ADP2386ACPZN-R7 [ADI]

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator; 20 V , 6 A,同步降压型的DC- DC稳压器
ADP2386ACPZN-R7
型号: ADP2386ACPZN-R7
厂家: ADI    ADI
描述:

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
20 V , 6 A,同步降压型的DC- DC稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 输出元件
文件: 总24页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 V, 6 A, Synchronous Step-Down  
DC-to-DC Regulator  
Data Sheet  
ADP2386  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
Input voltage: 4.5 V to 20 V  
Integrated MOSFET: 44 mΩ/11 mΩ  
Reference voltage: 0.6 V 1%  
ADP2386  
BST  
V
PVIN  
EN  
IN  
C
BST  
L
C
IN  
SW  
V
OUT  
Continuous output current: 6 A  
C
OUT  
PGOOD  
SYNC  
RT  
R
TOP  
Programmable switching frequency: 200 kHz to 1.4 MHz  
Synchronizes to external clock: 200 kHz to 1.4 MHz  
180° out of phase clock synchronization  
Precision enable and power good  
FB  
COMP  
SS  
R
T
R
C
R
VREG  
BOT  
C
C
VREG  
GND PGND  
C
C
External compensation  
SS  
Internal soft start with external adjustable option  
Startup into a precharged output  
Supported by ADIsimPower design tool  
Figure 1.  
APPLICATIONS  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Communications infrastructure  
Networking and servers  
Industrial and instrumentation  
Healthcare and medical  
Intermediate power rail conversion  
DC-to-dc point-of-load applications  
V
V
V
= 5.0V  
= 3.3V  
= 1.2V  
OUT  
OUT  
OUT  
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current, VIN = 12 V, fSW = 300 kHz  
GENERAL DESCRIPTION  
The ADP2386 is a synchronous step-down, dc-to-dc regulator with  
an integrated 44 mΩ, high-side power MOSFET and an 11 mΩ,  
synchronous rectifier MOSFET to provide a high efficiency  
solution in a compact 4 mm × 4 mm LFCSP package. This device  
uses a peak current mode, constant frequency pulse-width  
modulation (PWM) control scheme for excellent stability and  
transient response. The switching frequency of the ADP2386  
can be programmed from 200 kHz to 1.4 MHz. To minimize  
system noise, the synchronization function allows the switching  
frequency to be synchronized to an external clock.  
and delivers up to 6 A of continuous current. Each IC draws less  
than 110 μA current from the input source when it is disabled.  
This regulator targets high performance applications that require  
high efficiency and design flexibility. External compensation and an  
adjustable soft start function provide design flexibility. The power-  
good output and precision enable input provide simple and reliable  
power sequencing.  
Other key features include undervoltage lockout (UVLO),  
overvoltage protection (OVP), overcurrent protection (OCP),  
short-circuit protection (SCP), and thermal shutdown (TSD).  
The ADP2386 requires minimal external components and  
operates from an input voltage of 4.5 V to 20 V. The output  
voltage can be adjusted from 0.6 V to 90% of the input voltage  
The ADP2386 operates over the −40°C to +125°C junction  
temperature range and is available in a 24-lead, 4 mm × 4 mm  
LFCSP package.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP2386  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Shutdown .................................................................... 14  
Applications Information .............................................................. 15  
Input Capacitor Selection.......................................................... 15  
Output Voltage Setting .............................................................. 15  
Voltage Conversion Limitations............................................... 15  
Inductor Selection ...................................................................... 15  
Output Capacitor Selection....................................................... 16  
Programming the Input Voltage UVLO.................................. 17  
Compensation Design ............................................................... 17  
ADIsimPower Design Tool ....................................................... 17  
Design Example.............................................................................. 18  
Output Voltage Setting .............................................................. 18  
Frequency Setting....................................................................... 18  
Inductor Selection ...................................................................... 18  
Output Capacitor Selection....................................................... 19  
Compensation Components..................................................... 19  
Soft Start Time Program ........................................................... 19  
Input Capacitor Selection.......................................................... 19  
Recommended External Components .................................... 20  
Circuit Board Layout Recommendations ................................... 21  
Typical Applications Circuits........................................................ 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Functional Block Diagram ............................................................ 11  
Theory of Operation ...................................................................... 12  
Control Scheme .......................................................................... 12  
Precision Enable/Shutdown ...................................................... 12  
Internal Regulator (VREG)....................................................... 12  
Bootstrap Circuitry .................................................................... 12  
Oscillator ..................................................................................... 12  
Synchronization.......................................................................... 12  
Soft Start ...................................................................................... 13  
Power Good................................................................................. 13  
Peak Current-Limit and Short-Circuit Protection................. 13  
Overvoltage Protection (OVP)................................................. 14  
Undervoltage Lockout (UVLO) ............................................... 14  
REVISION HISTORY  
4/13—Rev. 0 to Rev. A  
Changes to Figure 4 and Figure 7....................................................7  
Updated Outline Dimensions........................................................23  
Changes to Ordering Guide ...........................................................23  
11/12—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
Data Sheet  
ADP2386  
SPECIFICATIONS  
VPVIN = 12 V, T J = 40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PVIN  
PVIN Voltage Range  
Quiescent Current  
Shutdown Current  
PVIN Undervoltage Lockout Threshold  
VPVIN  
IQ  
ISHDN  
UVLO  
4.5  
2.4  
50  
20  
V
No switching  
EN = GND  
PVIN rising  
PVIN falling  
2.9  
80  
4.3  
3.8  
3.6  
110  
4.4  
mA  
µA  
V
3.6  
V
FB  
FB Regulation Voltage  
VFB  
IFB  
−40°C < TJ < 85°C  
−40°C < TJ < 125°C  
0.594  
0.591  
0.6  
0.6  
0.01  
0.606  
0.609  
0.1  
V
V
µA  
FB Bias Current  
ERROR AMPLIFIER (EA)  
Transconductance  
EA Source Current  
gm  
ISOURCE  
ISINK  
380  
45  
45  
480  
60  
60  
580  
75  
75  
µS  
µA  
µA  
EA Sink Current  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
Dropout Voltage  
VVREG  
VPVIN = 12 V, IVREG = 50 mA  
VPVIN = 12 V, IVREG = 50 mA  
7.6  
62  
8
340  
100  
8.4  
V
mV  
mA  
Regulator Current Limit  
137  
SW  
High-Side On Resistance1  
Low-Side On Resistance1  
High-Side Peak Current Limit  
Low-Side Negative Current-Limit2  
SW Minimum On Time  
SW Minimum Off Time  
BST  
VBST − VSW = 5 V  
VVREG = 8 V  
44  
11  
9.6  
2.5  
125  
200  
70  
18  
11.5  
mΩ  
mΩ  
A
A
ns  
ns  
7.2  
tMIN_ON  
tMIN_OFF  
165  
260  
Bootstrap Voltage  
VBOOT  
4.6  
5
5.4  
V
OSCILLATOR (RT PIN)  
Switching Frequency  
Switching Frequency Range  
SYNC  
fSW  
fSW  
RT = 100 kΩ  
540  
200  
600  
660  
1400  
kHz  
kHz  
Synchronization Range  
SYNC Minimum Pulse Width  
SYNC Positive Pulse Maximum Duty Cycle  
SYNC Input High Voltage  
SYNC Input Low Voltage  
SS  
200  
100  
1400  
50  
kHz  
ns  
%
V
V
DMAX_SYNC  
1.3  
0.4  
Internal Soft Start  
SS Pin Pull-Up Current  
1600  
3.2  
Clock cycles  
µA  
ISS_UP  
2.3  
3.9  
Rev. A | Page 3 of 24  
 
 
ADP2386  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PGOOD  
Power-Good Range  
FB Rising Threshold  
FB Rising Hysteresis  
FB Falling Threshold  
FB Falling Hysteresis  
Power-Good Deglitch Time  
PGOOD from low to high  
PGOOD from high to low  
PGOOD from low to high  
PGOOD from high to low  
PGOOD from low to high  
PGOOD from high to low  
VPGOOD = 5 V  
95  
5
%
%
%
%
105  
11.7  
1024  
16  
0.01  
125  
Clock cycles  
Clock cycles  
µA  
Power-Good Leakage Current  
Power-Good Output Low Voltage  
EN  
0.1  
190  
IPGOOD = 1 mA  
mV  
EN Rising Threshold  
EN Falling Threshold  
EN Source Current  
1.17  
1.07  
5
1.25  
V
V
µA  
µA  
0.97  
EN voltage below falling threshold  
EN voltage above rising threshold  
1
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
25  
°C  
°C  
1 Pin-to-pin measurement.  
2 Guaranteed by design.  
Rev. A | Page 4 of 24  
Data Sheet  
ADP2386  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a 4-layer, JEDEC standard circuit board for surface-  
mount packages.  
Parameter  
Rating  
PVIN, EN, PGOOD  
SW  
−0.3 V to +22 V  
−1 V to +22 V  
BST  
VSW + 6 V  
Table 3. Thermal Resistance  
Package Type  
FB, SS, CO M P, SYNC, RT  
VREG  
PGND to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +6 V  
−0.3 V to +12 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
θJA  
Unit  
24-Lead LFCSP_WQ  
42.6  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 5 of 24  
 
 
 
ADP2386  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
18  
17  
16  
15  
14  
13  
COMP  
FB  
PVIN  
PVIN  
PVIN  
BST  
SW  
25  
GND  
VREG  
GND 4  
26  
SW  
5
6
SW  
SW  
PG  
ND  
ADP2386  
TOP VIEW  
NOTES  
1. THE EXPOSED GND PAD MUST BE SOLDERED  
TO A LARGE, EXTERNAL, COPPER GND PLANE  
TO REDUCE THERMAL RESISTANCE.  
2. THE EXPOSED SW PAD MUST BE CONNECTED  
TO THE SW PINS OF THE ADP2386 BY USING  
SHORT, WIDE TRACES, OR ELSE SOLDERED  
TO A LARGE, EXTERNAL, COPPER SW PLANE  
TO REDUCE THERMAL RESISTANCE.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
COMP  
FB  
VREG  
Error Amplifier Output. Connect an RC network from COMP to GND.  
Feedback Voltage Sense Input. Connect to a resistor divider from the output voltage, VOUT  
Output of the Internal 8 V Regulator. The control circuits are powered from this voltage. Place a 1 µF,  
X7R or X5R ceramic capacitor between this pin and GND.  
.
4
GND  
SW  
PGND  
BST  
PVIN  
EN  
Analog Ground. Return of internal control circuit.  
Switch Node Output. Connect to the output inductor.  
Power Ground. Return of low-side power MOSFET.  
Supply Rail for the High-Side Gate Drive. Place a 0.1 µF, X7R or X5R capacitor between SW and BST.  
Power Input. Connect to the input power source and connect a bypass capacitor between this pin and PGND.  
5, 6, 7, 14  
8, 9, 10, 11, 12, 13  
15  
16, 17, 18, 19  
20  
Precision Enable Pin. An external resistor divider can be used to set the turn-on threshold. To enable the  
part automatically, connect the EN pin to the PVIN pin.  
21  
22  
PGOOD  
RT  
Power-Good Output (Open Drain). A pull-up resistor of 10 kΩ to 100 kΩ is recommended.  
Frequency Setting. Connect a resistor between RT and GND to program the switching frequency from  
200 kHz to 1.4 MHz.  
23  
SYNC  
Synchronization Input. Connect this pin to an external clock to synchronize the switching frequency  
within a range from 200 kHz to 1.4 MHz. See the Oscillator section and Synchronization section for  
more information.  
24  
25  
26  
SS  
Soft Start Control. Connect a capacitor from SS to GND to program the soft start time. If this pin is open,  
the regulator uses the internal soft start time.  
The exposed GND pad must be soldered to a large, external, copper GND plane to reduce thermal  
resistance.  
The exposed SW pad must be connected to the SW pins of the ADP2386 by using short, wide traces, or  
else soldered to a large, external, copper SW plane to reduce thermal resistance.  
EP, G N D  
E P, S W  
Rev. A | Page 6 of 24  
 
Data Sheet  
ADP2386  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VIN = 12 V, VOUT = 3.3 V, L = 2.2 µH, COUT = 100 µF + 47 µF, fSW = 600 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
0
0
4
1
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 4. Efficiency at VIN = 12 V, fSW = 600 kHz  
Figure 7. Efficiency at VIN = 12 V, fSW = 300 kHz  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
1
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency at VIN = 18 V, fSW = 600 kHz  
Figure 8. Efficiency at VIN = 5 V, fSW = 600 kHz  
100  
90  
80  
70  
60  
50  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
T
T
T
= –40°C  
= +25°C  
= +125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
J
J
J
J
J
J
6
8
10  
12  
14  
16  
18  
20  
4
6
8
10  
12  
14  
16  
18  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 6. Shutdown Current vs. Input Voltage (VIN  
)
Figure 9. Quiescent Current vs. VIN  
Rev. A | Page 7 of 24  
 
ADP2386  
Data Sheet  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
4.5  
RISING  
FALLING  
RISING  
FALLING  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. EN Threshold vs. Temperature  
Figure 10. PVIN UVLO Threshold vs. Temperature  
606  
604  
602  
600  
598  
596  
594  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Feedback Voltage vs. Temperature  
Figure 11. SS Pin Pull-Up Current vs. Temperature  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
630  
620  
610  
600  
590  
580  
570  
R
= 100kΩ  
T
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Frequency vs. Temperature  
Figure 15. VREG Voltage vs. Temperature  
Rev. A | Page 8 of 24  
Data Sheet  
ADP2386  
10.5  
10.0  
9.5  
65  
HIGH-SIDE R  
DSON  
DSON  
LOW-SIDE R  
55  
45  
35  
25  
15  
5
9.0  
8.5  
8.0  
7.5  
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. MOSFET RDSON vs. Temperature  
Figure 19. Current-Limit Threshold vs. Temperature  
V
(AC)  
OUT  
1
EN  
3
I
L
V
OUT  
1
2
PGOOD  
SW  
3
2
I
OUT  
4
B
B
CH1 10mV  
CH3 2A  
CH2 10V  
M2.00µs  
50.2%  
A CH2  
6V  
CH1 2V  
CH3 10V  
CH2 5V  
CH4 5A Ω  
M2.00ms  
50%  
A CH2  
5.8V  
W
W
T
T
Figure 17. Working Mode Waveform  
Figure 20. Soft Start with Full Load  
EN  
SYNC  
4
V
2
OUT  
1
2
SW  
PGOOD  
4
I
L
3
B
CH1 2V  
CH3 5A  
CH2 5V  
CH4 10V  
M2.00ms  
50%  
A CH2  
2V  
M1.00µs  
50%  
A CH4  
7.8V  
W
CH2 5V  
CH4 10V  
T
T
Figure 18. Voltage Precharged Output  
Figure 21. External Synchronization  
Rev. A | Page 9 of 24  
 
ADP2386  
Data Sheet  
V
(AC)  
V
(AC)  
OUT  
OUT  
1
1
V
IN  
SW  
3
2
I
OUT  
4
B
B
B
B
CH1 20mV  
CH3 5V  
CH2 10V  
M1.00ms  
A CH3  
12.4V  
CH1 100mV  
M200µs  
70.4%  
A CH4  
2.8A  
W
W
W
W
T
20%  
CH4 2A  
T
Figure 22. Load Transient Response, 1 A to 5 A  
Figure 25. Line Transient Response, VIN from 8 V to 14 V, IOUT = 6 A  
V
OUT  
V
OUT  
1
2
4
1
2
4
SW  
SW  
I
L
I
L
B
CH1 2V  
CH2 10V  
M4.00ms  
30.2%  
A CH1  
2.12V  
B
M4.00ms  
70.4%  
A CH1  
2.12V  
W
CH1 2V  
CH2 10V  
W
CH4 5A  
T
T
CH4 5A  
Figure 23. Output Short Entry  
Figure 26. Output Short Recovery  
7
6
5
4
3
2
1
7
6
5
4
3
2
1
0
V
V
V
V
V
V
= 1V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
0
25  
40  
55  
70  
85  
100  
25  
40  
55  
70  
85  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 27. Load Current vs. Ambient Temperature at VIN = 12 V,  
SW = 300 kHz  
Figure 24. Load Current vs. Ambient Temperature at VIN = 12 V,  
SW = 600 kHz  
f
f
Rev. A | Page 10 of 24  
Data Sheet  
ADP2386  
FUNCTIONAL BLOCK DIAGRAM  
VREG  
CLK  
BIAS AND DRIVER  
REGULATOR  
RT  
PVIN  
OSC  
SLOPE RAMP  
SYNC  
UVLO  
EN  
EN_BUF  
BOOST  
REGULATOR  
1.17V  
1µA  
4µA  
A
CS  
+
HICCUP  
MODE  
OCP  
V
SLOPE RAMP  
I_MAX  
Σ
BST  
SW  
COMP  
0.6V  
+
NFET  
NFET  
+
CMP  
I
DRIVER  
SS  
SS  
FB  
+
AMP  
CONTROL  
LOGIC  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
VREG  
OVP  
PROTECTION  
DRIVER  
CLK  
PGND  
0.7V  
NEG CURRENT  
CMP  
+
+
V
I_NEG  
0.54V  
+
PGOOD  
GND  
DEGLITCH  
Figure 28.  
Rev. A | Page 11 of 24  
 
ADP2386  
Data Sheet  
THEORY OF OPERATION  
The ADP2386 is a synchronous step-down, dc-to-dc regulator  
that uses a current-mode architecture with an integrated high-  
side power switch and a low-side synchronous rectifier. The  
regulator targets high performance applications that require  
high efficiency and design flexibility.  
BOOTSTRAP CIRCUITRY  
The ADP2386 includes a regulator to provide the gate drive  
voltage for the high-side N-MOSFET. It uses differential sensing to  
generate a 5 V bootstrap voltage between the BST and SW pins.  
It is recommended that a 0.1 µF, X7R or X5R ceramic capacitor  
be placed between the BST pin and the SW pin.  
The ADP2386 operates from an input voltage that ranges from  
4.5 V to 20 V and regulates the output voltage from 0.6 V to 90%  
of the input voltage. Additional features that maximize design  
flexibility include the following: programmable switching  
frequency, programmable soft start, external compensation,  
precision enable, and a power-good output.  
OSCILLATOR  
The ADP2386 switching frequency is controlled by the RT pin.  
A resistor from RT to GND can program the switching frequency  
according to the following equation:  
CONTROL SCHEME  
69120  
f
SW (kHz) =  
RT (k) + 15  
The ADP2386 uses a fixed frequency, peak current-mode PWM  
control architecture. At the start of each oscillator cycle, the high-  
side N-MOSFET is turned on, putting a positive voltage across  
the inductor. When the inductor current crosses the peak inductor  
current threshold, the high-side N-MOSFET is turned off and  
the low-side N-MOSFET is turned on. This puts a negative voltage  
across the inductor, causing the inductor current to decrease.  
The low-side N-MOSFET stays on for the rest of the cycle (see  
Figure 17).  
A 100 kΩ resistor sets the frequency to 600 kHz, and a 42.2 kΩ  
resistor sets the frequency to 1.2 MHz. Figure 29 shows the  
typical relationship between fSW and RT.  
1400  
1200  
1000  
800  
600  
400  
200  
0
PRECISION ENABLE/SHUTDOWN  
The EN input pin has a precision analog threshold of 1.17 V  
(typical) with 100 mV of hysteresis. When the enable voltage  
exceeds 1.17 V, the regulator turns on; when it falls to less than  
1.07 V (typical), the regulator turns off. To force the regulator  
to automatically start when input power is applied, connect EN  
to PVIN.  
20  
60  
100  
140  
180  
(kΩ)  
220  
260  
300  
R
T
The precision EN pin has an internal pull-down current source  
(5 µA) that provides a default turn-off when the EN pin is open.  
Figure 29. Switching Frequency vs. RT  
When the EN pin voltage exceeds 1.17 V (typical), the ADP2386  
is enabled and the internal pull-down current source at the EN  
pin decreases to 1 µA, which allows users to program the PVIN  
UVLO and hysteresis.  
SYNCHRONIZATION  
To synchronize the ADP2386, connect an external clock to the  
SYNC pin. The external clock frequency can be in the range  
of 200 kHz to 1.4 MHz. During synchronization, the regulator  
operates in continuous conduction mode (CCM), and the rising  
edge of the switching waveform runs 180° out of phase to the rising  
edge of the external clock.  
INTERNAL REGULATOR (VREG)  
The on-board regulator provides a stable supply for the internal  
circuits. It is recommended that a 1 µF ceramic capacitor be  
placed between the VREG and GND pins. The internal regulator  
includes a current-limit circuit to protect the output if the  
maximum external load current is exceeded.  
When the ADP2386 operates in synchronization mode, a resistor  
must be connected from the RT pin to GND to program the  
internal oscillator to run at 90% to 110% of the external  
synchronization clock.  
Rev. A | Page 12 of 24  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2386  
V
RISING  
V
FALLING  
OUT  
OUT  
SOFT START  
116.7%  
The ADP2386 has integrated soft start circuitry to limit the output  
voltage rising time and reduce inrush current at startup. The  
internal soft start time is calculated using the following equation:  
105%  
100%  
95%  
90%  
1600  
tSS_INT  
=
(ms)  
fSW (kHz)  
PGOOD  
A slower soft start time can be programmed by using the SS pin.  
When a capacitor is connected between the SS pin and GND, an  
internal current charges the capacitor to establish the soft start  
ramp. The soft start time is calculated using the following equation:  
1024 CYCLE  
DEGLITCH  
16 CYCLE  
DEGLITCH  
1024 CYCLE  
DEGLITCH  
16 CYCLE  
DEGLITCH  
Figure 30. PGOOD Rising and Falling Thresholds  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
0.6V CSS  
=
tSS_EXT  
ISS _UP  
The ADP2386 has a peak current-limit protection circuit to  
prevent current runaway. During the initial soft start, the  
ADP2386 uses frequency foldback to prevent output current  
runaway. The switching frequency is reduced according to the  
voltage on the FB pin, which allows more time for the inductor  
to discharge. The correlation between the switching frequency  
and the FB pin voltage is shown in Table 5.  
where:  
CSS is the soft start capacitance.  
SS_UP is the soft start pull-up current (3.2 μA).  
I
The internal error amplifier includes three positive inputs: the  
internal reference voltage, the internal digital soft start voltage,  
and the SS pin voltage. The error amplifier regulates the FB  
voltage to the lowest of the three voltages.  
Table 5. FB Pin Voltage and Switching Frequency  
If the output voltage is charged prior to turn-on, the ADP2386  
prevents reverse inductor current that would discharge the output  
capacitor. This function remains active until the soft start  
voltage exceeds the voltage on the FB pin.  
FB Pin Voltage  
Switching Frequency  
VFB ≥ 0.4 V  
fSW  
0.4 V > VFB ≥ 0.2 V  
VFB < 0.2 V  
fSW/2  
fSW/4  
POWER GOOD  
For protection against heavy loads, the ADP2386 uses a hiccup  
mode for overcurrent protection. When the inductor peak  
current reaches the current-limit value, the high-side MOSFET  
turns off and the low-side MOSFET turns on until the next cycle.  
The overcurrent counter increments during this process. If the  
overcurrent counter reaches 10, or the FB pin voltage falls to  
0.4 V after the soft start, the regulator enters hiccup mode. The  
high-side and low-side MOSFETs are both turned off. The  
regulator remains in hiccup mode for 4096 clock cycles and then  
attempts to restart. If the current-limit fault has cleared, the  
regulator resumes normal operation. Otherwise, it reenters  
hiccup mode.  
The power-good pin (PGOOD) is an active high, open-drain  
output that requires an external resistor to pull it up to a voltage.  
A logic high on the PGOOD pin indicates that the voltage on  
the FB pin (and, therefore, the output voltage) is within regulation.  
The power-good circuitry monitors the output voltage on the  
FB pin and compares it to the rising and falling thresholds that  
are specified in Table 1. If the rising output voltage exceeds the  
target value, the PGOOD pin is held low. The PGOOD pin  
continues to be held low until the falling output voltage returns  
to the target value.  
If the output voltage falls below the target output voltage, the  
PGOOD pin is held low. The PGOOD pin continues to be held  
low until the rising output voltage returns to the target value.  
The ADP2386 also provides a sink current limit to prevent the  
low-side MOSFET from sinking a lot of current from the load.  
When the voltage across the low-side MOSFET exceeds the sink  
current-limit threshold, which is typically 2.5 A, the low-side  
MOSFET turns off immediately for the rest of the cycle. Both high-  
side and low-side MOSFETs turn off until the next clock cycle.  
The power-good rising and falling thresholds are shown in  
Figure 30. There is a 1024-cycle waiting period (deglitch) before  
the PGOOD pin is pulled from low to high, and there is a  
16-cycle waiting period (deglitch) before the PGOOD pin is  
pulled from high to low.  
In some cases, the input voltage (VPVIN) ramp rate is too slow or  
the output capacitor is too large for the output to reach regulation  
during the soft start process, which causes the regulator to enter  
the hiccup mode. To avoid such occurrences, use a resistor  
divider at the EN pin to program the input voltage UVLO,  
or use a longer soft start time.  
Rev. A | Page 13 of 24  
 
 
 
 
 
ADP2386  
Data Sheet  
power switch and synchronous rectifier turn off. When the  
PVIN voltage rises to greater than 4.3 V typical, the soft start  
period is initiated, and the part is enabled.  
OVERVOLTAGE PROTECTION (OVP)  
V
The ADP2386 includes an overvoltage protection feature  
to protect the regulator against an output short to a higher  
voltage supply or when a strong load disconnect transient  
occurs. If the feedback voltage increases to 0.7 V, the internal  
high-side and low-side MOSFETs are turned off until the  
voltage at the FB pin decreases to 0.63 V. At that time, the  
ADP2386 resumes normal operation.  
THERMAL SHUTDOWN  
If the ADP2386 junction temperatures rises to greater than 150°C,  
the internal thermal shutdown circuit turns off the regulator for  
self-protection. Extreme junction temperatures can be the result of  
high current operation, poor circuit board thermal design,  
and/or high ambient temperature. A 25°C hysteresis is included  
in the thermal shut-down circuit so that, if an overtemperature  
event occurs, the ADP2386 does not return to normal operation  
until the on-chip temperature falls to less than 125°C. Upon  
recovery, a soft start is initiated before normal operation begins.  
UNDERVOLTAGE LOCKOUT (UVLO)  
Undervoltage lockout circuitry is integrated in the ADP2386 to  
prevent the occurrence of power-on glitches. If the VPVIN voltage  
falls to less than 3.8 V typical, the part shuts down, and both the  
Rev. A | Page 14 of 24  
 
 
 
Data Sheet  
ADP2386  
APPLICATIONS INFORMATION  
The maximum output voltage for a given input voltage and  
INPUT CAPACITOR SELECTION  
switching frequency is constrained by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
200 ns, and the maximum duty cycle of the ADP2386 is  
typically 90%.  
The input capacitor reduces the input voltage ripple caused by  
the switch current on PVIN. Place the input capacitor as close  
as possible to the PVIN pin. A ceramic capacitor in the 10 μF to  
47 μF range is recommended. The loop that is composed of this  
input capacitor, the high-side N-MOSFET, and the low-side N-  
MOSFET must be kept as small as possible.  
The maximum output voltage, limited by the minimum off time  
at a given input voltage and switching frequency, can be calculated  
using the following equation:  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. Ensure that the rms current rating  
of the input capacitor is larger than the value calculated from  
the following equation:  
V
OUT_MAX = VIN × (1 − tMIN_OFF × fSW) − (RDSON_HS RDSON_LS) ×  
OUT_MAX × (1 − tMIN_OFF × fSW) − (RDSON_LS + RL) × IOUT_MAX (2)  
where:  
I
V
OUT_MAX is the maximum output voltage.  
ICIN RMS = IOUT  
×
D × (1 D)  
_
V
IN is the input voltage.  
MIN_OFF is the minimum off time.  
OUTPUT VOLTAGE SETTING  
t
f
R
R
I
SW is the switching frequency.  
DSON_HS is the high-side MOSFET on resistance.  
DSON_LS is the low-side MOSFET on resistance.  
The output voltage of the ADP2386 is set by an external resistive  
divider. The resistor values are calculated using  
RTOP  
RBOT  
OUT_MAX is the maximum output current.  
V
OUT = 0.6 × 1 +  
RL is the series resistance of the output inductor.  
The maximum output voltage, limited by the maximum duty  
cycle at a given input voltage, can be calculated using the  
following equation:  
To limit the output voltage accuracy degradation due to the FB  
bias current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT < 30 kΩ.  
V
OUT_MAX = DMAX × VIN  
(3)  
Table 6 lists the recommended resistor divider values for the  
various output voltages.  
where DMAX is the maximum duty cycle; VIN is the input voltage.  
Table 6. Resistor Divider Values for Various Output Voltages  
As shown in Equation 1 to Equation 3, reducing the switching  
frequency alleviates the minimum on time and minimum off  
time limitation.  
VOUT (V)  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
10  
10  
15  
20  
47.5  
10  
22  
15  
10  
10  
10  
15  
2.21  
3
INDUCTOR SELECTION  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor value leads to a faster transient response; however,  
it degrades efficiency, due to a larger inductor ripple current.  
Using a large inductor value leads to smaller ripple current and  
better efficiency, but it results in a slower transient response.  
VOLTAGE CONVERSION LIMITATIONS  
The minimum output voltage for a given input voltage and  
switching frequency is constrained by the minimum on time.  
The minimum on time of the ADP2386 is typically 125 ns.  
The minimum output voltage for a given input voltage and  
switching frequency can be calculated using the following:  
As a guideline, the inductor ripple current, ΔIL, is typically set  
to one-third of the maximum load current. The inductor value  
is calculated using the following equation:  
(VIN VOUT ) × D  
L =  
V
OUT_MIN = VIN × tMIN_ON × fSW − (RDSON_HS RDSON_LS) ×  
OUT_MIN × tMIN_ON × fSW − (RDSON_LS + RL) × IOUT_MIN  
where:  
IL × fSW  
I
(1)  
where:  
V
V
IN is the input voltage.  
OUT is the output voltage.  
V
V
OUT_MIN is the minimum output voltage.  
IN is the input voltage.  
D is the duty cycle (D = VOUT/VIN).  
t
MIN_ON is the minimum on time.  
ΔIL is the inductor current ripple.  
fSW is the switching frequency.  
fSW is the switching frequency.  
R
R
DSON_HS is the high-side MOSFET on resistance.  
DSON_LS is the low-side MOSFET on resistance.  
The ADP2386 uses adaptive slope compensation in the current  
loop to prevent subharmonic oscillations when the duty cycle  
is larger than 50%. The internal slope compensation limits the  
minimum inductor value.  
IOUT_MIN is the minimum output current.  
RL is the series resistance of the output inductor.  
Rev. A | Page 15 of 24  
 
 
 
 
 
 
ADP2386  
Data Sheet  
For a duty cycle that is larger than 50%, the minimum inductor  
value is determined using the following equation:  
where:  
UV is a factor, with a typical setting of KUV = 2.  
ΔISTEP is the load step.  
K
VOUT × (1D)  
L (Minimum) =  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
2 × fSW  
The peak inductor current is calculated by  
IL  
Another example occurs when a load is suddenly removed from  
the output, and the energy stored in the inductor rushes into  
the output capacitor, causing the output to overshoot.  
IPEAK = IOUT +  
2
The output capacitance that is required to meet the overshoot  
requirement can be calculated using the following equation:  
The saturation current of the inductor must be larger than the peak  
inductor current. For ferrite core inductors with a quick saturation  
characteristic, the saturation current rating of the inductor must  
be higher than the current-limit threshold of the switch. This  
prevents the inductor from reaching saturation.  
2
KOV × ∆ISTEP × L  
(VOUT + ∆VOUT _OV )2 VOUT  
COUT_OV  
=
2
where:  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
OV is a factor, with a typical setting of KOV = 2.  
The rms current of the inductor is calculated as follows:  
K
2
IL  
12  
2
IRMS  
=
IOUT  
+
The output ripple is determined by the ESR and the value of the  
capacitance. Use the following equations to select a capacitor  
that can meet the output ripple requirements:  
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 7 lists some recommended inductors.  
IL  
COUT_RIPPLE  
=
OUTPUT CAPACITOR SELECTION  
8 × fSW × ∆VOUT _ RIPPLE  
The output capacitor selection affects the output ripple voltage  
load step transient and the loop stability of the regulator.  
VOUT _ RIPPLE  
RESR  
where:  
=
IL  
For example, during a load step transient where the load is  
suddenly increased, the output capacitor supplies the load until  
the control loop can ramp up the inductor current. The delay  
caused by the control loop causes output undershoot. The  
output capacitance that is required to satisfy the voltage droop  
requirement can be calculated using the following equation:  
ΔIL is the inductor current ripple.  
ΔVOUT_RIPPLE is the allowable output ripple voltage.  
ESR is the equivalent series resistance of the output capacitor  
in ohms (Ω).  
R
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
2
KUV × ∆ISTEP × L  
COUT_UV  
=
2 × (VIN VOUT ) × ∆VOUT _UV  
Table 7. Recommended Inductors  
Vendor  
Part No.  
Value (µH)  
0.47  
0.75  
1.0  
1.5  
2.2  
ISAT (A)  
15.6  
10.9  
9.5  
13.7  
11.4  
9.8  
IRMS (A)  
14.1  
10.7  
9.5  
14.6  
11.6  
9.0  
DCR (mΩ)  
3.7  
6.2  
8.5  
4.6  
Toko  
FDVE0630-R47M  
FDVE0630-R75M  
FDVE0630-1R0M  
FDVE1040-1R5M  
FDVE1040-2R2M  
FDVE1040-3R3M  
FDVE1040-4R7M  
IHLP3232DZ-R47M-11  
IHLP3232DZ-R68M-11  
IHLP3232DZ-1R0M-11  
IHLP4040DZ-1R5M-01  
IHLP4040DZ-2R2M-01  
IHLP4040DZ-3R3M-01  
IHLP4040DZ-4R7M-01  
744 325 120  
6.8  
3.3  
4.7  
10.1  
13.8  
2.38  
3.22  
4.63  
5.8  
8.2  
8.0  
Vishay  
0.47  
0.68  
1.0  
1.5  
2.2  
14  
14.5  
12  
27.5  
25.6  
18.6  
17  
25  
22.2  
18.2  
15  
12  
10  
9
3.3  
4.7  
14.4  
16.5  
1.8  
9.5  
Wurth Elektronik  
1.2  
25  
20  
744 325 180  
1.8  
18  
16  
3.5  
744 325 240  
744 325 330  
2.4  
3.3  
17  
15  
14  
12  
4.75  
5.9  
744 325 420  
4.2  
14  
11  
7.1  
Rev. A | Page 16 of 24  
 
 
Data Sheet  
ADP2386  
The selected output capacitor voltage rating must be greater  
than the output voltage. The rms current rating of the output  
capacitor must be larger than the value that is calculated by  
using the following equation:  
The ADP2386 uses a transconductance amplifier for the error  
amplifier and to compensate the system. Figure 32 shows the  
simplified, peak current-mode control, small signal circuit.  
V
V
OUT  
OUT  
IL  
ICOUT  
=
_RMS  
R
R
TOP  
12  
V
C
R
COMP  
C
OUT  
gm  
+
A
VI  
PROGRAMMING THE INPUT VOLTAGE UVLO  
+
R
BOT  
R
C
The ADP2386 has a precision enable input that can be used to  
program the UVLO threshold of the input voltage (see Figure 31).  
CP  
ESR  
C
C
PVIN  
ADP2386  
Figure 32. Simplified Peak Current Mode Control, Small Signal Circuit  
R
TOP_EN  
The compensation components, RC and CC, contribute a zero,  
and RC and the optional CCP contribute an optional pole.  
EN CMP  
EN  
1.17V  
4µA  
The closed-loop transfer equation is as follows:  
R
BOT_EN  
1µA  
RBOT  
gm  
TV (s) =  
×
×
RBOT + RTOP CC + CCP  
1 + RC × CC × s  
RC × CC × CCP  
Figure 31. Programming the Input Voltage UVLO  
Use the following equations to calculate RTOP_EN and RBOT_EN  
1.07V ×VIN _ RISING 1.17V ×VIN _ FALLING  
× GVD (s)  
s × (1 +  
× s)  
:
CC + CCP  
The following design guideline shows how to select the RC, CC,  
and CCP compensation components for ceramic output  
capacitor applications:  
RTOP_EN  
=
1.07 V × 5μA 1.17V ×1 μA  
1.17V× RTOP_ EN  
RBOT_EN  
where:  
=
1. Determine the cross frequency, fC. Generally, fC is between  
VIN _ RISING RTOP_ EN × 5μA 1.17 V  
f
SW/12 and fSW/6.  
2. Calculate RC, using the following equation:  
VIN_RISING is the VIN rising threshold.  
VIN_FALLING is the VIN falling threshold.  
2 × π ×VOUT × COUT × fC  
RC =  
0.6V × gm × A  
VI  
COMPENSATION DESIGN  
3. Place the compensation zero at the domain pole, fP; then  
determine CC by using the following equation:  
For peak current-mode control, the power stage can be simplified  
as a voltage controlled current source supplying current to the  
output capacitor and load resistor. It is composed of one domain  
pole and a zero that is contributed by the output capacitor ESR.  
The control-to-output transfer function is based on the following:  
(R + RESR ) × COUT  
CC =  
RC  
4. CCP is optional. It can be used to cancel the zero caused by  
the ESR of the output capacitor.  
s
1 +  
1 +  
RESR × COUT  
CCP  
=
2 × π × fZ  
VOUT (s)  
G
VD (s) =  
= AVI × R ×  
RC  
V COMP (s)  
s
ADIsimPOWER DESIGN TOOL  
2 × π × fP  
The ADP2386 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs that are optimized for a specific design goal. The  
tools enable the user to generate a full schematic and bill of  
materials and calculate performance in minutes. ADIsimPower  
can optimize designs for cost, area, efficiency, and part count,  
while taking into consideration the operating conditions and  
limitations of the IC and all real external components. For more  
information about theADIsimPower design tools, refer to  
www.analog.com/ADIsimPower. The tool set is available from  
this website, and users can request an unpopulated board.  
1
fZ =  
fP =  
2 × π × RESR × COUT  
1
2 ×π × (R + RESR ) × COUT  
where:  
VI = 8.7 A/V.  
R is the load resistance.  
OUT is the output capacitance.  
ESR is the equivalent series resistance of the output capacitor.  
A
C
R
Rev. A | Page 17 of 24  
 
 
 
 
 
ADP2386  
Data Sheet  
DESIGN EXAMPLE  
V
= 12V  
C
IN  
PVIN  
BST  
SW  
IN  
10µF  
25V  
C
BST  
0.1µF  
EN  
L1  
2.2µF  
PGOOD  
SYNC  
V
= 3.3V  
OUT  
R
10kΩ  
TOP  
C
C
OUT1  
100  
6.3V  
OUT2  
47  
6.3V  
ADP2386  
R
T
µ
F
µ
F
1%  
100kΩ  
RT  
FB  
C
VREG  
1µF  
R
TOP  
COMP  
2.21kΩ  
1%  
VREG  
SS  
R
C
44.2kΩ  
C
SS  
22nF  
C
C
1.2nF  
GND PGND  
CP  
4.7pF  
C
Figure 33. Schematic for Design Example  
This section describes the procedures for selecting the external  
components, based on the example specifications that are listed  
in Table 8. See Figure 33 for the schematic of this design example.  
This calculation results in L = 2.215 μH. Choose the standard  
inductor value of 2.2 μH.  
The peak-to-peak inductor ripple current can be calculated by  
using the following equation:  
Table 8. Step-Down DC-to-DC Regulator Requirements  
Parameter  
Specification  
VIN = 12.0 V 10%  
VOUT = 3.3 V  
(VIN VOUT ) × D  
ΔIL =  
Input Voltage  
L× fSW  
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
This calculation results in ∆IL = 1.81 A.  
Use the following equation to calculate the peak inductor current:  
IOUT = 6 A  
∆VOUT_RIPPLE = 33 mV  
5%, 1 A to 5 A, 2 A/μs  
fSW = 600 kHz  
IL  
2
IPEAK = IOUT +  
Switching Frequency  
OUTPUT VOLTAGE SETTING  
This calculation results in IPEAK = 6.905 A.  
Choose a 10 kΩ resistor as the top feedback resistor (RTOP),  
and calculate the bottom feedback resistor (RBOT) by using the  
following equation:  
Use the following equation to calculate the rms current flowing  
through the inductor:  
2
IL  
12  
2
IRMS  
=
IOUT  
+
0.6  
RBOT = RTOP ×  
VOUT 0.6  
This calculation results in IRMS = 6.023 A.  
To set the output voltage to 3.3 V, the resistors values are as  
follows: RTOP = 10 kΩ, and RBOT = 2.21 kΩ.  
Based on the calculated current value, select an inductor with  
a minimum rms current rating of 6.03 A and a minimum  
saturation current rating of 6.91 A.  
FREQUENCY SETTING  
To set the switching frequency to 600 kHz, connect a 100 kΩ  
resistor from the RT pin to GND.  
However, to protect the inductor from reaching its saturation  
point under the current-limit condition, the inductor should be  
rated for at least a 9.6 A saturation current for reliable operation.  
INDUCTOR SELECTION  
Based on the requirements described previously, select a 2.2 μH  
inductor, such as the FDVE1040-2R2M from Toko, which has  
a 6.8 mΩ DCR and a 11.4 A saturation current.  
The peak-to-peak inductor ripple current, ∆IL, is set to 30% of  
the maximum output current. Use the following equation to  
estimate the inductor value:  
(VIN VOUT ) × D  
L =  
IL × fSW  
where:  
V
IN = 12 V.  
VOUT = 3.3 V.  
D = 0.275.  
∆IL = 1.8 A.  
fSW = 600 kHz.  
Rev. A | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
ADP2386  
The 100 µF and 47 µF ceramic output capacitors have a derated  
value of 62 µF and 32 µF.  
OUTPUT CAPACITOR SELECTION  
The output capacitor is required to meet both the output voltage  
ripple and load transient response requirements.  
2 ×π × 3.3V × 94 μF × 60kHz  
0.6V × 480 μs × 8.7A/ V  
RC =  
= 46.7 kΩ  
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance value of the output  
capacitor:  
(0.55 Ω + 0.002 ) × 94 μF  
46.7 kΩ  
CC =  
= 1111 pF  
IL  
0.002 Ω × 94 μF  
COUT_RIPPLE  
=
CCP  
=
= 4.0 pF  
8 × fSW × ∆VOUT _ RIPPLE  
46.7 kΩ  
Choose standard components, as follows: RC = 44.2 kΩ,  
CC = 1200 pF, and CCP = 4.7 pF.  
VOUT _ RIPPLE  
RESR  
=
IL  
Figure 34 shows the bode plot at 6 A. The cross frequency is  
58 kHz, and the phase margin is 61°.  
This calculation results in COUT_RIPPLE = 11.4 μF, and RESR = 18 mΩ.  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
60  
180  
144  
108  
72  
48  
36  
2
KOV × ∆ISTEP × L  
(VOUT + ∆VOUT _OV )2 VOUT  
COUT_OV  
=
24  
2
12  
36  
2
0
0
KUV × ∆ISTEP × L  
COUT_UV  
=
–12  
–24  
–36  
–48  
–60  
–36  
–72  
–108  
–144  
–180  
2 × (VIN VOUT ) × ∆VOUT _UV  
where:  
OV = KUV = 2 are the coefficients for estimation purposes.  
ISTEP = 4 A is the load transient step.  
K
VOUT_OV = 5% VOUT is the overshoot voltage.  
1k  
10k  
100k  
1M  
VOUT_UV = 5% VOUT is the undershoot voltage.  
FREQUENCY (Hz)  
This calculation results in COUT_OV = 63.1 μF, and COUT_UV = 24.5 μF.  
Figure 34. Bode Plot at 6 A  
According to the calculation, the output capacitance must be  
greater than 63 μF, and the ESR of the output capacitor must be  
smaller than 18 mΩ. It is recommended that one 100 μF/X5R/  
6.3 V ceramic capacitor and one 47 μF/X5R/6.3 V ceramic  
capacitor be used, such as the GRM32ER60J107ME20 and  
GRM32ER60J476ME20 from Murata, with an ESR of 2 mΩ.  
SOFT START TIME PROGRAM  
The soft start feature allows the output voltage to ramp up in a  
controlled manner, eliminating output voltage overshoot during  
soft start and limiting the inrush current. Set the soft start time  
to 4 ms.  
tSS _ EXT × ISS _  
4 ms × 3.2μA  
UP  
COMPENSATION COMPONENTS  
CSS  
=
=
= 21.3 nF  
0.6  
0.6V  
For better load transient and stability performance, set the cross  
frequency, fC, to fSW/10. In this case, fSW is running at 600 kHz;  
therefore, the fC is set to 60 kHz.  
Choose a standard component value, as follows: CSS = 22 nF.  
INPUT CAPACITOR SELECTION  
Place a minimum 10 μF ceramic capacitor near the PVIN pin.  
In this application, it is recommended that one 10 μF, X5R, 25 V  
ceramic capacitor be used.  
Rev. A | Page 19 of 24  
 
 
 
 
 
ADP2386  
Data Sheet  
RECOMMENDED EXTERNAL COMPONENTS  
Table 9. Recommended External Components for Typical Applications with 6 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
VOUT (V)  
L (µH)  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
1
COUT (µF)1  
680 + 2 × 100  
680 + 2 × 100  
680  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ)  
57.6  
68.1  
73.2  
88.7  
84.5  
44.2  
33  
CC (pF)  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
680  
CCP (pF)  
150  
120  
100  
82  
300  
1
10  
15  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
15  
10  
680  
20  
10  
470  
47.5  
10  
15  
47  
3 × 100  
100 + 47  
680 + 2 × 100  
680  
2.21  
3
8.2  
4.7  
150  
120  
100  
82  
22  
1
10  
15  
57.6  
57.6  
73.2  
61.9  
33  
5
1.2  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
5
680  
15  
10  
5
470  
20  
10  
5
3 × 100  
3 × 100  
3 × 100  
3 × 100  
2 × 100  
100 + 47  
100  
47.5  
10  
15  
10  
5
2.21  
10  
44.2  
39  
8.2  
10  
600  
12  
12  
12  
12  
12  
5
15  
1.5  
2.2  
2.2  
3.3  
1
20  
10  
47  
8.2  
4.7  
4.7  
2.2  
68  
47.5  
10  
15  
44.2  
44.2  
44.2  
97.6  
82  
2.21  
3
22  
1
680  
10  
15  
5
1.2  
1.5  
1.8  
2.5  
3.3  
2.5  
3.3  
5
1
470  
10  
10  
47  
5
1
3 × 100  
2 × 100  
100  
15  
10  
39  
10  
5
1
20  
10  
33  
8.2  
4.7  
4.7  
3.3  
2.2  
2.2  
8.2  
6.8  
4.7  
4.7  
3.3  
2.2  
5
1
47.5  
10  
15  
22  
5
1
100 + 47  
100  
2.21  
15  
44.2  
37.4  
47  
1000  
12  
12  
12  
5
1
47.5  
10  
1.5  
1.5  
0.47  
0.47  
0.68  
0.68  
0.68  
0.68  
100  
2.21  
3
680  
100  
22  
73.2  
44.2  
34.8  
33  
680  
1
3 × 100  
2 × 100  
100 + 47  
100 + 47  
100  
10  
15  
680  
5
1.2  
1.5  
1.8  
2.5  
3.3  
10  
10  
680  
5
15  
10  
680  
5
20  
10  
39  
680  
5
47.5  
10  
15  
37.4  
47  
680  
5
100  
2.21  
680  
1 680 μF: 4 V, Sanyo 4TPF680M; 470 μF: 6.3 V, Sanyo 6TPF470M; 100 μF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 μF: 6.3 V, X5R, Murata GRM32ER60J476ME20.  
Rev. A | Page 20 of 24  
 
Data Sheet  
ADP2386  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good printed circuit board (PCB) layout is essential for obtaining  
the best performance from the ADP2386. Poor PCB layout can  
degrade the output regulation, as well as the electromagnetic  
interference (EMI) and electromagnetic compatibility (EMC)  
performance. Figure 36 shows an example of a good PCB layout  
for the ADP2386. For optimum layout, refer to the following  
guidelines:  
Connect the exposed GND pad of the ADP2386 to a large,  
external copper ground plane to maximize its power  
dissipation capability and minimize junction temperature.  
In addition, connect the exposed SW pad to the SW pins  
of the ADP2386, using short, wide traces; or connect the  
exposed SW pad to a large copper plane of the switching  
node for high current flow.  
Place the feedback resistor divider network as close as  
possible to the FB pin to prevent noise pickup. Minimize  
the length of the trace that connects the top of the feedback  
resistor divider to the output while keeping the trace away  
from the high current traces and the switching node to  
avoid noise pickup. To further reduce noise pickup, place  
an analog ground plane on either side of the FB trace and  
ensure that the trace is as short as possible to reduce the  
parasitic capacitance pickup.  
Use separate analog ground planes and power ground  
planes. Connect the ground reference of sensitive analog  
circuitry, such as output voltage divider components, to  
analog ground. In addition, connect the ground reference  
of power components, such as input and output capacitors,  
to power ground. Connect both ground planes to the  
exposed GND pad of the ADP2386.  
Place the input capacitor, inductor, and output capacitor as  
close as possible to the IC, and use short traces.  
Ensure that the high current loop traces are as short and as  
wide as possible. Make the high current path from the input  
capacitor through the inductor, the output capacitor, and the  
power ground plane back to the input capacitor as short as  
possible. To accomplish this, ensure that the input and output  
capacitors share a common power ground plane.  
ADP2386  
V
PVIN  
EN  
BST  
SW  
IN  
C
C
IN  
BST  
V
L
OUT  
PGOOD  
SYNC  
C
OUT  
R
TOP  
FB  
In addition, ensure that the high current path from the power  
ground plane through the inductor and output capacitor  
back to the power ground plane is as short as possible by  
tying the PGND pins of the ADP2386 to the PGND plane  
as close as possible to the input and output capacitors.  
R
RT  
COMP  
SS  
BOT  
R
C
VREG  
R
T
C
GND PGND  
VREG  
C
C
C
SS  
Figure 35. High Current Path in the PCB Circuit  
ANALOG GROUND PLANE  
R
BOT  
PVIN  
COMP  
PVIN  
R
TOP  
FB  
INPUT  
INPUT  
GND  
SW  
PVIN  
BYPASS BULK  
CAP  
CAP  
VREG  
PVIN  
BST  
C
VREG  
GND  
SW  
+
C
BST  
SW  
SW  
PGND  
SW  
INDUCTOR  
POWER GROUND PLANE  
OUTPUT  
CAPACITOR  
VOUT  
VIA  
BOTTOM LAYER TRACE  
COPPER PLANE  
Figure 36. Recommended PCB Layout  
Rev. A | Page 21 of 24  
 
 
ADP2386  
Data Sheet  
TYPICAL APPLICATIONS CIRCUITS  
V
= 12V  
IN  
BST  
SW  
PVIN  
C
IN  
C
BST  
0.1µF  
L1  
1µH  
10µF  
25V  
EN  
V
= 1.2V  
OUT  
PGOOD  
C
470µF  
C
OUT2  
10µF  
6.3V  
OUT1  
R
10kΩ  
TOP  
SYNC  
R
ADP2386  
T
6.3V  
1%  
124kΩ  
FB  
RT  
R
BOT  
10kΩ  
1%  
VREG  
SS  
COMP  
C
VREG  
1µF  
R
C
66.5kΩ  
C
C
1.5nF  
CP  
68pF  
GND PGND  
C
C
SS  
22nF  
Figure 37. Typical Applications Circuit, VIN = 12 V, VOUT = 1.2 V, IOUT = 6 A, fSW = 500 kHz  
V
= 12V  
IN  
PVIN  
C
IN  
BST  
SW  
10µF  
25V  
EN  
C
0.1µF  
BST  
L1  
1.5µH  
V
= 1.8V  
PGOOD  
OUT  
C
OUT3  
SYNC  
C
100µF  
C
100µF  
OUT1  
OUT2  
R
20kΩ  
TOP  
100µF  
6.3V  
R
PGOOD  
100kΩ  
ADP2386  
6.3V  
6.3V  
1%  
FB  
VREG  
RT  
R
BOT  
10kΩ  
1%  
C
VREG  
1µF  
COMP  
R
T
R
C
47kΩ  
100kΩ  
SS  
C
8.2pF  
C
CP  
GND PGND  
C
1.2nF  
Figure 38. Typical Applications Circuit Using Internal Soft Start, VIN = 12 V, VOUT = 1.8 V, IOUT = 6 A, fSW = 600 kHz  
V
= 12V  
IN  
PVIN  
R
C
TOP_EN  
IN  
BST  
SW  
10µF  
25V  
16.9kΩ  
EN  
C
0.1µF  
R
BST  
L1  
BOT_EN  
PGOOD  
SYNC  
3.3µH  
V
= 5V  
2kΩ  
OUT  
C
100µF  
6.3V  
OUT  
R
22kΩ  
TOP  
ADP2386  
R
T
1%  
100kΩ  
FB  
RT  
C
R
VREG  
BOT  
3kΩ  
1%  
1µF  
COMP  
R
C
VREG  
SS  
44.2kΩ  
C
C
CP  
GND PGND  
C
C
SS  
22nF  
2.2pF  
1.2nF  
Figure 39. Programming Input Voltage UVLO Rising Threshold at 11 V, Falling Threshold at 10 V, VIN = 12 V, VOUT = 5 V, IOUT = 6 A, fSW = 600 kHz  
Rev. A | Page 22 of 24  
 
Data Sheet  
ADP2386  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
2.80  
2.70  
2.60  
0.20  
MIN  
0.20 MIN  
PIN 1  
INDICATOR  
1.50  
PIN 1  
INDICATOR  
0.20  
MIN  
19  
24  
18  
1.40  
1
1.30  
0.45  
EXPOSED  
PAD  
0.35  
0.25  
0.50  
BSC  
EXPOSED  
PAD  
1.05  
0.95  
0.85  
6
13  
7
12  
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
0.20  
MIN  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.25  
0.20  
0.15  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD .  
Figure 40. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-24-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-24-12  
ADP2386ACPZN-R7  
ADP2386-EVALZ  
ADP2386BB-EVALZ  
−40°C to +125°C  
24-Lead LFCSP_WQ, 7”Tape and Reel  
Evaluation Board  
Inverting Buck-Boost Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 23 of 24  
 
 
ADP2386  
NOTES  
Data Sheet  
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10211-0-4/13(A)  
Rev. A | Page 24 of 24  

相关型号:

ADP2386BB-EVALZ

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2387

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2387-EVALZ

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2387ACPZN-R7

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2389

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390

集成可编程限流和PFM的18 V、12 A降压稳压器
ADI

ADP2390-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2441

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441-EVALZ

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI