ADM7151 [ADI]

High PSRR, RF Linear Regulator;
ADM7151
型号: ADM7151
厂家: ADI    ADI
描述:

High PSRR, RF Linear Regulator

文件: 总23页 (文件大小:840K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.2 A, Ultralow Noise,  
High PSRR, RF Linear Regulator  
ADP7156  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Input voltage range: 2.3 V to 5.5 V  
16 standard voltages between 1.2 V and 3.3 V available  
Maximum load current: 1.2 A  
ADP7156  
V
= 3.8V  
V
= 3.3V  
IN  
OUT  
C
VIN  
VOUT  
C
10µF  
IN  
OUT  
10µF  
VOUT_SENSE  
Low noise  
ON  
0.9 μV rms total integrated noise from 100 Hz to 100 kHz  
1.6 μV rms total integrated noise from 10 Hz to 100 kHz  
Noise spectral density: 1.7 nV/√Hz from 10 kHz to 1 MHz  
Power supply rejection ratio (PSRR)  
EN  
REF  
OFF  
C
REF  
1µF  
BYP  
C
BYP  
REF_SENSE  
1µF  
80 dB from 1 kHz to 100 kHz; 60 dB at 1 MHz, VOUT = 3.3 V,  
VREG  
C
REG  
1µF  
VIN = 4.0 V  
GND (EPAD)  
Dropout voltage: 120 mV typical at IOUT = 1.2 A, VOUT = 3.3 V  
Initial accuracy: 0.6ꢀ at ILOAD = 10 mA  
Initial accuracy over line, load, and temperature: 1.5ꢀ  
Quiescent current: IGND = 4.0 mA at no load, 7 mA at 1.2 A  
Low shutdown current: 0.2 ꢁA  
Figure 1.  
Table 1. Related Devices  
Stable with a 10 μF ceramic output capacitor  
10-lead, 3 mm × 3 mm LFCSP and 8-lead SOIC packages  
Precision enable  
Input  
Voltage  
Output  
Fixed/  
Model  
Current Adj1  
Package  
ADP7158,  
ADP7159  
2.3 V to 5.5 V  
2 A  
Fixed/  
Adj  
10-lead LFCSP/  
8-lead SOIC  
Supported by ADIsimPower tool  
APPLICATIONS  
ADP7157  
2.3 V to 5.5 V  
4.5 V to 16 V  
2.3 V to 5.5 V  
2.2 V to 5.5 V  
1.2 A  
Fixed/  
Adj  
Fixed/  
Adj  
Fixed/  
Adj  
Fixed  
10-lead LFCSP/  
8-lead SOIC  
8-lead LFCSP/  
8-lead SOIC  
8-lead LFCSP/  
8-lead SOIC  
6-lead LFCSP/  
5-lead TSOT  
Regulation to noise sensitive applications: phase-locked  
loops (PLLs), voltage controlled oscillators (VCOs), and  
PLLs with integrated VCOs  
Communications and infrastructure  
Backhaul and microwave links  
ADM7150,  
ADM7151  
ADM7154,  
ADM7155  
800 mA  
600 mA  
200 mA  
ADM7160  
GENERAL DESCRIPTION  
1 Adj means adjustable.  
The ADP7156 is a linear regulator that operates from 2.3 V to 5.5 V  
and provides up to 1.2 A of output current. Using an advanced  
proprietary architecture, it provides high power supply rejection  
and ultralow noise, achieving excellent line and load transient  
response with only a 10 μF ceramic output capacitor.  
1k  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
= 10µF  
= 100µF  
= 1000µF  
100  
10  
1
There are 16 standard output voltages for the ADP7156. The  
following voltages are available from stock: 1.2 V, 1.8 V, 2.0 V,  
2.5 V, 2.8 V, 3.0 V and 3.3 V. Additional voltages available by  
special order are 1.3 V, 1.5 V, 1.6 V, 2.2 V, 2.6 V, 2.7 V, 2.9 V,  
3.1 V, and 3.2 V.  
The ADP7156 regulator typical output noise is 0.9 ꢀV rms  
from 100 Hz to 100 kHz and 1.7 nV/√Hz for noise spectral  
density from 10 kHz to 1 MHz. The ADP7156 is available in a  
10-lead, 3 mm × 3 mm LFCSP and 8-lead SOIC packages,  
making it not only a very compact solution, but also providing  
excellent thermal performance for applications requiring up to  
1.2 A of output current in a small, low profile footprint.  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 2. Noise Spectral Density at Different Values of CBYP, VOUT = 3.3 V  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP7156* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Press  
• Analog Devices’ Low Dropout Regulators Enable Cleaner  
and Faster Communications  
Evaluation Kits  
• ADP7156 Evaluation Board  
Design Resources  
• ADP7156 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
• ADP7156: 1.2 A, Ultralow Noise, High PSRR, RF Linear  
Regulator Data Sheet  
User Guides  
Discussions  
View all ADP7156 EngineerZone Discussions  
• UG-809: Evaluating the ADP7156 Ultralow Noise, 1.2 A,  
Fixed Output, RF Linear Regulator  
Tools and Simulations  
• ADI Linear Regulator Design Tool and Parametric Search  
Sample and Buy  
Visit the product page to see pricing options  
• ADIsimPower™ Voltage Regulator Design Tool  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADP7156  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 14  
ADIsimPower Design Tool ....................................................... 14  
Capacitor Selection .................................................................... 14  
Undervoltage Lockout (UVLO) ............................................... 15  
Programmable Precision Enable .............................................. 16  
Start-Up Time ............................................................................. 17  
REF, BYP, and VREG Pins......................................................... 17  
Current-Limit and Thermal Shutdown................................... 17  
Thermal Considerations............................................................ 17  
Printed Circuit Board (PCB) Layout Considerations................ 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitors, Recommended Specifications 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 13  
REVISION HISTORY  
5/2016—Rev. 0 to Rev. A  
Changes to Table 2............................................................................ 3  
Changes to Programmable Precision Enable Section................ 16  
Changes to Current-Limit and Thermal Shutdown Section .... 17  
3/2016—Revision 0: Initial Version  
Rev. A | Page 2 of 22  
 
 
Data Sheet  
ADP7156  
SPECIFICATIONS  
VIN = VOUT + 0.5 V or 2.3 V, whichever is greater; VEN = VIN; ILOAD = 10 mA; CIN = COUT = 10 µF; CREG = CREF = CBYP = 1 µF;  
TA = 25°C for typical specifications; TA = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
LOAD CURRENT  
2.3  
5.5  
1.2  
8.0  
12.0  
4
ILOAD  
A
OPERATING SUPPLY CURRENT  
IGND  
ILOAD = 0 µA  
ILOAD = 1.2 A  
4.0  
7.0  
0.2  
mA  
mA  
µA  
SHUTDOWN CURRENT  
NOISE1  
Output Noise  
IIN_SD  
EN = GND  
VOUT = 1.2 V to 3.3 V  
10 Hz to 100 kHz  
100 Hz to 100 kHz  
10 kHz to 1 MHz  
OUTNOISE  
1.6  
0.9  
1.7  
80  
µV rms  
µV rms  
nV/√Hz  
dB  
Noise Spectral Density  
POWER SUPPLY REJECTION RATIO1  
OUTNSD  
PSRR  
1 kHz to 100 kHz, VIN = 4.0 V, VOUT = 3.3 V,  
I
LOAD = 1.2 A  
1 MHz, VIN = 4.0 V, VOUT = 3.3 V, ILOAD = 1.2 A  
1 kHz to 100 kHz, VIN = 2.6 V, VOUT = 1.8 V,  
60  
80  
dB  
dB  
I
LOAD = 1.2 A  
1 MHz, VIN = 2.6 V, VOUT = 1.8 V, ILOAD = 1.2 A  
60  
dB  
OUTPUT VOLTAGE ACCURACY  
Output Voltage2  
VOUT  
1.2  
3.3  
V
Initial Accuracy  
ILOAD = 10 mA, TA = 25°C  
10 mA < ILOAD < 1.2 A, TA= 25°C  
10 mA < ILOAD < 1.2 A, TA = −40°C to +125°C  
−0.6  
−1.0  
−1.5  
+0.6  
+1.0  
+1.5  
%
%
%
REGULATION  
Line  
∆VOUT/∆VIN  
VIN = VOUT + 0.5 V or 2.3 V, whichever is greater  
to 5.5 V  
IOUT = 10 mA to 1.2 A  
−0.1  
+0.1  
0.3  
%/V  
%/A  
Load3  
∆VOUT/∆IOUT  
ILIMIT  
CURRENT-LIMIT THRESHOLD4  
REF  
VOUT  
DROPOUT VOLTAGE5  
22  
1.8  
60  
mA  
A
1.4  
2.4  
80  
170  
VDROPOUT  
IOUT = 600 mA, VOUT = 3.3 V  
IOUT = 1.2 A, VOUT = 3.3 V  
EN = 0 V, VIN = 5.5 V  
VOUT = 1 V  
VREG = 1 V  
VREF = 1 V  
mV  
mV  
120  
PULL-DOWN RESISTANCE  
VOUT  
VREG  
REF  
VOUT_PULL  
VREG_PULL  
VREF_PULL  
VBYP_PULL  
650  
31  
850  
650  
Ω
kΩ  
Ω
BYP  
VBYP = 1 V  
Ω
START-UP TIME1, 6  
VOUT = 3.3 V  
VOUT  
VREG  
REF  
tSTART-UP  
tREG_START-UP  
tREF_START-UP  
1.2  
0.6  
0.5  
ms  
ms  
ms  
THERMAL SHUTDOWN1  
Threshold  
Hysteresis  
TSSD  
TSSD_HYS  
TJ rising  
150  
15  
°C  
°C  
UNDERVOLTAGE THRESHOLDS  
Input Voltage  
Rising  
Falling  
Hysteresis  
UVLORISE  
UVLOFALL  
UVLOHYS  
2.22 2.29  
2.02  
200  
V
V
mV  
1.95  
Rev. A | Page 3 of 22  
ADP7156  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VREG UVLO THRESHOLDS7  
Rising  
Falling  
Hysteresis  
VREGUVLORISE  
VREGUVLOFALL  
VREGUVLOHYS  
1.94  
V
V
mV  
1.60  
185  
EN INPUT PRECISION  
EN Input  
2.3 V ≤ VIN ≤ 5.5 V  
Logic High  
Logic Low  
Logic Hysteresis  
LEAKAGE CURRENT  
REF_SENSE  
EN  
VEN_HIGH  
VEN_LOW  
VEN_HYS  
1.13  
1.05  
1.22 1.31  
1.13 1.22  
90  
V
V
mV  
IREF_SENSE_LKG  
IEN_LKG  
10  
nA  
µA  
EN = VIN or GND  
0.01  
1
1 Guaranteed by characterization; not production tested.  
2 The ADP7156 is available in 16 standard voltages between 1.2 V and 3.3 V, including 1.2 V, 1.3 V, 1.5 V, 1.6 V, 1.8 V, 2.0 V, 2.2 V, 2.5 V, 2.6 V, 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.1 V,  
3.2 V, and 3.3 V.  
3 Based on an endpoint calculation using 10 mA and 1.2 A loads.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
5 Dropout voltage is defined as the input to output voltage differential when the input voltage is set to the nominal output voltage. Dropout voltage applies only for  
output voltages greater than 2.3 V.  
6 Start-up time is defined as the time between the rising edge of VEN to VOUT, VREG, or VREF being at 90% of its nominal value.  
7 The output voltage is disabled until the VREG UVLO rise threshold is crossed. The VREG output is disabled until the input voltage UVLO rising threshold is crossed.  
INPUT AND OUTPUT CAPACITORS, RECOMMENDED SPECIFICATIONS  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
MINIMUM CAPACITANCE  
Input1  
TA = −40°C to +125°C  
CIN  
10.0  
1.0  
10.0  
1.0  
µF  
µF  
µF  
µF  
µF  
Regulator  
CREG  
COUT  
CBYP  
CREF  
Output1  
Bypass  
Reference  
1.0  
CAPACITOR EFFECTIVE SERIES RESISTANCE (ESR)  
TA = −40°C to +125°C  
COUT, CIN  
CREG, CREF  
CBYP  
RESR  
RESR  
RESR  
0.001  
0.001  
0.001  
0.1  
0.2  
2.0  
Ω
Ω
Ω
1 The minimum input and output capacitance must be greater than 7.0 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any low dropout regulator.  
Rev. A | Page 4 of 22  
 
 
 
 
Data Sheet  
ADP7156  
ABSOLUTE MAXIMUM RATINGS  
Junction to ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction to ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. See JESD51-7 and JESD51-9 for detailed information on  
the board construction.  
Table 4.  
Parameter  
Rating  
VIN to Ground  
VREG to Ground  
−0.3 V to +7 V  
−0.3 V to VIN, or +4 V  
(whichever is less)  
VOUT to Ground  
−0.3 V to VREG, or +4 V  
(whichever is less)  
VOUT_SENSE to Ground  
−0.3 V to VREG, or +4 V  
(whichever is less)  
VOUT to VOUT_SENSE  
BYP to VOUT  
0.3 V  
0.3 V  
ΨJB is the junction to board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power  
flowing through multiple thermal paths rather than a single  
path as in thermal resistance, θJB. Therefore, ΨJB thermal paths  
include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful  
in real-world applications. Maximum junction temperature (TJ)  
is calculated from the board temperature (TB) and power  
dissipation (PD) using the following formula:  
EN to Ground  
BYP to Ground  
−0.3 V to +7 V  
−0.3 V to VREG, or +4 V  
(whichever is less)  
−0.3 V to VREG, or +4 V  
(whichever is less)  
−0.3 V to +4 V  
REF to Ground  
REF_SENSE to Ground  
Storage Temperature Range  
Operational Junction Temperature  
Range  
Soldering Conditions  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
THERMAL DATA  
θJA, θJC, and ΨJB are specified for the worst case conditions, that  
is, a device soldered in a circuit board for surface-mount  
packages.  
Absolute maximum ratings apply individually only, not in  
combination. The ADP7156 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient tempera-  
ture does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
need to be derated.  
Table 5. Thermal Resistance  
Package Type  
10-Lead LFCSP  
8-Lead SOIC  
θJA  
θJC  
ΨJB  
Unit  
°C/W  
°C/W  
53.8  
50.4  
15.6  
42.3  
29.1  
30.1  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long as  
the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction to ambient thermal resistance of the  
package (θJA).  
ESD CAUTION  
Calculate the maximum junction temperature (TJ) from the  
ambient temperature (TA) and power dissipation (PD) using  
the following formula:  
TJ = TA + (PD × θJA)  
Rev. A | Page 5 of 22  
 
 
 
 
ADP7156  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
10  
VOUT  
1
2
3
4
5
VIN  
VOUT  
9
8
7
6
VIN  
VOUT  
VOUT_SENSE  
BYP  
1
2
3
4
8
7
6
5
VIN  
ADP7156  
TOP VIEW  
(Not to Scale)  
VOUT_SENSE  
BYP  
VREG  
REF  
ADP7156  
TOP VIEW  
(Not to Scale)  
VREG  
REF  
EN  
REF_SENSE  
EN  
REF_SENSE  
NOTES  
NOTES  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES THERMAL  
PERFORMACE, AND IT IS ELECTRICALLY CONNECTED TO  
GROUND INSIDE THE PACKAGE. CONNECT THE EXPOSED  
PAD TO THE GROUND PLANE ON THE BOARD TO ENSURE  
PROPER OPERATION.  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES THERMAL  
PERFORMACE, AND IT IS ELECTRICALLY CONNECTED TO  
GROUND INSIDE THE PACKAGE. CONNECT THE EXPOSED  
PAD TO THE GROUND PLANE ON THE BOARD TO ENSURE  
PROPER OPERATION.  
Figure 3. 10-Lead LFCSP Pin Configuration  
Figure 4. 8-Lead SOIC Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
LFCSP SOIC  
Mnemonic  
Description  
Regulated Output Voltage. Bypass VOUT to ground with a 10 µF or greater capacitor.  
1, 2  
3
1
2
VOUT  
VOUT_SENSE Output Sense. VOUT_SENSE is internally connected to VOUT with a 10 Ω resistor. Connect  
VOUT_SENSE as close to the load as possible.  
4
5
3
4
BYP  
Low Noise Bypass Capacitor. Connect a 1 µF capacitor from the BYP pin to ground to reduce noise.  
Do not connect a load to this pin.  
Enable. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
EN  
6
7
5
6
REF_SENSE  
REF  
Reference Sense. Connect REF_SENSE to the REF pin. Do not connect REF_SENSE to VOUT or GND.  
Low Noise Reference Voltage Output. Bypass REF to ground with a 1 µF or greater capacitor. Short  
REF_SENSE to REF for fixed output voltages. Do not connect a load to this pin.  
8
7
8
VREG  
Regulated Input Supply Voltage to Low Dropout (LDO) Amplifier. Bypass VREG to ground with a  
1 µF or greater capacitor.  
Regulator Input Supply Voltage. Bypass VIN to ground with a 10 µF or greater capacitor.  
Exposed Pad. The exposed pad is located on the bottom of the package. The exposed pad  
enhances thermal performance, and it is electrically connected to ground inside the package.  
Connect the exposed pad to the ground plane on the board to ensure proper operation.  
9, 10  
VIN  
EP  
Rev. A | Page 6 of 22  
 
Data Sheet  
ADP7156  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 0.5 V or 2.3 V, whichever is greater; VEN = VIN; ILOAD = 10 mA; CIN = COUT = 10 µF; CREG = CREF = CBYP = 1 µF;  
TA = 25°C unless otherwise noted.  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.3V  
2.5V  
3.0V  
4.0V  
5.0V  
5.5V  
I
I
I
I
I
= 0mA  
= 10mA  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
LOAD  
LOAD  
LOAD  
3.8  
4.0  
4.2  
4.4  
4.6  
V
4.8  
(V)  
5.0  
5.2  
5.4  
5.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
IN  
Figure 5. Shutdown Current (IIN_SD) vs. Temperature  
at Various Input Voltages (VIN), VOUT = 1.8 V  
Figure 8. Output Voltage (VOUT) vs. Input Voltage (VIN)  
at Various Loads, VOUT = 3.3 V  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
14  
13  
12  
11  
10  
9
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
8
7
6
5
4
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
3
2
1
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Ground Current (IGND) vs. Temperature  
at Various Loads, VOUT = 3.3 V  
Figure 6. Output Voltage (VOUT) vs. Temperature  
at Various Loads, VOUT = 3.3 V  
14  
13  
12  
11  
10  
9
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
8
7
6
5
4
3
2
1
0
0.1m  
1m  
10m  
100m  
(A)  
1
10  
0.1m  
1m  
10m  
100m  
(A)  
1
10  
I
I
LOAD  
LOAD  
Figure 10. Ground Current (IGND) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 7. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. A | Page 7 of 22  
 
ADP7156  
Data Sheet  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
8
8
7
7
6
6
5
5
4
4
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
3
3
2
2
1
1
0
0
3.8  
4.0  
4.2  
4.4  
4.6  
V
4.8  
(V)  
5.0  
5.2  
5.4  
5.6  
3.1  
3.2  
3.3  
3.4  
3.5  
(V)  
3.6  
3.7  
3.8  
V
IN  
IN  
Figure 11. Ground Current (IGND) vs. Input Voltage (VIN)  
at Various Loads, VOUT = 3.3 V  
Figure 14. Ground Current (IGND) vs. Input Voltage (VIN) at Various Loads in  
Dropout, VOUT = 3.3 V  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.85  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
10m  
100  
1
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
I
(A)  
TEMPERATURE (ºC)  
LOAD  
Figure 12. Dropout Voltage (VDROPOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 15. Output Voltage (VOUT) vs. Temperature at Various Loads, VOUT = 1.8 V  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
3.40  
3.35  
3.30  
3.25  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
3.20  
3.15  
3.10  
3.05  
3.00  
0.1m  
1m  
10m  
100m  
(A)  
1
10  
3.0  
3.1  
3.2  
3.3  
3.4  
V
3.5  
(V)  
3.6  
3.7  
3.8  
I
LOAD  
IN  
Figure 16. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 1.8 V  
Figure 13. Output Voltage (VOUT) vs. Input Voltage (VIN) at Various Loads in  
Dropout, VOUT = 3.3 V  
Rev. A | Page 8 of 22  
Data Sheet  
ADP7156  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
14  
13  
12  
11  
10  
9
I
I
I
I
I
= 0mA  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
8
7
6
5
4
3
2
1
0
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7  
5
5.3 5.6  
2.3  
2.7  
3.1  
3.5  
V
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
V
(V)  
IN  
IN  
Figure 17. Output Voltage (VOUT) vs. Input Voltage (VIN)  
at Various Loads, VOUT = 1.8 V  
Figure 20. Ground Current (IGND) vs. Input Voltage (VIN)  
at Various Loads, VOUT = 1.8 V  
14  
13  
12  
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
8
7
6
5
4
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
3
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
2
1
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (ºC)  
FREQUENCY (Hz)  
Figure 18. Ground Current (IGND) vs. Temperature  
at Various Loads, VOUT = 1.8 V  
Figure 21. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Loads, VOUT = 3.3 V, VIN = 4.0 V  
14  
13  
12  
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
900mV  
800mV  
700mV  
600mV  
500mV  
8
7
6
5
4
3
2
1
0
0.1m  
1m  
10m  
100m  
(A)  
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
I
FREQUENCY (Hz)  
LOAD  
Figure 19. Ground Current (IGND) vs. Load Current (ILOAD), VOUT = 1.8 V  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Headroom Voltages, VOUT = 3.3 V, 1.2 A Load  
Rev. A | Page 9 of 22  
ADP7156  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
–100  
0.5  
0.6  
0.7  
0.8  
0.9  
0.5  
0.6  
0.7  
0.8  
0.9  
HEADROOM VOLTAGE (V)  
HEADROOM VOLTAGE (V)  
Figure 23. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage  
at Various Frequencies, VOUT = 3.3 V, 1.2 A Load  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage  
at Various Frequencies, VOUT = 1.8 V, 1.2 A Load  
0
0
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
= 100mA  
= 600mA  
= 1200mA  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 10µF  
= 100µF  
= 1000µF  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Loads, VOUT = 1.8 V, VIN = 2.6 V  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various CBYP Values, VOUT = 3.3 V, VIN = 4.0 V, 1.2 A Load  
0
2.0  
–10  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10Hz TO 100kHz  
100Hz TO 100kHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
900mV  
800mV  
700mV  
600mV  
500mV  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10m  
100m  
1
10  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 25. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Headroom Voltages, VOUT = 1.8 V, 1.2 A Load  
Figure 28. RMS Output Noise vs. Load Current  
Rev. A | Page 10 of 22  
Data Sheet  
ADP7156  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1k  
100  
10  
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
10Hz TO 100kHz  
100Hz TO 100kHz  
1
0.1  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
10  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 29. RMS Output Noise vs. Output Voltage  
Figure 32. Output Noise Spectral Density vs. Frequency at Various Loads,  
10 Hz to 10 MHz  
1k  
T
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
SLEW RATE = 2.5A/µs  
= 10µF  
= 100µF  
= 1000µF  
100  
10  
1
I
OUT  
1
2
V
OUT  
0.1  
10  
B
B
CH1 500mA  
CH2 5.0mV  
M4.00µs  
21.10%  
A CH1 700mA  
W
W
100  
1k  
10k  
100k  
1M  
10M  
T
FREQUENCY (Hz)  
Figure 33. Load Transient Response, ILOAD = 100 mA to 1.2 A,  
Figure 30. Noise Spectral Density vs. Frequency at Various Values of CBYP  
VOUT = 3.3 V, VIN = 4.0 V, Channel 1 = IOUT, Channel 2 = VOUT  
100k  
T
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
SLEW RATE = 1.5A/µs  
= 100mA  
= 600mA  
= 1200mA  
10k  
1k  
I
OUT  
1
2
100  
10  
V
OUT  
1
0.1  
0.1  
B
B
CH1 500mA  
CH2 5mV  
M4.00µs  
A CH1 690mA  
W
W
1
10  
100  
1k  
10k  
100k  
1M  
T
22.60%  
FREQUENCY (Hz)  
Figure 34. Load Transient Response, ILOAD = 100 mA to 1.2 A,  
OUT = 3.3 V, VIN = 4.0 V, COUT = 22 µF, Channel 1 = IOUT, Channel 2 = VOUT  
Figure 31. Output Noise Spectral Density vs. Frequency at Various Loads,  
0.1 Hz to 1 MHz  
V
Rev. A | Page 11 of 22  
ADP7156  
Data Sheet  
T
T
SLEW RATE = 2.5A/µs  
SLEW RATE = 1V/µs  
V
V
IN  
I
OUT  
1
2
OUT  
2
1
V
OUT  
B
B
B
B
CH1 500mA  
CH2 5mV  
M4.00µs  
A
CH1 740mA  
CH1 1.0V  
CH2 2.0mV  
M10.0µs  
21.80%  
A
CH1 3.00V  
W
W
W
W
T
21.30%  
T
Figure 35. Load Transient Response, ILOAD = 100 mA to 1.2 A,  
Figure 38. Line Transient Response, 1 V Input Step, ILOAD = 1.2 A,  
OUT = 1.8 V, VIN = 2.5 V, Channel 1= VIN, Channel 2 = VOUT  
VOUT = 1.8 V, VIN = 2.5 V, Channel 1 = IOUT, Channel 2 = VOUT  
V
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
SLEW RATE = 2.4A/µs  
I
OUT  
1
2
V
OUT  
V
EN  
3.3V  
2.5V  
1.8V  
B
B
CH1 500mA  
CH2 5mV  
M4.00µs  
A CH1 740mA  
20.70%  
W
W
–2  
–1  
0
1
2
3
4
5
6
7
8
T
TIME (ms)  
Figure 36. Load Transient Response, ILOAD = 100 mA to 1.2 A,  
OUT = 1.8 V, VIN = 2.5 V, COUT = 22 µF, Channel 1 = IOUT, Channel 2 = VOUT  
Figure 39. VOUT Start-Up Time After VEN Rising,  
at Various Output Voltages, VIN = 5 V, CBYP = 1 μF  
V
3.5  
T
SLEW RATE = 1V/µs  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
1µF  
4.7µF  
10µF  
IN  
EN  
V
OUT  
2
1
B
B
CH1 1.0V  
CH2 5mV  
M10.0µs A CH1 4.34mA  
21.10%  
W
W
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
T
TIME (ms)  
Figure 37. Line Transient Response, 1 V Input Step, ILOAD = 1.2 A,  
OUT = 3.3 V, VIN = 3.8 V, Channel 1 = VIN, Channel 2 = VOUT  
Figure 40. VOUT Start-Up Time Behavior at Various Values of CBYP  
,
V
VOUT = 3.3 V  
Rev. A | Page 12 of 22  
Data Sheet  
ADP7156  
THEORY OF OPERATION  
The ADP7156 is an ultralow noise, high PSRR linear regulator  
targeting radio frequency (RF) applications. The input voltage  
range is 2.3 V to 5.5 V, and it can deliver up to 1.2 A of load  
current. Typical shutdown current consumption is 0.2 µA at  
room temperature.  
feedback voltage is higher than the reference voltage, the gate of  
the PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
By heavily filtering the reference voltage, the ADP7156 can  
achieve 1.7 nV/√Hz typical output noise spectral density from  
10 kHz to 1 MHz. Because the error amplifier is always in unity  
gain, the output noise is independent of the output voltage.  
Optimized for use with 10 µF ceramic capacitors, the ADP7156  
provides excellent transient performance.  
The ADP7156 uses the EN pin to enable and disable the VOUT pin  
under normal operating conditions. When EN is high, VOUT  
turns on, and when EN is low, VOUT turns off. For automatic  
startup, tie EN to VIN.  
VIN  
VOUT  
VOUT_SENSE  
CURRENT-LIMIT,  
THERMAL  
INTERNAL  
VREG  
BYP  
PROTECT  
REGULATOR  
GND (EPAD)  
VIN  
7V  
OTA  
REFERENCE  
VREG  
4V  
REF  
REF_SENSE  
REF  
REF_SENSE  
4V  
SHUTDOWN  
EN  
BYP  
4V  
VOUT  
Figure 41. Simplified Internal Block Diagram  
4V  
4V 4V 4V 4V 4V 4V 7V  
VOUT_SENSE  
Internally, the ADP7156 consists of a reference, an error ampli-  
fier, and a P-channel MOSFET pass transistor. The output current  
is delivered via the PMOS pass device, which is controlled by  
the error amplifier. The error amplifier compares the reference  
voltage with the feedback voltage from the output and amplifies  
the difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
7V  
EN  
GND (EPAD)  
Figure 42. Simplified ESD Protection Block Diagram  
The ESD protection devices are shown in the block diagram as  
Zener diodes (see Figure 42).  
Rev. A | Page 13 of 22  
 
 
ADP7156  
Data Sheet  
APPLICATIONS INFORMATION  
Input and VREG Capacitor  
ADIsimPOWER DESIGN TOOL  
Connecting a 10 µF capacitor from VIN to ground reduces the  
circuit sensitivity to PCB layout, especially when long input  
traces or high source impedance are encountered.  
The ADP7156 is supported by the ADIsimPowerdesign tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs optimized for a specific design goal. These tools  
enable the user to generate a full schematic, bill of materials,  
and calculate performance within minutes. ADIsimPower can  
optimize designs for cost, area, efficiency, and device count,  
taking into consideration the operating conditions and limita-  
tions of the IC and all real external components. For more  
information about, and to obtain the ADIsimPower design  
tools, visit www.analog.com/ADIsimPower.  
To maintain the best possible stability and PSRR performance,  
connect a 1 µF or greater capacitor from VREG to ground.  
REF Capacitor  
The REF capacitor, CREF, is necessary to stabilize the reference  
amplifier. Connect at 1 µF or greater capacitor between REF and  
ground.  
BYP Capacitor  
CAPACITOR SELECTION  
The BYP capacitor, CBYP, is necessary to filter the reference  
buffer. A 1 µF capacitor is typically connected between BYP and  
ground. Capacitors as small as 0.1 µF can be used; however, the  
output noise voltage of the LDO increases as a result.  
Multilayer ceramic capacitors (MLCCs) combine small size, low  
ESR, low ESL, and a wide operating temperature range, making  
them an ideal choice for bypass capacitors. They are not without  
faults, however. Depending on the dielectric material, the  
capacitance can vary dramatically with temperature, dc bias,  
and ac signal level. Therefore, selecting the proper capacitor  
results in the best circuit performance.  
In addition, the BYP capacitor value can be increased to reduce  
the noise below 1 kHz at the expense of increasing the start-up  
time of the LDO regulator. Very large values of CBYP signifi-  
cantly reduce the noise below 10 Hz. Tantalum capacitors are  
recommended for capacitors larger than approximately 33 µF  
because solid tantalum capacitors are less prone to microphonic  
noise issues. A 1 μF ceramic capacitor in parallel with the larger  
tantalum capacitor is recommended to ensure good noise  
performance at higher frequencies.  
Output Capacitor  
The ADP7156 is designed for operation with ceramic capacitors  
but functions with most commonly used capacitors when care is  
taken with regard to the ESR value. The ESR of the output capaci-  
tor affects the stability of the LDO control loop. A minimum of  
10 µF capacitance with an ESR of 0.1 Ω or less is recommended  
to ensure the stability of the ADP7156. Output capacitance also  
affects transient response to changes in load current. Using a larger  
value of output capacitance improves the transient response of the  
ADP7156 to large changes in load current. Figure 43 shows the  
transient responses for an output capacitance value of 10 µF.  
2.0  
1.8  
1.6  
10Hz TO 100kHz  
1.4  
1.2  
1.0  
T
SLEW RATE = 2.5A/µs  
100Hz TO 100kHz  
0.8  
0.6  
0.4  
0.2  
I
OUT  
1
0
1
10  
100  
1000  
V
OUT  
C
(µF)  
BYP  
2
Figure 44. RMS Output Noise vs. Bypass Capacitance (CBYP  
)
B
B
CH1 1.0V  
CH2 2.0mV  
M4.0µs  
A CH1 700mV  
W
W
T
21.10%  
Figure 43. Output Transient Response, VOUT = 3.3 V, COUT = 10 µF,  
Channel 1 = Load Current, Channel 2 = VOUT  
Rev. A | Page 14 of 22  
 
 
 
 
Data Sheet  
ADP7156  
1k  
Use Equation 1 to determine the worst case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
= 10µF  
= 100µF  
= 1000µF  
100  
10  
1
C
EFF = CBIAS × (1 − tempco) × (1 − TOL)  
(1)  
where:  
C
C
EFF is the worst case capacitance.  
BIAS is the effective capacitance at the operating voltage.  
tempco is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
In this example, the worst case temperature coefficient  
(tempco) over −40°C to +85°C is assumed to be 15% for an X5R  
dielectric. The tolerance of the capacitor (TOL) is assumed to  
be 10%, and CBIAS is 9.72 µF at 5 V, as shown in Figure 46.  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 45. Noise Spectral Density vs. Frequency at Various CBYP Values  
Substituting these values in Equation 1 yields  
Capacitor Properties  
CEFF = 9.72 µF × (1 − 0.15) × (1 − 0.1) = 7.44 µF  
Any good quality ceramic capacitors can be used with the  
ADP7156 if they meet the minimum capacitance and maximum  
ESR requirements. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior over tempera-  
ture and applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary tempera-  
ture range and dc bias conditions. X5R or X7R dielectrics with  
a voltage rating of 6.3 V to 50 V are recommended. However,  
Y5V and Z5U dielectrics are not recommended because of their  
poor temperature and dc bias characteristics.  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP7156, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The ADP7156 also incorporates an internal UVLO circuit to  
disable the output voltage when the input voltage is less than the  
minimum input voltage rating of the regulator. The upper and  
lower thresholds are internally fixed with 200 mV (typical) of  
hysteresis.  
Figure 46 depicts the capacitance vs. dc bias voltage of a 1206,  
10 µF, 10 V, X5R capacitor. The voltage stability of a capacitor is  
strongly influenced by the capacitor size and voltage rating. In  
general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperature variation of the X5R  
dielectric is ~ 15% over the −40°C to +85°C temperature range  
and is not a function of package or voltage rating.  
12  
2.5  
+125°C  
+25°C  
–40°C  
2.0  
1.5  
1.0  
0.5  
0
10  
8
6
4
1.9  
2.0  
2.1  
(V)  
2.2  
2.3  
V
IN  
2
Figure 47. Typical UVLO Behavior at Various Temperatures, VOUT = 3.3 V  
Figure 47 shows the typical behavior of the UVLO function.  
This hysteresis prevents on/off oscillations that can occur when  
caused by noise on the input voltage as it passes through the  
threshold points.  
0
0
2
4
6
8
10  
DC BIAS VOLTAGE (V)  
Figure 46. Capacitance vs. DC Bias Voltage  
Rev. A | Page 15 of 22  
 
 
 
ADP7156  
Data Sheet  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
PROGRAMMABLE PRECISION ENABLE  
The ADP7156 uses the EN pin to enable and disable the VOUT pin  
under normal operating conditions. As shown in Figure 48, when  
a rising voltage on EN crosses the upper threshold, nominally  
1.22 V, VOUT turns on. When a falling voltage on EN crosses the  
lower threshold, nominally 1.13 V, VOUT turns off. The hysteresis  
of the EN threshold is typically 90 mV.  
EN RISING  
ADP7156 includes a discharge resistor on each VOUT, VREG,  
REF, and BYP pin. These resistors turn on when the device is  
disabled, and helps to discharge the associated capacitor very  
quickly.  
EN FALLING  
3.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
–40°C  
INPUT VOLTAGE (V)  
–5°C  
25°C  
85°C  
3.0  
Figure 50. Typical EN Precision Threshold vs. Input Voltage (VIN)  
125°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0
The upper and lower thresholds are user-programmable and  
can be set higher than the nominal 1.22 V threshold by using  
two resistors. Determine the resistance values, REN1 and REN2  
from  
,
R
EN1 = REN2 × (VEN − 1.22 V)/1.22 V  
where:  
EN2 typically ranges from 10 kΩ to 100 kΩ.  
EN is the desired turn-on voltage.  
R
V
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
The hysteresis voltage increases by the factor  
EN PIN VOLTAGE (V)  
(REN1 + REN2)/REN2  
Figure 48. Typical VOUT Response to EN Pin Operation  
3.5  
For the example shown in Figure 51, the EN threshold is 2.44 V  
with a hysteresis of 200 mV.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
EN  
OUT  
ADP7156  
V
= 3.8V  
V
= 3.3V  
OUT  
IN  
VIN  
VOUT  
C
C
OUT  
IN  
10µF  
10µF  
VOUT_SENSE  
R
EN1  
ON  
100kΩ  
EN  
REF  
C
1µF  
REF  
OFF  
R
EN2  
BYP REF_SENSE  
100kΩ  
C
BYP  
1µF  
VREG  
C
REG  
1µF  
GND (EPAD)  
–2  
–1  
0
1
2
3
4
5
6
7
8
Figure 51. Typical EN Pin Voltage Divider  
TIME (ms)  
Figure 49. Typical VOUT Response to EN Pin Operation (VEN),  
OUT = 3.3 V, VIN = 5 V, CBYP = 1 µF  
Figure 51 shows the typical voltage divider configuration of the  
EN pin. This configuration prevents on/off oscillations that can  
occur due to noise on the EN pin as it passes through the  
threshold points.  
V
Rev. A | Page 16 of 22  
 
 
 
Data Sheet  
ADP7156  
START-UP TIME  
CURRENT-LIMIT AND THERMAL SHUTDOWN  
The ADP7156 uses an internal soft start to limit the inrush current  
when the output is enabled. The start-up time for a 3.3 V output is  
approximately 1.2 ms from the time the EN active threshold is  
crossed to when the output reaches 90% of its final value.  
The ADP7156 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP7156 is designed to current limit when the  
output load reaches 1.8 A (typical). When the output load  
exceeds 1.8 A, the output voltage is reduced to maintain a  
constant current limit.  
The rise time in seconds of the output voltage (10% to 90%) is  
approximately  
When the ADP7156 junction temperature exceeds 150°C, the  
thermal shutdown circuit turns off the output voltage, reducing  
the output current to zero. Extreme junction temperature can be  
the result of high current operation, poor circuit board design or  
high ambient temperature. A 15°C hysteresis is included so that  
the ADP7156 does not return to operation after thermal shutdown  
until the on-chip temperature falls below 135°C. When the device  
exits thermal shutdown, a soft start is initiated to reduce the  
inrush current.  
0.0012 × CBYP  
where CBYP is measured in microfarads.  
3.5  
3.0  
V
1µF  
4.7µF  
10µF  
EN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Current-limit and thermal shutdown protections are intended  
to protect the device against accidental overload conditions. For  
example, a hard short from VOUT to ground or an extremely  
long soft start timer usually causes thermal oscillations between  
the current limit and thermal shutdown.  
THERMAL CONSIDERATIONS  
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ms)  
In applications with a low input to output voltage differential,  
the ADP7156 does not dissipate much heat. However, in applica-  
tions with high ambient temperature and/or high input voltage,  
the heat dissipated in the package may become large enough  
that it causes the junction temperature of the die to exceed the  
maximum junction temperature of 125°C.  
Figure 52. Typical Start-Up Behavior with CBYP = 1 μF to 10 μF  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
To guarantee reliable operation, the junction temperature of the  
ADP7156 must not exceed 125°C. To ensure that the junction  
temperature stays below this maximum value, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds that are used and the  
amount of copper used to solder the exposed pad (ground) to  
the PCB.  
V
EN  
10µF  
47µF  
100µF  
–20  
0
20  
40  
60  
80  
100  
120  
140  
160  
TIME (ms)  
Figure 53. Typical Start-Up Behavior with CBYP = 10 μF to 100 μF  
REF, BYP, AND VREG PINS  
REF, BYP, and VREG generate voltages internally (VREF, VBYP  
and VREG) that require external bypass capacitors for proper  
,
operation. Do not, under any circumstances, connect any loads  
to these pins, because doing so compromises the noise and  
PSRR performance of the ADP7156. Using larger values of CBYP  
CREF, and CREG is acceptable but can increase the start-up time,  
as described in the Start-Up Time section.  
,
Rev. A | Page 17 of 22  
 
 
 
 
ADP7156  
Data Sheet  
140  
120  
100  
80  
Table 7 shows the typical θJA values of the 8-lead SOIC and  
10-lead LFCSP packages for various PCB copper sizes. Table 8  
shows the typical ΨJB values of the 8-lead SOIC and 10-lead  
LFCSP.  
Table 7. Typical θJA Values  
θJA (°C/W)  
60  
Copper Size (mm2)  
251  
100  
500  
1000  
6400  
10-Lead LFCSP  
8-Lead SOIC  
123.8  
90.4  
130.2  
93.0  
65.8  
55.6  
44.1  
2
6400mm  
500mm  
40  
2
2
25mm  
66.0  
56.6  
45.5  
20  
T
MAX  
J
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
1 Device soldered to minimum size pin traces.  
Figure 54. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP, TA = 25°C  
Table 8. Typical ΨJB Values  
Package  
140  
120  
100  
80  
ΨJB (°C/W)  
29.1  
30.1  
10-Lead LFCSP  
8-Lead SOIC  
Calculate the junction temperature (TJ) of the ADP7156 from  
the following equation:  
TJ = TA + (PD × θJA)  
(2)  
where:  
60  
TA is the ambient temperature.  
2
6400mm  
500mm  
2
PD is the power dissipation in the die, given by  
2
25mm  
40  
T
MAX  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
VIN and VOUT are the input and output voltages, respectively.  
)
(3)  
J
20  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
TOTAL POWER DISSIPATION (W)  
I
I
LOAD is the load current.  
GND is the ground current.  
Figure 55. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP, TA = 50°C  
Power dissipation caused by ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
130  
125  
120  
115  
110  
105  
100  
TJ = TA + (((VIN VOUT) × ILOAD) × θJA)  
(4)  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current, a  
minimum copper size requirement exists for the PCB to ensure  
that the junction temperature does not rise above 125°C.  
2
6400mm  
500mm  
95  
90  
85  
80  
2
The heat dissipation from the package can be improved by increas-  
ing the amount of copper attached to the pins and exposed pad  
of the ADP7156. Adding thermal planes underneath the package  
also improves thermal performance. However, as shown in Table 7,  
a point of diminishing returns is eventually reached, beyond which  
an increase in the copper area does not yield significant reduc-  
tion in the junction to ambient thermal resistance.  
2
25mm  
T
MAX  
J
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
Figure 56. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP, TA = 85°C  
Figure 54 to Figure 59 show junction temperature calculations  
for various ambient temperatures, power dissipation, and areas  
of PCB copper.  
Rev. A | Page 18 of 22  
 
 
 
Data Sheet  
ADP7156  
140  
120  
100  
80  
Thermal Characterization Parameter (ΨJB)  
When the evaluation board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the junction  
temperature rise (see Figure 60 and Figure 61). Calculate the  
maximum junction temperature (TJ) from the evaluation board  
temperature (TB) and power dissipation (PD) using the following  
formula:  
60  
TJ = TB + (PD × ΨJB)  
(5)  
2
6400mm  
500mm  
40  
2
The typical value of ΨJB is 29.1°C/W for the 10-lead LFCSP  
package and 30.1°C/W for the 8-lead SOIC package.  
2
25mm  
20  
T
MAX  
J
140  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
120  
100  
80  
Figure 57. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 25°C  
130  
120  
110  
100  
90  
T
T
T
T
T
= 85°C  
= 65°C  
= 50°C  
= 25°C  
MAX  
B
B
B
B
J
60  
40  
20  
0
80  
2
6400mm  
500mm  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
TOTAL POWER DISSIPATION (W)  
70  
60  
50  
40  
2
2
25mm  
Figure 60. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP  
T
MAX  
J
140  
120  
100  
80  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
TOTAL POWER DISSIPATION (W)  
Figure 58. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 50°C  
130  
125  
120  
115  
110  
105  
100  
T
T
T
T
T
= 85°C  
= 65°C  
= 50°C  
= 25°C  
MAX  
B
B
B
B
J
60  
40  
20  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2
6400mm  
500mm  
95  
90  
85  
80  
2
TOTAL POWER DISSIPATION (W)  
2
25mm  
Figure 61. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC  
T
MAX  
J
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
Figure 59. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 85°C  
Rev. A | Page 19 of 22  
 
 
 
ADP7156  
Data Sheet  
PRINTED CIRCUIT BOARD (PCB) LAYOUT CONSIDERATIONS  
Place the input capacitor as close as possible between the  
VIN pin and ground. Place the output capacitor as close as possible  
between the VOUT pin and ground. Place the bypass capacitors  
(CREG, CREF, and CBYP) for VREG, VREF, and VBYP close to the respec-  
tive pins (VREG, REF, and BYP) and ground. The use of a 0805,  
0603, or 0402 size capacitor achieves the smallest possible  
footprint solution on boards where area is limited. Maximize  
the amount of ground metal for the exposed pad, and use as  
many vias as possible on the component side to improve thermal  
dissipation.  
Figure 63. Sample 8-Lead SOIC PCB Layout  
Figure 62. Sample 10-Lead LFCSP PCB Layout  
Rev. A | Page 20 of 22  
 
Data Sheet  
ADP7156  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 64. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-10-9)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
2.29  
0.356  
5
4
6.20  
6.00  
5.80  
8
1
4.00  
3.90  
3.80  
2.29  
0.457  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 65. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-1)  
Dimensions shown in millimeters  
Rev. A | Page 21 of 22  
 
ADP7156  
Data Sheet  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage (V)  
Package Description  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
Evaluation Board  
Package Option  
Branding  
LST  
LSU  
LTQ  
LSV  
LSW  
LSY  
LSZ  
ADP7156ACPZ-1.2-R7  
ADP7156ACPZ-1.8-R7  
ADP7156ACPZ-2.0-R7  
ADP7156ACPZ-2.5-R7  
ADP7156ACPZ-2.8-R7  
ADP7156ACPZ-3.0-R7  
ADP7156ACPZ-3.3-R7  
ADP7156ARDZ-1.2-R7  
ADP7156ARDZ-1.8-R7  
ADP7156ARDZ-2.0-R7  
ADP7156ARDZ-2.5-R7  
ADP7156ARDZ-2.8-R7  
ADP7156ARDZ-3.0-R7  
ADP7156ARDZ-3.3-R7  
ADP7156CP-3.3EVALZ  
1.2  
1.8  
2.0  
2.5  
2.8  
3.0  
3.3  
1.2  
1.8  
2.0  
2.5  
2.8  
3.0  
3.3  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
1 Z = RoHS Compliant Part.  
2 To order a device with voltage options of 1.3 V, 1.5 V, 1.6 V, 2.2 V, 2.6 V, 2.7 V, 2.9 V, 3.1 V, and 3.2 V, contact your local Analog Devices, Inc., sales or distribution  
representative.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12937-0-5/16(A)  
Rev. A | Page 22 of 22  
 

相关型号:

ADM7151ACP

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7151ACPZ-04-R7

800 mA Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7151ARD

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7151ARDZ-02

800 mA Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7151ARDZ-04

800 mA Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154

High PSRR, RF Linear Regulator
ADI

ADM7154ACP

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ACPZ-1.8-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ACPZ-3.3-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ARD

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ARDZ-3.3-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155

High PSRR, RF Linear Regulator
ADI