ADMV1011AEZ-R7 [ADI]

17 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter;
ADMV1011AEZ-R7
型号: ADMV1011AEZ-R7
厂家: ADI    ADI
描述:

17 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter

文件: 总26页 (文件大小:607K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
17 GHz to 24 GHz,  
GaAs, MMIC, I/Q Upconverter  
ADMV1011  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VGRF1 VCTL2 VCTL3 VGRF2 VDRF2 VDRF1  
RF output frequency range: 17 GHz to 24 GHz  
IF input frequency range: 2 GHz to 4 GHz  
LO input frequency range: 8 GHz to 12 GHz with 2× multiplier  
Sideband rejection: 32 dB for lower sideband  
P1dB: 25 dBm  
5
6
7
8
9
31  
1
3
GND  
GND  
GND  
GND  
14  
19  
RFOUT  
2
Gain regulation: 30 dB  
Output IP3: 33 dBm  
Matched 50 Ω RF output, LO input, and IF input  
32-terminal, 4.9 mm × 4.9 mm LCC package  
90  
0
13  
12  
IF1  
IF2  
18  
LOIN  
×2  
VDLO 26  
APPLICATIONS  
ADMV1011  
Point to point microwave radios  
Figure 1.  
Radars and electronic warfare systems  
Instrumentation, automatic test equipment  
GENERAL DESCRIPTION  
The ADMV1011 is a compact, gallium arsenide (GaAs) design,  
monolithic microwave integrated circuit (MMIC), double  
sideband (DSB) upconverter in a RoHS compliant package  
optimized for point to point microwave radio designs that  
operates in the 17 GHz to 24 GHz frequency range.  
IF1 and IF2 mixer inputs are provided and an external 90°  
hybrid is needed to select the required sideband. The I/Q mixer  
topology reduces the need for filtering the unwanted sideband.  
The ADMV1011 is a much smaller alternative to hybrid style  
DSB upconverter assemblies and it eliminates the need for wire  
bonding by allowing the use of surface-mount manufacturing  
assemblies.  
The ADMV1011 provides 21 dB of conversion gain with 32 dBc  
of sideband rejection for the lower sideband and 23 dBc of  
sideband rejection for the upper sideband. The ADMV1011  
uses a radio frequency (RF) amplifier preceded by an in  
phase/quadrature (I/Q) double balanced mixer, where a driver  
amplifier drives the local oscillator (LO) with a 2× multiplier.  
The ADMV1011 upconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm LCC package. The ADMV1011  
operates over the −40°C to +85°C temperature range.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017-2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADMV1011  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Performance vs. LO Power........................................................ 13  
Leakage and Return Loss Performance................................... 14  
M × N Spurious Performance................................................... 17  
Theory of Operation ...................................................................... 18  
LO Driver Amplifier .................................................................. 18  
Mixer............................................................................................ 18  
RF Amplifier ............................................................................... 18  
Applications Information.............................................................. 19  
Typical Application Circuit....................................................... 19  
Finer Resolution Gain Regulation ........................................... 20  
Evaluation Board Information ................................................. 22  
Bill of Materials........................................................................... 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Lower Sideband Performance..................................................... 3  
Upper Sideband Performance..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Lower Sideband.............................................................................. 7  
Upper Sideband ............................................................................ 9  
Performance vs. Gain Regulation............................................. 11  
REVISION HISTORY  
2/2018—Rev. 0 to Rev. A  
Deleted Upper Sideband Section and Figure 60 to Figure 65 .........18  
Changes to Figure 56...................................................................... 19  
Added Finer Resolution Gain Regulation Section and Figure 57  
to Figure 60; Renumbered Sequentially ...................................... 20  
Added Figure 61 and Figure 62 .................................................... 21  
Changes to Power-Off Sequence Section and 2× LO  
Suppression Section ....................................................................... 22  
Changes to Figure 65...................................................................... 24  
Changers to Table 7........................................................................ 25  
Changes to Ordering Guide.......................................................... 26  
Changes to Features Section, General Description Section, and  
Figure 1 .............................................................................................. 1  
Changes to Table 1 and Table 2....................................................... 3  
Changes to Table 3............................................................................ 4  
Changes to Table 4............................................................................ 5  
Add Thermal Resistance Section and Table 5; Renumbered  
Sequentially ....................................................................................... 5  
Changes to Figure 2 and Table 6..................................................... 6  
Changes to Figure 46...................................................................... 14  
Changes to Figure 47, Figure 51, and Figure 52 ......................... 15  
Changes to M × N Spurious Performance Section .................... 17  
Added Lower Sideband Section and Upper Sideband Section.......17  
Deleted Spurious Performance Section, Lower Sideband Section,  
and Figure 56 to Figure 59; Renumbered Sequentially.....................17  
10/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 26  
 
Data Sheet  
ADMV1011  
SPECIFICATIONS  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤  
+85°C, taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = −5 V, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max Unit  
RF OUTPUT FREQUENCY  
INPUT FREQUENCY  
Local Oscillator  
Intermediate Frequency  
LO AMPLITUDE  
POWER INTERFACE  
Amplifier Bias Voltage  
LO  
17  
24  
GHz  
LO  
IF  
With 2× multiplier  
8
2
12  
4
GHz  
GHz  
dBm  
−4  
0
+4  
VDLO  
VDRF1, VDRF2  
3.5  
5
V
V
RF  
Amplifier Bias Current  
LO  
RF  
IDLO  
IDRF1  
IDRF2  
160  
220  
75  
180  
300  
mA  
mA  
mA  
Adjust VGRF1 between −1.8 V to −0.8 V to get IDRF1  
Adjust VGRF2 between −1.8 V to −0.8 V to get IDRF1  
Amplifier Gate Current  
RF  
IGRF1  
IGRF2  
VGRF1, VGRF2  
<1  
<1  
mA  
mA  
V
RF Amplifier Gate Control  
Voltage  
RF Amplifier Gain Control  
Voltage  
−1.8  
−5  
−0.8  
0
VCTL2, VCTL3  
Maximum gain = −5 V, minimum gain = 0 V  
V
Total Power Dissipation  
2.1  
W
LOWER SIDEBAND PERFORMANCE  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤  
+85°C, taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = −5 V, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Test Conditions/Comments  
Min Typ Max Unit  
RF PERFORMANCE  
Frequency  
Radio Frequency  
Local Oscillator  
Intermediate Frequency  
Conversion Gain  
Dynamic Range  
RF  
LO  
IF  
17  
8.5  
2
15  
30  
20  
12  
4
GHz  
GHz  
GHz  
21  
32  
14  
14  
33  
26.5 dB  
dB  
16  
22  
VVA  
SSB NF  
VVA control slope > 35 mV/dB  
With hybrid at maximum gain  
With hybrid vs. gain regulation, gain control ≤ 25 dB  
At output power (POUT) = 8 dBm at maximum gain  
Single Sideband Noise Figure  
dB  
dB  
dBm  
Output Third-Order Intercept  
IP3  
31  
Output Third-Order Intercept vs. Gain  
Regulation  
5 dB Attenuation  
10 dB Attenuation  
15 dB Attenuation  
20 dB Attenuation  
25 dB Attenuation  
30 dB Attenuation  
Output 1 dB Compression Point  
Sideband Rejection  
25.5 30  
20 22  
14.5 18  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
9
25  
3.5  
−2  
16  
+12  
P1dB  
22.5 25  
20 32  
Gain regulation change from 0 dB to 31 dB  
Rev. A | Page 3 of 26  
 
 
ADMV1011  
Data Sheet  
Parameter  
Leakage  
Symbol Test Conditions/Comments  
Min Typ Max Unit  
2× LO to RF  
Maximum conversion gain at 18 GHz  
Vs. gain regulation  
−5  
+5  
1
dBm  
dB/dB  
2× LO to IF  
Return Loss  
RF Output  
LO Input  
IF Input  
IF Input Power  
3× LO – 4 × IF Spur  
1× LO + 2 × IF Spur  
6× IF Spur  
−40 −25 dBm  
15  
11  
20  
10  
10  
10  
0
dB  
dB  
dB  
dBm  
dBc  
dBc  
dBc  
LO = 0 dBm  
−25  
64  
55  
RF frequency (fRF) = 18 GHz, IF = 0 dBm  
fRF = 18 GHz, IF = 0 dBm  
fRF = 18 GHz, IF = 0 dBm  
80  
75  
85  
72  
UPPER SIDEBAND PERFORMANCE  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤  
+85°C, taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = −5 V, unless otherwise noted.  
Table 3.  
Parameter  
Symbol Test Conditions/Comments  
Min Typ Max Unit  
RF PERFORMANCE  
Frequency  
Radio Frequency  
Local Oscillator  
Intermediate Frequency  
Conversion Gain  
Dynamic Range  
RF  
LO  
IF  
20  
8
2
15  
30  
24  
11  
4
GHz  
GHz  
GHz  
21  
37  
26.5 dB  
dB  
VVA  
VVA control slope > 35 mV/dB  
Single Sideband Noise Figure  
SSB NF  
With hybrid at maximum gain  
With hybrid vs. gain regulation, gain control ≤ 25 dB  
At output power (POUT) = 8 dBm  
13.5 16  
13.5 22  
33  
dB  
dB  
dBm  
Output Third-Order Intercept  
IP3  
31  
Output Third-Order Intercept vs.  
Gain Regulation  
5 dB Attenuation  
10 dB Attenuation  
15 dB Attenuation  
20 dB Attenuation  
25 dB Attenuation  
30 dB Attenuation  
Output 1 dB Compression Point  
Sideband Rejection  
Leakage  
25.5 27  
20 25  
14.5 17  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
9
3.5  
−2  
12  
8
+7  
P1dB  
22.5 25  
Gain regulation change from 0 dB to 31dB  
20  
23  
2× LO to RF  
Maximum conversion gain at 23 GHz  
Vs. gain regulation  
−5  
+5  
1
dBm  
dB/dB  
dBm  
2× LO to IF  
Return Loss  
−40 −25  
RF Output  
LO Input  
IF Input  
IF Input Power  
4× LO − 5 × IF Spur  
4× LO − 4 × IF Spur  
3× LO − 2 × IF Spur  
1× LO + 4 × IF Spur  
7× IF Spur  
15  
11  
20  
10  
10  
10  
0
dB  
dB  
dB  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
LO = 0 dBm  
−25  
63  
61  
60  
65  
75  
RF frequency (fRF) = 23 GHz, IF = 0 dBm  
fRF = 23 GHz, IF = 0 dBm  
fRF = 23 GHz, IF = 0 dBm  
fRF = 23 GHz, IF = 0 dBm  
fRF = 23 GHz, IF = 0 dBm  
80  
75  
80  
80  
110  
Rev. A | Page 4 of 26  
 
Data Sheet  
ADMV1011  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 4.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Supply Voltage  
VDLO  
VDRF1 − VGRF1, VDRF2 − VGRF21  
VGRF1, VGRF2  
5.5 V  
8 V  
0 V  
−6 V to +0.5 V  
2 mA  
175°C  
2.64 W  
VCTRL2, VCTRL3  
THERMAL RESISTANCE  
IF1/IF2 Source and Sink Current  
Maximum Junction Temperature (TJ)  
Maximum Power Dissipation  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Lifetime Maximum Junction Temperature (TJ) >1 million hours  
Operating Temperature Range  
Storage Temperature Range  
Input Power  
−40°C to +85°C  
−65°C to +150°C  
θJA is thermal resistance, junction to ambient (°C/W), and θJC is  
thermal resistance, junction to case (°C/W).  
LO  
IF  
15 dBm  
15 dBm  
260°C  
Table 5.  
Package Type  
1
θJA  
θJC  
Unit  
Lead Temperature (Soldering 60 sec)  
Moisture Sensitivity Level (MSL)3  
Electrostatic Discharge (ESD) Sensitivity  
E-32-1  
33.4  
34  
°C/W  
MSL3  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (printed circuit board (PCB) with 3 × 3 vias).  
Field Induced Charge Device Model  
(FICDM)  
Human Body Model (HBM)  
500 V  
250 V  
ESD CAUTION  
1 The maximum VDRF voltage and the minimum VGRF voltage is determined  
by this difference. If a maximum VDRF voltage of +5.5 V is required, then the  
minimum VGRF voltage is −2.5 V.  
2 To calculate power dissipation, which is a theoretical number, use the  
following equation: (TJ − 85°C)/θJC.  
3 Based on IPC/JEDEC J-STD-20 MSL classifications.  
Rev. A | Page 5 of 26  
 
 
 
ADMV1011  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
RFOUT  
GND  
1
2
3
4
5
6
7
8
24 NIC  
23  
NIC  
22 NIC  
ADMV1011  
TOP VIEW  
(Not to Scale)  
NIC  
NIC  
NIC  
GND  
21  
20  
19  
VGRF1  
VCTL2  
VCTL3  
VGRF2  
18 LOIN  
17 NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. IT IS RECOMMENDED TO GROUND THESE PINS ON THE PCB.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO GND. GOOD RF AND THERMAL  
GROUNDING IS RECOMMENDED.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
1, 3, 14, 19  
2
Mnemonic  
Description  
GND  
RFOUT  
NIC  
Ground. These pins are grounded internally and must be grounded on the PCB.  
RF Output. This pin is ac-coupled internally and matched to 50 Ω single ended.  
Not Internally Connected. It is recommended to ground these pins on the PCB.  
4, 10, 11, 15 to 17,  
20 to 25, 27 to 30, 32  
5, 8  
VGRF1, VGRF2  
Power Supply Voltage for the Gate of the RF Amplifier. Refer to the Applications Information  
section for the required external components and biasing.  
6, 7  
9, 31  
VCTL2, VCLT3  
VDRF2, VDRF1  
Gain Control Voltage. Refer to the Applications Information section for biasing.  
Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for  
the required external components and biasing.  
12, 13  
IF2, IF1  
Quadrature IF Inputs. These pins are matched to 50 Ω single ended and are dc-coupled. No  
external dc blocks required. To prevent device malfunction or failure, these pins must not  
source or sink more than 2 mA of current.  
18  
26  
LOIN  
VDLO  
Local Oscillator. This pin is ac-coupled and matched to 50 Ω single ended.  
Power Supply Voltage for the LO Amplifier. Refer to the external Applications Information  
section for the required external components and biasing.  
EPAD  
Exposed Pad. The exposed pad must be connected to GND. Good RF and thermal grounding is  
recommended on the PCB.  
Rev. A | Page 6 of 26  
 
Data Sheet  
ADMV1011  
TYPICAL PERFORMANCE CHARACTERISTICS  
LOWER SIDEBAND  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, TA = 25°C, LO = 0 dBm, IF frequency = 3 GHz,  
IFx pin= −10 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner as lower sideband, unless otherwise noted. VCTL2  
and VCTL3 = −5 V, unless otherwise noted.  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 6. Conversion Gain vs. IF Frequency at Various Temperatures,  
RF Frequency = 18 GHz  
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures  
55  
55  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
1.0  
0
17.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Sideband Rejection vs. IF Frequency, RF Frequency = 18 GHz  
Figure 4. Sideband Rejection vs. RF Frequency at Various Temperatures  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
28  
27  
26  
25  
28  
27  
26  
25  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Output IP3 vs. IF Frequency at Various Temperatures,  
RF Frequency = 18 GHz  
Figure 5. Output IP3 vs. RF Frequency at Various Temperatures,  
POUT = 12 dBm  
Rev. A | Page 7 of 26  
 
 
ADMV1011  
Data Sheet  
30  
28  
26  
24  
22  
20  
18  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
16  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
14  
12  
10  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 9. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 11. Output P1dB vs. IF Frequency at Various Temperatures,  
RF Frequency = 18 GHz  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
2
4
2
0
17.5  
0
–4  
18.0  
18.5  
19.0  
19.5  
20.0  
–3  
–2  
–1  
0
1
2
3
4
RF FREQUENCY (GHz)  
LO POWER (dBm)  
Figure 10. SSB Noise Figure vs. RF Frequency at Various Temperatures  
Figure 12. SSB Noise Figure vs. LO Power, RF Frequency = 18 GHz  
Rev. A | Page 8 of 26  
Data Sheet  
ADMV1011  
UPPER SIDEBAND  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, TA = 25°C, LO = 0 dBm, IF frequency =  
3 GHz, IFx pin = −10 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner as upper sideband, unless otherwise noted.  
VCTL2 and VCTL3 = −5 V, unless otherwise noted.  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 16. Conversion Gain vs. IF Frequency at Various Temperatures,  
RF Frequency = 23 GHz  
45  
40  
35  
30  
25  
20  
15  
45  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
20.0  
0
1.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 14. Sideband Rejection vs. RF Frequency at Various Temperatures  
Figure 17. Sideband Rejection vs. IF Frequency at Various Temperatures,  
RF Frequency = 23 GHz  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
46  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
26  
24  
22  
20  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 15. Output IP3 vs. RF Frequency at Various Temperatures,  
IF Frequencies at POUT = 12 dBm  
Figure 18. Output IP3 vs. IF Frequency at Various Temperatures,  
RF Frequency = 23 GHz  
Rev. A | Page 9 of 26  
 
ADMV1011  
Data Sheet  
30  
28  
26  
24  
22  
20  
18  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
16  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
14  
12  
10  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 19. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 21. Output P1dB vs. IF Frequency at Various Temperatures,  
RF Frequency = 23 GHz  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
8
7
7
6
6
5
4
3
5
4
3
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
2
2
1
1
0
20.0  
0
–4  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
–3  
–2  
–1  
0
1
2
3
4
RF FREQUENCY (GHz)  
LO POWER (dBm)  
Figure 20. SSB Noise Figure vs. RF Frequency at Various Temperatures  
Figure 22. SSB Noise Figure vs. LO Power, RF Frequency = 23 GHz  
Rev. A | Page 10 of 26  
Data Sheet  
ADMV1011  
PERFORMANCE vs. GAIN REGULATION  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, TA = 25°C, LO = 0 dBm, IF frequency = 3 GHz,  
and taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL is varied for gain regulation.  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
–5  
–10  
–15  
–20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–5  
–10  
–15  
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
V
(V)  
V
CTL  
(V)  
CTL  
Figure 23. Conversion Gain vs. Control Voltage (VCTL) at Various  
Temperatures, RF Frequency = 18 GHz, Lower Sideband  
Figure 26. Conversion Gain vs. VCTL at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
25  
20  
15  
10  
25  
20  
15  
10  
0dB  
10.14dB  
5
5
19.26dB  
29.09dB  
0dB  
10.67dB  
20.32dB  
29.67dB  
0
–5  
0
–5  
–10  
–10  
–15  
17.0  
–15  
20.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Conversion Gain vs. RF Frequency at Various Attenuation Levels,  
Lower Sideband  
Figure 27. Conversion Gain vs. RF Frequency at Various Attenuation Levels,  
Upper Sideband  
55  
50  
45  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
10  
5
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
35  
ATTENUATION (dB)  
ATTENUATION (dB)  
Figure 25. Sideband Rejection vs. Attenuation at Various Temperatures,  
RF Frequency = 18 GHz, Lower Sideband  
Figure 28. Sideband Rejection vs. Attenuation at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
Rev. A | Page 11 of 26  
 
ADMV1011  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dB  
10.14dB  
19.26dB  
29.09dB  
0dB  
10  
5
10.67dB  
20.32dB  
29.67dB  
0
17.0  
0
20.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Output IP3 vs. RF Frequency at Various Attenuation Levels,  
Lower Sideband  
Figure 32. Output IP3 vs. RF Frequency at Various Attenuation Levels,  
Upper Sideband  
45  
45  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
ATTENUATION (dB)  
ATTENUATION (dB)  
Figure 30. Output IP3 vs. Attenuation at Various Temperatures,  
RF Frequency = 18 GHz, Lower Sideband  
Figure 33. Output IP3 vs. Attenuation at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
4
2
4
2
0
–5.0  
0
–5.0  
–4.5  
–4.0  
–3.5  
(V)  
–3.0  
–2.5  
–2.0  
–4.5  
–4.0  
–3.5  
V (V)  
CTL  
–3.0  
–2.5  
–2.0  
V
CTL  
Figure 31. SSB Noise Figure vs. VCTL at Various Temperatures,  
RF Frequency = 18 GHz, Lower Sideband  
Figure 34. SSB Noise Figure vs. VCTL at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
Rev. A | Page 12 of 26  
Data Sheet  
ADMV1011  
PERFORMANCE vs. LO POWER  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, TA = 25°C, IF frequency = 3 GHz, and  
taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2 and VCTL3 = −5 V, unless otherwise noted.  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–4  
–3  
–2  
–1  
0
1
2
3
4
–4  
–3  
–2  
–1  
0
1
2
3
4
LO POWER (dBm)  
LO POWER (dBm)  
Figure 35. Conversion Gain vs. LO Power at Various Temperatures,  
RF Frequency = 18 GHz, Lower Sideband  
Figure 38. Conversion Gain vs. LO Power at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
40  
38  
36  
34  
32  
30  
28  
26  
40  
38  
36  
34  
32  
30  
28  
26  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
24  
22  
20  
24  
22  
20  
–4  
–3  
–2  
–1  
0
1
2
3
4
–4  
–3  
–2  
–1  
0
1
2
3
4
LO POWER (dBm)  
LO POWER (dBm)  
Figure 39. Output IP3 vs. LO Power at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
Figure 36. Output IP3 vs. LO Power at Various Temperatures,  
RF Frequency = 18 GHz, Lower Sideband  
30  
28  
26  
24  
22  
20  
18  
16  
30  
28  
26  
24  
22  
20  
18  
16  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
14  
12  
10  
14  
12  
10  
–4  
–3  
–2  
–1  
0
1
2
3
4
–4  
–3  
–2  
–1  
0
1
2
3
4
LO POWER (dBm)  
LO POWER (dBm)  
Figure 37. Output P1dB vs. LO Power at Various Temperatures,  
RF Frequency = 18 GHz, Lower Sideband  
Figure 40. Output P1dB vs. LO Power at Various Temperatures,  
RF Frequency = 23 GHz, Upper Sideband  
Rev. A | Page 13 of 26  
 
ADMV1011  
Data Sheet  
LEAKAGE AND RETURN LOSS PERFORMANCE  
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, TA = 25°C, LO = 0 dBm, and taken with  
Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2 and VCTL3 = −5 V unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
LO FREQUENCY = 12GHz  
LO FREQUENCY = 8GHz  
–4  
–3  
–2  
–1  
0
1
2
3
4
7
8
9
10  
11  
12  
13  
14  
LO POWER (dBm)  
LO FREQUENCY (GHz)  
Figure 44. LO to RF Feedthrough vs. LO Power at  
Various Temperatures and LO Frequencies  
Figure 41. LO to RF Feedthrough vs. LO Frequency at  
Various Temperatures  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
SIDEBAND = LOWER  
SIBEBAND = UPPER  
SIDEBAND = LOWER  
SIDEBAND = UPPER  
–4  
–3  
–2  
–1  
0
1
7
8
9
10  
11  
12  
13  
14  
LO POWER (dBm)  
LO FREQUENCY (GHz)  
Figure 45. LO to IF Feedthrough vs. LO Power at  
Various Temperatures and Sidebands, LO Frequency = 10 GHz  
Figure 42. LO to IF Feedthrough vs. LO Frequency at  
Various Temperatures and Sidebands  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
SIDEBAND = LOWER  
SIBEBAND = UPPER  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
SIDEBAND = LOWER  
SIBEBAND = UPPER  
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
(V)  
IF FREQUENCY (GHz)  
CTL  
Figure 43. LO to RF Feedthrough vs. IF Frequency at  
Various Temperatures and Sidebands, IFx Pin = 0 dBm  
Figure 46. LO to RF Feedthrough vs. VCTL at  
Various Temperatures and Sidebands, IFx Pin = 0 dBm  
Rev. A | Page 14 of 26  
 
Data Sheet  
ADMV1011  
15  
10  
20  
22GHz  
10  
0
5
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
14GHz  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
6
7
8
9
10  
11  
12  
13  
26  
24  
–4  
–3  
–2  
–1  
0
1
2
3
4
LO POWER (dBm)  
LO FREQUENCY (GHz)  
Figure 47. 2× LO to RF Leakage vs. LO Frequency at  
Various Temperatures, Without Nulling  
Figure 50. 2× LO to RF Leakage vs. LO Power at  
Various Temperatures and LO Frequencies, Without Nulling  
20  
10  
0
PORT = LOWER  
PORT = UPPER  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
V
V
V
V
V
= 0V  
CTL  
CTL  
CTL  
CTL  
CTL  
CTL  
= –1.5V  
= –2.0V  
= –2.5V  
= –3.0V  
= –5.0V  
12  
14  
16  
18  
20  
22  
24  
12  
14  
16  
18  
20  
22  
24  
26  
2× LO FREQUENCY (GHz)  
2× LO FREQUENCY (GHz)  
Figure 48. 2× LO to RF Leakage vs. 2× LO Frequency at  
Various Attenuation Levels (VCTL  
Figure 51. 2× LO to IF Leakage vs. 2× LO Frequency for Upper Sideband and  
Lower Sideband  
)
0
–5  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
2× LO FREQUENCY = 18.07GHz  
2× LO FREQUENCY = 22.97GHz  
A
A
A
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
17  
18  
19  
20  
21  
22  
23  
0
5
10  
15  
20  
25  
30  
RF FREQUENCY (GHz)  
ATTENUATION  
Figure 49. RF Output Return Loss vs. RF Frequency at  
Various Temperatures, LO Frequency = 10 GHz, 0 dBm  
Figure 52. 2× LO to RF Leakage vs. Attenuation for Various Frequencies  
Rev. A | Page 15 of 26  
ADMV1011  
Data Sheet  
0
0
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
–25  
–30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = +4dBm  
LO = 0dBm  
LO = –4dBm  
A
A
A
–25  
–30  
7
8
9
10  
11  
12  
13  
7
8
9
10  
11  
12  
13  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 53. LO Input Return Loss vs. LO Frequency at  
Various Temperatures, LO = 0 dBm  
Figure 55. LO Input Return Loss vs. LO Frequency at Various LO Powers  
5
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
SIDEBAND = LOWER  
SIBEBAND = UPPER  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
10  
1010  
2010  
3010  
4010  
IF FREQUENCY (GHz)  
Figure 54. IF Input Return Loss vs. IF Frequency at  
Various Temperatures and Sidebands  
Rev. A | Page 16 of 26  
Data Sheet  
ADMV1011  
Upper Sideband  
M × N SPURIOUS PERFORMANCE  
Mixer spurious products are measured in dBc from the RF  
output power level. Spurious values are measured using the  
following equation: N × LO + M × IF. N/A means not applicable.  
The frequencies are referred from the frequencies applied to the  
pin of the ADMV1011.  
Mixer spurious products are measured in dBc from the RF output  
power level. N/A means not applicable.  
Lower Sideband  
Mixer spurious products are measured in dBc from the RF  
output power level. Spurious values are measured using the  
following equation: N × LO − M × IF. N/A means not applicable.  
The frequencies are referred from the frequencies applied to the  
pin of the ADMV1011.  
IF = 2 GHz at 0 dBm, LO = 10.5 GHz at 0 dBm.  
N × LO  
1
2
3
4
5
50.5  
58.2  
69.5  
81.7  
91.1  
93.9  
22.3  
0
68.5  
81.9  
90.1  
95.3  
102.8  
101.4  
53.7  
65.6  
47.6  
78.5  
83  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
2
3
4
5
IF = 2 GHz at 0 dBm, LO = 10 GHz at 0 dBm.  
N × LO  
41.1  
41.2  
59.9  
70.4  
1
2
3
4
5
M × IF  
52.2  
68.2  
73.6  
59  
30.9  
0
56.1  
61.1  
55.9  
50.2  
21.4  
30.9  
63.4  
66.2  
43.5  
71.8  
65.5  
56.3  
77.1  
99.1  
99  
0
1
2
3
4
5
N/A  
47.1  
43.2  
58.7  
52.3  
M × IF  
101.4  
99  
IF = 3 GHz at 0 dBm, LO = 10 GHz at 0 dBm.  
77.1  
N/A  
N × LO  
63.2  
1
2
3
4
5
50.9  
58  
30.2  
0
54.7  
82.2  
90.9  
98.2  
101.3  
N/A  
72.1  
67.1  
48.5  
92.3  
N/A  
N/A  
78.4  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
2
3
4
5
IF = 3 GHz at 0 dBm, LO = 10.5 GHz at 0 dBm.  
N × LO  
74.9  
87.1  
79.4  
N/A  
58.3  
66.6  
100  
N/A  
1
2
3
4
5
M × IF  
50.5  
73  
21.8  
0
69.6  
64.1  
59.8  
71.2  
81.1  
76  
62.1  
58.9  
43.9  
65.2  
64.8  
65  
N/A  
96.6  
97.8  
97.5  
100.4  
102.8  
0
1
2
3
4
5
95.7  
124.6  
120.8  
95.4  
41.7  
42.7  
74.5  
48.1  
M × IF  
IF = 4 GHz at 0 dBm, LO = 9.5 GHz at 0 dBm.  
N × LO  
1
2
3
4
5
53.3  
58.1  
64.8  
80.6  
96  
47.1  
0
42.1  
79.6  
97.9  
94.8  
98.3  
94.8  
55.9  
79.7  
49.8  
95.8  
N/A  
N/A  
94  
0
1
2
3
4
5
IF = 4 GHz at 0 dBm, LO = 11 GHz at 0 dBm.  
N/A  
N/A  
N/A  
N/A  
N/A  
N × LO  
63.7  
62.4  
103.5  
100.6  
1
2
3
4
5
M × IF  
60.2  
91.9  
98.9  
118.8  
114  
117.9  
9.8  
0
68.1  
74.9  
70  
76.1  
50.7  
44.7  
56.6  
63.4  
66.5  
N/A  
96.9  
98.8  
99.7  
100.5  
101.4  
0
1
2
3
4
5
104.3  
33.9  
50.5  
72.8  
96.3  
M × IF  
70.8  
81.9  
99.5  
Rev. A | Page 17 of 26  
 
ADMV1011  
Data Sheet  
THEORY OF OPERATION  
The ADMV1011 is a GaAs, MMIC, double sideband upconverter  
in a RoHS compliant package optimized for upper sideband  
and lower sideband point to point microwave radio applications  
operating in the 17 GHz to 24 GHz output frequency range. The  
ADMV1011 supports LO input frequencies of 8 GHz to 12 GHz  
and IF input frequencies of 2 GHz to 4 GHz.  
RF AMPLIFIER  
The RF amplifier is a variable gain amplifier where the gain can  
be adjusted by changing the control voltages (VCTL2 and  
VCTL3). The RF amplifier requires two dc bias voltages  
(VDRF1 and VDRF2) and two dc gate bias voltages (VGRF1  
and VGRF2) to operate. Starting at −1.8 V at the gate supply  
(VGRF1 and VGRF2), the RF amplifier is biased at 5 V (VDRF1  
and VDRF2). Then, the gate bias (VGRF1 and VGRF2) is varied  
until the desired RF amplifier bias current (IDRF1 and IDRF2)  
is achieved. The desired RF amplifier bias current is 220 mA for  
IDRF1 and 75 mA for IDRF2 under small signal conditions.  
The ADMV1011 uses a variable gain RF amplifier and an I/Q  
preceded by a double balanced mixer, where a driver amplifier  
drives the LO (see Figure 1). The combination of design, process,  
and packaging technology allows the functions of these  
subsystems to be integrated into a single die, using mature  
packaging and interconnection technologies to provide a high  
performance, low cost design with excellent electrical,  
The ADMV1011 has an internal band-pass filter between the  
mixer and the RF driver amplifier that reduces LO leakage and  
filters out the lower sideband at the RF output. The balanced  
input drive allows exceptional linearity performance compared  
to similar single-ended solutions.  
mechanical, and thermal properties. In addition, the need for  
external components is minimized, optimizing cost and size.  
LO DRIVER AMPLIFIER  
The LO driver amplifier takes a single LO input and doubles the  
frequency, amplifying it to the desired LO signal level for the  
mixer to operate optimally. The LO driver amplifier requires a  
single dc bias voltage (VDLO), which draws about 160 mA at  
3.5 V under the LO drive. The LO drive range of −4 dBm to  
+4 dBm makes it compatible with Analog Devices, Inc.,  
wideband synthesizer portfolio without the requirement for  
an external LO driver amplifier.  
The typical application circuit (see Figure 56) shows the  
necessary external components on the bias lines to eliminate  
any undesired stability problems for the RF amplifier and the  
LO amplifier.  
The ADMV1011 upconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip  
carrier (LCC) package. The ADMV1011 operates over the  
−40°C to +85°C temperature range.  
MIXER  
The mixer is an I/Q double balanced mixer and reduces the  
need for filtering unwanted sideband. An external 90° hybrid is  
required to select the desired sideband of operation.  
The ADMV1011 has been optimized to work with the  
Mini-Circuits QCN-45+ RF 90° hybrid.  
Rev. A | Page 18 of 26  
 
 
 
 
Data Sheet  
ADMV1011  
APPLICATIONS INFORMATION  
The evaluation board and the typical application circuit are  
optimized for low-side LO (upper sideband) performance with  
the Mini-Circuit QCN-45+ RF 90° hybrid.  
TYPICAL APPLICATION CIRCUIT  
The typical application circuit is shown in Figure 56. The  
application circuit shown has been replicated for the evaluation  
board circuit.  
The ADMV1011 can support IF frequencies from 4 GHz to dc  
because the I/Q mixers of the devices are double balanced.  
VDRF1  
VDRF1  
5019  
1
VDLO  
VDLO  
RF_OUT  
1
C13  
RF_OUT  
1
5019  
2
3 4  
1µF  
C11  
25-146-1000-92  
C23  
AGND  
1µF  
C22  
0.01µF  
C12  
VGRF1  
VGRF1  
5019  
C7  
C1  
C17  
100pF  
100pF  
AGND  
1µF  
0.01µF  
100pF  
AGND  
AGND  
AGND  
VCTRL2  
DUT  
24  
VCTRL2  
VCTRL3  
VGRF2  
5019  
C8  
C10  
1
100pF  
0.33µF  
GND  
NIC  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
RFOUT  
GND  
NIC  
NIC  
AGND  
NIC  
NIC  
ADMV1011AEZ  
VGRF1  
VCTL2  
VCTL3  
VGRF2  
NIC  
VCTRL3  
5019  
GND  
LOIN  
NIC  
C9  
C15  
100pF  
LO_IN  
1
0.33µF  
LO_IN  
2
3
4
25-146-1000-92  
AGND  
AGND  
VGRF2  
5019  
AGND  
AGND  
C6  
C3  
C16  
1µF 0.01µF  
100pF  
AGND  
VDRF2  
VDRF2  
5019  
C18  
C2  
C19  
1µF 0.01µF  
100pF  
AGND  
L1  
L2  
VDI  
VDQ  
VDQ  
VDI  
5019  
15nH  
15nH  
5019  
C14  
1µF  
C26  
C27  
C5  
220pF  
220pF  
1µF  
T1  
AGND  
AGND  
1
4
6
SUM_PORT  
PORT_1  
PORT_2  
IF_INPUT_LSB  
R4  
3
1
IF_INPUT_LSB  
50Ω_TERM  
IF_INPUT_USB  
1
0Ω  
GND GND  
R1  
2
3
4
IF_INPUT_USB  
2
5
QCN-45+  
25-146-1000-92  
0Ω  
2
3 4  
25-146-1000-92  
AGND  
AGND  
AGND  
Figure 56. Typical Application Circuit  
Rev. A | Page 19 of 26  
 
 
 
ADMV1011  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
10  
5
FINER RESOLUTION GAIN REGULATION  
OUTPUT IP3 (dBm)  
CONVERSION GAIN (dB)  
The data shown in the Performance vs. Gain Regulation section  
is shown based on VCTRL2 and VCTRL3 being equal. Finer  
resolution of the gain regulation can be obtained if VCTRL2 and  
VCTRL3 are used separately. Note that the overall dynamic  
range stays the same. Figure 57 through Figure 60 show the  
output IP3 and conversion gain when VCTRL2 and VCTRL3 are  
used separately.  
0
Figure 57 and Figure 58 show the upper sideband performance  
for RFOUT at 23 GHz. Figure 59 and Figure 60 show the lower  
sideband performance for RFOUT at 18 GHz. In Figure 57 and  
Figure 59, VCTRL3 is held constant at −5 V, and VCTRL2 is  
swept from −5 V to −0.75 V. When VCTRL2 = −0.75 V, VCTRL3  
is swept from −5 V to −0.75 V. In Figure 58 and Figure 60,  
VCTRL2 is held constant at −5 V, and VCTRL3 is swept from  
−5 V to −0.75 V. When VCTRL3 = −0.75 V, VCTRL 2 is swept  
from −5 V to −0.75 V.  
–5  
–10  
–15  
–20  
VCTRL3 = –5V  
VCTRL2 = –5V TO –0.75V  
VCTRL2 = –0.75V  
VCTRL3 = –5V TO –0.75V  
V
(V)  
CTRL  
Figure 59. Output IP3 and Conversion Gain vs. VCTRL when VCTRL2 and  
VCTRL3 Used Separately for Lower Sideband at RFOUT = 18 GHz,  
TA = 25°C, LO = 0 dBm, IF = 3 GHz  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
OUTPUT IP3 (dBm)  
CONVERSION GAIN (dB)  
OUTPUT IP3 (dBm)  
CONVERSION GAIN (dB)  
40  
35  
30  
25  
20  
15  
10  
5
0
0
–5  
–10  
–15  
–20  
–5  
–10  
VCTRL2 = –5V  
VCTRL3 = –5V TO –0.75V  
VCTRL3 = –0.75V  
VCTRL2 = –5V TO –0.75V  
VCTRL3 = –5V  
VCTRL2 = –5V TO –0.75V  
VCTRL2 = –0.75V  
VCTRL3 = –5V TO –0.75V  
–15  
–20  
V
(V)  
CTRL  
V
(V)  
CTRL  
Figure 60. Output IP3 and Conversion Gain vs. VCTRL when VCTRL2 and  
VCTRL3 Used Separately for Lower Sideband at RFOUT = 18 GHz,  
TA = 25°C, LO = 0 dBm, IF = 3 GHz  
Figure 57. Output IP3 and Conversion Gain vs. VCTRL when VCTRL2 and  
VCTRL3 Used Separately for the Upper Sideband at RFOUT = 23 GHz,  
TA = 25°C, LO = 0 dBm, IF = 3 GHz  
45  
OUTPUT IP3 (dBm)  
CONVERSION GAIN (dB)  
40  
35  
30  
25  
20  
15  
10  
5
0
–5  
–10  
VCTRL2 = –5V  
VCTRL3 = –5V TO –0.75V  
VCTRL3 = –0.75V  
VCTRL2 = –5V TO –0.75V  
–15  
–20  
V
(V)  
CTRL  
Figure 58. Output IP3 and Conversion Gain vs. VCTRL when VCTRL2 and  
VCTRL3 Used Separately for Upper Sideband at RFOUT = 23 GHz,  
TA = 25°C, LO = 0 dBm, IF = 3 GHz  
Rev. A | Page 20 of 26  
 
 
 
 
 
Data Sheet  
ADMV1011  
Figure 61 shows the conversion gain vs. VCTRL2 for different  
VCTRL3 voltages at RFOUT = 23 GHz. Figure 61 shows 30 dB  
attenuation can be obtained at VCTRL2 = −1 V and VCTRL3 =  
−2 V. The overall attenuation range is 35 dB.  
25  
Figure 62 shows the conversion gain vs. VCTRL3 for different  
VCTRL2 voltages at RFOUT = 23 GHz. Figure 62 shows 30 dB  
attenuation can be obtained at VCTRL2 = −1 V and VCTRL3 =  
−1 V. The overall attenuation range is 37 dB.  
25  
VCTRL2 = –5.00V  
VCTRL2 = –3.00V  
VCTRL2 = –2.00V  
VCTRL2 = –1.75V  
20  
15  
10  
5
20  
15  
10  
5
VCTRL3 = –5.00V  
VCTRL3 = –3.00V  
VCTRL3 = –2.00V  
VCTRL3 = –1.75V  
VCTRL3 = –1.50V  
VCTRL3 = –1.25V  
VCTRL3 = –1.00V  
VCTRL3 = –0.50V  
0
–5  
0
–5  
VCTRL2 = –1.50V  
–10  
–15  
–20  
–10  
–15  
–20  
VCTRL2 = –1.25V  
VCTRL2 = –1.00V  
VCTRL2 = –0.50V  
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VCTRL2 (V)  
VCTRL3 (V)  
Figure 61. Conversion Gain vs. VCTRL2 at Different VCRTL3 Voltages  
Figure 62. Conversion Gain vs. VCTRL3 at Different VCRTL2 Voltages  
Rev. A | Page 21 of 26  
 
 
ADMV1011  
Data Sheet  
7. Connect LOIN to the LO signal generator with a LO power  
between −4 dBm to +4 dBm.  
8. For the upper sideband, add a 0 Ω resistor (R1) and  
remove the R4 resistor from the board. For the lower  
sideband, add a 0 Ω resistor (R4) and remove the R1  
resistor from the board.  
EVALUATION BOARD INFORMATION  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance, and  
the package ground leads and exposed pad must be connected  
directly to the ground plane (see Figure 63 and Figure 64). Use a  
sufficient number of via holes to connect the top and bottom  
ground planes. The evaluation circuit board shown in Figure 65  
is available from Analog Devices, upon request.  
9. Apply the IF signal to the appropriate port.  
Power-Off Sequence  
Layout  
Take the following steps to turn off the EVAL-ADMV1011:  
Solder the exposed pad on the underside of the ADMV1011 to  
a low thermal and electrical impedance ground plane. This pad  
is typically soldered to an exposed opening in the solder mask  
on the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 63 shows the PCB  
land pattern footprint for the EVAL-ADMV1011, and Figure 64  
shows the solder paste stencil for the EVAL-ADMV1011.  
1. Turn off the LO and IF signals.  
2. Set VGRF1 and VGRF2 to −1.8 V.  
3. Set VCTL2 and VCTL3 to 0 V.  
4. Set the VDRF1 and VDRF2 supplies to 0 V and then turn  
off the VDRF1 and VDRF2 supplies.  
5. Set the VDLO supply to 0 V and then turn off the VDLO  
supply.  
6. Turn off the VGRF1, VGRF2, VCTL2, and VCTL3 supplies.  
Power-On Sequence  
2× LO Suppression  
Take the following steps to turn on the EVAL-ADMV1011:  
The EVAL-ADMV1011 can suppress the 2× LO signal through  
the VDI and VDQ test points. The common mode of the two IF  
signals is 0 V. Injecting a nonzero voltage at VDI and VDQ can  
change the 2× LO level. The 2× LO signal is referenced from the  
LOIN pin of the ADMV1011. The VDI and VDQ voltage needs  
to be changed iteratively to get the desired level of 2 × LO  
suppression. To prevent device malfunction or failure, the  
current to the VDI and VDQ test points (IDI and IDQ) must  
not source or sink more than 2 mA of current.  
1. Power up VGRF1 andVGRF2 with a −1.8 V supply.  
2. Power up VCTL2 and VCTL3 with a −5 V supply for  
maximum conversion gain.  
3. Power up VDRF1 and VDRF2 with a 5 V supply.  
4. Power up VDLO with a 3.5 V supply.  
5. Adjust the VGRF1 supply between −1.8 V to −0.8 V until  
IDRF1 = 220 mA.  
6. Adjust the VGRF2 supply between −1.8 V to −0.8 V until  
IDRF2 = 75 mA.  
Rev. A | Page 22 of 26  
 
Data Sheet  
ADMV1011  
0.217" SQUARE  
0.004" MASK/METAL OVERLAP  
0.010" MINIMUM MASK WIDTH  
SOLDER MASK  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.197"  
[0.50]  
0.156"  
MASK  
OPENING  
ø.034"  
TYPICAL  
VIA SPACING  
ø.010"  
TYPICAL VIA  
0.010" REF  
0.138" SQUARE MASK OPENING  
0.02 × 45° CHAMFER FOR PIN 1  
0.030"  
MASK OPENING  
0.146" SQUARE  
GROUND PAD  
Figure 63. PCB Land Pattern Footprint of the EVAL-ADMV1011  
0.017  
0.0197  
TYP  
0.219  
SQUARE  
0.132  
SQUARE  
0.017  
0.027  
TYP  
R0.0040 TYP  
132 PLCS  
0.010  
TYP  
Figure 64. Solder Paste Stencil of the EVAL-ADMV1011  
Rev. A | Page 23 of 26  
 
 
ADMV1011  
Data Sheet  
NOTES  
1. NOT ALL COMPONENTS OR BIAS LINES ARE USED ON THE EVALUATION BOARD.  
Figure 65. EVAL-ADMV1011 Evaluation Board Top Layer  
Rev. A | Page 24 of 26  
 
Data Sheet  
ADMV1011  
BILL OF MATERIALS  
Table 7.  
Qty. Reference Designator  
Description  
Manufacturing/Part No.  
1
4
7
Evaluation board  
C1 to C3, C11  
C10, C12, C15 to C17, C19, C22  
PCB  
Analog Devices/08_042363a  
Murata/GRM155R71E103KA01D  
TDK/C1005NP01H101J050BA  
0.01 µF ceramic capacitors, X7R, 0402  
100 pF multilayer ceramic capacitors, NP0,  
high temperature, C0402  
7
C5 to C7, C13, C14, C18, C23  
1 µF monolithic ceramic capacitors, X5R,  
C0603  
Murata/GRM188R61E105KA12D  
2
C8, C9  
0.33 µF ceramic capacitors, X5R, C0603  
AVX/0603YD334KAT2A  
2
10  
C26, C27  
220 pF ceramic capacitors, C0G, 0402, C0402  
Connector PCB test points, compact mini,  
5019, CNKEY5019  
Murata/GRM1555C1H221JA01D  
Keystone Electronic Corp/5019  
AGND, VDI, VDQ, VDLO, VDRF1,  
VDRF2, VGRF1, VGRF2, VCTL2 to  
VCTL3  
4
LO_IN, RF_OUT,  
IF_INPUT_LSB, IF_INPUT_USB  
Connector PCB SMA, K_SRI-NS,  
CNSMAL460W295H156  
SRI Connector Gage/25-146-1000-92  
2
2
L1, L2  
R1, R4  
15 nH inductor chips, 0402, L0402-2  
0 Ω resistors, chip surface-mounted diode  
jumper, 0402  
Coilcraft/0402HP-15NXJLU  
Panasonic/ERJ-2GE0R00X  
1
1
1
R2  
R3  
T1  
50 Ω resistor, high frequency chip, R0402  
50 Ω resistor, high frequency chip, 0402, R0402  
Transformer power splitter/combiner,  
2500 to 4500 MHz, TSML126W63H42  
Vishay Precision Group/FC0402E50R0BST1  
Vishay Precision Group/FC0402E50R0FST1  
Mini-Circuits/QCN-45+  
Heatsink  
Heatsink  
114622-A/111332  
Rev. A | Page 25 of 26  
 
ADMV1011  
Data Sheet  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
REF  
INDICATOR  
PIN 1  
32  
25  
24  
1
0.50  
BSC  
3.60  
3.50 SQ  
3.40  
EXPOSED  
PAD  
17  
8
16  
9
0.38  
0.32  
0.26  
0.20 MIN  
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
1.10  
1.00  
0.90  
4.10 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 66. 32-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Body Material Lead Finish  
Package Description Package Option  
ADMV1011AEZ  
ADMV1011AEZ-R7 −40°C to +85°C  
ADM1011-EVALZ  
−40°C to +85°C  
Alumina Ceramic  
Alumina Ceramic  
Gold Over Nickel  
Gold Over Nickel  
32-Terminal LCC  
32-Terminal LCC  
Evaluation Board  
E-32-1  
E-32-1  
1 Z = RoHS Compliant Part.  
©2017-2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15776-0-2/18(A)  
Rev. A | Page 26 of 26  
 
 

相关型号:

ADMV1012

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1012-EVALZ

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1012AEZ

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1012AEZ-R7

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter
ADI

ADMV1013

Wideband, Microwave Upconverter
ADI

ADMV1013-EVALZ

Wideband, Microwave Upconverter
ADI

ADMV1013ACCZ

Wideband, Microwave Upconverter
ADI

ADMV1013ACCZ-R7

Wideband, Microwave Upconverter
ADI

ADMV1014

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014-EVALZ

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014ACCZ

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014ACCZ-R7

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI