ADG5409BRUZ-REEL7 [ADI]

High Voltage Latch-Up Proof, 4-/8-Channel Multiplexers; 高电压闩锁防,4 / 8通道多路复用器
ADG5409BRUZ-REEL7
型号: ADG5409BRUZ-REEL7
厂家: ADI    ADI
描述:

High Voltage Latch-Up Proof, 4-/8-Channel Multiplexers
高电压闩锁防,4 / 8通道多路复用器

复用器 开关 复用器或开关 信号电路 光电二极管 PC
文件: 总24页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage Latch-Up Proof,  
4-/8-Channel Multiplexers  
Data Sheet  
ADG5408/ADG5409  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Latch-up proof  
ADG5408  
ADG5409  
8 kV human body model (HBM) ESD rating  
Low on resistance (13.5 Ω)  
9 V to 22 V dual-supply operation  
9 V to 40 V single-supply operation  
48 V supply maximum ratings  
S1  
S1A  
S4A  
DA  
DB  
D
S1B  
S4B  
Fully specified at 15 V, 20 V, +12 V, and +36 V  
V
SS to VDD analog signal range  
S8  
APPLICATIONS  
1-OF-8  
DECODER  
1-OF-4  
DECODER  
Relay replacement  
Automatic test equipment  
Data acquisition  
A0 A1 A2 EN  
A0 A1 EN  
Figure 1.  
Instrumentation  
Avionics  
Audio and video switching  
Communication systems  
GENERAL DESCRIPTION  
The ADG5408/ADG5409 do not have VL pins; rather, the logic  
power supply is generated internally by an on-chip voltage  
generator.  
The ADG5408/ADG5409 are monolithic CMOS analog multi-  
plexers comprising eight single channels and four differential  
channels, respectively. The ADG5408 switches one of eight  
inputs to a common output, as determined by the 3-bit binary  
address lines, A0, A1, and A2. The ADG5409 switches one of  
four differential inputs to a common differential output, as  
determined by the 2-bit binary address lines, A0 and A1.  
PRODUCT HIGHLIGHTS  
1. Trench isolation guards against latch-up. A dielectric trench  
separates the P and N channel transistors thereby preventing  
latch-up even under severe overvoltage conditions.  
An EN input on both devices enables or disables the device.  
When EN is disabled, all channels switch off. The on-resistance  
profile is very flat over the full analog input range, which ensures  
good linearity and low distortion when switching audio signals.  
High switching speed also makes the parts suitable for video  
signal switching.  
2. Low RON  
.
3. Dual-supply operation. For applications where the analog  
signal is bipolar, the ADG5408/ADG5409 can be operated  
from dual supplies up to 22 V.  
4. Single-supply operation. For applications where the analog  
signal is unipolar, the ADG5408/ADG5409 can be operated  
from a single rail power supply up to 40 V.  
Each switch conducts equally well in both directions when on,  
and each switch has an input signal range that extends to the  
power supplies. In the off condition, signal levels up to the  
supplies are blocked.  
5. 3 V logic compatible digital inputs: VINH = 2.0 V, VINL = 0.8 V.  
6. No VL logic power supply required.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADG5408/ADG5409  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................9  
ESD Caution...................................................................................9  
Pin Configurations and Function Descriptions......................... 10  
Typical Performance Characteristics ........................................... 12  
Test Circuits..................................................................................... 16  
Terminology.................................................................................... 18  
Trench Isolation.............................................................................. 19  
Applications Information .............................................................. 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ........................................................................... 2  
Specifications..................................................................................... 3  
15 V Dual Supply ....................................................................... 3  
20 V Dual Supply ....................................................................... 4  
12 V Single Supply........................................................................ 5  
36 V Single Supply........................................................................ 6  
Continuous Current per Channel, Sx or D............................... 8  
REVISION HISTORY  
5/12—Rev. A to Rev. B  
Removed Automotive Information (Throughout)....................... 1  
Changes to Ordering Guide .......................................................... 22  
Deleted Automotive Products Section......................................... 22  
6/11—Rev. 0 to Rev. A  
Change to Features Section ............................................................. 1  
Change to ISS Parameter, Table 2..................................................... 5  
Changes to Figure 3........................................................................ 10  
Changes to Figure 5........................................................................ 11  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 21  
Added Automotive Products Section........................................... 21  
7/10—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
ADG5408/ADG5409  
SPECIFICATIONS  
15 V DUAL SUPPLY  
VDD = +15 V 10%, VSS = −15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
22  
V
13.5  
15  
0.3  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −10 mA; see Figure 26  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −10 mA  
18  
On-Resistance Match Between  
Channels, ∆RON  
0.8  
1.8  
2.2  
1.3  
2.6  
1.4  
3
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 10 V, IS = −10 mA  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.05  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 10 V, VD =  
10 V; see Figure 29  
0.25  
0.1  
0.4  
0.1  
0.4  
1
4
4
7
Drain Off Leakage, ID (Off)  
Channel On Leakage, ID (On), IS (On)  
DIGITAL INPUTS  
VS = 10 V, VD =  
10 V; see Figure 29  
30  
30  
VS = VD = 10 V; see Figure 25  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
170  
217  
140  
175  
130  
161  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 32  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V; see Figure 33  
258  
213  
183  
292  
242  
198  
16  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD 50  
Charge Injection, QINJ  
115  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 35  
Off Isolation  
−60  
−60  
0.01  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 28  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 27  
RL = 1 kΩ, 15 V p-p, f = 20 Hz to 20 kHz;  
see Figure 30  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
ADG5408  
ADG5409  
RL = 50 Ω, CL = 5 pF; see Figure 31  
50  
87  
0.9  
MHz typ  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
Figure 31  
CS (Off)  
15  
pF typ  
VS = 0 V, f = 1 MHz  
CD (Off)  
ADG5408  
ADG5409  
102  
50  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
Rev. B | Page 3 of 24  
 
 
ADG5408/ADG5409  
Data Sheet  
Parameter  
CD (On), CS (On)  
ADG5408  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
133  
81  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
ADG5409  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = −16.5 V  
Digital inputs = 0 V or VDD  
45  
55  
0.001  
µA typ  
µA max  
µA typ  
µA max  
70  
1
ISS  
Digital inputs = 0 V or VDD  
VDD/VSS  
9/ 22  
V min/V max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
20 V DUAL SUPPLY  
VDD = +20 V 10%, VSS = −20 V 10%, GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
21  
V
12.5  
14  
0.3  
Ω typ  
Ω max  
Ω typ  
VS = 15 V, IS = −10 mA; see Figure 26  
VDD = +18 V, VSS = −18 V  
VS = 15 V, IS = −10 mA  
17  
On-Resistance Match Between  
Channels, ∆RON  
0.8  
2.3  
2.7  
1.3  
3.1  
1.4  
3.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 15 V, IS = −10 mA  
VDD = +22 V, VSS = −22 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.1  
0.25  
0.15  
0.4  
0.15  
0.4  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 15 V, VD =  
15 V; see Figure 29  
1
4
4
7
Drain Off Leakage, ID (Off)  
VS = 15 V, VD =  
15 V; see Figure 29  
30  
30  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 15 V; see Figure 25  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
160  
207  
140  
165  
133  
153  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 32  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V; see Figure 33  
VS = 0 V, RS = 0 Ω, CL = 1 nF; see  
Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 28  
237  
194  
174  
262  
218  
189  
11  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD 38  
Charge Injection, QINJ  
Off Isolation  
155  
−60  
−60  
dB typ  
dB typ  
Channel-to-Channel Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 27  
Rev. B | Page 4 of 24  
 
 
Data Sheet  
ADG5408/ADG5409  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Total Harmonic Distortion + Noise  
0.012  
% typ  
RL = 1 kΩ, 20 V p-p, f = 20 Hz to 20 kHz;  
see Figure 30  
−3 dB Bandwidth  
ADG5408  
ADG5409  
RL = 50 Ω, CL = 5 pF; see Figure 31  
50  
88  
0.8  
MHz typ  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 31  
CS (Off)  
CD (Off)  
17  
pF typ  
VS = 0 V, f = 1 MHz  
ADG5408  
ADG5409  
98  
48  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
CD (On), CS (On)  
ADG5408  
ADG5409  
128  
80  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
IDD  
VDD = +22 V, VSS = −22 V  
Digital inputs = 0 V or VDD  
50  
70  
0.001  
µA typ  
µA max  
µA typ  
µA max  
110  
1
ISS  
Digital inputs = 0 V or VDD  
VDD/VSS  
9/ 22  
V min/V max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
42  
V
26  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA; see  
Figure 26  
VDD = 10.8 V, VSS = 0 V  
30  
0.3  
36  
Ω max  
Ω typ  
On-Resistance Match Between  
Channels, ∆RON  
VS = 0 V to 10 V, IS = −10 mA  
1
5.5  
6.5  
1.5  
8
1.6  
12  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
VDD = 13.2 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.02  
nA typ  
VS = 1 V/10 V, VD = 10 V/1 V; see  
Figure 29  
0.25  
0.05  
1
7
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V; see  
Figure 29  
0.4  
0.05  
0.4  
4
4
30  
30  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/10 V; see Figure 25  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
Rev. B | Page 5 of 24  
 
 
ADG5408/ADG5409  
Data Sheet  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
230  
321  
215  
276  
134  
161  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 32  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V; see Figure 33  
388  
345  
187  
430  
397  
209  
55  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD 118  
Charge Injection, QINJ  
45  
VS = 6 V, RS = 0 Ω, CL = 1 nF; see  
Figure 35  
Off Isolation  
−60  
−60  
0.1  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 28  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 27  
RL = 1 kΩ, 6 V p-p, f = 20 Hz to 20 kHz;  
see Figure 30  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
ADG5408  
ADG5409  
RL = 50 Ω, CL = 5 pF; see Figure 31  
35  
74  
−1.8  
MHz typ  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 31  
CS (Off)  
CD (Off)  
22  
pF typ  
VS = 6 V, f = 1 MHz  
ADG5408  
ADG5409  
119  
59  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
CD (On), CS (On)  
ADG5408  
ADG5409  
146  
86  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 13.2 V  
POWER REQUIREMENTS  
IDD  
40  
50  
µA typ  
µA max  
Digital inputs = 0 V or VDD  
65  
VDD  
9/40  
V min/V max GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 4.  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
23  
V
14.5  
Ω typ  
VS = 0 V to 30 V, IS = −10 mA; see  
Figure 26  
VDD = 32.4 V, VSS = 0 V  
16  
0.3  
19  
Ω max  
Ω typ  
On-Resistance Match Between  
Channels, ∆RON  
VS = 0 V to 30 V, IS = −10 mA  
0.8  
3.5  
4.3  
1.3  
5.5  
1.4  
6.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to 30 V, IS = −10 mA  
VDD =39.6 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.1  
nA typ  
VS = 1 V/30 V, VD = 30 V/1 V; see  
Figure 29  
0.25  
1
7
nA max  
Rev. B | Page 6 of 24  
 
 
Data Sheet  
ADG5408/ADG5409  
Parameter  
25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Drain Off Leakage, ID (Off)  
0.15  
nA typ  
VS = 1 V/30 V, VD = 30 V/1 V; see  
Figure 29  
0.4  
0.15  
0.4  
4
4
30  
30  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/30 V; see Figure 25  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
187  
242  
160  
195  
147  
184  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 32  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 18 V; see Figure 33  
257  
219  
184  
281  
237  
190  
17  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD 53  
Charge Injection, QINJ  
150  
VS = 18 V, RS = 0 Ω, CL = 1 nF;  
see Figure 35  
Off Isolation  
−60  
−60  
0.4  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 28  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 27  
RL = 1 kΩ, 18 V p-p, f = 20 Hz to 20 kHz;  
see Figure 30  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
ADG5408  
ADG5409  
RL = 50 Ω, CL = 5 pF; see Figure 31  
45  
76  
−1  
MHz typ  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 31  
CS (Off)  
CD (Off)  
18  
pF typ  
VS = 18 V, f = 1 MHz  
ADG5408  
ADG5409  
120  
60  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
CD (On), CS (On)  
ADG5408  
ADG5409  
137  
80  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VDD = 39.6 V  
POWER REQUIREMENTS  
IDD  
80  
µA typ  
Digital inputs = 0 V or VDD  
100  
130  
µA max  
VDD  
9/40  
V min/V max GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 7 of 24  
 
ADG5408/ADG5409  
Data Sheet  
CONTINUOUS CURRENT PER CHANNEL, Sx OR D  
Table 5. ADG5408  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR D  
VDD = +15 V, VSS = −15 V  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = +20 V, VSS = −20 V  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 12 V, VSS = 0 V  
100  
170  
44  
54  
16  
16  
mA maximum  
mA maximum  
106  
178  
45  
55  
16  
16  
mA maximum  
mA maximum  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 36 V, VSS = 0 V  
81  
140  
39  
51  
15  
16  
mA maximum  
mA maximum  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
104  
175  
44  
55  
16  
16  
mA maximum  
mA maximum  
Table 6. ADG5409  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR D  
VDD = +15 V, VSS = −15 V  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = +20 V, VSS = −20 V  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 12 V, VSS = 0 V  
75  
130  
37  
49  
15  
16  
mA maximum  
mA maximum  
79  
136  
38  
50  
15  
16  
mA maximum  
mA maximum  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 36 V, VSS = 0 V  
60  
105  
32  
44  
14  
16  
mA maximum  
mA maximum  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
78  
133  
38  
50  
15  
16  
mA maximum  
mA maximum  
Rev. B | Page 8 of 24  
 
 
Data Sheet  
ADG5408/ADG5409  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
Rating  
VDD to VSS  
48 V  
−0.3 V to +48 V  
+0.3 V to −48 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
VDD to GND  
VSS to GND  
Analog Inputs1  
Digital Inputs1  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
Only one absolute maximum rating can be applied at any  
one time.  
Peak Current, Sx or D Pins  
ADG5408  
ESD CAUTION  
370 mA (pulsed at 1 ms, 10%  
duty cycle maximum)  
ADG5409  
275 mA (pulsed at 1 ms, 10%  
duty cycle maximum)  
Continuous Current, Sx or D2  
Temperature Range  
Operating  
Storage  
Junction Temperature  
Thermal Impedance, θJA  
Data + 15%  
−40°C to +125°C  
−65°C to +150°C  
150°C  
16-Lead TSSOP (4-Layer  
Board)  
16-Lead LFCSP (4-Layer  
Board)  
112.6°C/W  
30.4°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
260(+0/−5)°C  
1 Overvoltages at the Ax, EN, Sx, and D pins are clamped by internal diodes.  
Limit current to the maximum ratings given.  
2 See Table 5.  
Rev. B | Page 9 of 24  
 
 
 
ADG5408/ADG5409  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
EN  
A1  
A2  
V
GND  
SS  
V
1
2
3
4
12 GND  
SS  
S1  
V
ADG5408  
TOP VIEW  
(Not to Scale)  
ADG5408  
TOP VIEW  
(Not to Scale)  
V
11  
DD  
S1  
S2  
S3  
DD  
S2  
S3  
S4  
D
S5  
S6  
S7  
S8  
10 S5  
9
S6  
NOTES  
1. THE EXPOSED PAD IS  
CONNECTED INTERNALLY. FOR  
INCREASED RELIABILITY OF THE  
SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY, IT IS  
RECOMMENDED THAT THE PAD BE  
SOLDERED TO THE SUBSTRATE, V  
.
SS  
Figure 2. ADG5408 Pin Configuration (TSSOP)  
Figure 3. ADG5408 Pin Configuration (LFCSP)  
Table 8. ADG5408 Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
15  
16  
Mnemonic  
Description  
1
2
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high,  
Ax logic inputs determine on switches.  
3
1
VSS  
Most Negative Power Supply Potential. In single-supply applications, this pin can be connected  
to ground.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
EP  
S1  
S2  
S3  
S4  
D
S8  
S7  
S6  
S5  
VDD  
GND  
A2  
A1  
Source Terminal 1. This pin can be an input or an output.  
Source Terminal 2. This pin can be an input or an output.  
Source Terminal 3. This pin can be an input or an output.  
Source Terminal 4. This pin can be an input or an output.  
Drain Terminal. This pin can be an input or an output.  
Source Terminal 8. This pin can be an input or an output.  
Source Terminal 7. This pin can be an input or an output.  
Source Terminal 6. This pin can be an input or an output.  
Source Terminal 5. This pin can be an input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Logic Control Input.  
Logic Control Input.  
Exposed Pad The exposed pad is connected internally. For increased reliability of the solder joints and  
maximum thermal capability, it is recommended that the pad be soldered to the substrate, VSS.  
Table 9. ADG5408 Truth Table  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
X
0
1
0
1
0
1
0
EN  
0
1
1
1
1
1
1
1
On Switch  
None  
1
2
3
4
5
6
7
8
1
1
1
1
Rev. B | Page 10 of 24  
 
Data Sheet  
ADG5408/ADG5409  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
EN  
A1  
GND  
V
V
DD  
SS  
V
1
2
3
4
12 V  
SS  
DD  
S1B  
S2B  
S3B  
ADG5409  
TOP VIEW  
(Not to Scale)  
S1A  
S1B  
S2B  
S3B  
S4B  
DB  
ADG5409  
TOP VIEW  
(Not to Scale)  
11  
10  
9
S1A  
S2A  
S3A  
S2A  
S3A  
S4A  
DA  
NOTES  
1. THE EXPOSED PAD IS  
CONNECTED INTERNALLY. FOR  
INCREASED RELIABILITY OF THE  
SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY, IT IS  
RECOMMENDED THAT THE PAD BE  
SOLDERED TO THE SUBSTRATE, V  
.
SS  
Figure 4. ADG5409 Pin Configuration (TSSOP)  
Figure 5. ADG5409 Pin Configuration (LFCSP)  
Table 10. ADG5409 Pin Function Descriptions  
Pin No.  
TSSOP LFCSP  
Mnemonic Description  
1
2
15  
16  
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high,  
Ax logic inputs determine on switches.  
3
1
VSS  
Most Negative Power Supply Potential. In single-supply applications, this pin can be connected  
to ground.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
EP  
S1A  
S2A  
S3A  
S4A  
DA  
Source Terminal 1A. This pin can be an input or an output.  
Source Terminal 2A. This pin can be an input or an output.  
Source Terminal 3A. This pin can be an input or an output.  
Source Terminal 4A. This pin can be an input or an output.  
Drain Terminal A. This pin can be an input or an output.  
Drain Terminal B. This pin can be an input or an output.  
Source Terminal 4B. This pin can be an input or an output.  
Source Terminal 3B. This pin can be an input or an output.  
Source Terminal 2B. This pin can be an input or an output.  
Source Terminal 1B. This pin can be an input or an output.  
Most Positive Power Supply Potential.  
DB  
S4B  
S3B  
S2B  
S1B  
VDD  
GND  
A1  
Ground (0 V) Reference.  
Logic Control Input.  
Exposed  
Pad  
The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the substrate, VSS.  
Table 11. ADG5409 Truth Table  
A1  
A0  
EN  
0
On Switch Pair  
X
X
None  
0
0
1
1
0
1
0
1
1
1
1
1
1
2
3
4
Rev. B | Page 11 of 24  
ADG5408/ADG5409  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
16  
14  
12  
10  
8
T
= 25°C  
T
= 25°C  
A
A
V
V
= +10V  
= –10V  
V
V
= +9V  
= –9V  
DD  
SS  
DD  
SS  
20  
15  
10  
5
V
V
= +11V  
= –11V  
DD  
SS  
V
V
= 32.4V  
= 0V  
DD  
SS  
V
V
= 39.6V  
= 0V  
V
V
= 36V  
= 0V  
DD  
SS  
DD  
SS  
V
V
= +13.5V  
= –13.5V  
6
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
4
2
0
–18  
0
–14  
–10  
–6  
–2  
2
6
10  
14  
18  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 9. RON as a Function of VS, VD (Single Supply)  
Figure 6. RON as a Function of VS, VD (Dual Supply)  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
T
= 25°C  
A
V
V
= +18V  
= –18V  
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
A
A
V
V
= +22V  
= –22V  
V
V
= +20V  
= –20V  
DD  
SS  
DD  
T
T
= +25°C  
= –40°C  
SS  
6
4
2
V
V
= +15V  
= –15V  
DD  
SS  
0
–15  
0
–10  
–5  
0
5
10  
15  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 10. RON as a Function of VS (VD) for Different Temperatures,  
15 V Dual Supply  
Figure 7. RON as a Function of VS, VD (Dual Supply)  
25  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
V
V
= +20V  
= –20V  
T
= 25°C  
DD  
SS  
A
V
V
= 10V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
V
V
= 9V  
= 0V  
20  
15  
10  
5
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
A
A
V
V
= 11V  
= 0V  
DD  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
T
T
= +25°C  
= –40°C  
V
V
= 13.2V  
= 0V  
DD  
SS  
0
–20  
0
–15  
–10  
–5  
0
5
10  
15  
20  
0
–2  
–4  
–6  
–8  
V , V (V)  
–10  
–12  
–14  
S
D
V , V (V)  
S
D
Figure 8. RON as a Function of VS, VD (Single Supply)  
Figure 11. RON as a Function of VS (VD) for Different Temperatures,  
20 V Dual Supply  
Rev. B | Page 12 of 24  
 
Data Sheet  
ADG5408/ADG5409  
40  
35  
30  
25  
20  
15  
10  
5
1
0
V
V
V
= +20V  
= –20V  
BIAS  
I
, I (ON) + +  
S
DD  
SS  
D
I
(OFF) + –  
S
= +15V/–15V  
T
= +125°C  
= +85°C  
A
T
A
I
(OFF) – +  
D
I
(OFF) – +  
S
T
T
= +25°C  
= –40°C  
A
–1  
–2  
–3  
I
, I (ON) – –  
S
D
A
I
(OFF) + –  
D
V
V
= 12V  
= 0V  
DD  
SS  
0
0
2
4
6
8
10  
12  
0
25  
50  
75  
100  
125  
V , V (V)  
TEMPERATURE (°C)  
S
D
Figure 12. RON as a Function of VS (VD) for Different Temperatures,  
12 V Single Supply  
Figure 15. Leakage Currents vs. Temperature, 20 V Dual Supply  
0.5  
25  
V
V
V
= 12V  
= 0V  
BIAS  
V
V
= 36V  
= 0V  
I
, I (ON) + +  
S
DD  
SS  
DD  
SS  
D
= 1V/10V  
I
(OFF) + –  
S
20  
15  
10  
5
0
–0.5  
–1.0  
–1.5  
–2.0  
I
(OFF) – +  
D
T
= +125°C  
= +85°C  
A
I
(OFF) – +  
S
T
A
A
A
I
, I (ON) – –  
S
D
T
T
= +25°C  
= –40°C  
I
(OFF) + –  
D
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
25  
50  
75  
100  
125  
V
, V (V)  
D
TEMPERATURE (°C)  
S
Figure 16. Leakage Currents vs. Temperature, 12 V Single Supply  
Figure 13. RON as a Function of VD (VS) for Different Temperatures,  
36 V Single Supply  
1
0.5  
V
V
V
= +15V  
= –15V  
BIAS  
V
V
V
= +36V  
= 0V  
BIAS  
I
, I (ON) + +  
S
DD  
SS  
DD  
SS  
D
I
, I (ON) + +  
S
D
I (OFF) + –  
S
= +10V/–10V  
I
(OFF) + –  
= 1V/30V  
S
0
–0.5  
–1.0  
–1.5  
–2.0  
0
–1  
–2  
–3  
I
(OFF) – +  
D
I
(OFF) – +  
I
(OFF) – +  
S
D
I
(OFF) – +  
S
I
, I (ON) – –  
S
D
I
, I (ON) – –  
S
D
I
(OFF) + –  
D
I
(OFF) + –  
D
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Leakage Currents vs. Temperature, 36 V Single Supply  
Figure 14. Leakage Currents vs. Temperature, 15 V Dual Supply  
Rev. B | Page 13 of 24  
ADG5408/ADG5409  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
V
= 25°C  
= +15V  
T
= 25°C  
= +15V  
SS  
A
A
DD  
V
V
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= –15V  
= –15V  
SS  
NO DECOUPLING  
CAPACITORS  
DECOUPLING  
CAPACITORS  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1G  
40  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 21. ACPSRR vs. Frequency, 15 V Dual Supply  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
V
= 12V, V = 0V, V = 6V p-p  
SS  
DD  
S
LOAD = 1kΩ  
T
= 25°C  
A
V
V
= 36V, V = 0V, V = 18V p-p  
SS  
DD  
S
= 15V, V = 15V, V = 15V p-p  
SS  
DD  
S
V
= 20V, V = 20V, V = 20V p-p  
SS  
DD  
S
10k  
100k  
1M  
10M  
100M  
0
5
10  
FREQUENCY (kHz)  
15  
20  
FREQUENCY (Hz)  
Figure 19. Crosstalk vs. Frequency, 15 V Dual Supply  
Figure 22. THD + N vs. Frequency  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
300  
250  
200  
150  
100  
50  
T
= 25°C  
= +15V  
A
T
= 25°C  
A
V
V
= +20V  
= –20V  
V
V
DD  
SS  
DD  
SS  
= –15V  
ADG5409  
ADG5408  
V
V
= +36V  
= 0V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
0
1k  
10k  
100k  
1M  
10M  
100M  
1G  
20  
10  
0
10  
20  
30  
FREQUENCY (Hz)  
V
(V)  
S
Figure 23. Bandwidth  
Figure 20. Charge Injection vs. Source Voltage  
Rev. B | Page 14 of 24  
Data Sheet  
ADG5408/ADG5409  
400  
350  
300  
250  
200  
150  
V
= +12V, V = 0V  
SS  
DD  
V
= +36V, V = 0V  
SS  
DD  
V
= +15V, V = –15V  
SS  
DD  
V
= +20V, V = –20V  
SS  
DD  
100  
50  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 24. tTRANSITION Times vs. Temperature  
Rev. B | Page 15 of 24  
ADG5408/ADG5409  
TEST CIRCUITS  
Data Sheet  
I
(ON)  
A
I
(OFF)  
A
I
D
(OFF)  
A
D
S
Sx  
D
Sx  
Dx  
NC  
V
V
D
V
S
D
NC = NO CONNECT  
Figure 29. Off Leakage  
Figure 25. On Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
AUDIO PRECISION  
V
V
DD  
SS  
R
S
I
DS  
Sx  
IN  
V
S
V p-p  
V1  
D
V
OUT  
V
IN  
R
L
Sx  
D
10k  
GND  
V
S
R
= V /I  
1 DS  
ON  
Figure 30. THD + Noise Figure  
Figure 26. On Resistance  
V
V
DD  
SS  
V
V
DD  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
DD  
SS  
S1  
V
OUT  
R
L
50  
D
Sx  
50  
S2  
R
50Ω  
L
V
S
D
V
OUT  
V
S
R
L
50Ω  
GND  
GND  
V
WITH SWITCH  
OUT  
V
OUT  
INSERTION LOSS = 20 log  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
WITHOUT SWITCH  
V
OUT  
S
Figure 31. Bandwidth  
Figure 27. Channel-to-Channel Crosstalk  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
50  
Sx  
50Ω  
V
S
D
V
OUT  
R
L
50Ω  
GND  
V
V
OUT  
OFF ISOLATION = 20 log  
S
Figure 28. Off Isolation  
Rev. B | Page 16 of 24  
 
 
 
 
 
 
 
 
Data Sheet  
ADG5408/ADG5409  
V
V
V
V
DD  
SS  
3V  
tr < 20ns  
tf < 20ns  
DD  
SS  
ADDRESS  
DRIVE (V  
50%  
50%  
A0  
A1  
A2  
)
IN  
S1  
V
S1  
0V  
V
IN  
50Ω  
S2 TO S7  
tTRANSITION  
tTRANSITION  
90%  
S8  
V
S8  
ADG5408*  
OUTPUT  
D
2.4V  
EN  
OUTPUT  
300Ω  
GND  
35pF  
90%  
*
SIMILAR CONNECTION FOR ADG5409.  
Figure 32. Address to Output Switching Times, tTRANSITION  
V
V
V
DD  
SS  
SS  
3V  
V
DD  
ADDRESS  
A0  
A1  
A2  
DRIVE (V  
)
IN  
S1  
V
S
V
IN  
50Ω  
0V  
S2 TO S7  
S8  
80%  
80%  
ADG5408*  
OUTPUT  
OUTPUT  
D
2.4V  
EN  
300Ω  
GND  
35pF  
tD  
*SIMILAR CONNECTION FOR ADG5409.  
Figure 33. Break-Before-Make Delay, tD  
V
V
V
V
DD  
SS  
3V  
DD  
SS  
A0  
A1  
A2  
ENABLE  
DRIVE (V  
50%  
50%  
)
S1  
S2 TO S8  
V
IN  
S
0V  
ADG5408*  
tON (EN)  
tOFF (EN)  
OUTPUT  
0.9V  
0.9V  
O
D
EN  
O
OUTPUT  
V
35pF  
IN  
50Ω  
300Ω  
GND  
*SIMILAR CONNECTION FOR ADG5409.  
Figure 34. Enable Delay, tON (EN), tOFF (EN)  
V
V
DD  
DD  
SS  
SS  
V
V
3V  
A0  
A1  
A2  
V
V
IN  
ADG5408*  
R
S
Sx  
D
OUT  
V
ΔV  
OUT  
OUT  
EN  
C
1nF  
L
V
Q
= C × ΔV  
OUT  
S
INJ  
L
GND  
V
IN  
*SIMILAR CONNECTION FOR ADG5409.  
Figure 35. Charge Injection  
Rev. B | Page 17 of 24  
 
 
 
 
ADG5408/ADG5409  
Data Sheet  
TERMINOLOGY  
IDD  
CIN  
IN represents digital input capacitance.  
ON (EN)  
ON (EN) represents the delay time between the 50% and 90%  
points of the digital input and switch on condition.  
OFF (EN)  
OFF (EN) represents the delay time between the 50% and 90%  
I
DD represents the positive supply current.  
C
ISS  
t
t
I
SS represents the negative supply current.  
VD, VS  
VD and VS represent the analog voltage on Terminal D and  
Terminal S, respectively.  
t
t
points of the digital input and switch off condition.  
RON  
RON is the ohmic resistance between Terminal D and  
tTRANSITION  
Terminal S.  
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from one  
address state to another.  
∆RON  
∆RON represents the difference between the RON of any two  
channels.  
tD  
RFLAT (ON)  
tD represents the off time measured between the 80% point of  
both switches when switching from one address state to  
another.  
The difference between the maximum and minimum value of  
on resistance as measured over the specified analog signal range  
is represented by RFLAT (ON)  
.
Off Isolation  
IS (Off)  
Off isolation is a measure of unwanted signal coupling through  
an off channel.  
IS (Off) is the source leakage current with the switch off.  
ID (Off)  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
ID (Off) is the drain leakage current with the switch off.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
Crosstalk  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
VINL  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
INL and IINH represent the low and high input currents of the  
Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
V
I
I
On Response  
On response is the frequency response of the on switch.  
digital inputs.  
Total Harmonic Distortion + Noise (THD + N)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental is represented by THD + N.  
CD (Off)  
CD (Off) represents the off switch drain capacitance, which is  
measured with reference to ground.  
AC Power Supply Rejection Ratio (ACPSRR)  
CS (Off)  
ACPSRR is a measure of the ability of a part to avoid coupling  
noise and spurious signals that appear on the supply voltage pin  
to the output of the switch. The dc voltage on the device is  
modulated by a sine wave of 0.62 V p-p. The ratio of the  
amplitude of signal on the output to the amplitude of the  
modulation is the ACPSRR.  
CS (Off) represents the off switch source capacitance, which is  
measured with reference to ground.  
CD (On), CS (On)  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
Rev. B | Page 18 of 24  
 
Data Sheet  
ADG5408/ADG5409  
TRENCH ISOLATION  
NMOS  
PMOS  
In the ADG5408/ADG5409, an insulating oxide layer (trench)  
is placed between the NMOS and the PMOS transistors of each  
CMOS switch. Parasitic junctions, which occur between the  
transistors in junction isolated switches, are eliminated, and the  
result is a completely latch-up proof switch.  
In junction isolation, the N and P wells of the PMOS and  
NMOS transistors form a diode that is reverse-biased under  
normal operation. However, during overvoltage conditions, this  
diode can become forward-biased. A silicon controlled rectifier  
(SCR) type circuit is formed by the two transistors causing a  
significant amplification of the current that, in turn, leads to  
latch-up. With trench isolation, this diode is removed, and the  
result is a latch-up proof switch.  
P-WELL  
N-WELL  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 36. Trench Isolation  
Rev. B | Page 19 of 24  
 
ADG5408/ADG5409  
Data Sheet  
APPLICATIONS INFORMATION  
The ADG54xx family switches and multiplexers provide a  
robust solution for instrumentation, industrial, aerospace, and  
other harsh environments that are prone to latch-up, which is  
an undesirable high current state that can lead to device failure  
and persist until the power supply is turned off. The ADG5408/  
ADG5409 high voltage switches allow single-supply operation  
from 9 V to 40 V and dual-supply operation from 9 V to  
22 V. The ADG5408/ADG5409 (as well as select devices  
within the same family) achieve an 8 kV human body model  
ESD rating that provides a robust solution eliminating the need  
for separate protect circuitry designs in some applications.  
Rev. B | Page 20 of 24  
 
Data Sheet  
ADG5408/ADG5409  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 37. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 38. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
Rev. B | Page 21 of 24  
 
ADG5408/ADG5409  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
RU-16  
RU-16  
CP-16-17  
RU-16  
RU-16  
ADG5408BRUZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
ADG5408BRUZ-REEL7  
ADG5408BCPZ-REEL7  
ADG5409BRUZ  
ADG5409BRUZ-REEL7  
ADG5409BCPZ-REEL7  
CP-16-17  
1 Z = RoHS Compliant Part.  
Rev. B | Page 22 of 24  
 
 
Data Sheet  
NOTES  
ADG5408/ADG5409  
Rev. B | Page 23 of 24  
ADG5408/ADG5409  
NOTES  
Data Sheet  
©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09206-0-5/12(B)  
Rev. B | Page 24 of 24  

相关型号:

ADG5409TCPZ-EP

High Voltage Latch-up Proof 4-Channel Multiplexer
ADI

ADG5412

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412BCPZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412BF

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412BFBCPZ-RL7

Bidirectional Fault Protection and Detection, 10 &Omega; RON, Quad SPST Switches
ADI

ADG5412BFBRUZ

Bidirectional Fault Protection and Detection, 10 &Omega; RON, Quad SPST Switches
ADI

ADG5412BFBRUZ-RL7

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412BRUZ

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412BRUZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412F

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412FBCPZ-RL7

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412FBRUZ

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI