ADGS1414DBCCZ-RL7 [ADI]

SPI, 1.5 Ω RON, ±15 V/±5 V/12 V, High Density Octal SPST Switch;
ADGS1414DBCCZ-RL7
型号: ADGS1414DBCCZ-RL7
厂家: ADI    ADI
描述:

SPI, 1.5 Ω RON, ±15 V/±5 V/12 V, High Density Octal SPST Switch

文件: 总28页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPI, 1.5 Ω RON, 15 V/ 5 V/+12 V, High  
Density Octal SPST Switch  
Data Sheet  
ADGS1414D  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
SS  
DD  
SPI with error detection  
Includes CRC, invalid read and write address, and SCLK  
count error detection  
ADGS1414D  
Supports burst mode and daisy-chain mode  
Industry-standard SPI Mode 0 and Mode 3 interface  
compatible  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Integrated passive components  
Route through of digital signals and supplies  
Guaranteed break-before-make switching allowing external  
wiring of switches to deliver multiplexer configurations  
1.5 Ω typical on resistance at 25°C ( 15 V dual supply)  
0.3 Ω typical on resistance flatness at 25°C ( 15 V dual supply)  
0.1 Ω typical on resistance match between channels at 25°C  
( 15 V dual supply)  
S8  
D8  
V
L
SPI  
INTERFACE  
SDO  
V
SS to VDD analog signal range  
Fully specified at 15 V, 5 V, and +12 V  
SCLK SDI CS RESET/V  
L
1.8 V logic compatibility with 2.7 V ≤ VL ≤ 3.3 V (excludes SPI  
readback to a 1.8 V device)  
4 mm × 5 mm, 30-terminal LGA  
Figure 1.  
The ADGS1414D is suited to high density switching  
applications, such as large switching matrices and fanout  
applications.  
APPLICATIONS  
Automated test equipment  
Data acquisition systems  
Sample-and-hold systems  
Audio and video signal routing  
Communications systems  
Relay replacement  
Each switch conducts equally well in both directions when on,  
and each switch has an input signal range that extends to the  
supplies. In the off condition, signal levels up to the supplies  
are blocked.  
Multifunction pin names may be referenced by their relevant  
function only.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADGS1414D contains eight independent SPST switches. A  
serial peripheral interface (SPI) controls the switches. The SPI  
has robust error detection features, such as cyclic redundancy  
check (CRC) error detection, invalid read and write address  
detection, and SCLK count error detection.  
1. The SPI removes the need for parallel conversion and logic  
traces and reduces the general-purpose input and output  
(GPIO) channel count.  
2. Daisy-chain mode removes additional logic traces when  
multiple devices are used.  
It is possible to daisy-chain multiple ADGS1414D devices  
together. Daisy-chain mode enables the configuration of  
multiple devices with a minimal amount of digital lines. The  
route of digital signals and supplies through the ADGS1414D  
allows for a further increase in channel density. Integrated  
passive components eliminate the need for external passive  
components.  
3. Route through of digital signals and supplies eases routing  
and allows for an increase in channel density.  
4. Integrated passive components eliminate the need for  
external passive components.  
5. CRC error detection, invalid read and write address  
detection, and SCLK count error detection ensure a robust  
digital interface.  
6. CRC, invalid read and write address, and SCLK error  
detection capabilities allow for the use of the ADGS1414D  
in safety critical systems.  
7. Minimum distortion.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADGS1414D  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Clearing the Error Flags Register............................................. 21  
Burst Mode.................................................................................. 21  
Software Reset............................................................................. 21  
Daisy-Chain Mode..................................................................... 21  
Power-On Reset.......................................................................... 22  
Applications Information ............................................................. 23  
System Channel Density ........................................................... 23  
Break-Before-Make Switching ................................................. 24  
Digital Input Buffers.................................................................. 24  
Power Supply Rails..................................................................... 24  
Power Supply Recommendations............................................ 24  
1.8 V Logic Compatibility......................................................... 24  
Register Summary .......................................................................... 25  
Register Details ............................................................................... 26  
Switch Data Register.................................................................. 26  
Error Configuration Register ................................................... 26  
Error Flags Register.................................................................... 27  
Burst Enable Register................................................................. 27  
Software Reset Register ............................................................. 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights........................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
15 V Dual Supply....................................................................... 3  
5 V Dual Supply ......................................................................... 5  
12 V Single Supply ....................................................................... 7  
Continuous Current per Channel, Sx or Dx ............................ 9  
Timing Characteristics ................................................................ 9  
Absolute Maximum Ratings ......................................................... 11  
Thermal Resistance.................................................................... 11  
Electrostatic Discharge (ESD) Ratings.................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions .......................... 12  
Typical Performance Characteristics........................................... 13  
Test Circuits .................................................................................... 17  
Terminology.................................................................................... 19  
Theory of Operation ...................................................................... 20  
Address Mode............................................................................. 20  
Error Detection Features........................................................... 20  
REVISION HISTORY  
6/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
Data Sheet  
ADGS1414D  
SPECIFICATIONS  
15 V DUAL SUPPLY  
VDD = +15 V 10%, VSS = −15 V 10%, VL = 2.7 V to 5.5 V, and GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
1.5  
Ω typ  
Source voltage, VS = 10 V, source  
current, IS = −10 mA, see Figure 29  
1.8  
0.1  
2.3  
2.6  
Ω max  
Ω typ  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −10 mA  
On-Resistance Match  
Between Channels, ∆RON  
0.18  
0.3  
0.19  
0.4  
0.21  
Ω max  
Ω typ  
On-Resistance Flatness,  
RFLAT (ON)  
VS = 10 V, IS = −10 mA  
0.36  
0.45  
Ω max  
nA typ  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
VDD = +16.5 V, VSS = −16.5 V  
VS = 10 V, drain voltage, VD = 10 V, see  
0.03  
Figure 32  
0.55  
0.03  
0.55  
0.15  
2
2
12.5  
12.5  
nA max  
nA typ  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 10 V, VD = 10 V, see Figure 32  
Channel On Leakage, ID (On),  
IS (On)  
VS = VD = 10 V, see Figure 28  
2
4
30  
nA max  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.3  
VL − 1.25 V  
VL − 0.125 V  
V max  
V max  
V min  
V min  
pF typ  
Sink current, ISINK = 1 mA  
ISINK = 100 µA  
Source current, ISOURCE = 1 mA  
ISOURCE = 100 µA  
High, VOH  
Digital Output Capacitance,  
COUT  
4
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
V max  
V max  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
1.35  
0.8  
0.8  
Low, VINL  
Input Current  
Low, IINL or High, IINH  
0.001  
4
µA typ  
Input voltage, VIN = ground voltage, VGND  
or VL  
0.1  
µA max  
pF typ  
Digital Input Capacitance,  
CIN  
DYNAMIC CHARACTERISTICS1  
On Time, tON  
400  
ns typ  
Load resistance, RL = 300 Ω, load  
capacitance, CL = 35 pF  
475  
160  
190  
480  
210  
485  
225  
ns max  
ns typ  
ns max  
VS = 10 V, see Figure 37  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 37  
Off Time, tOFF  
Rev. 0 | Page 3 of 28  
 
 
ADGS1414D  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Break-Before-Make Time  
Delay, tD  
215  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
% typ  
RL = 300 Ω, CL = 35 pF  
170  
Source 1 voltage, VS1 = Source 2 voltage,  
VS2 = 10 V, see Figure 36  
VS = 0 V, source resistance, RS = 0 Ω, CL =  
1 nF, see Figure 38  
RL = 50 Ω, CL = 5 pF, frequency, f = 1 MHz,  
see Figure 31  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 30  
Charge Injection, QINJ  
Off Isolation  
−20  
−76  
−75  
0.014  
Channel to Channel  
Crosstalk  
Total Harmonic Distortion +  
Noise, THD + N  
RL = 110 Ω, 15 V p-p, f = 20 Hz to 20 kHz,  
see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
170  
−0.2  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 34  
Source Capacitance, CS (Off)  
Drain Capacitance, CD (Off)  
CD (On), CS (On)  
20  
21  
111  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = +16.5 V, VSS = −16.5 V  
All switches open  
POWER REQUIREMENTS  
Positive Supply Current, IDD  
0.04  
480  
480  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
4.0  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
800  
800  
Load Current, IL  
Inactive  
6.3  
µA typ  
µA max  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
SCLK = 50 MHz  
14  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
7
390  
210  
15  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
7.5  
230  
120  
1.8  
Active at 50 MHz  
Digital inputs toggle between 0 V and VL,  
VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between 0 V and VL,  
VL = 2.7 V  
1.0  
4.0  
mA max  
µA typ  
µA max  
Negative Supply Current, ISS  
VDD/VSS  
0.04  
Digital inputs = 0 V or VL  
4.5/ 16.5  
V min/V max GND = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. 0 | Page 4 of 28  
 
Data Sheet  
ADGS1414D  
5 V DUAL SUPPLY  
VDD = +5 V 10%, VSS = −5 V 10%, VL = 2.7 V to 5.5 V, and GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
3.3  
Ω typ  
VS = 4.5 V, IS = −10 mA, see  
Figure 29  
4
0.13  
4.9  
5.4  
Ω max  
Ω typ  
VDD = +4.5 V, VSS = −4.5 V  
VS = 4.5 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.35  
0.9  
1.1  
0.43  
1.24  
0.45  
1.31  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 4.5 V, IS = −10 mA  
VDD = +5.5 V, VSS = −5.5 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.03  
nA typ  
VS = 4.5 V, VD = 4.5 V, see  
Figure 32  
0.55  
0.03  
2
12.5  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 4.5 V, VD = 4.5 V, see  
Figure 32  
0.55  
0.05  
1.0  
2
4
12.5  
30  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 4.5 V, see Figure 28  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.3  
VL − 1.25 V  
VL − 0.125 V  
V max  
V max  
V min  
V min  
pF typ  
ISINK = 1 mA  
ISINK = 100 µA  
ISOURCE = 1 mA  
ISOURCE = 100 µA  
High, VOH  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
4
Input Voltage  
High, VINH  
2
V min  
V min  
V max  
V max  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
1.35  
0.8  
0.8  
Low, VINL  
Input Current  
Low, IINL or High, IINH  
0.001  
4
µA typ  
µA max  
pF typ  
VIN = VGND or VL  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
On Time, tON  
510  
645  
280  
365  
245  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 3 V, see Figure 37  
RL = 300 Ω, CL = 35 pF  
VS = 3 V, see Figure 37  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 3 V, see Figure 36  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see  
Figure 38  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 31  
680  
400  
710  
435  
200  
Off Time, tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
10  
−76  
−75  
dB typ  
dB typ  
Channel to Channel Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 30  
Rev. 0 | Page 5 of 28  
 
ADGS1414D  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Total Harmonic Distortion + Noise,  
THD + N  
0.03  
% typ  
RL = 110 Ω, 5 V p-p, f = 20 Hz to  
20 kHz, see Figure 33  
−3 dB Bandwidth  
130  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see  
Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz,  
see Figure 34  
Insertion Loss  
−0.3  
Source Capacitance, CS (Off)  
Drain Capacitance, CD (Off)  
CD (On), CS (On)  
30  
31  
116  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = +5.5 V, VSS = −5.5 V  
Digital inputs = 0 V or VL, VL =  
5.5 V  
POWER REQUIREMENTS  
Positive Supply Current, IDD  
0.04  
28  
µA typ  
4.0  
60  
µA max  
µA typ  
µA max  
All switches closed, VL = 2.7 V  
Digital inputs = 0 V or VL  
Load Current, IL  
Inactive  
6.3  
µA typ  
µA max  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
8.0  
Inactive, SCLK = 1 MHz  
SCLK = 50 MHz  
14  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
7
390  
210  
15  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
7.5  
230  
120  
1.8  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
1.0  
4.0  
mA max  
µA typ  
µA max  
Negative Supply Current, ISS  
VDD/VSS  
0.04  
Digital inputs = 0 V or VL  
4.5/ 16.5  
V min/V max GND = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. 0 | Page 6 of 28  
 
Data Sheet  
ADGS1414D  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, VL = 2.7 V to 5.5 V, and GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
4.8  
V
2.8  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA, see  
Figure 29  
VDD = 10.8 V, VSS = 0 V  
3.5  
0.13  
4.3  
Ω max  
Ω typ  
On-Resistance Match  
VS = 0 V to 10 V, IS = −10 mA  
Between Channels, ∆RON  
0.35  
0.6  
0.43  
1.2  
0.45  
Ω max  
Ω typ  
On-Resistance Flatness,  
RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
1.1  
1.3  
Ω max  
nA typ  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
VDD = 13.2 V, VSS = 0 V  
VS = 1 V/10 V, VD = 10 V/1 V, see  
Figure 32  
0.02  
0.55  
0.02  
2
2
4
12.5  
12.5  
30  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V, see  
Figure 32  
0.55  
0.15  
nA max  
nA typ  
Channel On Leakage, ID (On),  
IS (On)  
VS = VD = 1 V/10 V, see Figure 28  
1.5  
nA max  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.3  
VL − 1.25 V  
VL − 0.125 V  
V max  
V max  
V min  
V min  
pF typ  
ISINK = 1 mA  
ISINK = 100 µA  
ISOURCE = 1 mA  
ISOURCE = 100 µA  
High, VOH  
Digital Output Capacitance,  
COUT  
4
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
V max  
V max  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.7 V ≤ VL ≤ 3.3 V  
1.35  
0.8  
0.8  
Low, VINL  
Input Current  
Low, IINL or High, IINH  
0.001  
4
µA typ  
µA max  
pF typ  
VIN = VGND or VL  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
On Time, tON  
470  
570  
170  
215  
280  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 37  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 37  
RL = 300 Ω, CL = 35 pF  
595  
240  
615  
265  
Off Time, tOFF  
Break-Before-Make Time  
Delay, tD  
225  
ns min  
pC typ  
VS1 = VS2 = 8 V, see Figure 36  
VS = 6 V, RS = 0 Ω, CL = 1 nF, see  
Figure 38  
Charge Injection, QINJ  
Off Isolation  
10  
−76  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 31  
Rev. 0 | Page 7 of 28  
 
ADGS1414D  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Channel to Channel Crosstalk −75  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 30  
Total Harmonic Distortion +  
Noise, THD + N  
0.06  
% typ  
RL = 110 Ω, 6 V p-p, f = 20 Hz to 20 kHz,  
see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
130  
−0.3  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 34  
Source Capacitance, CS (Off)  
Drain Capacitance, CD (Off)  
CD (On), CS (On)  
27  
28  
116  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 13.2 V  
POWER REQUIREMENTS  
Positive Supply Current, IDD  
0.04  
420  
520  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
All switches open  
4.0  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
800  
850  
Load Current, IL  
Inactive  
6.3  
µA typ  
µA max  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
µA typ  
mA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
SCLK = 50 MHz  
14  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS = VL and SDI = 0 V or VL, VL = 5 V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
7
390  
210  
15  
Inactive, SDI = 1 MHz  
SDI = 25 MHz  
7.5  
230  
120  
1.8  
Active at 50 MHz  
Digital inputs toggle between 0 V and  
VL, VL = 5.5 V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between 0 V and  
VL, VL = 2.7 V  
1.0  
mA max  
VDD  
5/20  
V min/V max GND = 0 V, VSS = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. 0 | Page 8 of 28  
 
Data Sheet  
ADGS1414D  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 4. Eight Channels On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx1  
VDD = +15 V, VSS = −15 V (θJA = 65.5°C/W)  
VDD = +12 V, VSS = 0 V (θJA = 65.5°C/W)  
VDD = +5 V, VSS = −5 V (θJA = 65.5°C/W)  
273  
221  
206  
156  
133  
126  
80  
72  
70  
mA maximum  
mA maximum  
mA maximum  
1 Sx refers to the S1 to S8 pins, and Dx refers to the D1 to D8 pins.  
Table 5. One Channel On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx1  
VDD = +15 V, VSS = −15 V (θJA = 65.5°C/W)  
VDD = +12 V, VSS = 0 V (θJA = 65.5°C/W)  
VDD = +5 V, VSS = −5 V (θJA = 65.5°C/W)  
490  
399  
373  
225  
200  
192  
87  
84  
83  
mA maximum  
mA maximum  
mA maximum  
1 Sx refers to the S1 to S8 pins, and Dx refers to the D1 to D8 pins.  
TIMING CHARACTERISTICS  
VL = 2.7 V to 5.5 V, GND = 0 V, and all specifications minimum temperature (TMIN) to maximum temperature (TMAX), unless otherwise  
noted. Guaranteed by design and characterization, not production tested. See Figure 2 to Figure 4 for the timing diagrams.  
Table 6.  
Parameter  
Limit  
Unit  
Test Conditions/Comments  
TIMING CHARACTERISTICS  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
20  
8
8
10  
6
8
10  
20  
30  
30  
20  
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns max  
ns min  
ns min  
ns min  
SCLK period  
SCLK high pulse width  
SCLK low pulse width  
CS falling edge to SCLK active edge  
Data setup time  
Data hold time  
SCLK active edge to CS rising edge  
CS falling edge to SDO data available  
SCLK falling edge to SDO data available  
CS rising edge to SDO returns to high  
CS high time between SPI commands  
CS falling edge to SCLK becomes stable  
CS rising edge to SCLK becomes stable  
1
t9  
t10  
t11  
t12  
t13  
8
1 Measured with a 20 pF load. t9 determines the maximum SCLK frequency when SDO is used.  
Rev. 0 | Page 9 of 28  
 
 
 
 
ADGS1414D  
Data Sheet  
Timing Diagrams  
t1  
SCLK  
CS  
t2  
t7  
t4  
t3  
t6  
t5  
SDI  
R/W  
A6  
A5  
1
D2  
D2  
D1  
D1  
D0  
D0  
t10  
t9  
SDO  
0
0
t8  
Figure 2. Address Mode Timing Diagram  
t1  
SCLK  
CS  
t2  
t3  
t4  
t7  
t6  
t5  
SDI  
D7  
D6  
D0  
D7  
D6  
D1  
D0  
INPUT BYTE FOR DEVICE N  
t9  
INPUT BYTE FOR DEVICE N + 1  
t10  
SDO  
0
0
0
D7  
D6  
D1  
D0  
ZERO BYTE  
INPUT BYTE FOR DEVICE N  
t8  
Figure 3. Daisy-Chain Timing Diagram  
t11  
CS  
SCLK  
t13  
t12  
CS  
Figure 4. SCLK and Timing Relationship  
Rev. 0 | Page 10 of 28  
 
 
Data Sheet  
ADGS1414D  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Table 7.  
Parameter  
Rating  
VDD to VSS  
35 V  
−0.3 V to +25 V  
+0.3 V to −25 V  
VDD to GND  
VSS to GND  
VL to GND  
For VDD ≤ 5.5 V  
For VDD > 5.5 V  
SDO  
Only one absolute maximum rating can be applied at any one time.  
−0.3 V to VDD + 0.3 V  
−0.3 V to +6 V  
−0.3 V to VL + 0.3 V or 6 mA,  
whichever occurs first  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
−0.3 V to +6 V  
550 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
Data + 15%  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Analog Inputs1  
Digital Inputs1  
Peak Current, Sx or Dx2  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJCB is  
the junction to the bottom of the case value.  
Continuous Current, Sx or Dx2, 3  
Temperature  
Table 8. Thermal Resistance  
Operating Range  
Storage Range  
Junction  
Reflow Soldering Peak  
Temperature, Pb Free  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Package Type  
LGA1  
θJA  
θJCB  
Unit  
65.5  
48.12  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with four thermal vias. See JEDEC JESD-51.  
260(+0/−5)°C  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
1 Overvoltages at the digital Sx and Dx pins are clamped by internal diodes.  
Limit current to the maximum ratings given.  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
2 Sx refers to the S1 to S8 pins, and Dx refers to the D1 to D8 pins.  
3 See Table 4 and Table 5.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Field induced charged device model (FICDM) per  
ANSI/ESDA/JEDEC JS-002.  
ESD Ratings for ADGS1414D  
Table 9. ADGS1414D, 30-Terminal LGA  
Package Type  
Withstand Threshold (V)  
Class  
2
C3  
HBM  
FICDM  
2000  
1250  
ESD CAUTION  
Rev. 0 | Page 11 of 28  
 
 
 
 
ADGS1414D  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADGS1414D  
30 29 28 27 26 25  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
D1  
D2  
S1  
S2  
D8  
D7  
S8  
S7  
NIC  
S6  
S5  
D6  
D5  
TOP VIEW  
(Not to Scale)  
V
SS  
S3  
S4  
D3  
D4  
10 11 12 13 14 15  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. EXPOSED PAD. THE EXPOSED PAD IS CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY OF THE  
SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE EXPOSED PAD IS  
CONNECTED TO V  
.
SS  
Figure 5. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
D1  
D2  
S1  
S2  
Drain Terminal 1. The D1 pin can be an input or an output.  
Drain Terminal 2. The D2 pin can be an input or an output.  
Source Terminal 1. The S1 pin can be an input or an output.  
Source Terminal 2. The S2 pin can be an input or an output.  
5
6
VSS  
S3  
Most Negative Power Supply Potential. In single-supply applications, tie the VSS pin to ground.  
Source Terminal 3. The S3 pin can be an input or an output.  
7
S4  
Source Terminal 4. The S4 pin can be an input or an output.  
8
D3  
Drain Terminal 3. The D3 pin can be an input or an output.  
9
D4  
Drain Terminal 4. The D4 pin can be an input or an output.  
10, 30  
11, 29  
12, 28  
VDD  
GND  
RESET/VL  
Most Positive Power Supply Potential. Both VDD pins are connected internally.  
Ground (0 V) Reference. Both GND pins are connected internally.  
RESET/Logic Power Supply Input (VL). Under normal operation, drive RESET/VL with a 2.7 V to 5.5 V supply. Pull  
RESET/VL low to complete a hardware reset. After a reset, all switches open, and the appropriate registers are  
set to their default. Both RESET and VL are connected internally.  
13  
SDO  
Serial Data Output. Use the SDO pin for daisy-chaining a number of these devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of  
SCLK.  
14, 26  
15, 25  
SCLK  
CS  
Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates up to  
50 MHz. Both SCLK pins are connected internally.  
Active Low Control Input. CS is the frame synchronization signal for the input data. Both CS pins are  
connected internally.  
16  
17  
18  
19  
20  
21  
22  
23  
24  
27  
D5  
D6  
S5  
S6  
NIC  
S7  
Drain Terminal 5. The D5 pin can be an input or an output.  
Drain Terminal 6. The D6 pin can be an input or an output.  
Source Terminal 5. The S5 pin can be an input or an output.  
Source Terminal 6. The S6 pin can be an input or an output.  
Not Internally Connected.  
Source Terminal 7. The S7 pin can be an input or an output.  
Source Terminal 8. The S8 pin can be an input or an output.  
Drain Terminal 7. The D7 pin can be an input or an output.  
Drain Terminal 8. The D8 pin can be an input or an output.  
Serial Data Input. Data is captured on the positive edge of SCLK.  
S8  
D7  
D8  
SDI  
EPAD  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and  
maximum thermal capability, it is recommended that the exposed pad is connected to VSS.  
Rev. 0 | Page 12 of 28  
 
Data Sheet  
ADGS1414D  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +10V,  
= –10V  
DD  
SS  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +12V,  
= –12V  
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
T
T
= +25°C  
= –40°C  
A
V
V
= +16.5V,  
= –16.5V  
DD  
SS  
V
V
= +13.5V,  
= –13.5V  
DD  
SS  
V
= +15V,  
DD  
SS  
A
V
= –15V  
V
V
I
= +15V  
= –15V  
= –10mA  
DD  
SS  
T
I
= 25°C  
= –10mA  
A
S
S
–16.5 –12.5 –8.5  
–4.5  
–0.5  
3.5  
7.5  
11.5  
15.5  
–15  
–10  
–5  
0
5
10  
15  
V
OR V (V)  
V OR V (V)  
S D  
S
D
Figure 6. On Resistance vs. VS or VD for Various Dual Supplies, 10 V to  
16.5 V  
Figure 9. On Resistance vs. VS or VD for Various Temperatures,  
15 V Dual Supply  
4.0  
5.0  
4.5  
4.0  
3.5  
V
V
= +4.5V,  
= –4.5V  
DD  
SS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +5V,  
= –5V  
DD  
SS  
T
T
= +85°C  
= +25°C  
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
V
V
= +7V,  
= –7V  
DD  
SS  
V
= +5.5V,  
DD  
SS  
V
= –5.5V  
T
= –40°C  
A
V
V
= +5V  
= –5V  
DD  
T
= 25°C  
= –10mA  
A
SS  
I
S
I
= –10mA  
S
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
–5  
–4  
–3  
–2  
–1  
V
0
1
2
3
4
5
V
OR V (V)  
OR V (V)  
S D  
S
D
Figure 7. On Resistance vs. VS or VD for Various Dual Supplies, 4.5 V to  
7 V  
Figure 10. On Resistance vs. VS or VD for Various Temperatures,  
5 V Dual Supply  
7
4.5  
4.0  
3.5  
V
V
= 5V,  
= 0V  
DD  
SS  
6
5
4
3
2
1
0
T
T
= +85°C  
= +25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
A
V
V
= 10.8V,  
= 0V  
DD  
SS  
V
V
= 8V,  
= 0V  
DD  
SS  
V
V
= 12V,  
= 0V  
DD  
SS  
T
= –40°C  
A
V
V
= 15V,  
V
V
= 13.2V,  
= 0V  
DD  
DD  
SS  
= 0V  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
T
= 25°C  
= –10mA  
A
I
S
I
= –10mA  
S
0
2
4
6
8
10  
12  
14  
0
2
4
6
V OR V (V)  
S
8
10  
12  
V
OR V (V)  
S
D
D
Figure 8. On Resistance vs. VS or VD for Various Single Supplies  
Figure 11. On Resistance vs. VS or VD for Various Temperatures,  
12 V Single Supply  
Rev. 0 | Page 13 of 28  
 
ADGS1414D  
Data Sheet  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
9
8
V
V
V
= 12V  
= 0V  
I
I
I
I
I
I
(OFF) + –  
(OFF) + –  
(OFF) – +  
(OFF) – +  
DD  
SS  
S
D
S
D
D
D
= 1V/10V  
BIAS  
T
I
= 125°C  
= 100mA  
A
7
S
, I (ON) ++  
S
6
, I (ON) – –  
S
5
4
T
S
= 25°C  
= 190mA  
A
I
3
2
1
0
V
V
= +5V  
= –5V  
DD  
SS  
0
–1  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
20  
40  
60  
80  
100  
120  
V
OR V (V)  
TEMPERATURE (°C)  
S
D
Figure 12. On Resistance vs. VS or VD for Various Current Levels and  
Temperatures, 5 V Dual Supply  
Figure 15. Leakage Current vs. Temperature, 12 V Single Supply  
1.5  
400  
T
= 25°C  
I
, I (ON) + +  
S
A
D
V
= +15V, V = –15V  
SS  
DD  
1.0  
0.5  
300  
200  
I
(OFF) + –  
I
(OFF) – +  
S
D
0
100  
V
= +5V, V = –5V  
SS  
DD  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
0
I
, I (ON) – –  
S
D
–100  
–200  
–300  
–400  
–500  
V
= +12V, V = 0V  
SS  
DD  
I
(OFF) + –  
D
I
(OFF) – +  
V
V
V
= +15V  
= –15V  
S
DD  
SS  
= +10V/–10V  
BIAS  
0
20  
40  
60  
80  
100  
120  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
V
(V)  
S
Figure 16. Charge Injection vs. VS  
Figure 13. Leakage Current vs. Temperature, 15 V Dual Supply  
(VBIAS = Bias Voltage)  
700  
600  
500  
400  
300  
200  
100  
0
1.5  
V
V
V
= +5V  
= –5V  
15V DUAL SUPPLY, tON  
12V SINGLE SUPPLY, tON  
12V SINGLE SUPPLY, tOFF  
DD  
SS  
15V DUAL SUPPLY, tOFF  
5V DUAL SUPPLY, tON  
5V DUAL SUPPLY, tOFF  
= +4.5V/–4.5V  
BIAS  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
I
I
I
I
I
I
(OFF) + –  
(OFF) + –  
(OFF) – +  
(OFF) – +  
, I (ON) ++  
, I (ON) – –  
S
D
S
D
D
D
S
S
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Leakage Current vs. Temperature, 5 V Dual Supply  
Figure 17. tON and tOFF vs. Temperature for Single Supply and Dual Supply  
Rev. 0 | Page 14 of 28  
Data Sheet  
ADGS1414D  
0
0
–20  
V
V
T
= +15V  
= –15V  
= 25°C  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
DD  
SS  
–20  
–40  
A
A
–40  
NO EXTERNAL  
DECOUPLING  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
10µF DECOUPLING  
CAPACITOR  
–100  
–120  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1G  
1G  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 21. AC Power Supply Rejection Ratio (AC PSRR) vs. Frequency,  
15 V Dual Supply  
0
–20  
V
V
T
= +15V  
= –15V  
DD  
SS  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
0.025  
0.020  
0.015  
0.010  
0.005  
0
SS  
= 25°C  
A
R
= 110Ω, V = 20V p-p  
S
L
A
–40  
–60  
R
= 110Ω, V = 15V p-p  
L
S
–80  
R
= 110Ω, V = 10V p-p  
S
L
–100  
–120  
–140  
R
= 1kΩ, V = 20V p-p  
L
S
R
= 1kΩ, V = 10V p-p  
R
= 1kΩ, V = 15V p-p  
L
S
L
S
20  
200  
2k  
20k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. THD + N vs. Frequency, 15 V Dual Supply  
Figure 19. Crosstalk vs. Frequency, 15 V Dual Supply  
0
–1  
–2  
–3  
–4  
–5  
–6  
0.20  
0.15  
0.10  
0.05  
0
R
= 110Ω, V = 10V p-p  
S
V
V
= +15V  
= –15V  
L
DD  
SS  
T
= 25°C  
A
V
V
= +5V  
= –5V  
DD  
SS  
T
= 25°C  
A
R
= 110Ω, V = 5V p-p  
S
= 1kΩ, V = 10V p-p  
L
R
L
S
R
= 110Ω, V = 2.5V p-p  
= 1kΩ, V = 5V p-p  
L
S
R
L
S
R
= 1kΩ, V = 2.5V p-p  
L
S
20  
200  
2k  
20k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. THD + N vs. Frequency, 5 V Dual Supply  
Figure 20. Insertion Loss vs. Frequency, 15 V Dual Supply  
Rev. 0 | Page 15 of 28  
 
ADGS1414D  
Data Sheet  
0.14  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
PER CLOSED SWITCH  
V
V
= 12V  
= 0V  
= 25°C  
A
DD  
I
DD  
SS  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
T
A
R
R
= 110Ω, V = 9V p-p  
L
S
V
V
= +15V  
= –15V  
DD  
SS  
= 110Ω, V = 6V p-p  
V
V
= +12V  
= 0V  
L
S
DD  
SS  
R
= 110Ω, V = 3V p-p  
S
L
R
= 1kΩ, V = 9V p-p  
L
S
R
R
= 1kΩ, V = 6V p-p  
L
L
S
V
V
= +5V  
= –5V  
DD  
SS  
= 1kΩ, V = 3V p-p  
S
20  
200  
2k  
20k  
2.7  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
FREQUENCY (Hz)  
V
(V)  
L
Figure 24. THD + N vs. Frequency, 12 V Single Supply  
Figure 26. IDD vs. VL  
2.0  
1.5  
450  
V
V
= +15V  
= –15V  
= 25°C  
SCLK = 2.5MHz  
SCLK IDLE  
DD  
SS  
T = 25°C  
A
400  
350  
300  
250  
200  
150  
100  
50  
T
A
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
V
V
= 5V  
= 3V  
L
L
0
1
10  
20  
30  
40  
50  
0
2
4
6
8
TIME (µs)  
SCLK FREQUENCY (MHz)  
CS  
Figure 27. IL vs. SCLK Frequency When Is High  
Figure 25. Digital Feedthrough (VOUT = Output Voltage)  
Rev. 0 | Page 16 of 28  
 
Data Sheet  
ADGS1414D  
TEST CIRCUITS  
I
(ON)  
A
I
(OFF)  
A
I
(OFF)  
A
D
S
D
Sx  
Dx  
Sx  
Dx  
V
S
V
D
V
V
D
S
Figure 28. On Leakage  
Figure 32. Off Leakage  
V
I
V
SS  
DD  
DS  
V
AUDIO PRECISION  
V
V
DD  
SS  
R
S
Sx  
Dx  
DS  
Sx  
V
S
V
S
R
= V/I  
ON  
V p-p  
Dx  
V
OUT  
R
L
GND  
110Ω  
Figure 29. On Resistance  
(IDS = Drain and Source Current)  
Figure 33. THD + N  
V
V
V
V
DD  
SS  
DD  
SS  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
V
SS  
V
DD  
DD  
SS  
V
NC  
OUT  
S1  
D1  
R
L
Sx  
50Ω  
50Ω  
V
S
S2  
D2  
R
50Ω  
L
Dx  
V
OUT  
V
R
50Ω  
S
L
GND  
GND  
V
WITH SWITCH  
OUT  
V
OUT  
INSERTION LOSS = 20 log  
CHANNEL TO CHANNEL CROSSTALK = 20 log  
V
WITHOUT SWITCH  
S
V
S
Figure 34. −3 dB Bandwidth  
Figure 30. Channel to Channel Crosstalk  
V
V
V
DD  
SS  
SS  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
INTERNAL  
BIAS  
V
V
V
DD  
V
SS  
SS  
DD  
R
L
50Ω  
Sx  
Dx  
50Ω  
50Ω  
V
S
V
S
V
NC  
OUT  
S1  
D1  
R
50Ω  
V
L
OUT  
GND  
R
L
GND  
50Ω  
V
OUT  
AC PSRR = 20 log  
V
S
V
OUT  
OFF ISOLATION = 20 log  
V
S
NOTES  
1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED  
FROM THE AC PSRR MEASUREMENT.  
Figure 35. AC PSRR  
Figure 31. Off Isolation  
Rev. 0 | Page 17 of 28  
 
 
 
 
 
 
 
 
ADGS1414D  
Data Sheet  
V
V
V
V
DD  
DD  
SS  
SS  
SCLK  
50%  
50%  
0V  
0V  
80%  
80%  
V
OUT1  
S1  
D1  
V
V
S1  
OUT1  
R
C
L1  
L1  
300Ω  
35pF  
S2  
D2  
V
V
S2  
OUT2  
R
300Ω  
C
L2  
35pF  
L2  
80%  
80%  
INPUT LOGIC  
GND  
V
OUT2  
0V  
tD  
tD  
Figure 36. Break-Before-Make Time Delay, tD  
V
V
V
DD  
SS  
V
DD  
SS  
SCLK  
V
OUT  
50%  
50%  
Sx  
Dx  
R
300Ω  
C
L
35pF  
L
90%  
V
S
V
INPUT LOGIC  
GND  
OUT  
10%  
tON  
tOFF  
Figure 37. Switching Times, tON and tOFF  
V
V
DD  
SS  
SS  
3V  
V
V
DD  
SCLK  
R
V
S
Sx  
Dx  
V
OUT  
C
1nF  
L
S
Q
= C × ΔV  
L OUT  
INJ  
INPUT LOGIC  
GND  
V
OUT  
ΔV  
OUT  
SWITCH OFF  
SWITCH ON  
Figure 38. Charge Injection, QINJ (ΔVOUT = Change in Output Voltage)  
Rev. 0 | Page 18 of 28  
 
 
 
Data Sheet  
ADGS1414D  
TERMINOLOGY  
IDD  
CIN  
I
DD represents the positive supply current.  
CIN is the digital input capacitance.  
ISS  
COUT  
I
SS represents the negative supply current.  
COUT is the digital output capacitance.  
VD, VS  
tON  
VD and VS represent the analog voltage on Terminal Dx and  
Terminal Sx, respectively.  
tON represents the delay between applying the digital control  
input and the output switching on.  
RON  
tOFF  
RON represents the ohmic resistance between Terminal Dx and  
tOFF represents the delay between applying the digital control  
Terminal Sx.  
input and the output switching off.  
∆RON  
Off Isolation  
∆RON represents the difference between the RON of any two  
channels.  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
RFLAT (ON)  
Charge Injection  
RFLAT (ON) is flatness that is defined as the difference between the  
maximum and minimum value of on resistance measured over  
the specified analog signal range.  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
Crosstalk  
IS (Off)  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
IS (Off) is the source leakage current with the switch off.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
−3 dB Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
On Response  
On response is the frequency response of the on switch.  
VINL  
VINL is the maximum input voltage for Logic 0.  
Insertion Loss  
Insertion loss is the loss due to the on resistance of the switch.  
VINH  
VINH is the minimum input voltage for Logic 1.  
Total Harmonic Distortion + Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
I
INL, IINH  
IINL and IINH represent the low and high input currents of the  
digital inputs.  
AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR is the ratio of the amplitude of the signal on the  
output to the amplitude of the modulation. AC PSRR is a  
measure of the ability of the device to avoid coupling noise and  
spurious signals that appear on the supply voltage pin to the  
output of the switch. The dc voltage on the device is modulated  
by a sine wave of 0.62 V p-p.  
CD (Off)  
CD (Off) represents the off switch drain capacitance, which is  
measured with reference to ground.  
CS (Off)  
CS (Off) represents the off switch source capacitance, which is  
measured with reference to ground.  
CD (On), CS (On)  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
Rev. 0 | Page 19 of 28  
 
ADGS1414D  
Data Sheet  
THEORY OF OPERATION  
The ADGS1414D is a set of serially controlled, octal SPST switches  
with error detection features. SPI Mode 0 and Mode 3 can be  
used with the ADGS1414D, and the device operates with SCLK  
frequencies up to 50 MHz. The default mode for the ADGS1414D  
is address mode in which the registers of the device are accessed  
During any SPI command, SDO sends out eight alignment bits  
as the first eight bits. The alignment bits observed at SDO are 0x25.  
ERROR DETECTION FEATURES  
Protocol and communication errors on the SPI are detectable.  
There are three error detection features: incorrect SCLK count  
error detection, invalid read and write address error detection,  
and CRC error detection. Each of these error detection features  
has a corresponding enable bit in the error configuration  
register. In addition, there is an error flag bit for each of these  
error detection features in the error flags register.  
CS  
by a 16-bit SPI command that is bounded by . The SPI  
command is a 24-bit command if the user enables CRC error  
detection. Other error detection features include SCLK count  
error and invalid read and write error. Read the error flags register  
to detect if any of these SPI errors occur. The ADGS1414D can  
also operate in two other modes: burst mode and daisy-chain  
mode.  
Cyclic Redundancy Check (CRC) Error Detection  
The CRC error detection feature extends a valid SPI frame by  
8 SCLK cycles. These eight extra cycles are needed to send the  
CRC byte for that SPI frame. The CRC byte is calculated by the  
CS  
The interface pins of the ADGS1414D are , SCLK, SDI, and  
CS  
SDO. Hold  
low when using the SPI. Data is captured on the  
SDI on the rising edge of SCLK, and data is propagated out on the  
SDO on the falling edge of SCLK.  
W
SPI block using the 16-bit payload: the R/ bit, the register  
address, Bits[6:0], and the register data, Bits[7:0]. The CRC  
polynomial used in the SPI block is x8 + x2 + x1 + 1 with a seed  
value of 0. For a timing diagram with CRC enabled, see Figure 40.  
Register writes occur at the 24th SCLK rising edge with CRC  
error checking enabled.  
ADDRESS MODE  
Address mode is the default mode for the ADGS1414D upon  
power up. A single SPI frame in address mode is bounded by  
CS  
CS  
a
falling edge and the succeeding rising edge. The SPI frame  
is comprised of 16 SCLK cycles. The timing diagram for address  
mode is shown in Figure 39. The first SDI bit indicates if the  
SPI command is a read or write command. When the first bit is  
set to 0, a write command is issued, and if the first bit is set to 1, a  
read command is issued. The next seven bits determine the target  
register address. The remaining eight bits provide the data to the  
addressed register. The last eight bits are ignored during a read  
command, because during these clock cycles, SDO propagates out  
the data contained in the addressed register.  
During an SPI write, the microcontroller or central processing  
unit (CPU) provides the CRC byte through SDI. The SPI block  
checks the CRC byte just before the 24th SCLK rising edge. On  
this same edge, the register write is prevented if an incorrect  
CRC byte is received by the SPI. The CRC error flag asserts in  
the error flags register in the case of the incorrect CRC byte  
being detected.  
During an SPI read, the CRC byte is provided to the  
microcontroller through SDO.  
The target register address of an SPI command is determined  
on the eighth SCLK rising edge. Data from this register propagates  
out on SDO from the 8th to the 15th SCLK falling edge during  
SPI reads. A register write occurs on the 16th SCLK rising edge  
during SPI writes.  
The CRC error detection feature is disabled by default and can  
be configured by the user through the error configuration register.  
1
2
3
4
A4  
8
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
R/W A6  
0
A5  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
0
1
0
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 39. Address Mode Timing Diagram  
1
2
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CS  
SCLK  
SDI  
R/W A6  
0
A0  
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
SDO  
0
1
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
Figure 40. Timing Diagram with CRC Enabled  
Rev. 0 | Page 20 of 28  
 
 
 
 
 
Data Sheet  
ADGS1414D  
SCLK Count Error Detection  
BURST MODE  
SCLK count error detection allows the user to detect if an incorrect  
number of SCLK cycles are sent by the microcontroller or CPU.  
When in address mode, with CRC disabled, 16 SCLK cycles are  
expected. If 16 SCLK cycles are not detected, the SCLK count  
error flag asserts in the error flags register. When less than  
16 SCLK cycles are received by the device, a write to the register  
map does not occur. When the ADGS1414D receives more  
than 16 SCLK cycles, a write to the memory map still occurs at  
the 16th SCLK rising edge, and the flag asserts in the error flags  
register. With CRC enabled, the expected number of SCLK  
cycles is 24. SCLK count error detection is enabled by default  
and can be configured by the user through the error  
The SPI can accept consecutive SPI commands without the need  
CS  
is enabled through the burst enable register. This mode uses the  
same 16-bit command to communicate with the device. In  
addition, the response of the device at SDO is still aligned with  
the corresponding SPI command. Figure 41 shows an example  
of SDI and SDO during burst mode.  
to deassert the  
line, which is called burst mode. Burst mode  
The invalid read and write address and CRC error checking  
functions operate similarly during burst mode as these error  
checking functions do during address mode. However, SCLK  
count error detection operates in a slightly different manner.  
CS  
The total number of SCLK cycles within a given  
frame are  
configuration register.  
counted, and if the total is not a multiple of 16, or a multiple of  
24 when CRC is enabled, the SCLK count error flag asserts.  
Invalid Read and Write Address Error  
An invalid read and write address error detects when a nonexistent  
register address is a target for a read or write. In addition, this  
error asserts when a write to a read only register is attempted.  
The invalid read and write address error flag asserts in the error  
flags register when an invalid read and write address error occurs.  
The invalid read and write address error is detected on the ninth  
SCLK rising edge, which means a write to the register does not  
occur when an invalid address is targeted. Invalid read and  
write address error detection is enabled by default and can be  
disabled by the user through the error configuration register.  
CS  
SDI  
COMMAND0[15:0] COMMAND1[15:0] COMMAND2[15:0] COMMAND3[15:0]  
SDO  
RESPONSE0[15:0] RESPONSE1[15:0] RESPONSE2[15:0] RESPONSE3[15:0]  
Figure 41. Burst Mode Frame  
SOFTWARE RESET  
When in address mode, the user can initiate a software reset by  
writing two consecutive SPI commands, 0xA3 followed by  
0x05, targeting Register 0x0B. After a software reset, all register  
values are set to default.  
CLEARING THE ERROR FLAGS REGISTER  
DAISY-CHAIN MODE  
To clear the error flags register, write the special 16-bit SPI  
frame, 0x6CA9, to the device. This SPI command does not  
The connection of several ADGS1414D devices in a daisy-chain  
configuration is possible, and Figure 42 illustrates this setup. All  
W
trigger the invalid R/ address error. When CRC is enabled,  
CS  
devices share the same , SCLK, and VL line, whereas the SDO of  
the user must also send the correct CRC byte for a successful  
error clear command. At the 16th or 24th SCLK rising edge, the  
error flags register resets to zero.  
a device forms a connection to the SDI of the next device, creating  
a shift register. In daisy-chain mode, SDO is an eight cycle delayed  
version of SDI. When in daisy-chain mode, all commands target  
the switch data register. Therefore, it is not possible to make  
configuration changes while in daisy-chain mode.  
ADGS1414D  
ADGS1414D  
DEVICE 2  
DEVICE 1  
S1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
D8  
S8  
D8  
SDO  
SPI  
INTERFACE  
SPI  
INTERFACE  
SDO  
SDI  
SCLK  
CS  
V
L
Figure 42. Two ADGS1414D Devices Connected in a Daisy-Chain Configuration  
Rev. 0 | Page 21 of 28  
 
 
 
 
 
 
ADGS1414D  
Data Sheet  
When in address mode, the ADGS1414D can only enter daisy-  
chain mode by sending the 16-bit SPI command, 0x2500  
(see Figure 43). When the ADGS1414D receives this command,  
the SDO of the device sends out the same command because  
the alignment bits at SDO are 0x25, which allows multiple daisy  
connected devices to enter daisy-chain mode in a single SPI  
frame. A hardware reset is required to exit daisy-chain mode.  
CS  
goes high, the  
internal shift register value does not reset back to zero.  
on each device in the chain are 0x00. When  
An SCLK rising edge reads data on SDI while data is  
propagated out SDO on an SCLK falling edge.  
POWER-ON RESET  
The digital section of the ADGS1414D goes through an  
initialization phase during VL power up. This initialization also  
occurs after a hardware or software reset. After VL power-up or  
a reset, ensure that a minimum of 120 µs passes from the time  
of power-up or reset before any SPI command is issued. Ensure  
that VL does not drop out during the 120 µs initialization phase  
because it may result in the incorrect operation of the  
ADGS1414D.  
For the timing diagram of a typical daisy-chain SPI frame, see  
CS  
Figure 44. When  
goes high, Device 1 writes Command 0,  
Bits[7:0] to its switch data register, Device 2 writes Command 1,  
Bits[7:0] to its switches, and so on. The SPI block uses the last  
eight bits it received through SDI to update the switches. After  
entering daisy-chain mode, the first eight bits sent out by SDO  
1
0
2
0
3
1
4
0
5
0
6
1
7
0
8
1
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
0
0
0
0
0
0
0
0
SDO  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
Figure 43. SPI Command to Enter Daisy-Chain Mode  
CS  
SDI  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0] COMMAND0[7:0]  
SDO  
0x00  
0x00  
0x00  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0]  
SDO2  
SDO3  
0x00  
0x00  
COMMAND3[7:0] COMMAND2[7:0]  
0x00 COMMAND3[7:0]  
NOTES  
1. SDO2 AND SDO3 ARE THE OUTPUT COMMANDS FROM DEVICE 2 AND DEVICE 3, RESPECTIVELY.  
Figure 44. Example of an SPI Frame Where Four ADGS1414D Devices Connect in Daisy-Chain Mode  
Rev. 0 | Page 22 of 28  
 
 
 
Data Sheet  
ADGS1414D  
APPLICATIONS INFORMATION  
ADGS1414D devices together. Figure 45 shows an example  
SYSTEM CHANNEL DENSITY  
layout where the route through pins on four ADGS1414D  
devices configured in daisy-chain mode are used to reduce the  
overall size of the layout.  
The ADGS1414D feature set allows for large system channel  
density. These features include route through pins for the  
digital signals and power supplies, as well as integrated passive  
components.  
Integrated Passive Components  
Note the lack of external passive components in the layout in  
Figure 45. The ADGS1414D has integrated decoupling  
Route Through Pins  
When multiple ADGS1414D devices are used in a system, the  
route through pins allow for a greater channel density layout.  
The route through pins enable the passing of power supplies  
RESET  
capacitors for the VDD, VSS, and  
/VL power supplies.  
Therefore, the need for external decoupling capacitors is  
eliminated, reducing the total system footprint of the  
ADGS1414D. If additional decoupling is required for extremely  
noise sensitive applications, add an external decoupling  
capacitor. Figure 21 shows the AC PSRR performance with and  
without external decoupling capacitors.  
RESET  
, /VL,  
and digital lines between devices with ease. The VDD  
CS  
and GND power lines, as well as the SCLK, , SDI, and SDO  
digital lines, are available on both the top and bottom pins of  
the package. These route through pins simplify PCB routing  
and reduce the need for vias when connecting many  
CS  
SCLK  
SDO  
CS  
SCLK  
SDO  
RESET/V  
RESET/V  
GND  
L
L
GND  
V
V
DD  
DD  
Figure 45. Layout Example Showing the Use of the Route Pins and the Elimination of External Passive Components  
Rev. 0 | Page 23 of 28  
 
 
 
ADGS1414D  
Data Sheet  
The ADP7142 can generate the VL voltage that is required to  
power digital circuitry within the ADGS1414D.  
BREAK-BEFORE-MAKE SWITCHING  
The ADGS1414D exhibits break-before-make switching action.  
This feature allows for the use of the device in multiplexer  
applications. To use the device as a multiplexer, externally  
hardwire a device into the desired mux configuration, as shown  
in Figure 46.  
ADP7142  
+3.3V  
LDO  
+15.5V  
ADP7142  
+15V  
LDO  
+5V  
INPUT  
LT3463  
–15.5V  
ADP7182  
4:1 MUX  
–15V  
LDO  
Figure 47. Bipolar Power Solution  
4 × SPST  
Table 11. Recommended Power Management Devices  
S1  
Product  
Description  
LT3463  
Dual micropower, dc to dc converter with Schottky  
diodes  
ADP7142 40 V, 200 mA, low noise, CMOS, LDO linear regulator  
ADP7182 −28 V, −200 mA, low noise, LDO linear regulator  
S2  
Dx  
S3  
1.8 V LOGIC COMPATIBILITY  
S4  
SPI  
INTERFACE  
CS  
The SDI, , and SCLK digital inputs of the ADGS1414D are  
compatible with 1.8 V logic when VL is between or equal to  
2.7 V and 3.3 V.  
SCLK SDI CS RESET/V  
L
Figure 46. An SPI Controlled Switch Configured into a 4:1 Mux  
The SDO digital output levels are proportional to the VL voltage.  
For example, if VL = 3 V, a logic high on the SDO is approximately  
3 V. When performing an SPI readback from the ADGS1414D  
with a controller device using 1.8 V logic, there may be an issue  
if the digital pins on the controller cannot tolerate digital input  
signals that exceed 1.8 V.  
DIGITAL INPUT BUFFERS  
CS  
There are input buffers present on the digital input pins (  
SCLK, and SDI). These buffers are active at all times. Therefore,  
there is current draw from the VL supply if SCLK or SDI is  
,
CS  
toggled, regardless of whether  
is active. For typical values of  
this current draw, refer to the Specifications section and  
Figure 27.  
Figure 48 describes how to use the ADG3231 level translator to  
perform a 1.8 V SPI readback with a device that has 1.8 V logic  
ports, such as a microcontroller or field programmable gate array  
(FPGA). Place the ADG3231 between the SDO of the ADGS1414D  
and the microcontroller or FPGA. Supply VCC1 of the ADG3231  
with the VL voltage of the ADGS1414D and connect VCC2 to the  
1.8 V supply from the microcontroller or FPGA. The ADG3231  
then translates the logic level of the SDO from VL to 1.8 V.  
POWER SUPPLY RAILS  
The ADGS1414D can operate with bipolar supplies between  
4.5 V and 16.5 V. The supplies on VDD and VSS do not have  
to be symmetrical. However, the VDD to VSS range must not  
exceed 33 V. The ADGS1414D can also operate with single  
supplies between 5 V and 20 V with VSS connected to GND.  
The voltage range that can be supplied to VL is from 2.7 V to 5.5 V.  
The device is fully specified at 15 V, 5 V, and +12 V analog  
supply voltage ranges.  
This solution is only required if the 1.8 V microcontroller or  
FPGA cannot tolerate digital input signals that exceed 1.8 V.  
ADGS1414D  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
POWER SUPPLY RECOMMENDATIONS  
Analog Devices, Inc., has a wide range of power management  
products to meet the requirements of high performance signal  
chains.  
1.8V  
V
L
An example of a bipolar power solution is shown in Figure 47.  
The LT3463 (a dual switching regulator) generates a positive and  
negative supply rail for the ADGS1414D, an amplifier, and/or a  
precision converter in a typical signal chain. Also shown in  
Figure 47 are two optional low dropout regulators (LDOs),  
the ADP7142 and ADP7182 (positive and negative LDOs,  
respectively), which can reduce the output ripple of the LT3463  
in ultralow noise sensitive applications.  
V
A
V
CC1  
CC2  
S8  
D8  
Y
SDO  
SPI  
INTERFACE  
MICRO-  
CONTROLLER  
OR  
ADG3231  
GND  
FPGA  
V
L
CS  
SDI  
SCLK  
Figure 48. Using the ADG3231 to Perform a 1.8 V SPI Readback  
Rev. 0 | Page 24 of 28  
 
 
 
 
 
 
 
 
Data Sheet  
ADGS1414D  
REGISTER SUMMARY  
Table 12. Register Summary  
Default R/  
W
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x00  
0x06  
0x00  
0x00  
0x00  
R/W  
R/W  
R
0x01 SW_DATA  
0x02 ERR_CONFIG  
0x03 ERR_FLAGS  
0x05 BURST_EN  
0x0B SOFT_RESETB  
SW8_EN SW7_EN SW6_EN SW5_EN SW4_EN SW3_EN  
SW2_EN  
SCLK_ERR_EN  
SW1_EN  
CRC_ERR_EN  
Reserved  
Reserved  
RW_ERR_EN  
RW_ERR_FLAG SCLK_ERR_FLAG CRC_ERR_FLAG  
BURST_MODE_EN  
R/W  
W
Reserved  
SOFT_RESETB  
Rev. 0 | Page 25 of 28  
 
ADGS1414D  
Data Sheet  
REGISTER DETAILS  
SWITCH DATA REGISTER  
Address: 0x01, Reset: 0x00, Name: SW_DATA  
Use the switch data register to control the status of the eight switches of the ADGS1414D.  
Table 13. Bit Descriptions for SW_DATA  
Bit  
Bit Name  
Setting  
Description  
Default Access  
7
SW8_EN  
Enable the SW8_EN bit for Switch 8.  
Switch 8 open.  
Switch 8 closed.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
6
5
4
3
2
1
0
SW7_EN  
SW6_EN  
SW5_EN  
SW4_EN  
SW3_EN  
SW2_EN  
SW1_EN  
Enable the SW7_EN bit for Switch 7.  
Switch 7 open.  
Switch 7 closed.  
0
1
Enable the SW6_EN bit for Switch 6.  
Switch 6 open.  
Switch 6 closed.  
0
1
Enable the SW5_EN bit for Switch 5.  
Switch 5 open.  
Switch 5 closed.  
0
1
Enable the SW4_EN bit for Switch 4.  
Switch 4 open.  
Switch 4 closed.  
0
1
Enable the SW3_EN bit for Switch 3.  
Switch 3 open.  
Switch 3 closed.  
0
1
Enable the SW2_EN bit for Switch 2.  
Switch 2 open.  
Switch 2 closed.  
0
1
Enable the SW1_EN bit for Switch 1.  
Switch 1 open.  
Switch 1 closed.  
0
1
ERROR CONFIGURATION REGISTER  
Address: 0x02, Reset: 0x06, Name: ERR_CONFIG  
Use the error configuration register to enable and disable the relevant error features as required.  
Table 14. Bit Descriptions for ERR_CONFIG  
Bits  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
Reserved  
Bits[7:3] are reserved. Set Bits[7:3] to 0.  
0x0  
0x1  
R
RW_ERR_EN  
Enable the RW_ERR_EN bit to detect an invalid read and write address.  
R/W  
0
1
Disabled.  
Enabled.  
1
SCLK_ERR_EN  
Enable the SCLK_ERR_EN bit to detect the correct number of SCLK cycles  
in an SPI frame. 16 SCLK cycles are expected when CRC is disabled and  
burst mode is disabled. 24 SCLK cycles are expected when CRC is enabled  
and burst mode is disabled. A multiple of 16 SCLK cycles are expected  
when CRC is disabled and burst mode is enabled. A multiple of 24 SCLK  
cycles are expected when CRC is enabled and burst mode is enabled.  
0x1  
R/W  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 26 of 28  
 
 
 
Data Sheet  
ADGS1414D  
Bits  
Bit Name  
Settings  
Description  
Default Access  
0
CRC_ERR_EN  
Enable the CRC_ERR_EN bit for CRC error detection. SPI frames are 24 bits  
wide when enabled.  
0x0  
R/W  
0
1
Disabled.  
Enabled.  
ERROR FLAGS REGISTER  
Address: 0x03, Reset: 0x00, Name: ERR_FLAGS  
Use the error flags register to determine if an error has occurred. To clear the error flags register, write the special 16-bit SPI command,  
W
0x6CA9, to the device. This SPI command does not trigger the invalid R/ address error. When CRC is enabled, include the correct  
CRC byte during the SPI write for the clear error flags register command to succeed.  
Table 15. Bit Descriptions for ERR_FLAGS  
Bits  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
Reserved  
Bits[7:3] are reserved and are set to 0.  
0x0  
0x0  
R
R
RW_ERR_FLAG  
Error flag for invalid read and write address. The error flag asserts during  
an SPI read if the target address does not exist. The error flag also asserts  
when the target address of an SPI write does not exist or is read only.  
0
1
No error.  
Error.  
1
0
SCLK_ERR_FLAG  
CRC_ERR_FLAG  
Error flag for the detection of the correct number of SCLK cycles in an SPI  
frame.  
No error.  
Error.  
0x0  
0x0  
R
R
0
1
Error flag that determines if a CRC error has occurred during a register  
write.  
0
1
No error.  
Error.  
BURST ENABLE REGISTER  
Address: 0x05, Reset: 0x00, Name: BURST_EN  
Use the burst enable register to enable or disable burst mode. When burst mode is enabled, the user can send multiple consecutive SPI  
CS  
commands without deasserting  
.
Table 16. Bit Descriptions for BURST_EN  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Default Access  
Reserved  
Bits[7:1] are reserved. Set Bits[7:1] to 0.  
Burst mode enable bit.  
Disabled.  
0x0  
0x0  
R
BURST_MODE_EN  
R/W  
0
1
Enabled.  
SOFTWARE RESET REGISTER  
Address: 0x0B, Reset: 0x00, Name: SOFT_RESETB  
Use the software reset register to perform a software reset. Consecutively write 0xA3 followed by 0x05 to this register, and the registers of  
the device reset to their default state.  
Table 17. Bit Descriptions for SOFT_RESETB  
Bits  
Bit Name  
Settings  
Description  
Default Access  
0x0  
[7:0]  
SOFT_RESETB  
To perform a software reset, consecutively write 0xA3 followed by 0x05  
to the SOFT_RESETB register.  
W
Rev. 0 | Page 27 of 28  
 
 
 
ADGS1414D  
Data Sheet  
OUTLINE DIMENSIONS  
0.40  
0.35  
0.30  
4.10  
4.00  
3.90  
2.50  
REF  
PIN 1  
INDICATOR  
AREA  
0.075  
REF  
0.32  
0.27  
0.22  
25  
30  
1
24  
5.10  
5.00  
4.90  
2.60  
BSC  
EXPOSED  
PAD  
4.00  
REF  
16  
9
10  
15  
0.50  
BSC  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
2.40  
BSC  
1.73  
1.63  
1.53  
1.30  
REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.372  
SECTION OF THIS DATA SHEET.  
0.332  
0.292  
SEATING  
PLANE  
Figure 49. 30-Terminal Land Grid Array [LGA]  
(CC-30-3)  
4 mm × 5 mm Body and 1.63 mm Package Height  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
ADGS1414DBCCZ  
ADGS1414DBCCZ-RL7  
EV-ADGS1414DSDZ  
30-Terminal Land Grid Array [LGA]  
30-Terminal Land Grid Array [LGA]  
Evaluation Board  
CC-30-3  
CC-30-3  
1 Z = RoHS Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23895-6/20(0)  
Rev. 0 | Page 28 of 28  
 
 

相关型号:

ADGS1612

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS1612BCPZ

SPI Interface, 1 &Omega; RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS1612BCPZ-RL7

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS5412

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable
ADI

ADGS5412BCPZ

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable
ADI

ADGS5412BCPZ-RL7

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable
ADI

ADGS5414

SPI Interface, Octal SPST Switches, 13.5 Ω RON, ±20 V/36 V, Mux
ADI

ADGS5414BCPZ

SPI Interface, Octal SPST Switches, 13.5 Ω RON, ±20 V/36 V, Mux
ADI

ADGS5414BCPZ-RL7

SPI Interface, Octal SPST Switches, 13.5 &Omega; RON, ±20 V/+36 V, Mux
ADI

ADH-030-10-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-10-3

12-Bit Digital-to-Analog Converter
ETC

ADH-030-11-1

12-Bit Digital-to-Analog Converter
ETC