ADGS1408BCPZ-RL7 [ADI]

SPI Interface, 4 Ω RON, ±15 V/12 V/±5 V, 1.8 V Logic Control, 8:1/Dual 4:1 Muxes;
ADGS1408BCPZ-RL7
型号: ADGS1408BCPZ-RL7
厂家: ADI    ADI
描述:

SPI Interface, 4 Ω RON, ±15 V/12 V/±5 V, 1.8 V Logic Control, 8:1/Dual 4:1 Muxes

文件: 总34页 (文件大小:498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPI Interface, 4 Ω RON, ± ±1 ꢀV/±ꢁ ꢀV± 1 ꢀ,  
±.8 ꢀ Logic Control, 8:±VDual 4:± Muxes  
ADGS±408VADGS±409  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
SPI interface with error detection  
ADGS1408  
Includes CRC, invalid read/write address, and SCLK count  
error detection  
S1  
Supports burst mode and daisy-chain mode  
Industry-standard SPI Mode 0 and SPI Mode 3 interface  
compatible  
D
Round robin mode allows switching times comparable with a  
parallel interface  
General-purpose digital outputs to control other devices,  
such as parallel switches from Analog Devices, Inc.  
4 Ω typical on resistance at 25°C  
S8  
GPO1  
GPO2  
GPO3  
GPO4  
CNV  
SDO  
SPI  
INTERFACE  
0.5 Ω typical on-resistance flatness at 25°C  
0.2 Ω typical on-resistance match between channels at 25°C  
SCLK SDI CS RESET/V  
L
Figure 1. ADGS1408 Functional Block Diagram  
V
SS to VDD analog signal range  
ADGS1409  
Fully specified at 15 V, 5 V, and +12 V  
Power-up sequence of VDD, VSS, and GND before applying  
VL and digital/analog inputs  
S1A  
DA  
S4A  
1.8 V logic compatibility with 2.7 V ≤ VL ≤ 3.3 V  
24-lead LFCSP package  
S1B  
APPLICATIONS  
Automated test equipment  
Data acquisition systems  
Battery-powered systems  
DB  
S4B  
GPO1  
CNV  
SDO  
GPO2  
GPO3  
GPO4  
GPO5  
SPI  
INTERFACE  
Sample-and-hold systems  
Audio signal routing  
SCLK SDI CS RESET/V  
Video signal routing  
L
Communications systems  
Figure 2. ADGS1409 Functional Block Diagram  
Relay replacement  
supplies. In the off condition, signal levels up to the supplies  
are blocked.  
The on-resistance profile is flat over the full analog input range,  
which ensures linearity and low distortion when switching  
audio signals.  
GENERAL DESCRIPTION  
The ADGS1408/ADGS1409 are analog multiplexers comprising  
eight single channels and four differential channels, respectively.  
A serial peripheral interface (SPI) controls the switches. The SPI  
interface has robust error detection features such as cyclic  
redundancy check (CRC) error detection, invalid read/write  
address detection, and SCLK count error detection.  
PRODUCT HIGHLIGHTS  
1. SPI interface removes the need for parallel conversion,  
logic traces, and reduces GPIO channel count.  
2. Daisy-chain mode removes additional logic traces when  
multiple devices are used.  
It is possible to daisy-chain multiple ADGS1408/ADGS1409  
devices together. Daisy-chain mode enables the configuration of  
multiple devices with a minimal amount of digital lines. The  
ADGS1408/ADGS1409 can also operate in burst mode to  
decrease the time between SPI commands.  
3. CRC error detection, invalid read/write address detection,  
and SCLK count error detection ensure a robust digital  
interface.  
4. CRC and error detection capabilities allow the use of the  
ADGS1408/ADGS1409 in safety critical systems.  
5. Minimal distortion.  
iCMOS construction ensures ultra low power dissipation, making  
the devices ideally suited for portable and battery-powered  
instruments.  
Each switch conducts equally well in both directions when on,  
and each switch has an input signal range that extends to the  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADGS±408VADGS±409  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Software Reset............................................................................. 24  
Daisy-Chain Mode..................................................................... 24  
Power-On Reset.......................................................................... 25  
Round Robin Mode.................................................................... 26  
General-Purpose Outputs (GPOs) .......................................... 27  
Applications Information.............................................................. 28  
Digital Input Buffers .................................................................. 28  
Power Supply Rails..................................................................... 28  
Power Supply Recommendations............................................. 28  
Power Supply Sequencing ......................................................... 28  
Register Summaries........................................................................ 29  
Register Details ............................................................................... 30  
Switch Data Register .................................................................. 30  
Error Configuration Register.................................................... 31  
Error Flags Register.................................................................... 31  
Burst Enable Register................................................................. 32  
Round Robin Enable Register................................................... 32  
Round Robin Channel Configuration Register ..................... 32  
CNꢀ Edge Select Register......................................................... 33  
Software Reset Register ............................................................. 33  
Outline Dimensions....................................................................... 34  
Ordering Guide .......................................................................... 34  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
15 ꢀ Dual Supply ....................................................................... 3  
5 ꢀ Dual Supply ......................................................................... 5  
12 ꢀ Single Supply........................................................................ 7  
Continuous Current per Channel, Sx or Dx............................. 9  
Timing Characteristics .............................................................. 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Resistance .................................................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions ......................... 13  
Typical Performance Characteristics ........................................... 15  
Test Circuits..................................................................................... 19  
Terminology .................................................................................... 22  
Theory of Operation ...................................................................... 23  
Address Mode ............................................................................. 23  
Error Detection Features ........................................................... 23  
Clearing the Error Flags Register ............................................. 24  
Burst Mode.................................................................................. 24  
REVISION HISTORY  
6/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 34  
 
Data Sheet  
ADGS±408VADGS±409  
SPECIFICATIONS  
15 V DUAL SUPPLY  
DD = +15 ꢀ 10%, ꢀSS = −15 ꢀ 10%, ꢀL = 2.7 ꢀ to 5.5 , and GND = 0 , unless otherwise noted.  
Table 1.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
6.7  
V
4
4.7  
0.2  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −10 mA, see Figure 32  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −10 mA  
5.7  
On-Resistance Match Between  
Channels, ∆RON  
0.78  
0.5  
0.72  
0.85  
0.77  
1.1  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 10 V, IS = −10 mA  
0.92  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.04  
0.2  
0.04  
0.45  
0.1  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 10 V, VD = 10 V, see Figure 35  
0.6  
2.0  
3.0  
5.0  
Drain Off Leakage, ID (Off)  
VS = 10 V, VD = 10 V, see Figure 35  
VS = VD = 10 V, see Figure 31  
30.0  
30.0  
Channel On Leakage, ID (On), IS (On)  
1.5  
DIGITAL OUTPUTS  
SDO  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage  
Current  
0.001  
4
0.1  
μA max  
pF typ  
High Impedance Output  
Capacitance  
GPOx  
Output Voltage  
High, VOH  
Low, VOL  
VL − 0.2 V  
0.2  
V min  
V max  
ISOURCE = 100 μA  
ISINK = 100 μA  
Timing  
tON (GPO)  
95  
115  
15  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
CL = 15 pF, see Figure 43  
CL = 15 pF, see Figure 43  
CL = 15 pF, see Figure 44  
115  
25  
115  
25  
tOFF (GPO)  
20  
Break-Before-Make Time Delay, 50  
tD  
35  
ns min  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, IINL or IINH  
Digital Input Capacitance, CIN  
0.001  
4
0.1  
Rev. 0 | Page 3 of 34  
 
 
ADGS±408VADGS±409  
Data Sheet  
Parameter  
DYNAMIC CHARACTERISTICS1  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Transition Time, tTRANSITION  
145  
185  
120  
ns typ  
ns max  
ns typ  
RL = 100 Ω, CL = 35 pF  
VS = 10 V, see Figure 40  
RL = 100 Ω, CL = 35 pF  
220  
185  
245  
200  
tON (EN)  
tOFF (EN)  
165  
125  
155  
ns max  
ns typ  
VS = 10 V, see Figure 41  
RL = 100 Ω, CL = 35 pF  
VS = 10 V, see Figure 41  
175  
195  
20  
ns max  
Break-Before-Make Time Delay, tD 40  
ns typ  
ns min  
pC typ  
RL = 100 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 39  
VS = 0 V, RS = 0 Ω, CL = 1 nF,  
see Figure 42  
Charge Injection, QINJ  
−50  
Off Isolation  
−64  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 33  
RL = 110 Ω, 15 V p-p, f = 20 Hz to  
20 kHz, see Figure 36  
Channel to Channel Crosstalk  
Total Harmonic Distortion + Noise  
−70  
0.025  
−3 dB Bandwidth  
ADGS1408  
ADGS1409  
RL = 50 Ω, CL = 5 pF, see Figure 37  
60  
115  
0.24  
MHz typ  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 26 and Figure 27  
CS (Off)  
CD (Off)  
14  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
ADGS1408  
ADGS1409  
CD (On), CS (On)  
ADGS1408  
ADGS1409  
POWER REQUIREMENTS  
IDD  
80  
40  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
135  
90  
pF typ  
pF typ  
VDD = +16.5 V, VSS = −16.5 V  
All switches open  
0.002  
220  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
1
S8/S4A closed, VL = 5.5 V  
S8/S4A closed, VL = 2.7 V  
380  
440  
270  
IL  
Inactive  
6.3  
μA typ  
μA max  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
SCLK = 50 MHz  
14  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
7
390  
210  
15  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
7.5  
230  
120  
1.8  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
mA max  
Rev. 0 | Page 4 of 34  
Data Sheet  
ADGS±408VADGS±409  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
0.002 μA typ  
Test Conditions/Comments  
ISS  
Digital inputs = 0 V or VL  
1
μA max  
V min  
VDD/VSS  
4.5  
GND = 0 V  
GND = 0 V  
16.5  
V max  
1 Guaranteed by design; not subject to production test.  
5 V DUAL SUPPLY  
DD = +5 ꢀ 10%, ꢀSS = −5 ꢀ 10%, ꢀL = 2.7 ꢀ to 5.5 , and GND = 0 , unless otherwise noted.  
Table 2.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
7.4  
Ω typ  
VS = 4.5 V, IS = −10 mA, see  
Figure 32  
9
0.3  
10.5  
12  
Ω max  
Ω typ  
VDD = +4.5 V, VSS = −4.5 V  
VS = 4.5 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.78  
1.5  
2.5  
0.91  
2.5  
1.1  
2.8  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 4.5 V, IS = −10 mA  
LEAKAGE CURRENTS  
VDD = +5.5 V, VSS = −5.5 V  
Source Off Leakage, IS (Off)  
0.02  
0.2  
0.02  
nA typ  
nA max  
nA typ  
VS = 4.5 V, VD = 4.5 V, Figure 35  
0.6  
5.0  
Drain Off Leakage, ID (Off)  
VS = 4.5 V, VD = 4.5 V, see  
Figure 35  
0.45  
0.04  
0.3  
0.8  
1.1  
20.0  
22.0  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 4.5 V, see Figure 31  
DIGITAL OUTPUTS  
SDO  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage Current 0.001  
0.1  
High Impedance Output  
Capacitance  
4
GPOx  
Output Voltage  
High, VOH  
Low, VOL  
VL − 0.2 V  
0.2  
V min  
V max  
ISOURCE = 100 μA  
ISINK = 100 μA  
Timing  
tON (GPO)  
95  
115  
15  
20  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
CL = 15 pF, see Figure 43  
CL = 15 pF, see Figure 43  
CL = 15 pF, see Figure 44  
115  
25  
115  
25  
tOFF (GPO)  
Break-Before-Make Time Delay, tD  
50  
35  
Rev. 0 | Page 5 of 34  
 
ADGS±408VADGS±409  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, IINL or IINH  
0.001  
4
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
320  
440  
265  
365  
245  
330  
95  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 100 Ω, CL = 35 pF  
VS = 3 V, see Figure 40  
RL = 100 Ω, CL = 35 pF  
VS = 3 V, see Figure 41  
RL = 100 Ω, CL = 35 pF  
VS = 3 V, see Figure 41  
RL = 100 Ω, CL = 35 pF  
VS1 = VS2 = 3 V, see Figure 39  
VS = 0 V, RS = 0 Ω, CL = 1 nF,  
see Figure 42  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 34  
515  
425  
370  
570  
470  
400  
55  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
–10  
–64  
–70  
0.06  
Off Isolation  
dB typ  
dB typ  
% typ  
Channel to Channel Crosstalk  
Total Harmonic Distortion + Noise  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 33  
RL = 110 Ω, 5 V p-p, f = 20 Hz to  
20 kHz, see Figure 36  
−3 dB Bandwidth  
ADGS1408  
ADGS1409  
RL = 50 Ω, CL = 5 pF, see Figure 37  
40  
80  
0.5  
MHz typ  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 26 and Figure 27  
CS (Off)  
CD (Off)  
20  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
ADGS1408  
ADGS1409  
CD (On), CS (On)  
ADGS1408  
ADGS1409  
POWER REQUIREMENTS  
IDD  
130  
65  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
180  
120  
pF typ  
pF typ  
VDD = +5.5 V, VSS = −5.5 V  
Digital inputs = 0 V or VL, VL =  
5.5 V  
0.002  
14  
μA typ  
1
μA max  
μA typ  
μA max  
S8/S4A closed, VL = 2.7 V  
20  
Rev. 0 | Page 6 of 34  
Data Sheet  
ADGS±408VADGS±409  
Parameter  
IL  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Inactive  
6.3  
14  
μA typ  
μA max  
μA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL, VL =  
5 V  
7
μA typ  
μA typ  
μA typ  
CS = VL and SDI = 0 V or VL, VL =  
3 V  
CS = VL and SDI = 0 V or VL, VL =  
5 V  
CS = VL and SDI = 0 V or VL, VL =  
3 V  
SCLK = 50 MHz  
390  
210  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
15  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = 5 V  
7.5  
230  
120  
1.8  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
1.0  
4.5  
16.5  
mA max  
μA typ  
μA max  
V min  
ISS  
VDD/VSS  
0.002  
Digital inputs = 0 V or VL  
GND = 0 V  
GND = 0 V  
V max  
1 Guaranteed by design; not subject to production test.  
12 V SINGLE SUPPLY  
DD = 12 ꢀ 10%, ꢀSS = 0 , L = 2.7 ꢀ to 5.5 , and GND = 0 , unless otherwise noted.  
Table 3.  
Parameter  
+25°C −40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
V
6.7  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA,  
see Figure 32  
8.7  
0.2  
10.2  
11.7  
Ω max  
Ω typ  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.82  
1.5  
2.5  
0.85  
2.5  
1.1  
2.8  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
VDD = 13.2 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.04  
nA typ  
VS = 1 V/10 V, VD = 10 V/1 V,  
see Figure 35  
0.2  
0.04  
0.6  
5.0  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V,  
see Figure 35  
0.45  
0.06  
0.44  
1.0  
1.3  
37.0  
32.0  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/10 V, see Figure 31  
Rev. 0 | Page 7 of 34  
 
ADGS±408VADGS±409  
Data Sheet  
Parameter  
DIGITAL OUTPUTS  
SDO  
+25°C −40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
High Impedance Leakage Current  
0.001  
4
0.1  
High Impedance Output  
Capacitance  
GPOx  
Output Voltage  
High, VOH  
Low, VOL  
VL − 0.2 V  
0.2  
V min  
V max  
ISOURCE = 100 μA  
ISINK = 100 μA  
Timing  
tON (GPO)  
95  
115  
15  
20  
50  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
CL = 15 pF, see Figure 43  
CL = 15 pF, see Figure 43  
CL = 15 pF, see Figure 44  
115  
25  
115  
25  
tOFF (GPO)  
Break-Before-Make Time Delay, tD  
35  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, IINL or IINH  
0.001  
4
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
210  
280  
195  
250  
145  
185  
90  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 100 Ω, CL = 35 pF  
VS = 8 V, see Figure 40  
RL = 100 Ω, CL = 35 pF  
VS = 8 V, see Figure 41  
RL = 100 Ω, CL = 35 pF  
VS = 8 V, see Figure 41  
RL = 100 Ω, CL = 35 pF  
VS1 = VS2 = 8 V, see Figure 39  
VS = 6 V, RS = 0 Ω, CL = 1 nF,  
see Figure 42  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 34  
340  
295  
215  
385  
325  
240  
50  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
−12  
−64  
dB typ  
dB typ  
Channel to Channel Crosstalk  
−3 dB Bandwidth  
−70  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 33  
RL = 50 Ω, CL = 5 pF, see  
Figure 37  
ADGS1408  
ADGS1409  
Insertion Loss  
36  
72  
0.5  
MHz typ  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 26 and Figure 27  
CS (Off)  
CD (Off)  
20  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
ADGS1408  
ADGS1409  
120  
60  
pF typ  
pF typ  
Rev. 0 | Page 8 of 34  
Data Sheet  
ADGS±408VADGS±409  
Parameter  
+25°C −40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
CD (On), CS (On)  
ADGS1408  
ADGS1409  
VS = 6 V, f = 1 MHz  
170  
110  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
VDD = 13.2 V  
All switches open  
0.002  
220  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
1
S8/S4A closed, VL = 5.5 V  
S8/S4A closed, VL = 2.7 V  
380  
440  
270  
IL  
Inactive  
6.3  
14  
μA typ  
μA max  
μA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
7
μA typ  
μA typ  
μA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
SCLK = 50 MHz  
390  
210  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
15  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = 5 V  
7.5  
230  
120  
1.8  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
5
20  
mA max  
V min  
V max  
VDD  
GND = 0 V, VSS = 0 V  
GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 4. ADGS1408, One Channel On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR D1  
VDD = 15 V, VSS = −15 V (θJA = 58.4°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 58.4°C/W)  
VDD = 5 V, VSS = −5 V (θJA = 58.4°C/W)  
304.9  
259.7  
247.2  
133.6  
122.7  
119.3  
48.9  
48  
47.6  
mA max  
mA max  
mA max  
1 Sx refers to the S1 to S8 pins.  
Table 5. ADGS1409, Two Channels On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx1  
VDD = 15 V, VSS = −15 V (θJA = 58.4°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 58.4°C/W)  
VDD = 5 V, VSS = −5 V (θJA = 58.4°C/W  
229.6  
194.7  
185.2  
114.3  
103  
99.6  
47.2  
45.7  
45.2  
mA max  
mA max  
mA max  
1 Sx refers to the S1A to S4A and S1B to S4B pins, and Dx refers to the DA and DB pins.  
Rev. 0 | Page 9 of 34  
 
 
 
ADGS±408VADGS±409  
Data Sheet  
TIMING CHARACTERISTICS  
L = 2.7 ꢀ to 5.5 , GND = 0 , and all specifications TMIN to TMAX, unless otherwise noted. Guaranteed by design and characterization,  
not production tested.  
Table 6.  
Parameter  
Limit  
Unit  
Test Conditions/Comments  
TIMING CHARACTERISTICS  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
20  
8
8
10  
6
8
10  
20  
20  
20  
20  
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns max  
ns min  
ns min  
ns min  
SCLK or CNV period  
SCLK or CNV high pulse width  
SCLK or CNV low pulse width  
CS falling edge to SCLK or CNV active edge  
Data setup time  
Data hold time  
SCLK or CNV active edge to CS rising edge  
CS falling edge to SDO data available  
SCLK falling edge to SDO data available  
CS rising edge to SDO returns to high impedance  
CS high time between SPI commands  
CS falling edge to SCLK/CNV becomes stable  
CS rising edge to SCLK/CNV becomes stable  
1
t9  
t10  
t11  
t12  
t13  
8
1 Measured with the 1 kΩ pull-up resistor to VL and 20 pF load. t9 determines the maximum SCLK frequency when SDO is used.  
Timing Diagrams  
t1  
SCLK  
t2  
t7  
t4  
t3  
CS  
t6  
t5  
SDI  
R/W  
A6  
A5  
1
D2  
D2  
D1  
D1  
D0  
D0  
t10  
t9  
SDO  
0
0
t8  
Figure 3. Address Mode Timing Diagram  
Rev. 0 | Page 10 of 34  
 
Data Sheet  
ADGS±408VADGS±409  
t1  
SCLK  
CS  
t2  
t3  
t7  
t4  
t6  
t5  
SDI  
D7  
D6  
D0  
D7  
D6  
D1  
D0  
INPUT BYTE FOR DEVICE N  
t9  
INPUT BYTE FOR DEVICE N + 1  
t10  
SDO  
0
0
0
D7  
D6  
D1  
D0  
ZERO BYTE  
INPUT BYTE FOR DEVICE N  
t8  
Figure 4. Daisy-Chain Timing Diagram  
t11  
CS  
SCLK OR CNV  
t13  
t12  
CS  
Figure 5. SCLK or CNV and Timing Relationship  
t4  
CS  
t2  
t3  
t7  
CNV  
SDO  
t9  
t1  
t10  
RESYNC  
MUX  
CHANNEL  
S1  
S2  
S(LAST)  
Figure 6. Round Robin Timing Diagram  
Rev. 0 | Page 11 of 34  
ADGS±408VADGS±409  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 7.  
Parameter  
Rating  
VDD to VSS  
35 V  
−0.3 V to +25 V  
+0.3 V to −25 V  
VDD to GND  
VSS to GND  
VL to GND  
For VDD ≤ 5.5V  
For VDD > 5.5V  
SDO  
Only one absolute maximum rating can be applied at any one time.  
−0.3 V to VDD + 0.3 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to VL + 0.3 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
−0.3 V to +6 V  
497 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
Data + 15%  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
GPOx  
Analog Inputs1  
Digital Inputs1  
Peak Current, Sx or Dx Pins2  
Table 8. Thermal Resistance  
1
Package Type  
CP-24-172  
θJA  
θJCB  
ΨJT  
Unit  
58.4  
17.2  
2.2  
°C/W  
Continuous Current, Sx or Dx2, 3  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Reflow Soldering Peak  
Temperature, Pb-Free  
1 θJCB is the junction to the bottom of the case value.  
−40°C to +125°C  
−65°C to +150°C  
150°C  
2 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with four thermal vias. See JEDEC JESD51.  
ESD CAUTION  
260(+0/−5)°C  
1 Overvoltages at the digital Sx and Dx pins are clamped by internal diodes.  
Limit current to the maximum ratings given.  
2 Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.  
3 See Table 4 and Table 5.  
Rev. 0 | Page 12 of 34  
 
 
 
 
Data Sheet  
ADGS±408VADGS±409  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
18  
17  
16  
V
V
DD  
SS  
S1 2  
S5  
3
4
CNV  
S2  
ADGS1408  
TOP VIEW  
(Not to Scale)  
15 S6  
14  
GND  
S3 5  
RESET/V  
L
GPO3 6  
13 S7  
NOTES  
AD IS CONNECTED INTERNALLY.  
1. THE EXPOSED P  
FOR INCREASED RELIABILITY OF THE SOLDER JOINTS  
AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE EXPOSED PAD BE SOLDERED TO THE SUBSTRATE, V  
2. NIC = NOT INTERNALLY CONNECTED.  
.
SS  
Figure 7. ADGS1408 Pin Configuration  
Table 9. ADGS1408 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
9, 11  
10  
12  
13  
14  
VSS  
S1  
S2  
GND  
S3  
GPO3  
S4  
GPO4  
NIC  
D
Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.  
Source Terminal 1. This pin can be an input or output.  
Source Terminal 2. This pin can be an input or output.  
Ground (0 V) Reference.  
Source Terminal 3. This pin can be an input or output.  
General-Purpose Output 3. This pin is a digital output.  
Source Terminal 4. This pin can be an input or output.  
General-Purpose Output 4. This pin is a digital output.  
Not Internally Connected.  
Drain Terminal. This pin can be an input or output.  
S8  
S7  
RESET/VL  
Source Terminal 8. This pin can be an input or output.  
Source Terminal 7. This pin can be an input or output.  
RESET/Logic Power Supply Input (VL). Under normal operation, drive the RESET/VL pin with a 2.7 V to 5.5 V supply.  
Pull the RESET/VL pin low to complete a hardware reset. After a reset, all switches open, and the appropriate  
registers are set to their default.  
15  
16  
17  
18  
19  
20  
S6  
CNV  
S5  
VDD  
GPO1  
SDO  
Source Terminal 6. This pin can be an input or output.  
Convert Digital Input. When in round robin mode, the CNV pin is used to cycle through the selected channels.  
Source Terminal 5. This pin can be an input or output.  
Most Positive Power Supply Potential.  
General-Purpose Output 1. This pin is a digital output.  
Serial Data Output. This pin can be used for daisy chaining a number of these devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of  
SCLK. Pull this open-drain output to VL with an external resistor.  
21  
22  
23  
24  
CS  
Active Low Control Input. CS is the frame synchronization signal for the input data.  
Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates of up to 50 MHz.  
Serial Data Input. Data is captured on the positive edge of the serial clock input.  
General-Purpose Output 2. This pin is a digital output.  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and  
maximum thermal capability, it is recommended that the exposed pad be soldered to the substrate, VSS.  
SCLK  
SDI  
GPO2  
EPAD  
Rev. 0 | Page 13 of 34  
 
ADGS±408VADGS±409  
Data Sheet  
1
18  
17  
16  
V
V
DD  
SS  
S1A 2  
S1B  
CNV  
3
4
S2A  
ADGS1409  
TOP VIEW  
(Not to Scale)  
15 S2B  
GND  
S3A 5  
14 RESET/V  
13 S3B  
L
GPO3 6  
NOTES  
1. THE EXPOSED PAD IS CONNECTED INTERNALLY.  
FOR INCREASED RELIABILITY OF THE SOLDER JOINTS  
Y, IT IS RECOMMENDED  
AND MAXIMUM THERMAL CAPABILIT  
AT THE EXPOSED PAD BE SOLDERED TO THE SUBSTRATE, V  
TH  
.
SS  
Figure 8. ADGS1409 Pin Configuration  
Table 10. ADGS1409 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
VSS  
S1A  
S2A  
GND  
S3A  
GPO3  
S4A  
GPO4  
DA  
DB  
GPO5  
S4B  
Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.  
Source Terminal 1A. This pin can be an input or output.  
Source Terminal 2A. This pin can be an input or output.  
Ground (0 V) Reference.  
Source Terminal 3A. This pin can be an input or output.  
General-Purpose Output 3. This pin is a digital output.  
Source Terminal 4A. This pin can be an input or output.  
General-Purpose Output 4. This pin is a digital output.  
Drain Terminal A. This pin can be an input or output.  
Drain Terminal B. This pin can be an input or output.  
General-Purpose Output 5. This pin is a digital output.  
Source Terminal 4B. This pin can be an input or output.  
Source Terminal 3B. This pin can be an input or output.  
9
10  
11  
12  
13  
14  
S3B  
RESET/VL  
RESET/Logic Power Supply Input (VL). Under normal operation, drive the RESET/VL pin with a 2.7 V to 5.5 V supply.  
Pull the RESET/VL pin low to complete a hardware reset. After a reset, all switches open, and the appropriate  
registers are set to their default.  
15  
16  
17  
18  
19  
20  
S2B  
CNV  
S1B  
VDD  
GPO1  
SDO  
Source Terminal 2B. This pin can be an input or output.  
Convert Digital Input. When in round robin mode, the CNV pin is used to cycle through the selected channels.  
Source Terminal 1B. This pin can be an input or output.  
Most Positive Power Supply Potential.  
General-Purpose Output 1. This pin is a digital output.  
Serial Data Output. This pin can be used for daisy chaining a number of these devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of  
SCLK. Pull this open-drain output to VL with an external resistor.  
21  
22  
23  
24  
CS  
Active Low Control Input. CS is the frame synchronization signal for the input data.  
Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates of up to 50 MHz.  
Serial Data Input. Data is captured on the positive edge of the serial clock input.  
General-Purpose Output 2. This pin is a digital output.  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and  
maximum thermal capability, it is recommended that the exposed pad be soldered to the substrate, VSS.  
SCLK  
SDI  
GPO2  
EPAD  
Rev. 0 | Page 14 of 34  
Data Sheet  
ADGS±408VADGS±409  
TYPICAL PERFORMANCE CHARACTERISTICS  
7
6
5
4
3
2
1
6
V
V
= +15V  
= –15V  
T
= 25°C  
DD  
SS  
A
5
4
3
2
1
0
V
V
V
V
V
= +15V, V = –15V  
SS  
DD  
DD  
DD  
DD  
DD  
T
T
T
T
= +25°C  
= +85°C  
= –40°C  
= +125°C  
A
A
A
A
= +13.5V, V = –13.5V  
SS  
= +12V, V = –12V  
SS  
= +10V, V = –10V  
SS  
= +16.5V, V = –16.5V  
SS  
0
–15  
–10  
–5  
0
5
10  
15  
–16.5 –12.5 –8.5  
–4.5  
–0.5  
3.5  
7.5  
11.5  
15.5  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 9. On Resistance vs. VS or VD for Various Dual Supplies  
Figure 12. On Resistance vs. VS or VD for Various Temperatures,  
15 V Dual Supply  
9
12  
V
V
= +5V  
= –5V  
T
= 25°C  
DD  
SS  
A
8
10  
8
7
6
5
4
3
6
4
2
1
T
T
T
T
= +25°C  
= +85°C  
= –40°C  
= +125°C  
V
= +7V, V = –7V  
SS  
A
A
A
A
DD  
DD  
DD  
DD  
2
V
V
V
= +5.5V, V = –5.5V  
SS  
= +5V, V = –5V  
SS  
= +4.5V, V = –4.5V  
SS  
0
–5  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 10. On Resistance vs. VS or VD for Various Dual Supplies  
Figure 13. On Resistance vs. VS or VD for Various Temperatures,  
5 V Dual Supply  
13  
10  
T
V
= 25°C  
= 0V  
V
V
= 12V  
= 0V  
A
DD  
SS  
12  
11  
10  
9
9
8
7
6
5
4
3
2
1
0
SS  
8
7
6
5
4
3
2
1
0
V
V
V
V
V
= 12V  
= 13.2V  
= 10.8V  
= 8V  
DD  
DD  
DD  
DD  
DD  
T
T
T
T
= +25°C  
= +85°C  
= –40°C  
= +125°C  
A
A
A
A
= 5V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
2
4
6
8
10  
12  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 11. On Resistance vs. VS or VD for Various Single Supplies  
Figure 14. On Resistance vs. VS or VD for Various Temperatures,  
12 V Single Supply  
Rev. 0 | Page 15 of 34  
 
ADGS±408VADGS±409  
Data Sheet  
1.0  
18  
16  
14  
12  
10  
8
I
(OFF) +–  
(OFF) +–  
(OFF) –+  
(OFF) –+  
I
(OFF) +–  
(OFF) +–  
(OFF) –+  
(OFF) –+  
V
V
V
= +15V  
= –15V  
V
V
V
= 12V  
S
S
DD  
SS  
DD  
SS  
I
I
= 0V  
= 1V/10V  
D
D
0.8  
0.6  
0.4  
I
I
S
= +10V/–10V  
S
BIAS  
BIAS  
I
I
D
D
I
I
I
(ON) ++  
(ON) –  
I
I
I
(ON) ++  
(ON) –  
D,  
S
S
D,  
S
S
I
I
D,  
D,  
0.2  
0
6
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4
2
0
–2  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Leakage Current vs. Temperature, 15 V Dual Supply  
Figure 18. Leakage Current vs. Temperature, 12 V Single Supply  
14  
200  
I
I
I
I
I
I
(OFF) +–  
(OFF) +–  
(OFF) –+  
(OFF) –+  
V
V
V
= +15V  
= –15V  
S
DD  
SS  
T
= 25°C  
A
D
S
12  
10  
150  
100  
50  
= +10V/–10V  
BIAS  
D
D,  
D,  
I
I
(ON) ++  
(ON) –  
S
S
8
6
V
V
= +5V  
= –5V  
DD  
SS  
0
4
V
V
= +12V  
= 0V  
DD  
SS  
–50  
–100  
–150  
–200  
2
V
V
= +15V  
DD  
SS  
0
= –15V  
–2  
–4  
0
20  
40  
60  
80  
100  
120  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
V
(V)  
S
Figure 16. Leakage Current vs. Temperature, 15 V Dual Supply  
Figure 19. Charge Injection vs. Source Voltage (VS)  
10  
400  
350  
300  
250  
200  
150  
100  
50  
I
(OFF) +–  
(OFF) +–  
(OFF) –+  
(OFF) –+  
V
V
V
= +5V  
= –5V  
S
DD  
SS  
15V DS  
12V SS  
5.5V DS  
I
9
8
7
6
5
D
I
= +4.5V/–4.5V  
S
BIAS  
I
D
I
I
I
(ON) ++  
(ON) –  
D,  
S
S
I
D,  
4
3
2
1
0
–1  
0
–40  
0
20  
40  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Transition Time vs. Temperature for Single Supply (SS) and  
Dual Supply (DS)  
Figure 17. Leakage Current vs. Temperature, 5 V Dual Supply  
Rev. 0 | Page 16 of 34  
Data Sheet  
ADGS±408VADGS±409  
0
0
NO DECOUPLING  
100nF DECOUPLING CAP  
10uF + 100nF DECOUPLING CAP  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
–10  
–20  
–40  
A
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
V
V
T
= +15V  
= –15V  
DD  
SS  
= 25°C  
A
–60  
–80  
–100  
–120  
–140  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 24. AC Power Supply Rejection Ratio (ACPSRR) vs. Frequency,  
15 V Dual Supply  
0
0.10  
V
V
T
= +15V  
= –15V  
= 25°C  
LOAD = 110  
DD  
SS  
T
= 25°C  
A
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–20  
–40  
A
V
= +5V, V = –5V, V = +5V p-p  
SS S  
DD  
–60  
–80  
–100  
–120  
–140  
V
= +15V, V = –15V, V = +15V p-p  
DD  
SS  
S
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 22. ADGS1408 Crosstalk vs. Frequency, 15 V Dual Supply  
Figure 25. THD + N vs. Frequency  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
–20  
–40  
A
ADJACENT CHANNELS  
NON-ADJACENT CHANNELS  
–60  
–80  
–100  
–120  
–140  
V
V
A
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. ADGS1409 Crosstalk vs. Frequency, 15 V Dual Supply  
Figure 26. ADGS1408 Insertion Loss vs. Frequency, 15 V Dual Supply  
Rev. 0 | Page 17 of 34  
 
ADGS±408VADGS±409  
Data Sheet  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
250  
200  
150  
100  
50  
±15V  
+12V  
T
= 25°C  
A
ADGS1408 WITH S8 SELECTED  
V
V
A
= +15V  
= –15V  
–3.5  
DD  
SS  
±5V  
T
= 25°C  
0
–4.0  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
2.7  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
FREQUENCY (Hz)  
L
Figure 29. IDD vs. VL  
Figure 27. ADGS1409 Insertion Loss vs. Frequency, 15 V Dual Supply  
2.0  
1.5  
1.0  
0.5  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
A
–0.5  
–1.0  
SCLK = 2.5MHz  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
–1.5  
–2.0  
SCLK IDLE  
V
V
= 5V  
= 3V  
L
L
T
A
0
1
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
SCLK FREQUENCY (MHz)  
TIME (µs)  
Figure 28. Digital Feedthrough  
Figure 30. IL vs. SCLK Frequency when CS is High  
Rev. 0 | Page 18 of 34  
 
 
Data Sheet  
ADGS±408VADGS±409  
TEST CIRCUITS  
I
(OFF)  
A
I
(OFF)  
A
S
D
Sx  
Dx  
(ON)  
D
Sx  
Dx  
V
V
D
V
S
S
V
D
Figure 31. On Leakage  
Figure 35. Off Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
AUDIO PRECISION  
V
V
DD  
SS  
R
S
I
DS  
Sx  
V
S
V1  
V p-p  
Dx  
V
OUT  
Sx  
Dx  
R
110ꢀ  
L
GND  
S
R
= V /I  
1 DS  
ON  
Figure 32. On Resistance  
Figure 36. THD + Noise  
V
V
DD  
SS  
V
V
DD  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
DD  
SS  
V
OUT  
S1  
R
L
50  
Sx  
50  
D
R
L
50ꢀ  
V
S2  
S
Dx  
V
V
OUT  
S
R
50ꢀ  
L
GND  
GND  
V
WITH SWITCH  
V
OUT  
OUT  
INSERTION LOSS = 20 log  
CHANNEL TO CHANNEL CROSSTALK = 20 log  
V
WITHOUT SWITCH  
V
S
S
Figure 37. −3 dB Bandwidth  
Figure 33. Channel to Channel Crosstalk  
V
V
SS  
SS  
V
V
DD  
SS  
NETWORK  
ANALYZER  
0.1µF  
0.1µF  
INTERNAL  
BIAS  
V
DD  
NETWORK  
ANALYZER  
R
L
V
V
DD  
SS  
50  
V
S
Sx  
50  
50ꢀ  
V
S
V
NC  
OUT  
R
50ꢀ  
S1  
D1  
L
Dx  
GND  
V
OUT  
R
L
GND  
50ꢀ  
V
OUT  
ACPSRR = 20 log  
V
S
V
OUT  
NOTES  
OFF ISOLATION = 20 log  
V
S
1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED  
FROM THE ACPSRR MEASUREMENT.  
Figure 34. Off Isolation  
Figure 38. ACPSRR  
Rev. 0 | Page 19 of 34  
 
 
 
 
 
 
 
 
ADGS±408VADGS±409  
Data Sheet  
V
V
V
V
DD  
DD  
SS  
SS  
SCLK  
0V  
S1  
V
S
S2 TO S7  
S8  
V
= V  
S8  
S1  
80%  
80%  
ADGS14081  
OUTPUT  
OUTPUT  
D
100  
GND  
35pF  
tD  
1
SIMILAR CONNECTION FOR THE ADGS1409.  
Figure 39. Break-Before-Make Time Delay, tD  
V
V
V
DD  
DD  
SS  
V
SS  
SCLK  
50%  
50%  
ADGS14081  
S1  
V
V
S1  
S8  
S2 TO S7  
S8  
90%  
V
D
OUT  
R
100  
C
L
35pF  
GND  
L
10%  
tTRANSITION  
tTRANSITION  
1
SIMILAR CONNECTION FOR THE THE ADGS1409.  
Figure 40. Transition Time, tTRANSITION  
V
V
V
V
DD  
DD  
SS  
SS  
SCLK  
50%  
50%  
ADGS14081  
S1  
V
S1  
S2 TO S8  
90%  
V
D
OUT  
R
100ꢀ  
C
L
35pF  
GND  
L
10%  
tOFF (EN)  
tON (EN)  
1
SIMILAR CONNECTION FOR THE ADGS1409.  
Figure 41. Switching Times, tON (EN) and tOFF (EN)  
V
V
V
V
DD  
SS  
3V  
DD  
SS  
SCLK  
R
V
S
Sx  
Dx  
V
OUT  
C
1nF  
L
S
Q
= C × V  
L OUT  
INJ  
INPUT LOGIC  
GND  
V
OUT  
V  
OUT  
SWITCH OFF  
SWITCH ON  
Figure 42. Charge Injection, QINJ  
Rev. 0 | Page 20 of 34  
 
 
 
 
Data Sheet  
ADGS±408VADGS±409  
V
V
V
V
DD  
DD  
SS  
SS  
SCLK  
50%  
50%  
ADGS14081  
GPOx  
V
GPO  
C
L
15pF  
90%  
GND  
10%  
tOFF (GPO)  
tON (GPO)  
1
SIMILAR CONNECTION FOR THE ADGS1409.  
Figure 43. GPOx Timing, tON (GPO) and tOFF (GPO)  
V
V
DD  
SS  
V
V
DD  
SS  
80%  
80%  
V
V
GPO1  
0V  
0V  
GPO1  
V
V
GPO1  
80%  
80%  
C
15pF  
L
GPO2  
ADGS14081  
GPO2  
GPO2  
C
L
15pF  
tD (GPO)  
tD (GPO)  
GND  
TIME DELAY BETWEEN  
GPO1 TURNING OFF  
AND GPO2 TURNING ON  
1
SIMILAR CONNECTION FOR THE ADGS1409.  
Figure 44. GPOx Break-Before-Make Time Delay, tD (GPO)  
Rev. 0 | Page 21 of 34  
 
 
ADGS±408VADGS±409  
Data Sheet  
TERMINOLOGY  
IDD  
CD (On), CS (On)  
I
DD is the positive supply current.  
CD (on) and CS (on) are the on switch capacitances, which are  
measured with reference to ground.  
ISS  
I
SS is the negative supply current.  
CIN  
CIN is the digital input capacitance.  
VD, VS  
D and ꢀS are the analog voltages on Terminal Dx and Terminal Sx,  
tON  
respectively.  
tON is the delay between applying the digital control input and  
the output switching on.  
RON  
RON is the ohmic resistance between Terminal Dx and Terminal Sx.  
tOFF  
tOFF is the delay between applying the digital control input and  
the output switching off.  
ΔRON  
ΔRON is the difference between the RON of any two channels.  
Off Isolation  
RFLAT (ON)  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
RFLAT (ON) is flatness defined as the difference between the maximum  
and minimum value of on resistance values measured over the  
specified analog signal range.  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
IS (Off)  
IS (off) is the source leakage current with the switch off.  
Crosstalk  
ID (Off)  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
ID (off) is the drain leakage current with the switch off.  
IS (On), ID (On)  
IS (on) and ID (on) are the channel leakage currents with the  
switch on.  
−3 dB Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
VINL  
INL is the maximum input voltage for Logic 0.  
On Response  
VINH  
On response is the frequency response of the on switch.  
INH is the minimum input voltage for Logic 1.  
Insertion Loss  
IINL, IINH  
Insertion loss is the loss due to the on resistance of the switch.  
I
INL and IINH are the low and high input currents of the digital  
Total Harmonic Distortion + Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
inputs.  
CD (Off)  
CD (off) is the off switch drain capacitance, which is measured  
with reference to ground.  
AC Power Supply Rejection Ratio (ACPSRR)  
ACPSRR is the ratio of the amplitude of signal on the output to the  
amplitude of the modulation. ACPSRR is a measure of the ability of  
the devices to avoid coupling noise and spurious signals that appear  
on the supply voltage pin to the output of the switch. The dc voltage  
on the device is modulated by a sine wave of 0.62 ꢀ p-p.  
CS (Off)  
CS (off) is the off switch source capacitance, which is measured  
with reference to ground.  
Rev. 0 | Page 22 of 34  
 
Data Sheet  
ADGS±408VADGS±409  
THEORY OF OPERATION  
The target register address of an SPI command is determined on  
the eighth SCLK rising edge. Data from this register propagates out  
on SDO from the 9th to the 16th SCLK falling edge during SPI  
reads. A register write occurs on the 16th SCLK rising edge  
during SPI writes.  
The ADGS1408/ADGS1409 are a set of serially controlled analog  
multiplexers comprising eight single channels and four differential  
channels, respectively, with error detection features. SPI Mode 0  
and SPI Mode 3 can be used with the devices. The devices operate  
with SCLK frequencies up to 50 MHz. The default mode for the  
ADGS1408/ADGS1409 is address mode, in which the registers of  
the device are accessed by a 16-bit SPI command bounded by  
During any SPI command, SDO sends out eight alignment bits  
on the first eight SCLK falling edges. The alignment bits observed  
at SDO are 0x25.  
CS  
. The SPI command becomes 24-bit if the user enables CRC  
error detection. Other error detection features include SCLK count  
error and invalid read/write error. If any of these SPI interface  
errors occur, they are detectable by reading the error flags  
register. The ADGS1408/ADGS1409 can also operate in two  
other modes, namely burst mode and daisy-chain mode.  
ERROR DETECTION FEATURES  
Protocol and communication errors on the SPI interface are  
detectable. There are three detectable errors: incorrect SCLK error  
detection, invalid read and write address error detection, and  
CRC error detection. Each error has a corresponding enable bit  
in the error configuration register. In addition, there is an error  
flag bit for each error in the error flags register.  
CS  
The interface pins of the ADGS1408/ADGS1409 are , SCLK,  
CS  
SDI, and SDO. Hold low when using the SPI interface. Data is  
captured on SDI on the rising edge of SCLK, and data is propagated  
out on SDO on the falling edge of SCLK. SDO has an open-drain  
output. Connect a pull-up to this output. When not pulled low by  
the ADGS1408/ADGS1409, SDO is in a high impedance state.  
CRC Error Detection  
The CRC error detection feature extends a valid SPI frame by  
eight SCLK cycles. These eight extra cycles are needed to send the  
CRC byte for that SPI frame. The CRC byte is calculated by the SPI  
ADDRESS MODE  
W
block using the 16-bit payload: the R/ bit, Register Address  
Address mode is the default mode for the ADGS1408/ADGS1409  
on power-up. A single SPI frame in address mode is bounded by  
Bits[6:0], and Register Data Bits[7:0]. The CRC polynomial  
used in the SPI block is x8 + x2 + x1 + 1 with a seed value of 0.  
For a timing diagram with CRC enabled, see Figure 46. Register  
writes occur at the 24th SCLK rising edge with CRC error  
checking enabled.  
CS  
CS  
a
falling edge and the succeeding rising edge. An SPI frame  
is comprised of 16 SCLK cycles. The timing diagram for address  
mode is shown in Figure 45. The first SDI bit indicates if the SPI  
command is a read or write command. When the first bit is set  
to 0, a write command is issued, and if the first bit is set to 1, a  
read command is issued. The next seven bits determine the target  
register address. The remaining eight bits provide the data to the  
addressed register. The last eight bits are ignored during a read  
command, because during these clock cycles, SDO propagates out  
the data contained in the addressed register.  
During an SPI write, the microcontroller/CPU provides the  
CRC byte through SDI. The SPI block checks the CRC byte just  
before the 24th SCLK rising edge. On this same edge, the register  
write is prevented if an incorrect CRC byte is received by the SPI  
interface. In the case of the incorrect CRC byte being detected, the  
CRC error flag is asserted in the error flags register.  
During an SPI read, the CRC byte is provided to the micro-  
controller through SDO.  
The CRC error detection feature is disabled by default and can  
be configured by the user through the error configuration register.  
1
2
3
4
A4  
8
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
R/W A6  
0
A5  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
0
1
0
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 45. Address Mode Timing Diagram  
1
2
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CS  
SCLK  
SDI  
R/W A6  
0
A0  
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C4  
C3  
C3  
C2  
C2  
C1  
C1  
C0  
C0  
SDO  
0
1
D7  
D6  
D0  
C7  
C6  
C5  
Figure 46. Timing Diagram with CRC Enabled  
Rev. 0 | Page 23 of 34  
 
 
 
 
 
ADGS±408VADGS±409  
Data Sheet  
SCLK Count Error Detection  
BURST MODE  
SCLK count error detection allows the user to detect if an  
incorrect number of SCLK cycles are sent by the microcontroller/  
CPU. When in address mode, with CRC disabled, 16 SCLK  
cycles are expected. If 16 SCLK cycles are not detected, the  
SCLK count error flag asserts in the error flags register. When  
fewer than 16 SCLK cycles are received by the device, a write to  
the register map never occurs. When the ADGS1408/ADGS1409  
receive more than 16 SCLK cycles, a write to the memory map  
still occurs at the 16th SCLK rising edge, and the flag asserts in  
the error flags register. With CRC enabled, the expected number of  
SCLK cycles is 24. SCLK count error detection is enabled by  
default and can be configured by the user through the error  
configuration register.  
The SPI interface can accept consecutive SPI commands  
CS  
mode. Burst mode is enabled through the burst enable register.  
This mode uses the same 16-bit command to communicate  
with the device. In addition, the response of the device at SDO  
is still aligned with the corresponding SPI command. Figure 47  
shows an example of SDI and SDO during burst mode.  
without the need to deassert the  
line, which is called burst  
The invalid read/write address and CRC error checking functions  
operate similarly during burst mode as they do during address  
mode. However, SCLK count error detection operates in a  
slightly different manner. The total number of SCLK cycles  
CS  
within a given  
frame are counted, and if the total is not a  
multiple of 16, or a multiple of 24 when CRC is enabled, the  
SCLK count error flag asserts.  
Invalid Read/Write Address Error Detection  
An invalid read/write address error detects when a nonexistent  
register address is a target for a read or write. In addition, this  
error asserts when a write to a read only register is attempted.  
The invalid read/write address error flag asserts in the error  
flags register when an invalid read/write address error occurs.  
The invalid read/write address error is detected on the ninth  
SCLK rising edge, which means a write to the register never  
occurs when an invalid address is targeted. Invalid read/write  
address error detection is enabled by default and can be disabled  
by the user through the error configuration register.  
CS  
SDI  
COMMAND0[15:0] COMMAND1[15:0] COMMAND2[15:0] COMMAND3[15:0]  
SDO  
RESPONSE0[15:0] RESPONSE1[15:0] RESPONSE2[15:0] RESPONSE3[15:0]  
Figure 47. Burst Mode Frame  
SOFTWARE RESET  
When in address mode, the user can initiate a software reset. To  
initiate a software reset, write two consecutive SPI commands,  
namely 0xA3 followed by 0x05, targeting Register 0x0B. After a  
software reset, all register values are set to default.  
CLEARING THE ERROR FLAGS REGISTER  
DAISY-CHAIN MODE  
To clear the error flags register, write the special 16-bit SPI frame,  
0x6CA9, to the device. This SPI command does not trigger the  
invalid read/write address error. When CRC is enabled, the user  
must also send the correct CRC byte for a successful error clear  
command. At the 16th or 24th SCLK rising edge, the error flags  
register resets to 0.  
The connection of several ADGS1408/ADGS1409 devices in a  
daisy-chain configuration is possible, and Figure 48 shows this  
setup. All devices share the same and SCLK line, whereas the  
SDO of a device forms a connection to the SDI of the next device,  
creating a shift register. In daisy-chain mode, SDO is an eight-  
cycle delayed version of SDI. When in daisy-chain mode, all  
commands target the switch data register. Therefore, it is not  
possible to make configuration changes while in daisy-chain mode.  
CS  
ADGS1408  
DEVICE 1  
ADGS1408  
DEVICE 2  
S1  
S1  
D
D
V
L
S8  
S8  
SPI  
INTERFACE  
SDO  
SPI  
INTERFACE  
CNV  
CNV  
SDO  
SDI  
SCLK  
CS  
RESET/V  
L
Figure 48. Two ADGS1408 Devices Connected in a Daisy-Chain Configuration  
Rev. 0 | Page 24 of 34  
 
 
 
 
 
 
Data Sheet  
ADGS±408VADGS±409  
The ADGS1408/ADGS1409 can only enter daisy-chain mode  
when in address mode by sending the 16-bit SPI command,  
0x2500 (see Figure 49). When the ADGS1408/ADGS1409  
receive this command, the SDO of the device sends out the  
same command because the alignment bits at SDO are 0x25,  
which allows multiple daisy-connected devices to enter daisy-  
chain mode in a single SPI frame. A hardware reset is required to  
exit daisy-chain mode.  
An SCLK rising edge reads in data on SDI while data is  
propagated out of SDO on an SCLK falling edge. The expected  
CS  
goes high. When the expected number of SCLK cycles is not a  
multiple of eight, the SPI interface sends the last eight bits  
received to the switch data register.  
number of SCLK cycles must be a multiple of eight before  
POWER-ON RESET  
The digital section of the ADGS1408/ADGS1409 goes through an  
initialization phase during ꢀL power-up. This initialization also  
occurs after a hardware or software reset. After ꢀL power-up or  
a reset, ensure a minimum of 120 μs from the time of power-up or  
reset before any SPI command is issued. Ensure that ꢀL does  
not drop out during the 120 μs initialization phase because it  
may result in incorrect operation of the ADGS1408/ADGS1409.  
For the timing diagram of a typical daisy-chain SPI frame, see  
CS  
Figure 50. When  
goes high, Device 1 writes Command 0,  
Bits[7:0] to its switch data register, Device 2 writes Command 1,  
Bits[7:0] to its switches, and so on. The SPI block uses the last  
eight bits it received through SDI to update the switches. After  
entering daisy-chain mode, the first eight bits sent out by SDO  
CS  
on each device in the chain are 0x00. When  
goes high, the  
internal shift register value does not reset back to zero.  
1
0
2
0
3
1
4
0
5
0
6
1
7
0
8
1
9
0
10  
0
11  
0
12  
0
13  
0
14  
0
15  
0
16  
0
CS  
SCLK  
SDI  
SDO  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
Figure 49. SPI Command to Enter Daisy-Chain Mode  
CS  
SDI  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0] COMMAND0[7:0]  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
SDO  
8’h00  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0]  
SDO2  
SDO3  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0]  
8’h00 COMMAND3[7:0]  
NOTES  
1. SDO2 AND SDO3 ARE THE OUTPUT COMMANDS FROM DEVICE 2 AND DEVICE 3, RESPECTIVELY.  
Figure 50. Example of an SPI Frame Where Four ADGS1408/ADGS1409 Devices Connect in Daisy-Chain Mode  
Rev. 0 | Page 25 of 34  
 
 
 
ADGS±408VADGS±409  
Data Sheet  
After configuration completes, the round robin enable register  
allows the ADGS1408/ADGS1409 to enter round robin mode.  
When in round robin mode, the SPI is no longer used to switch  
between channels. Instead, to switch from one channel to another,  
ROUND ROBIN MODE  
Round robin mode allows the ADGS1408/ADGS1409 to cycle  
through the channels faster by reducing the overhead needed  
from the digital interface to switch from one channel to the next.  
The round robin configuration register selects which channels  
are to be included in a cycle, and the CNꢀ edge select register  
selects on which edge of CNꢀ the ADGS1408/ADGS1409 switch  
to the next channel in the sequence. At the end of the channel  
cycle, a resync pulse appears on SDO to inform the user that the  
current cycle ended; then, SDO loops back to the start of the  
sequence of channels. Figure 51 shows an example of the round  
robin mode interface, and Figure 52 shows the CNꢀ signal of  
the analog-to-digital converter (ADC) being used in conjunction  
with the ADGS1408 in round robin mode.  
CS  
ensure that a digital signal is present on the CNꢀ pin while  
is pulled low.  
To exit round robin mode, either perform a hardware reset or send  
the following two 16-bit addressable mode SPI frames: 0xA318,  
followed by 0xE3B4. These frames are the only SPI commands  
recognized by the SPI interface while in round robin mode.  
Round robin mode is significantly faster than addressable mode  
to cycle through channels because it removes the 16-bit overhead  
required to change input channel. In addition, round robin mode  
removes the need for SCLK to be running, which reduces the  
digital current consumption, IL. The maximum CNꢀ frequency  
is bound by the transition time of the device along with the  
required settling time for the application.  
ROUND ROBIN CYCLE  
CS  
CNV  
MUX  
X
S1  
S2  
S(LAST)  
RESYNC  
CHANNEL  
SDO  
Figure 51. Round Robin Mode Interface Example  
tCYC  
VIO  
S1  
IN1 S2  
IN2  
IN0  
SDI  
CNV  
SDO  
D
AD7980  
IN±  
S3  
tACQ  
tCONV  
ADGS1408  
CNV  
SCK  
IN7 S8  
ACQUISITION  
CONVERSION  
ACQUISITION  
CNV  
CS SDI SCK  
CONVERT  
GPO  
CLK  
1
2
3
14  
15  
16  
SCK  
SDO  
DATA IN  
GPO  
DIGITAL HOST  
tDIS  
tEN  
D15  
D14  
D13  
D1  
D0  
MUX  
N
N + 1  
N + 2  
CHANNEL  
Figure 52. Example of the CNV Signal of an ADC Cycling Through Channels in the ADGS1408  
Rev. 0 | Page 26 of 34  
 
 
 
Data Sheet  
ADGS±408VADGS±409  
or low. When the device is in round robin mode, the GPOs are  
driven low. The logic low level is GND, and ꢀL sets the logic  
high level. Figure 53 shows how the ADGS1408 can be used to  
control another device, which in this example is the ADG758.  
GENERAL-PURPOSE OUTPUTS (GPOs)  
The ADGS1408 has four GPOs, and the ADGS1409 has five  
GPOs. These digital outputs allow the control of other devices  
using the ADGS1408/ADGS1409. The GPOs are controlled  
from the SW_DATA register where they can be either set high  
ADGS1408  
ADG758  
S1  
S1  
D
D
S8  
S8  
GPO1  
GPO2  
GPO3  
GPO4  
SDO  
SPI  
1 OF 8  
DECODER  
INTERFACE  
CNV  
A0  
A1  
A2  
EN  
SDI  
SCLK  
CS  
RESET/V  
L
Figure 53. ADGS1408 Device Controlling the ADG758  
Rev. 0 | Page 27 of 34  
 
 
ADGS±408VADGS±409  
Data Sheet  
APPLICATIONS INFORMATION  
DIGITAL INPUT BUFFERS  
There are input buffers present on the digital input pins (  
SCLK, and SDI). These buffers are active at all times; as a result,  
there is current drawn from the ꢀL supply if SCLK or SDI are  
(LDOs), ADP7118 and ADP7182 (positive and negative LDOs,  
respectively), that can be used to reduce the output ripple of  
the ADP5070 in ultralow noise sensitive applications.  
,
CS  
The ADM7160 can be used to generate the ꢀL voltage required  
to power digital circuitry within the ADGS1408/ADGS1409.  
toggling, regardless of whether  
is active. For typical values of  
CS  
ADM7160  
+3.3V  
this current draw, refer to the Specifications section and Figure 30.  
LDO  
POWER SUPPLY RAILS  
+16.5V  
–16.5V  
ADP7118  
LDO  
+15V  
–15V  
+5V  
INPUT  
ADP5070  
To guarantee correct operation of the ADGS1408/ADGS1409,  
0.1 μF decoupling capacitors are required.  
ADP7182  
LDO  
.
The ADGS1408/ADGS1409 can operate with bipolar supplies  
between 4.5 ꢀ and 16.5 . The supplies on ꢀDD and ꢀSS do  
not need to be symmetrical; however, the ꢀDD to ꢀSS range must  
not exceed 33 . The ADGS1408/ADGS1409 can also operate  
with single supplies between 5 ꢀ and 20 ꢀ with ꢀSS connected  
to GND.  
Figure 54. Bipolar Power Solution  
Table 11. Recommended Power Management Devices  
Product Description  
ADP5070 1 A/0.6 A, dc-to-dc switching regulator with  
independent positive and negative outputs  
ADM7160 5.5 V, 200 mA, ultralow noise, linear regulator  
The voltage range that can be supplied to ꢀL is from 2.7 ꢀ to 5.5 .  
ADP7118 20 V, 200 mA, low noise, CMOS LDO linear regulator  
ADP7182 −28 V, −200 mA, low noise, LDO linear regulator  
The device is fully specified at 15 , 5 ꢀ, and +12 ꢀ analog  
supply voltage ranges.  
POWER SUPPLY SEQUENCING  
POWER SUPPLY RECOMMENDATIONS  
Take care to ensure correct power supply sequencing. Incorrect  
power supply sequencing can result in the device being subjected to  
stresses beyond the maximum ratings listed in Table 7. Ensure  
that the analog power supplies (ꢀDD and ꢀSS) and ground (GND)  
are present before applying ꢀL, the digital inputs, and the analog  
inputs. Failure to adhere to this sequence may result in damage  
to the device.  
Analog Devices has a wide range of power management products  
to meet the requirements of most high performance signal chains.  
An example of a bipolar power solution is shown in Figure 54.  
The ADP5070 dual switching regulator generates a positive and  
negative supply rail for the ADGS1408/ADGS1409, an amplifier,  
and/or a precision converter in a typical signal chain. Also  
shown in Figure 54 are two optional low dropout regulators  
Rev. 0 | Page 28 of 34  
 
 
 
 
 
 
Data Sheet  
ADGS±408VADGS±409  
REGISTER SUMMARIES  
Table 12. ADGS1408 Register Summary  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default RW  
0x01 SW_DATA  
0x02 ERR_CONFIG  
0x03 ERR_FLAGS  
0x05 BURST_EN  
0x06 ROUND_ROBIN_EN  
GPO4 GPO3 GPO2 GPO1 A2  
A1  
A0  
EN  
0x00  
0x06  
0x00  
R/W  
R/W  
R
Reserved  
Reserved  
RW_ERR_EN  
SCLK_ERR_EN  
CRC_ERR_EN  
RW_ERR_FLAG SCLK_ERR_FLAG CRC_ERR_FLAG  
Reserved  
Reserved  
BURST_MODE_EN 0x00  
ROUND_ROBIN_EN 0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
0x07 RROBIN_CHANNEL_CONFIG S8_EN S7_EN S6_EN S5_EN S4_EN S3_EN  
S2_EN  
S1_EN  
0xFF  
0x00  
0x00  
0x09 CNV_EDGE_SEL  
0x0B SOFT_RESETB  
Reserved  
SOFT_RESETB  
CNV_EDGE_SEL  
Table 13. ADGS1409 Register Summary  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default RW  
0x01 SW_DATA  
GPO5 GPO4 GPO3 GPO2 GPO1 A1  
A0  
EN  
0x00  
0x06  
0x00  
0x00  
R/W  
R/W  
R
0x02 ERR_CONFIG  
0x03 ERR_FLAGS  
Reserved  
Reserved  
RW_ERR_EN  
SCLK_ERR_EN  
CRC_ERR_EN  
RW_ERR_FLAG SCLK_ERR_FLAG CRC_ERR_FLAG  
Reserved BURST_MODE_EN  
0x05 BURST_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0x06 ROUND_ROBIN_EN  
0x07 RROBIN_CHANNEL_CONFIG  
0x09 CNV_EDGE_SEL  
0x0B SOFT_RESETB  
Reserved  
ROUND_ROBIN_EN 0x00  
Reserved  
S4_EN S3_EN  
Reserved  
S2_EN  
S1_EN  
0x0F  
0x00  
0x00  
CNV_EDGE_SEL  
SOFT_RESETB  
Rev. 0 | Page 29 of 34  
 
ADGS±408VADGS±409  
REGISTER DETAILS  
Data Sheet  
SWITCH DATA REGISTER  
Address: 0x01, Reset: 0x00, Name: SW_DATA  
The switch data register controls the status of the eight switches of the ADGS1408/ADGS1409, as well as the general-purpose digital  
outputs. Use the ADGS1408/ADGS1409 truth tables in conjunction with the bit descriptions.  
Table 14. Bit Descriptions for SW_DATA, ADGS1408  
Bit(s)  
Bit Name  
GPO4  
GPO3  
GPO2  
GPO1  
A2  
Settings  
Description  
Default Access  
7
6
5
4
3
2
1
0
Enable bit for GPO4.  
Enable bit for GPO3.  
Enable bit for GPO2.  
Enable bit for GPO1.  
Enable bit for A2.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
A1  
Enable bit for A1.  
A0  
Enable bit for A0.  
EN  
Enable bit for ADGS1408.  
ADGS1408 disabled.  
ADGS1408 enabled.  
0
1
Table 15. Bit Descriptions for SW_DATA, ADGS1409  
Bit(s)  
Bit Name  
GPO5  
GPO4  
GPO3  
GPO2  
GPO1  
A1  
Settings  
Description  
Default Access  
7
6
5
4
3
2
1
0
Enable bit for GPO5.  
Enable bit for GPO4.  
Enable bit for GPO3.  
Enable bit for GPO2.  
Enable bit for GPO1.  
Enable bit for A1.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
A0  
Enable bit for A0.  
EN  
Enable bit for ADGS1409.  
ADGS1409 disabled.  
ADGS1409 enabled.  
0
1
Table 16. ADGS1408 Truth Table1  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
EN  
0
1
1
1
1
1
1
1
On Switch  
X
0
1
0
1
0
1
0
1
None  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
1
1
1
1 X means don’t care.  
Table 17. ADGS1409 Truth Table1  
A1  
A0  
EN  
0
1
On Switch Pair  
X
0
X
0
None  
S1  
0
1
1
S2  
1
0
1
S3  
1
1
1
S4  
1 X means don’t care.  
Rev. 0 | Page 30 of 34  
 
 
 
Data Sheet  
ADGS±408VADGS±409  
ERROR CONFIGURATION REGISTER  
Address: 0x02, Reset: 0x06, Name: ERR_CONFIG  
The error configuration register allows the user to enable and disable the relevant error features as required.  
Table 18. Bit Descriptions for ERR_CONFIG  
Bit(s)  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved. Set these bits to 0.  
0x0  
0x1  
R
RW_ERR_EN  
Enable bit for detecting an invalid read/write address.  
R/W  
0
1
Disabled.  
Enabled.  
1
0
SCLK_ERR_EN  
CRC_ERR_EN  
Enable bit for detecting the correct number of SCLK cycles in an SPI frame. 0x1  
16 SCLK cycles are expected when CRC is disabled and burst mode is disabled.  
24 SCLK cycles are expected when CRC is enabled and burst mode is disabled.  
A multiple of 16 SCLK cycles is expected when CRC is disabled and burst  
mode is enabled. A multiple of 24 SCLK cycles is expected when CRC is  
enabled and burst mode is enabled.  
R/W  
R/W  
0
1
Disabled.  
Enabled.  
Enable bit for CRC error detection. SPI frames are 24 bits wide when  
enabled.  
0x0  
0
1
Disabled.  
Enabled.  
ERROR FLAGS REGISTER  
Address: 0x03, Reset: 0x00, Name: ERR_FLAGS  
The error flags register allows the user to determine if an error occurred. To clear the error flags register, write the special 16-bit SPI  
command, 0x6CA9, to the device. This SPI command does not trigger the invalid R/W address error. When CRC is enabled, the user  
must include the correct CRC byte during the SPI write for the clear error flags register command to succeed.  
Table 19. Bit Descriptions for ERR_FLAGS  
Bit(s)  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved. Set these bits to 0.  
0x0  
0x0  
R
R
RW_ERR_FLAG  
Error flag for invalid read/write address. The error flag asserts during an  
SPI read if the target address does not exist. The error flag also asserts  
when the target address of an SPI write does not exist or is read only.  
0
1
No error.  
Error.  
1
0
SCLK_ERR_FLAG  
CRC_ERR_FLAG  
Error flag for the detection of the correct number of SCLK cycles in an SPI  
frame.  
No error.  
0x0  
0x0  
R
R
0
1
Error.  
Error flag that determines if a CRC error occurred during a register write.  
0
1
No error.  
Error.  
Rev. 0 | Page 31 of 34  
 
 
ADGS±408VADGS±409  
Data Sheet  
BURST ENABLE REGISTER  
Address: 0x05, Reset: 0x00, Name: BURST_EN  
The burst enable register allows the user to enable or disable burst mode. When enabled, the user can send multiple consecutive SPI  
CS  
commands without deasserting  
.
Table 20. Bit Descriptions for BURST_EN  
Bit(s)  
[7:1]  
0
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved. Set these bits to 0.  
0x0  
0x0  
R
BURST_MODE_EN  
Burst mode enable bit.  
Disabled.  
Enabled.  
R/W  
0
1
ROUND ROBIN ENABLE REGISTER  
Address: 0x06, Reset: 0x00, Name: ROUND_ROBIN_EN  
The round robin register allows the user to enable or disable round robin mode. When enabled, the user can cycle through the channels  
enabled in the round robin configuration register by presenting the relevant edge on the CNꢀ pin.  
Table 21. Bit Descriptions for ROUND_ROBIN_EN  
Bit(s)  
[7:1]  
0
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved. Set these bits to 0.  
Round robin mode enable bit.  
Disabled.  
0x0  
0x0  
R
ROUND_ROBIN_EN  
R/W  
0
1
Enabled.  
ROUND ROBIN CHANNEL CONFIGURATION REGISTER  
Address: 0x07, Reset: 0xFF (ADGS1408), 0x0F (ADGS1409), Name: RROBIN_CHANNEL_CONFIG  
The round robin channel configuration register controls which channels are included in a cycle during round robin mode. During round  
robin mode, the channels are cycled through in ascending order.  
Table 22. Bit Descriptions for RROBIN_CHANNEL_CONFIG, ADGS1408  
Bit(s)  
Bit Name  
Settings  
Description  
Default Access  
7
S8_EN  
Enable bit for S8.  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
S8 disabled during round robin mode.  
S8 enabled during round robin mode.  
Enable bit for S7.  
S7 disabled during round robin mode.  
S7 enabled during round robin mode.  
Enable bit for S6.  
S6 disabled during round robin mode.  
S6 enabled during round robin mode.  
Enable bit for S5.  
S5 disabled during round robin mode.  
S5 enabled during round robin mode.  
Enable bit for S4.  
6
5
4
3
2
S7_EN  
S6_EN  
S5_EN  
S4_EN  
S3_EN  
0
1
0
1
0
1
0
1
S4 disabled during round robin mode.  
S4 enabled during round robin mode.  
Enable bit for S3.  
0
1
S3 disabled during round robin mode.  
S3 enabled during round robin mode.  
Rev. 0 | Page 32 of 34  
 
 
 
Data Sheet  
ADGS±408VADGS±409  
Bit(s)  
Bit Name  
Settings  
Description  
Default Access  
1
S2_EN  
Enable bit for S2.  
0x1  
R/W  
0
1
S2 disabled during round robin mode.  
S2 enabled during round robin mode.  
Enable bit for S1.  
0
S1_EN  
0x1  
R/W  
0
1
S1 disabled during round robin mode.  
S1 enabled during round robin mode.  
Table 23. Bit Descriptions for RROBIN_CHANNEL_CONFIG, ADGS1409  
Bit(s)  
[7:4]  
3
Bit Name  
Reserved  
S4_EN  
Settings  
Description  
Default Access  
These bits are reserved. Set these bits to 0.  
Enable bit for S4.  
0x0  
0x1  
R
R/W  
0
1
S4 disabled during round robin mode.  
S4 enabled during round robin mode.  
Enable bit for S3.  
2
1
0
S3_EN  
S2_EN  
S1_EN  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
0
1
S3 disabled during round robin mode.  
S3 enabled during round robin mode.  
Enable bit for S2.  
S2 disabled during round robin mode.  
S2 enabled during round robin mode.  
Enable bit for S1.  
0
1
0
1
S1 disabled during round robin mode.  
S1 enabled during round robin mode.  
CNV EDGE SELECT REGISTER  
Address: 0x06, Reset: 0x00, Name: CNV_EDGE_SEL  
The CNꢀ edge select register allows the user to select the active edge of the CNꢀ pin when the device is in round robin mode.  
Table 24. Bit Descriptions for CNV_EDGE_SEL  
Bit(s)  
[7:1]  
0
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved. Set these bits to 0.  
CNV active edge select bit.  
0x0  
0x0  
R
CNV_EDGE_SEL  
R/W  
0
1
Falling edge of CNV is the active edge.  
Rising edge of CNV is the active edge.  
SOFTWARE RESET REGISTER  
Address: 0x0B, Reset: 0x00, Name: SOFT_RESETB  
Use the software reset register to perform a software reset. Write 0xA3 followed by 0x05 consecutively to this register, and the registers of  
the device reset to their default state.  
Table 25. Bit Descriptions for SOFT_RESETB  
Bit(s)  
Bit Name  
Settings  
Description  
Default Access  
[7:0]  
SOFT_RESETB  
To perform a software reset, consecutively write 0xA3 followed by 0x05 to 0x0  
this register.  
R
Rev. 0 | Page 33 of 34  
 
 
ADGS±408VADGS±409  
OUTLINE DIMENSIONS  
Data Sheet  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
NS  
INDIC ATOR AREA OPTIO  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.95  
0.90  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 55. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.95 mm Package Height  
(CP-24-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADGS1408BCPZ  
ADGS1408BCPZ-RL7  
ADGS1409BCPZ  
ADGS1409BCPZ-RL7  
EVAL-ADGS1408SDZ  
EVAL-ADGS1409SDZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-24-17  
CP-24-17  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
ADGS1408 Evaluation Board  
CP-24-17  
CP-24-17  
ADGS1409 Evaluation Board  
1 Z = RoHS Compliant Part.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16791-0-6/18(0)  
Rev. 0 | Page 34 of 34  
 
 
 

相关型号:

ADGS1409

SPI Interface, 4 Ω RON, ±15 V/12 V/±5 V, 1.8 V Logic Control, 8:1/Dual 4:1 Muxes
ADI

ADGS1409BCPZ

SPI Interface, 4 &Omega; RON, ±15 V/+12 V/±5 V, 1.8 V Logic Control, Dual 4:1 Muxes
ADI

ADGS1409BCPZ-RL7

SPI Interface, 4 &Omega; RON, ±15 V/+12 V/±5 V, 1.8 V Logic Control, Dual 4:1 Muxes
ADI

ADGS1412

Serially Controlled, 1.5 Ω, On-Resistance, High Voltage, iCMOS, Quad SPST Switch
ADI

ADGS1412BCPZ

SPI Interface, 1.5 &Omega; RON, ±15 V/+12 V, Quad SPST Switch, Mux Configurable
ADI

ADGS1412BCPZ-RL7

Serially Controlled, 1.5 Ω, On-Resistance, High Voltage, iCMOS, Quad SPST Switch
ADI

ADGS1414D

SPI, 1.5 Ω RON, ±15 V/±5 V/12 V, High Density Octal SPST Switch
ADI

ADGS1414DBCCZ

SPI, 1.5 Ω RON, ±15 V/±5 V/12 V, High Density Octal SPST Switch
ADI

ADGS1414DBCCZ-RL7

SPI, 1.5 Ω RON, ±15 V/±5 V/12 V, High Density Octal SPST Switch
ADI

ADGS1612

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS1612BCPZ

SPI Interface, 1 &Omega; RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS1612BCPZ-RL7

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI