V, from 2.5 V to 1.8 V, or bidirectionally  
from 3.3 V directly to 2.5 V.  
2.5V  
Figure 4 shows a block diagram of a typical application in which  
a user needs to interface between a 3.3 V ADC and a 2.5 V  
microprocessor. The microprocessor may not have 3.3 V toler-  
ant inputs, therefore placing the ADG3242 between the two  
devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, therefore introducing  
minimal propagation delay, timing skew, or noise.  
ADG3242  
2.5V  
1.8V  
Figure 7. 2.5 V to 1.8 V Voltage Translation, SEL = 2.5 VCC  
3.3V  
3.3V  
2.5V  
V
OUT  
2.5V SUPPLY  
SEL = 2.5V  
2.5V  
1.8V  
3.3V ADC  
MICROPROCESSOR  
Figure 4. Level Translation between a 3.3 V ADC  
and a 2.5 V Microprocessor  
V
IN  
0V  
SWITCH  
INPUT  
2.5V  
3.3 V to 2.5 V Translation  
When VCC is 3.3 V (SEL = 3.3 V) and the input signal range is  
0 V to VCC, the maximum output signal will be clamped to  
within a voltage threshold below the VCC supply. In this case,  
the output will be limited to 2.5 V, as shown in Figure 6. This  
device can be used for translation from 2.5 V to 3.3 V devices  
and also between two 3.3 V devices.  
Figure 8. 2.5 V to 1.8 V Voltage Translation, SEL = VCC  
3.3 V to 1.8 V Translation  
The ADG3242 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through use of the  
SEL pin. The SEL pin is an active low control pin. SEL acti-  
vates internal circuitry in the ADG3242 that allows voltage  
translation between 3.3 V devices and 1.8 V devices.  
3.3V  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal will be clamped to 1.8 V, as shown in  
Figure 9. To do this, the SEL pin must be tied to Logic 0. If  
3.3V  
2.5V  
2.5V  
2.5V  
ADG3242  
SEL is unused, it should be tied directly to VCC  
.
3.3V  
Figure 5. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
3.3V  
ADG3242  
1.8V  
V
OUT  
3.3V SUPPLY  
SEL = 3.3V  
2.5V  
Figure 9. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
V
IN  
V
OUT  
3.3V SUPPLY  
SEL = 0V  
0V  
SWITCH  
INPUT  
3.3V  
1.8V  
Figure 6. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
Figure 10. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
REV. 0  
–9–  
ADG3242  
Bus Isolation  
There are many systems, such as docking stations, PCI boards  
for servers, and line cards for telecommunications switches, that  
require the ability to handle hot swapping. If the bus can be  
isolated prior to insertion or removal, there is more control over  
the hot swap event. This isolation can be achieved using bus  
switches. The bus switches are positioned on the hot swap card  
between the connector and the devices. During hot swap, the  
ground pin of the hot swap card must connect to the ground pin  
of the backplane before any other signal or power pins.  
A common requirement of bus architectures is low capacitance  
loading of the bus. Such systems require bus bridge devices that  
extend the number of loads on the bus without exceeding the  
specifications. Because the ADG3242 is designed specifically for  
applications that do not need drive yet require simple logic  
functions, it solves this requirement. The device isolates access  
to the bus, thus minimizing capacitance loading.  
LOAD A  
LOAD C  
Analog Switching  
Bus switches can be used in many analog switching applications,  
for example, video graphics. Bus switches can have lower on  
resistance, smaller ON and OFF channel capacitance, and thus  
improved frequency performance than their analog counterparts.  
The bus switch channel itself, consisting solely of an NMOS  
switch, limits the operating voltage (see TPC 1 for a typical  
plot), but in many cases, this does not present an issue.  
BUS/  
BACKPLANE  
LOAD B  
LOAD D  
BUS SWITCH  
LOCATION  
Figure 11. Location of Bus Switched in a Bus  
Isolation Application  
High Impedance during Power-Up/Power-Down  
To ensure the high impedance state during power-up or power-  
down, BE should be tied to VCC through a pull-up resistor; the  
minimum value of the resistor is determined by the current-  
sinking capability of the driver.  
Hot Plug and Hot Swap Isolation  
The ADG3242 is suitable for hot swap and hot plug applications.  
The output signal of the ADG3242 is limited to a voltage that is  
below the VCC supply, as shown in Figures 6, 8, and 10. Therefore  
the switch acts like a buffer to take the impact from hot insertion,  
protecting vital and expensive chipsets from damage.  
In hot plug applications, the system cannot be shut down when  
new hardware is being added. To overcome this, a bus switch can  
be positioned on the backplane between the bus devices and the  
hot plug connectors. The bus switch is turned off during hot plug.  
Figure 12 shows a typical example of this type of application.  
PLUG-IN  
CARD I/O  
CARD (1)  
CPU  
RAM  
PLUG-IN  
CARD I/O  
CARD (2)  
Figure 12. ADG3242 in a Hot Plug Application  
–10–  
REV. 0  
ADG3242  
OUTLINE DIMENSIONS  
8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
PIN 1  
2.80 BSC  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8؇  
4؇  
0؇  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178BA  
REV. 0  
–11–  
–12–  

相关型号:

ADG3242BRJZ-REEL7

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI

ADG3242_06

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI

ADG3243

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-R2

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-REEL

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-REEL7

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJZ-REEL7

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3245

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3245BCPZ

2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch
ADI

ADG3245BRU

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3245BRUZ-REEL7

2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch
ADI

ADG3245_15

2.5V/3.3V 8 Bit 2 Port Level Translating Bus Switch
ADI