ADMV1009 [ADI]

12.7 GHz to 15.4 GHz, GaAs, MMIC, Upper Sideband, Differential Upconverter;
ADMV1009
型号: ADMV1009
厂家: ADI    ADI
描述:

12.7 GHz to 15.4 GHz, GaAs, MMIC, Upper Sideband, Differential Upconverter

文件: 总23页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12.7 GHz to 15.4 GHz, GaAs, MMIC,  
Upper Sideband, Differential Upconverter  
ADMV1009  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VGMIX VGRF VDRF  
RF output frequency range: 12.7 GHz to 15.4 GHz  
IF input frequency range: 2.8 GHz to 4 GHz  
LO input frequency range: 9 GHz to 12.6 GHz  
Matched 50 Ω RF output, LO input, and IF input  
20 dB of image rejection  
29  
7
31  
ADMV1009  
IF1 14  
IF2 11  
3
RFOUT  
GND  
2
32-terminal, 4.9 mm × 4.9 mm LCC package  
10  
15  
18  
GND  
GND  
APPLICATIONS  
GND  
Point to point microwave radios  
19  
26  
27  
Radars and electronic warfare systems  
Instrumentation, automatic test equipment  
LOIN VGLO VDLO  
Figure 1.  
GENERAL DESCRIPTION  
The ADMV1009 is a compact, gallium arsenide (GaAs) design,  
monolithic microwave integrated circuit (MMIC), upper sideband  
(USB), differential, upconverter in a RoHS compliant package  
optimized for point to point microwave radio designs that  
operate in the 12.7 GHz to 15.4 GHz frequency range.  
inputs are provided, and an external 180° balun is needed to  
drive the IF pins differentially. The ADMV1009 is a much  
smaller alternative to hybrid style single sideband (SSB)  
upconverter assemblies and eliminates the need for wire  
bonding by allowing the use of surface-mount manufacturing  
assemblies.  
The ADMV1009 provides 21 dB of conversion gain with 20 dB  
of sideband rejection. The ADMV1009 uses a radio frequency (RF)  
amplifier preceded by a passive, double balanced mixer, where a  
driver amplifier drives the local oscillator (LO). IF1 and IF2 mixer  
The ADMV1009 upconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm LCC package. The ADMV1009  
operates over the −40°C to +85°C temperature range.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017-2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADMV1009  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Leakage Performance................................................................. 13  
Return Loss Performance.......................................................... 14  
Spurious Performance ............................................................... 15  
M × N Spurious Performance................................................... 17  
Theory of Operation ...................................................................... 18  
LO Driver Amplifier .................................................................. 18  
Mixer............................................................................................ 18  
RF Amplifier ............................................................................... 18  
Applications Information.............................................................. 19  
Typical Application Circuit....................................................... 19  
Evaluation Board Information ................................................. 20  
Bill of Materials........................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
IF Frequency = 2.8 GHz .............................................................. 6  
IF Frequency = 3.4 GHz .............................................................. 8  
IF Frequency = 4 GHz ............................................................... 10  
IF Bandwidth .............................................................................. 12  
REVISION HISTORY  
4/2018—Rev. A to Rev. B  
Changes to Thermal Resistance Section and Table 3................... 4  
Changes to Figure 24, Figure 27, Figure 24 Caption, and Figure 27  
Caption ............................................................................................ 10  
Changes to Figure 35 and Figure 36............................................. 12  
Changes to Figure 37 through Figure 40..................................... 13  
Changes to Figure 47 through Figure 52..................................... 15  
Changes to Figure 53 through Figure 58..................................... 16  
Changes to Table 5 and M × N Spurious Performance Section .... 17  
Change to Theory of Operation Section ..................................... 18  
Changes to Figure 59...................................................................... 19  
Changes to Power On Sequence Section and Power Off  
1/2018—Rev. 0 to Rev. A  
Change to Product Title................................................................... 1  
Changes to General Description and Figure 1 ............................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Added Thermal Resistance Section and Table 3; Renumbered  
Sequentially ....................................................................................... 4  
Changes to Figure 2 and Table 4..................................................... 5  
Changes to Figure 4, Figure 7, Figure 4 Caption, and Figure 7  
Caption............................................................................................... 6  
Changes to Figure 14, Figure 17, Figure 14 Caption, and Figure 17  
Caption............................................................................................... 8  
Sequence Section............................................................................ 20  
Change to Table 6 ........................................................................... 22  
Changes to Ordering Guide.......................................................... 23  
10/2017—Revision 0: Initial Version  
Rev. B | Page 2 of 23  
 
Data Sheet  
ADMV1009  
SPECIFICATIONS  
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C; data taken with  
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min Typ  
Max Unit  
RF OUTPUT FREQUENCY RANGE  
INPUT FREQUENCY RANGE  
Local Oscillator  
Intermediate Frequency  
LO AMPLITUDE  
IF INPUT POWER  
PERFORMANCE  
Conversion Gain  
Noise Figure  
Output Third-Order Intercept  
Output 1 dB Compression Point  
Sideband Rejection  
Leakage  
12.7  
15.4 GHz  
LO  
IF  
9
2.8  
12.6 GHz  
4
GHz  
dBm  
dBm  
−4  
0
+4  
0
−25  
With balun  
15  
21  
14  
35  
25  
60  
25  
dB  
NF  
IP3  
P1dB  
16.5 dB  
dBm  
At output power (POUT) = 8 dBm  
31  
23  
20  
dBm  
dBc  
LO to RF  
LO to IF  
−30  
−25  
−10  
−20  
dBm  
dBm  
RF Output  
IF = 0 dBm  
2× LO − 2× IF Spur  
4× IF Spur  
45  
70  
52  
75  
dBc  
dBc  
Return Loss  
RF Output  
LO Input  
IF Input  
12  
12  
11  
10  
10  
10  
dB  
dB  
dB  
−4 dBm ≤ LO ≤ +4 dBm  
POWER INTERFACE  
Amplifier Voltage  
RF  
VDRF  
VDLO  
5
5
V
V
LO  
Gate Voltage  
RF  
LO  
Mixer Voltage  
Amplifier Current  
RF  
VGRF  
VGLO  
VGMIX  
−1.5  
−1.5  
−0.5  
−0.5  
V
V
V
−1.1  
IDRF  
IDLO  
Adjust VGRF between −1.5 V and −0.5 V to achieve IDRF  
Adjust VGLO between −1.5 V and −0.5 V to achieve IDLO  
250  
60  
300  
mA  
mA  
LO  
Gate Current  
RF  
LO  
IGRF  
IGLO  
< 3  
< 1  
1.55  
mA  
mA  
W
Total Power  
Rev. B | Page 3 of 23  
 
ADMV1009  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Supply Voltage  
VDRF  
6 V  
VDLO  
VGLO  
VGRF  
VGMIX  
6 V  
θJA is thermal resistance, junction to ambient (°C/W), and θJC is  
thermal resistance, junction to case (°C/W).  
−2 V to 0 V  
−2 V to 0 V  
−2 V to 0 V  
175°C  
Table 3.  
Package Type  
1
1
θJA  
33.4  
θJC  
Unit  
Maximum Junction Temperature  
Lifetime at Maximum Junction Temperature >1 million hours  
E-32-1  
31  
°C/W  
Maximum Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
Moisture Sensitivity Level (MSL) Rating  
Input Power  
2.9 W  
1 See JEDEC standard JESD51-2 for additional information on optimal thermal  
impedance (printed circuit board (PCB) within 3 × 3 vias)  
−40°C to +85°C  
−65°C to +150°C  
MSL3  
ESD CAUTION  
LO  
IF  
15 dBm  
15 dBm  
260°C  
Lead Temperature Range (Soldering 60 sec)  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
750 V  
750 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 4 of 23  
 
 
 
Data Sheet  
ADMV1009  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN1  
INDICATOR  
NIC  
GND  
RFOUT  
NIC  
NIC  
NIC  
VGRF  
NIC  
1
2
3
4
5
6
7
8
24 NIC  
23  
22 NIC  
21 NIC  
NIC  
ADMV1009  
TOP VIEW  
20  
19  
NIC  
LOIN  
(Not to Scale)  
18 GND  
17 NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. IT IS  
RECOMMENDED TO GROUND THESE PINS  
ON THE PCB.  
2. EXPOSED PAD. EXPOSED PAD MUST BE  
CONNECTED TO GND. GOOD RF AND THERMAL  
GROUNDING IS RECOMMENDED.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 4 to 6, 8, 9, 12, 13, 16,  
17, 20 to 25, 28, 30, 32  
NIC  
Not Internally Connected. It is recommended to ground these pins on the PCB.  
2, 10, 15, 18  
3
7
GND  
RFOUT  
VGRF  
Ground. These pins are grounded internally and must also be grounded on the PCB.  
RF Output. This pin is ac-coupled internally and matched to 50 Ω, single-ended.  
Power Supply Voltage for the Gate of the RF Amplifier. Refer to the Applications Information  
section for the required external components and biasing.  
11, 14  
IF2, IF1  
Differential IF Inputs. These pins are matched to 50 Ω and are ac-coupled. No external dc block is  
required.  
19  
26  
LOIN  
VGLO  
Local Oscillator Input. This pin is ac-coupled and matched to 50 Ω.  
Power Supply Voltage for the Gate of the LO Amplifier. Refer to the Applications Information  
section for the required external components and biasing.  
27  
29  
31  
VDLO  
VGMIX  
VDRF  
EPAD  
Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the  
required external components and biasing.  
Power Supply Voltage for the Mixer. This pin is a high impedance port. Refer to the Applications  
Information section for the required external components and biasing.  
Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the  
required external components and biasing.  
Exposed pad. The exposed pad must be connected to GND. Good RF and thermal grounding is  
recommended.  
Rev. B | Page 5 of 23  
 
ADMV1009  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
IF FREQUENCY = 2.8 GHz  
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with  
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
+4dBm  
0dBm  
–4dBm  
A
A
A
0
12.0  
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers  
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures  
80  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
+4dBm  
0dBm  
–4dBm  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20  
20  
10  
0
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 4. Sideband Rejection vs. RF Frequency at Various Temperatures  
Figure 7. Sideband Rejection vs. RF Frequency at Various LO Powers  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
15  
10  
5
+4dBm  
0dBm  
–4dBm  
A
A
A
0
12.0  
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 8. Output IP3 vs. RF Frequency at Various LO Powers  
Rev. B | Page 6 of 23  
 
 
Data Sheet  
ADMV1009  
30  
28  
26  
24  
22  
30  
28  
26  
24  
22  
20  
18  
16  
T
T
T
= +85°C  
= +25°C  
= –40°C  
+4dBm  
0dBm  
–4dBm  
20  
18  
16  
A
A
A
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 11. Output P1dB vs. RF Frequency at Various LO Powers  
18  
17  
16  
15  
14  
13  
12  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
11  
10  
9
T
T
T
= +85°C  
= +25°C  
= –40°C  
+4dBm  
0dBm  
–4dBm  
A
A
A
8
12.0  
8
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 12. Noise Figure vs. RF Frequency at Various LO Powers  
Rev. B | Page 7 of 23  
ADMV1009  
Data Sheet  
IF FREQUENCY = 3.4 GHz  
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with  
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
+4dBm  
0dBm  
–4dBm  
A
A
A
0
12.0  
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
+4dBm  
0dBm  
–4dBm  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20  
10  
0
20  
0
12.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 14. Sideband Rejection vs. RF Frequency at Various Temperatures  
Figure 17. Sideband Rejection vs. RF Frequency at Various LO Powers  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
10  
5
0
12.0  
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 18. Output IP3 vs. RF Frequency at Various LO Powers  
Rev. B | Page 8 of 23  
 
Data Sheet  
ADMV1009  
30  
28  
26  
24  
22  
30  
28  
26  
24  
22  
20  
18  
16  
+4dBm  
0dBm  
–4dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
20  
18  
16  
A
A
A
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 21. Output P1dB vs. RF Frequency at Various LO Powers  
18  
17  
16  
15  
14  
13  
12  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
11  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
10  
9
8
12.0  
8
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 22. Noise Figure vs. RF Frequency at Various LO Powers  
Rev. B | Page 9 of 23  
ADMV1009  
Data Sheet  
IF FREQUENCY = 4 GHz  
VDRF = 5 V, V D L O = 5 V, IDLO = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with  
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
0
12.0  
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 26. Conversion Gain vs. RF Frequency at Various LO Powers  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
30  
A
A
A
+4dBm  
0dBm  
–4dBm  
20  
10  
0
12.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Sideband Rejection vs. RF Frequency at Various Temperatures  
Figure 27. Sideband Rejection vs. RF Frequency at Various LO Powers  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
10  
5
0
12.0  
0
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 28. Output IP3 vs. RF Frequency at Various LO Powers  
Rev. B | Page 10 of 23  
 
Data Sheet  
ADMV1009  
30  
28  
26  
24  
22  
30  
28  
26  
24  
22  
20  
18  
16  
+4dBm  
0dBm  
–4dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
20  
18  
16  
A
A
A
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 31. Output P1dB vs. RF Frequency at Various LO Powers  
18  
17  
16  
15  
14  
13  
12  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
11  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
10  
9
8
12.0  
8
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 32. Noise Figure vs. RF Frequency at Various LO Powers  
Figure 30. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. B | Page 11 of 23  
ADMV1009  
Data Sheet  
IF BANDWIDTH  
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm at 10.2 GHz, −40°C ≤ TA ≤ +85°C, data taken  
with Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
0
2.0  
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 35. Conversion Gain vs. IF Frequency at Various LO Powers  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–4dBm  
10  
5
0
2.0  
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 34. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 36. Output IP3 vs. IF Frequency at Various LO Powers  
Rev. B | Page 12 of 23  
 
Data Sheet  
ADMV1009  
LEAKAGE PERFORMANCE  
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with  
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
+4dBm  
0dBm  
–4dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
8000  
9000  
10000  
11000  
12000  
13000  
14000  
8000  
9000  
10000  
11000  
12000  
13000  
14000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 37. LO Leakage at RFOUT vs. LO Frequency at Various Temperatures  
Figure 39. LO Leakage at RFOUT vs. LO Frequency at Various LO Powers  
0
0
+4dBm  
0dBm  
–4dBm  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
T
T
T
= +85°C  
= +25°C  
= –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
A
A
A
8000  
9000  
10000  
11000  
12000  
13000  
14000  
8000  
9000  
10000  
11000  
12000  
13000  
14000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 38. LO Leakage at IF Input vs. LO Frequency at Various  
Temperatures  
Figure 40. LO Leakage at IF Input vs. LO Frequency at Various LO Powers  
Rev. B | Page 13 of 23  
 
ADMV1009  
Data Sheet  
RETURN LOSS PERFORMANCE  
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with  
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted. Measurement includes trace loss and RF connector loss.  
0
0
+4dBm  
0dBm  
–4dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. RF Output Return Loss vs. RF Frequency at Various Temperatures  
Figure 44. RF Output Return Loss vs. RF Frequency at Various LO Powers  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
–35  
–40  
–45  
–50  
–35  
A
A
A
+4dBm  
0dBm  
–4dBm  
–40  
–45  
–50  
8
9
10  
11  
12  
13  
14  
8
9
10  
11  
12  
13  
14  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 42. LO Input Return Loss vs. LO Frequency at Various Temperatures  
Figure 45. LO Input Return Loss vs. LO Frequency at Various LO Powers  
0
0
–5  
–10  
–15  
–5  
–10  
–15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
+4dBm  
0dBm  
–20  
–20  
–4dBm  
–25  
1.0  
–25  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 43. IF Input Return Loss vs. IF Frequency at Various Temperatures  
Figure 46. IF Input Return Loss vs. IF Frequency at Various LO Powers  
Rev. B | Page 14 of 23  
 
Data Sheet  
ADMV1009  
SPURIOUS PERFORMANCE  
VDRF = 5 V, VDLO = 5 V, IDLO = 60 mA, IDRF = 250 mA, LO = 0 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits NCS1-422+,  
RF transformer as upper sideband, unless otherwise noted.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. 2× LO − 2× IF Leakage vs. RF Frequency at Various  
Temperatures, IF = 3.1 GHz, −10 dBm  
Figure 50. 2× LO − 2× IF Leakage vs. RF Frequency at Various  
Temperatures, IF = 3.1 GHz, 0 dBm  
90  
90  
80  
70  
60  
50  
40  
30  
–40°C  
+25°C  
+85°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20  
10  
0
13000  
13100  
13200  
13300  
13400  
13500  
RF FREQUENCY (MHz)  
RF FREQUENCY (GHz)  
Figure 51. 2× LO − 2× IF Leakage vs RF Frequency at Various  
Temperatures, IF = 3.3 GHz, 0 dBm  
Figure 48. 2× LO − 2× IF Leakage vs. RF Frequency at Various  
Temperatures, IF = 3.3 GHz, −10 dBm  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
20  
10  
0
20  
10  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 52. 2× LO − 2× IF Leakage vs RF Frequency at Various  
Temperatures, IF = 3.5 GHz, 0 dBm  
Figure 49. 2× LO − 2× IF Leakage vs. RF Frequency at Various  
Temperatures, IF = 3.5 GHz, −10 dBm  
Rev. B | Page 15 of 23  
 
ADMV1009  
Data Sheet  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
20  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. 4× IF Leakage vs. RF Frequency at Various Temperatures,  
IF = 3.1 GHz, −10 dBm  
Figure 56. 4× IF Leakage vs. RF Frequency at Various Temperatures,  
IF = 3.1 GHz, 0 dBm  
120  
100  
80  
120  
100  
80  
60  
60  
40  
40  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
20  
0
20  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. 4× IF Leakage vs. RF Frequency at Various Temperatures,  
IF = 3.3 GHz, −10 dBm  
Figure 57. 4× IF Leakage vs. RF Frequency at Various Temperatures,  
IF = 3.3 GHz, 0 dBm  
120  
100  
80  
120  
100  
80  
60  
60  
40  
40  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
20  
0
20  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. 4× IF Leakage vs. RF Frequency at Various Temperatures,  
IF = 3.5 GHz, −10 dBm  
Figure 58. 4× IF Leakage vs. RF Frequency at Various Temperatures,  
IF = 3.5 GHz, 0 dBm  
Rev. B | Page 16 of 23  
Data Sheet  
ADMV1009  
Table 5. LO Harmonic Leakage at RFOUT  
Harmonics  
3.0  
LO Frequency (MHz)1  
1.0  
2.0  
4.0  
9000  
9500  
10000  
10500  
11000  
11500  
12000  
12600  
−51  
−48  
−40  
−33  
−33  
−30  
−35  
−39  
−14  
−5  
−50  
−55  
−51  
−67  
−74  
−63  
−73  
−63  
−72  
−67  
−63  
−62  
−75  
−77  
−76  
−75  
−15  
−28  
−44  
−44  
−44  
−40  
1 All values are in dBm. LO Input Power = 0 dBm.  
M × N SPURIOUS PERFORMANCE  
LO = 0 dBm, Upper Sideband  
IF = 3100 MHz at 0 dBm and RF = 13300 MHz. All values in dBc below RF power level. N/A means not applicable.  
N × LO  
0
1
2
3
4
−4  
−3  
−2  
−1  
0
N/A  
N/A  
N/A  
N/A  
N/A  
77  
98  
99  
60  
61  
53  
0
83  
66  
52  
27  
38  
68  
31  
77  
83  
83  
75  
77  
80  
68  
70  
86  
64  
96  
105  
104  
89  
97  
85  
M × IF  
75  
1
65  
43  
67  
58  
86  
2
50  
78  
3
77  
N/A  
4
IF = 3300 MHz at 0 dBm and RF = 13300 MHz. All values in dBc below RF power level. N/A means not applicable.  
N × LO  
0
1
2
3
4
−4  
−3  
−2  
−1  
0
N/A  
N/A  
N/A  
N/A  
N/A  
74  
92  
100  
67  
57  
58  
0
92  
85  
58  
29  
32  
73  
32  
79  
80  
78  
67  
76  
76  
60  
60  
86  
67  
96  
100  
101  
95  
99  
80  
M × IF  
79  
1
64  
43  
63  
67  
82  
2
57  
91  
3
78  
N/A  
4
IF = 3500 MHz at 0 dBm and RF = 13300 MHz. All values in dBc below RF power level. N/A means not applicable.  
N × LO  
0
1
2
3
4
−4  
−3  
−2  
−1  
0
N/A  
N/A  
N/A  
N/A  
N/A  
71  
92  
100  
67  
50  
64  
0
92  
85  
50  
28  
27  
73  
32  
79  
80  
78  
67  
76  
72  
58  
60  
86  
67  
96  
100  
101  
95  
97  
74  
M × IF  
79  
1
59  
43  
63  
67  
82  
2
57  
91  
3
78  
N/A  
4
Rev. B | Page 17 of 23  
 
ADMV1009  
Data Sheet  
THEORY OF OPERATION  
The ADMV1009 is a GaAs, MMIC, SSB, upper side band  
upconverter in a RoHS compliant package optimized for upper  
sideband point to point microwave radio applications operating  
in the 12.7 GHz to 15.4 GHz output frequency range. The  
ADMV1009 supports LO input frequencies of 9 GHz to 12.6 GHz  
and IF frequencies of 2.8 GHz to 4 GHz.  
MIXER  
The mixer has two differential inputs, IF1 and IF2, and an  
external 180° balun is required to drive the IF ports differentially.  
The ADMV1009 is optimized to work with the Mini-Circuit  
NCS1-422+ RF balun. The mixer must be biased at −1.1 V  
(VGMIX) to operate.  
The ADMV1009 uses a RF amplifier preceded by a passive,  
double balanced mixer, where a driver amplifier drives the  
LO (see Figure 59). The combination of design, process, and  
packaging technology allows the functions of these subsystems  
to be integrated into a single die, using mature packaging and  
interconnection technologies to provide a high performance,  
low cost design with excellent electrical, mechanical, and  
thermal properties. In addition, the need for external  
components is minimized, optimizing cost and size.  
RF AMPLIFIER  
The RF amplifier requires a single dc bias voltage (VDRF) and a  
single dc gate bias (VGRF) to operate. Starting at −2 V at the  
gate supply (VGRF), the RF amplifier is biased at +5 V (VDRF).  
Then, the gate bias (VGRF) is varied until the desired RF amplifier  
bias current (IDRF) is achieved. The desired RF amplifier bias  
current is 250 mA under small signal conditions.  
The ADMV1009 has an internal band-pass filter between the  
mixer and the RF driver amplifier that reduces LO leakage and  
filters out the lower sideband at the RF output. The balanced  
input drive allows exceptional linearity performance compared  
to similar single-ended solutions.  
LO DRIVER AMPLIFIER  
The LO driver amplifier takes a single LO input and amplifies it  
to the desired LO signal level for the mixer to operate optimally.  
The LO driver amplifier requires a single dc bias voltage (VDLO)  
and a single dc gate bias (VGLO) to operate. Starting at −2 V at  
the gate supply (VGLO), the LO amplifier is biased at +5 V  
(VDLO). Then, the gate bias (VGLO) is varied until the desired  
LO amplifier bias current (IDLO) is achieved. The desired LO  
amplifier bias current is 60 mA under the LO input drive of  
−4 dBm to +4 dBm. The LO drive range of −4 dBm to +4 dBm  
makes it compatible with Analog Devices, Inc., wideband  
synthesizer portfolio without the requirement for an external  
LO driver amplifier.  
The typical application circuit (see Figure 59) shows the necessary  
external components on the bias lines to eliminate any undesired  
stability problems for the RF amplifier and the LO amplifier.  
The ADMV1009 upconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip  
carrier (LCC) package. The ADMV1009 operates over the  
−40°C to +85°C temperature range.  
Rev. B | Page 18 of 23  
 
 
 
 
Data Sheet  
ADMV1009  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
The typical applications circuit is shown in Figure 59. The  
application circuit shown has been replicated for the evaluation  
board circuit.  
TP1  
VDRF  
C3  
C1  
100pF  
C2  
10nF  
5016  
TP2  
1µF  
VGX  
C4  
C5  
5016  
TP3  
100pF  
1µF  
VDLO  
C8  
C6  
470pF  
C7  
10nF  
5016  
TP4  
1
24  
23  
22  
21  
20  
19  
18  
17  
1µF  
NIC  
2
NIC  
NIC  
NIC  
NIC  
NIC  
LOIN  
GND  
NIC  
GND  
RFOUT  
C12  
J1  
3
4
5
6
7
8
VGLO  
RFOUT  
NIC  
NIC  
NIC  
VGRF  
NIC  
U1  
C9  
100pF  
C10  
10nF  
C11  
1µF  
5016  
ADMV1009AEZ  
SMA  
LOIN  
J2  
TP5  
VGRF  
C14  
1µF  
C13  
10nF  
SMA  
5016  
100pF  
TP6  
L1  
L2  
SMA  
5016  
56nH  
56nH  
C15  
10pF  
C16  
10pF  
3300MHz TO 4000MHz  
SEC_DOT SEC_BAL  
4
5
6
3
2
1
GND  
NC  
PRI_GND  
PRI_DOT  
NC  
J3  
SMA  
IFIN  
NCS1-422+  
U2  
Figure 59. Typical Application Circuit  
Rev. B | Page 19 of 23  
 
 
 
ADMV1009  
Data Sheet  
Power-On Sequence  
EVALUATION BOARD INFORMATION  
To set up the ADMV1009-EVALZ, take the following steps:  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance, and  
the package ground leads and exposed pad must be connected  
directly to the ground plane, similar to what is shown in Figure 60  
and Figure 61. Use a sufficient number of via holes to connect  
the top and bottom ground planes. The evaluation circuit board  
shown in Figure 59 is available from Analog Devices, Inc., upon  
request.  
1. Power up the VGLO with a −1.5 V supply.  
2. Power up the VDLO with a 5 V supply.  
3. Adjust VGLO from −1.5 V to −0.5 V such that IDLO =  
60 mA.  
4. Power up VGRF with a −1.5 V supply.  
5. Power up VDRF with a 5 V supply.  
6. Adjust VGRF from −1.5 V to −0.5 V such that IDLO =  
250 mA  
Layout  
7. Power up VGMIX with a −1.5 V supply.  
8. Apply an LO signal.  
9. Apply an IF signal.  
Solder the exposed pad on the underside of the ADMV1009 to  
a low thermal and electrical impedance ground plane. This pad  
is typically soldered to an exposed opening in the solder mask  
on the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 60 shows the PCB  
land pattern footprint for the ADMV1009-EVALZ, and Figure 61  
shows the solder paste stencil for the ADMV1009-EVALZ  
evaluation board.  
Power Off Sequence  
To turn off the ADMV1009-EVALZ, take the following steps:  
1. Turn off the LO and IF signals.  
2. Set VGRF and VGLO to −1.5 V.  
3. Set the VDRF and VDLO supplies to 0 V and then turn off  
the VDRF and VDLO supplies.  
4. Turn off the VGRF and VGLO supplies.  
0.217" SQUARE  
0.004" MASK/METAL OVERLAP  
0.010" MINIMUM MASK WIDTH  
SOLDER MASK  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.197"  
[0.50]  
0.156"  
MASK  
OPENING  
ø.034"  
TYPICAL  
VIA SPACING  
ø.010"  
TYPICAL VIA  
0.010" REF  
0.138" SQUARE MASK OPENING  
0.02 × 45° CHAMFER FOR PIN 1  
0.030"  
MASK OPENING  
0.146" SQUARE  
GROUND PAD  
Figure 60. PCB Land Pattern Footprint of the ADMV1009-EVALZ  
Rev. B | Page 20 of 23  
 
 
Data Sheet  
ADMV1009  
0.017  
0.0197  
TYP  
0.219  
SQUARE  
0.132  
SQUARE  
0.017  
0.027  
TYP  
R0.0040 TYP  
132 PLCS  
0.010  
TYP  
Figure 61. Solder Paste Stencil of the ADMV1009-EVALZ  
Figure 62. ADMV1009-EVALZ Evaluation Board Top Layer  
Rev. B | Page 21 of 23  
 
ADMV1009  
Data Sheet  
BILL OF MATERIALS  
Table 6.  
Qty. Reference Designator  
Description  
Manufacturer/Part No.  
1
1
4
4
5
1
2
2
1
2
6
1
1
Not applicable  
U1  
C1, C4, C9, C12  
C2, C7, C10, C13  
C3, C5, C8, C11, C14  
C6  
C15, C16  
J1, J2  
J3  
PCB  
ADMV1009AEZ  
Analog Devices/600-01649-00  
Analog Devices/ADMV1009AEZ  
Murata/GRM1555C1H101JA01D  
Panasonic/ECJ-1VB1H103K  
Taiyo Yuden/UMK107AB7105KA-T  
Murata/GRM1555C1H471JA01D  
Kemet/C0402C100J3GAL  
SRI Connector Gage Co./21-141-1000-01  
Johnson Components/142-0701-851  
Coilcraft/0805CS-560XJLB  
100 pF ceramic capacitors, 5%, 50 V, C0G, 0402  
10 nF ceramic capacitors, 50 V, 10%, X7R, 0603  
1 µF ceramic capacitors, 50 V, 10%, X7R, 0603  
470 pF ceramic capacitor, 5%, 50 V, COG, 0402, SMD  
10 pF ceramic capacitors, 5%, 25 V, C0G, 0402  
SCD, COMP, SMA connectors, SRI  
SCD, COMP, SMA connector  
56 nH inductors, 0805, 5%, 500 mA  
Test points, PC compact SMT  
50 Ω RF transformer, 3300 MHz to 4000 MHz  
Aluminum heatsink  
L1, L2  
TP1 to TP6  
U2  
Keystone Electronics/5016  
Mini-Circuits/NCS1-422+  
Analog Devices/111332  
Heatsink  
Rev. B | Page 22 of 23  
 
Data Sheet  
ADMV1009  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
REF  
INDICATOR  
PIN 1  
32  
25  
24  
1
0.50  
BSC  
3.60  
3.50 SQ  
3.40  
EXPOSED  
PAD  
17  
8
16  
9
0.38  
0.32  
0.26  
0.20 MIN  
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
1.10  
1.00  
0.90  
4.10 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 63. 32-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Body Material Lead Finish  
Package Description  
Package Option  
ADMV1009AEZ  
ADMV1009AEZ-R7 −40°C to +85°C  
ADMV1009-EVALZ  
−40°C to +85°C  
Alumina Ceramic  
Alumina Ceramic  
Gold Over Nickel 32-Terminal Ceramic LCC E-32-1  
Gold Over Nickel 32-Terminal Ceramic LCC E-32-1  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017-2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15770-0-4/18(B)  
Rev. B | Page 23 of 23  
 
 

相关型号:

ADMV1009-EVALZ

12.7 GHz to 15.4 GHz, GaAs, MMIC, Upper Sideband, Differential Upconverter
ADI

ADMV1009AEZ

12.7 GHz to 15.4 GHz, GaAs, MMIC, Upper Sideband, Differential Upconverter
ADI

ADMV1009AEZ-R7

12.7 GHz to 15.4 GHz, GaAs, MMIC, Upper Sideband, Differential Upconverter
ADI

ADMV1010

12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1010-EVALZ

12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1010AEZ

12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1010AEZ-R7

12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1011

17 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter
ADI

ADMV1011AEZ

17 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter
ADI

ADMV1011AEZ-R7

17 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter
ADI

ADMV1012

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1012-EVALZ

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter
ADI