ADP5071ACPZ [ADI]

Independent Positive and Negative Outputs;
ADP5071ACPZ
型号: ADP5071ACPZ
厂家: ADI    ADI
描述:

Independent Positive and Negative Outputs

文件: 总28页 (文件大小:1002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 A/1.2 A DC-to-DC Switching Regulator with  
Independent Positive and Negative Outputs  
Data Sheet  
ADP5071  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Wide input supply voltage range: 2.85 V to 15 V  
Generates well regulated, independently resistor  
programmable VPOS and VNEG outputs  
Boost regulator to generate VPOS output  
Adjustable positive output to 39 V  
ADP5071  
SS  
INBK  
R
C1  
L1  
D1  
COMP1  
V
POS  
C
C1  
SW1  
FB1  
EN1  
C
R
VREG  
FT1  
VREG  
Integrated 2.0 A main switch  
C
OUT1  
R
FB1  
Optional single-ended primary-inductor converter  
(SEPIC) configuration for automatic step-up/step-down  
Inverting regulator to generate VNEG output  
Adjustable negative output to VIN − 39 V  
Integrated 1.2 A main switch  
True shutdown for both positive and negative outputs  
1.2 MHz/2.4 MHz switching frequency with optional external  
frequency synchronization from 1.0 MHz to 2.6 MHz  
Resistor programmable soft start timer  
PVIN1  
PVIN2  
PVINSYS  
V
IN  
PGND  
VREF  
C
IN1  
C
VREF  
EN2  
R
FB2  
C
OUT2  
R
C2  
FB2  
COMP2  
R
FT2  
C
C2  
SYNC/FREQ  
SLEW  
SW2  
V
NEG  
D2  
SEQ  
AGND  
L2  
Slew rate control for lower system noise  
Individual precision enable and flexible start-up sequence  
control for symmetric start, VPOS first, or VNEG first  
Out-of-phase operation  
Figure 1.  
UVLO, OCP, OVP, and TSD protection  
4 mm × 4 mm, 20-lead LFCSP and 20-lead TSSOP  
−40°C to +125°C junction temperature range  
Supported by the ADIsimPower tool set  
APPLICATIONS  
Bipolar amplifiers, ADCs, DACs, and multiplexers  
Charge-coupled device (CCD) bias supply  
Optical module supply  
RF power amplifier (PA) bias  
GENERAL DESCRIPTION  
The ADP5071 is a dual high performance dc-to-dc regulator that  
generates independently regulated positive and negative rails.  
The ADP5071 includes a fixed internal or resistor programmable  
soft start timer to prevent inrush current at power-up. During  
shutdown, both regulators completely disconnect the loads from  
the input supply to provide a true shutdown.  
The input voltage range of 2.85 V to 15 V supports a wide variety of  
applications. The integrated main switch in both regulators enables  
generation of an adjustable positive output voltage up to +39 V  
and a negative output voltage down to −39 V below input voltage.  
Other key safety features in the ADP5071 include overcurrent  
protection (OCP), overvoltage protection (OVP), thermal  
shutdown (TSD), and input undervoltage lockout (UVLO).  
The ADP5071 operates at a pin selected 1.2 MHz/2.4 MHz  
switching frequency. The ADP5071 can synchronize with an  
external oscillator from 1.0 MHz to 2.6 MHz to ease noise  
filtering in sensitive applications. Both regulators implement  
programmable slew rate control circuitry for the MOSFET  
driver stage to reduce electromagnetic interference (EMI).  
The ADP5071 is available in a 20-lead LFCSP or in a 20-lead  
TSSOP and is rated for a −40°C to +125°C junction temperature  
range.  
Table 1. Family Models  
Model  
Boost Switch (A)  
Inverter Switch (A)  
Flexible start-up sequencing is provided with the options of  
manual enable, simultaneous mode, positive supply first, and  
negative supply first.  
ADP5070  
ADP5071  
1.0  
2.0  
0.6  
1.2  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP5071* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Press  
• Bias Generation and Level Setting Made Easy with  
Multiple Range, User Programmable Voltage Output D/A  
Converter  
Evaluation Kits  
• ADP5070/ADP5071 Evaluation Board  
Design Resources  
• ADP5071 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Application Notes  
• AN-1366: Using the ADP5070/ADP5071 to Create Positive  
and Negative Voltage Rails when VOUT < VIN  
• AN-1368: Ferrite Bead Demystified  
Data Sheet  
Discussions  
View all ADP5071 EngineerZone Discussions  
• ADP5071: 2 A/1.2 A DC-to-DC Switching Regulator with  
Independent Positive and Negative Outputs Data Sheet  
User Guides  
Sample and Buy  
Visit the product page to see pricing options  
• UG-758: Evaluating the ADP5070CP/ADP5071CP LFCSP  
DC-to-DC Switching Regulators/Converters  
• UG-848: Evaluating the ADP5070RE/ADP5071RE TSSOP  
DC-to-DC Switching Regulators/Converters  
Technical Support  
Submit a technical question or find your regional support  
number  
Tools and Simulations  
• ADIsimPower™ Voltage Regulator Design Tool  
• ADP507x Design Tool  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADP5071  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Soft Start ...................................................................................... 15  
Slew Rate Control....................................................................... 15  
Current-Limit Protection ............................................................ 15  
Overvoltage Protection.............................................................. 15  
Thermal Shutdown .................................................................... 15  
Start-Up Sequence...................................................................... 15  
Applications Information .............................................................. 17  
ADIsimPower Design Tool ....................................................... 17  
Component Selection ................................................................ 17  
Loop Compensation .................................................................. 20  
Common Applications .............................................................. 22  
Super Low Noise With Optional LDOs................................... 24  
SEPIC Step-Up/Step-Down Operation ................................... 25  
Layout Considerations............................................................... 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 14  
PWM Mode................................................................................. 14  
PSM Mode................................................................................... 14  
Undervoltage Lockout (UVLO) ............................................... 14  
Oscillator and Synchronization................................................ 14  
Internal Regulators..................................................................... 14  
Precision Enabling...................................................................... 15  
REVISION HISTORY  
6/15—Rev. 0 to Rev. A  
Added 20-Lead TSSOP ......................................................Universal  
Change to Pull-Down Resistance Parameter, Table 2.................. 3  
Changes to Table 3 and Table 4....................................................... 5  
Added Figure 3, Renumbered Sequentially .................................. 6  
Changes to Figure 37 Caption to Figure 39 Caption ................. 13  
Changes to Internal Regulators Section ...................................... 14  
Change to Soft Start Section.......................................................... 15  
Changes to Component Selection Section.................................. 17  
Changes to Output Capacitors Section, Soft Start Resistor Section,  
and Diodes Section......................................................................... 18  
Changes to Figure 52 Caption....................................................... 26  
Added Figure 53.............................................................................. 26  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide .......................................................... 27  
2/15—Revision 0: Initial Version  
Rev. A | Page 2 of 27  
 
Data Sheet  
ADP5071  
SPECIFICATIONS  
PVIN1 = PVIN2 = PVINSYS = 2.85 V to 15 V, VPOS = 15 V, VNEG = −15 V, fSW = 1200 kHz, TJ = −40°C to +125°C for minimum/maximum  
specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT SUPPLY VOLTAGE RANGE  
QUIESCENT CURRENT  
VIN  
2.85  
15  
V
PVIN1, PVIN2, PVINSYS  
Operating Quiescent Current  
PVIN1, PVIN2, PVINSYS (Total)  
IQ  
3.5  
5
4.0  
10  
mA  
µA  
No switching, EN1 = EN2 = high,  
PVIN1 = PVIN2 = PVINSYS = 5 V  
No switching, EN1 = EN2 = low,  
PVIN1 = PVIN2 = PVINSYS = 5 V  
Shutdown Current  
ISHDN  
UVLO  
System UVLO Threshold  
Rising  
Falling  
PVINSYS  
VUVLO_RISING  
VUVLO_FALLING  
VHYS_1  
2.8  
2.55  
0.25  
2.85  
V
V
V
2.5  
Hysteresis  
OSCILLATOR CIRCUIT  
Switching Frequency  
fSW  
1.130  
2.240  
1.200  
2.400  
1.270  
2.560  
MHz  
MHz  
SYNC/FREQ = low  
SYNC/FREQ = high (connect to  
VREG)  
SYNC/FREQ Input  
Input Clock Range  
fSYNC  
1.000  
100  
100  
2.600  
1.3  
MHz  
ns  
ns  
V
Input Clock Minimum On Pulse Width  
Input Clock Minimum Off Pulse Width  
Input Clock High Logic  
Input Clock Low Logic  
tSYNC_MIN_ON  
tSYNC_MIN_OFF  
VH (SYNC)  
VL (SYNC)  
0.4  
V
PRECISION ENABLING (EN1, EN2)  
High Level Threshold  
Low Level Threshold  
VTH_H  
VTH_L  
VTH_S  
1.125  
1.025  
0.4  
1.15  
1.05  
1.175  
1.075  
V
V
V
Shutdown Mode  
Internal circuitry disabled to  
achieve ISHDN  
Pull-Down Resistance  
INTERNAL REGULATOR  
VREG Output Voltage  
BOOST REGULATOR  
REN  
1.48  
4.25  
0.8  
MΩ  
V
VREG  
VFB1  
Feedback Voltage  
V
Feedback Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
0.1  
%
%
µA  
V
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Bias Current  
Overvoltage Protection Threshold  
Load Regulation  
IFB1  
VOV1  
∆VFB1/ILOAD1  
∆VFB1/VPVIN1  
0.86  
0.0003  
0.002  
At FB1 pin  
%/mA ILOAD11 = 5 mA to 150 mA  
1
Line Regulation  
%/V  
VPVIN1 = 2.85 V to 14.5 V, ILOAD1  
50 mA  
=
Error Amplifier (EA) Transconductance  
Power FET On Resistance  
Power FET Maximum Drain Source Voltage VDS (MAX) BOOST  
Input Disconnect Switch On Resistance  
Current-Limit Threshold  
Minimum On Time  
gM1  
RDS (ON) BOOST  
270  
2.0  
300  
175  
39  
210  
2.2  
50  
330  
2.4  
µA/V  
mΩ  
V
mΩ  
A
RDS (ON) INBK  
ILIM (BOOST)  
ns  
Minimum Off Time  
25  
ns  
Rev. A | Page 3 of 27  
 
 
ADP5071  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INVERTING REGULATOR  
Reference Voltage  
VREF  
1.60  
V
Reference Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
%
%
V
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Voltage  
VREF − VFB2  
0.8  
Feedback Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
0.1  
%
%
µA  
V
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Bias Current  
Overvoltage Protection Threshold  
IFB2  
VOV2  
0.74  
At FB2 pin after soft start has  
completed  
Load Regulation  
Line Regulation  
∆(VREF − VFB2)/  
ILOAD2  
∆(VREF − VFB2)/  
VPVIN2  
0.0004  
0.003  
%/mA ILOAD21 = 5 mA to 75 mA  
1
%/V  
VPVIN2 = 2.85 V to 14.5 V, ILOAD2 =  
25 mA  
EA Transconductance  
Power FET On Resistance  
Power FET Maximum Drain Source Voltage VDS (MAX) INVERTER  
gM2  
RDS (ON) INVERTER  
270  
300  
350  
39  
330  
µA/V  
mΩ  
V
Current-Limit Threshold  
Minimum On Time  
Minimum Off Time  
SOFT START  
ILIM (INVERTER)  
1200  
1320  
60  
50  
1440  
mA  
ns  
ns  
Soft Start Timer for Boost and Inverting  
Regulators  
tSS  
4
ms  
SS = open  
32  
8 × tSS  
ms  
ms  
SS resistor = 50 kΩ to GND  
Hiccup Time  
THERMAL SHUTDOWN  
Threshold  
tHICCUP  
TSHDN  
THYS  
150  
15  
°C  
°C  
Hysteresis  
1 ILOADx is the current through a resistive load connected across the output capacitor (where x is 1 for the boost regulator load and 2 for the inverting regulator load).  
Rev. A | Page 4 of 27  
Data Sheet  
ADP5071  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA and ΨJT are based on a 4-layer printed circuit board (PCB)  
(two signal and two power planes) with nine thermal vias  
connecting the exposed pad to the ground plane as recommended  
in the Layout Considerations section. θJC is measured at the top  
of the package and is independent of the PCB. The ΨJT value is  
more appropriate for calculating junction to case temperature in  
the application.  
Parameter  
Rating  
PVIN1, PVIN2, PVINSYS  
INBK  
SW1  
SW2  
PGND, AGND  
VREG  
−0.3 V to +18 V  
−0.3 V to PVIN1 + 0.3 V  
−0.3 V to +40 V  
PVIN2 − 40 V to PVIN2 + 0.3 V  
−0.3 V to +0.3 V  
−0.3 V to lower of PVINSYS +  
0.3 V or +6 V  
Table 4. Thermal Resistance  
EN1, EN2, FB1, FB2, SYNC/FREQ −0.3 V to +6 V  
COMP1, COMP2, SLEW, SS,  
SEQ, VREF  
Operating Junction  
Temperature Range  
Package Type  
20-Lead LFCSP  
20-Lead TSSOP  
θJA  
θJC  
ΨJT  
Unit  
°C/W  
°C/W  
−0.3 V to VREG + 0.3 V  
60.2  
58.5  
36.5  
35.0  
0.63  
0.60  
−40°C to +125°C  
Storage Temperature Range  
Soldering Conditions  
−65°C to +150°C  
JEDEC J-STD-020  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 5 of 27  
 
 
 
ADP5071  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
20 SW2  
PGND  
SW1  
1
2
19 PVIN2  
18 PVINSYS  
17 PVIN1  
16 VREG  
15 AGND  
INBK  
3
SYNC/FREQ  
SEQ  
4
15 PVIN1  
14 VREG  
13 AGND  
12 VREF  
11 FB2  
INBK  
SYNC/FREQ  
SEQ  
1
2
3
4
5
ADP5071  
5
TOP VIEW  
ADP5071  
SLEW  
FB1  
6
TOP VIEW  
(Not to Scale)  
SLEW  
7
14  
13  
VREF  
FB2  
FB1  
COMP1  
EN1  
8
9
12 COMP2  
11 EN2  
SS  
10  
NOTES  
NOTES  
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AGND.  
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AGND.  
Figure 2. 20-Lead LFCSP Pin Configuration  
Figure 3. 20-Lead TSSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
LFCSP TSSOP Mnemonic Description  
1
2
3
4
INBK  
Input Disconnect Switch Output for the Boost Regulator.  
SYNC/FREQ Frequency Setting and Synchronization Input. To set the switching frequency to 2.4 MHz, pull the SYNC/FREQ  
pin high. To set the switching frequency to 1.2 MHz, pull the SYNC/FREQ pin low. To synchronize the  
switching frequency, connect the SYNC/FREQ pin to an external clock.  
3
4
5
6
SEQ  
Start-Up Sequence Control. For manual VPOS/VNEG startup using an individual precision enabling pin, leave  
the SEQ pin open. For simultaneous VPOS/VNEG startup when the EN2 pin rises, connect the SEQ pin to VREG  
(the EN1 pin can be used to enable the internal references early, if required). For a sequenced startup, pull the  
SEQ pin low. Either EN1 or EN2 can be used, and the corresponding supply is the first in sequence; hold  
the other enable pin low.  
Driver Stage Slew Rate Control. The SLEW pin sets the slew rate for the SW1 and SW2 drivers. For the  
fastest slew rate (best efficiency), leave the SLEW pin open. For normal slew rate, connect the SLEW pin to  
VREG. For the slowest slew rate (best noise performance), connect the SLEW pin to AGND.  
SLEW  
5
7
FB1  
Feedback Input for the Boost Regulator. Connect a resistor divider between the positive side of the boost  
regulator output capacitor and AGND to program the output voltage.  
6
8
COMP1  
EN1  
Error Amplifier Compensation for the Boost Regulator. Connect the compensation network between this  
pin and AGND.  
Boost Regulator Precision Enable. The EN1 pin is compared to an internal precision reference to enable  
the boost regulator output.  
7
9
8
10  
11  
12  
13  
14  
SS  
Soft Start Programming. Leave the SS pin open to obtain the fastest soft start time. To program a slower  
soft start time, connect a resistor between the SS pin and AGND.  
Inverting Regulator Precision Enable. The EN2 pin is compared to an internal precision reference to enable  
the inverting regulator output.  
Error Amplifier Compensation for the Inverting Regulator. Connect the compensation network between  
this pin and AGND.  
Feedback Input for the Inverting Regulator. Connect a resistor divider between the negative side of the  
inverting regulator output capacitor and VREF to program the output voltage.  
9
EN2  
10  
11  
12  
COMP2  
FB2  
VREF  
Inverting Regulator Reference Output. Connect a 1.0 μF ceramic filter capacitor between the VREF pin and  
AGND.  
13  
14  
15  
16  
17  
15  
16  
17  
18  
19  
AGND  
VREG  
PVIN1  
PVINSYS  
PVIN2  
Analog Ground.  
Internal Regulator Output. Connect a 1.0 μF ceramic filter capacitor between the VREG pin and AGND.  
Power Input for the Boost Regulator.  
System Power Supply for the ADP5071.  
Power Input for the Inverting Regulator.  
Rev. A | Page 6 of 27  
 
Data Sheet  
ADP5071  
Pin No.  
LFCSP TSSOP Mnemonic Description  
18  
19  
20  
20  
1
2
SW2  
PGND  
SW1  
Switching Node for the Inverting Regulator.  
Power Ground for the Boost and Inverting Regulators.  
Switching Node for the Boost Regulator.  
EPAD  
Exposed Pad. Connect the exposed pad to AGND.  
Rev. A | Page 7 of 27  
ADP5071  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical performance characteristics are generated using the standard bill of materials for each input/output combination listed in Table 9,  
Table 10, and Table 11.  
1200  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
V
V
V
V
V
V
= 3.3V, L = 3.3µH  
= 3.3V, L = 4.7µH  
= 5V, L = 3.3µH  
= 5V, L = 4.7µH  
= 12V, L = 10µH  
= 15V, L = 10µH  
V
V
V
V
V
V
V
V
= 3.3V, L = 4.7µH  
= 5V, L = 6.8µH  
= 5V, L = 10µH  
= 12V, L = 6.8µH  
= 12V, L = 15µH  
= 15V, L = 10µH  
= 3.3V, L = 6.8µH  
= 15V, L = 22µH  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
–40  
–30  
–20  
NEG  
–10  
0
0
10  
20  
30  
40  
50  
V
(V)  
V
(V)  
POS  
Figure 4. Boost Regulator Maximum Output Current, fSW = 1.2 MHz,  
A = 25°C, Based on Target of 70% ILIM (BOOST)  
Figure 7. Inverting Regulator Maximum Output Current, fSW = 1.2 MHz,  
A = 25°C, Based on Target of 70% ILIM (INVERTER)  
T
T
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
600  
400  
200  
0
V
V
V
V
V
V
= 3.3V, L = 3.3µH  
V
V
V
V
V
V
V
= 3.3V, L = 2.2µH  
= 5V, L = 3.3µH  
= 5V, L = 4.7µH  
= 12V, L = 6.8µH  
= 15V, L = 10µH  
= 12V, L = 3.3µH  
= 15V, L = 4.7µH  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.3V, L = 4.7µH  
= 5V, L = 2.2µH  
= 5V, L = 4.7µH  
= 12V, L = 4.7µH  
= 15V, L = 6.8µH  
–40  
–30  
–20  
NEG  
–10  
0
0
10  
20  
30  
40  
50  
V
(V)  
V
(V)  
POS  
Figure 5. Boost Regulator Maximum Output Current, fSW = 2.4 MHz,  
A = 25°C, Based on Target of 70% ILIM (BOOST)  
Figure 8. Inverting Regulator Maximum Output Current, fSW = 2.4 MHz,  
A = 25°C, Based on Target of 70% ILIM (INVERTER)  
T
T
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
V
= 3.3V, 1.2MHz  
= 3.3V, 2.4MHz  
V
V
= 3.3V, 1.2MHz  
= 3.3V, 2.4MHz  
IN  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD (A)  
LOAD (A)  
Figure 6. Boost Regulator Efficiency vs. Current Load, VIN = 3.3 V,  
POS = 5 V, TA = 25°C  
Figure 9. Inverting Regulator Efficiency vs. Current Load, VIN = 3.3 V,  
NEG = −5 V, TA = 25°C  
V
V
Rev. A | Page 8 of 27  
 
Data Sheet  
ADP5071  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
V
V
V
V
= 3.3V, 1.2MHz  
= 3.3V, 2.4MHz  
= 5V, 1.2MHz  
= 5V, 2.4MHz  
V
V
V
V
= 3.3V, 1.2MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.3V, 2.4MHz  
= 5V, 1.2MHz  
= 5V, 2.4MHz  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD (A)  
LOAD (A)  
Figure 10. Boost Regulator Efficiency vs. Current Load, VPOS = 9 V, TA = 25°C  
Figure 13. Inverting Regulator Efficiency vs. Current Load, VNEG = −9 V,  
TA = 25°C  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
V
V
V
V
= 3.3V, 1.2MHz  
= 3.3V, 2.4MHz  
= 5V, 1.2MHz  
= 5V, 2.4MHz  
V
V
V
V
= 3.3V, 1.2MHz  
= 3.3V, 2.4MHz  
= 5V, 1.2MHz  
= 5V, 2.4MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD (A)  
LOAD (A)  
Figure 11. Boost Regulator Efficiency vs. Current Load, VPOS = 15 V,  
Figure 14. Inverting Regulator Efficiency vs. Current Load, VNEG = −15 V,  
T
A = 25°C  
T
A = 25°C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
V
= 5V, 1.2MHz  
= 5V, 2.4MHz  
V
V
= 5V, 1.2MHz  
= 5V, 2.4MHz  
IN  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD (A)  
LOAD (A)  
Figure 12. Boost Regulator Efficiency vs. Current Load, VPOS = 34 V,  
A = 25°C  
Figure 15. Inverting Regulator Efficiency vs. Current Load, VNEG = −34 V,  
A = 25°C  
T
T
Rev. A | Page 9 of 27  
ADP5071  
Data Sheet  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD (A)  
LOAD (A)  
Figure 16. Boost Regulator Efficiency over Temperature,  
Figure 19. Inverting Regulator Efficiency over Temperature,  
IN = 5 V, VNEG = −15 V, fSW = 1.2 MHz  
VIN = 5 V, VPOS = 15 V, fSW = 1.2 MHz  
V
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
–0.1  
–0.3  
–0.5  
–0.1  
–0.3  
–0.5  
V
V
V
ACCURACY  
ACCURACY  
ACCURACY  
OUT  
REF  
FB2  
V
ACCURACY  
ACCURACY  
OUT  
V
FB1  
15  
0
5
10  
(V)  
20  
0
5
10  
(V)  
15  
20  
V
V
IN  
IN  
Figure 17. Boost Regulator Line Regulation, VPOS = 15 V,  
SW = 1.2 MHz, 15 mA Load, TA = 25°C  
Figure 20. Inverting Regulator Line Regulation, VNEG = −15 V,  
SW = 1.2 MHz, 15 mA Load, TA = 25°C  
f
f
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
–0.1  
–0.3  
–0.5  
–0.1  
–0.3  
–0.5  
1.2MHz  
2.4MHz  
1.2MHz  
2.4MHz  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.05  
0.10  
0.15  
LOAD (A)  
LOAD (A)  
Figure 18. Boost Regulator Load Regulation, VIN = 5 V, VPOS = 15 V  
Figure 21. Inverting Regulator Load Regulation, VIN = 5 V, VNEG = −15 V  
Rev. A | Page 10 of 27  
Data Sheet  
ADP5071  
0.5  
0.5  
0.3  
0.3  
0.1  
0.1  
–0.1  
–0.3  
–0.1  
–0.3  
–0.5  
–0.5  
0
0.05  
0.10  
0.15  
0.20  
–0.05  
0.05  
0.15  
0.25  
0.35  
0.45  
INVERTING REGULATOR LOAD (A)  
BOOST REGULATOR LOAD (A)  
Figure 22. Cross Regulation, Boost Regulator VFB1 Regulation over Inverting  
Regulator Current Load, VIN = 5 V, VPOS = 15 V, VNEG = −15 V,  
Figure 25. Cross Regulation, Inverting Regulator VFB2 Regulation over Boost  
Regulator Current Load, VIN = 5 V, VPOS = 15 V, VNEG = −15 V,  
f
SW = 2.4 MHz, TA = 25°C, Boost Regulator Run in Continuous Conduction  
Mode with Fixed Load for Test  
f
SW = 2.4 MHz, TA = 25°C, Inverting Regulator Run in Continuous Conduction  
Mode with Fixed Load for Test  
1.44  
2.40  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.40  
1.36  
1.32  
1.28  
1.22  
1.20  
0
5
10  
(V)  
15  
20  
0
2
4
6
8
10  
12  
14  
16  
V
V
(V)  
IN  
IN  
Figure 23. Boost Regulator Current Limit (ILIMIT) vs. Input Voltage (VIN  
over Temperature  
)
Figure 26. Inverting Regulator Current Limit (ILIMIT) vs. Input Voltage (VIN  
over Temperature  
)
1.27  
2.54  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
1.13  
2.49  
2.44  
2.39  
2.34  
2.29  
2.24  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
V
(V)  
V
(V)  
IN  
IN  
Figure 24. Oscillator Frequency vs. Input Voltage (VIN) over Temperature,  
SYNC/FREQ Pin = High  
Figure 27. Oscillator Frequency vs. Input Voltage (VIN) over Temperature,  
SYNC/FREQ Pin = Low  
Rev. A | Page 11 of 27  
ADP5071  
Data Sheet  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
14  
12  
10  
8
6
4
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
2
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
0
2
4
6
8
10  
12  
14  
16  
0
0
2
4
6
8
10  
12  
14  
16  
V
(V)  
IN  
V
(V)  
IN  
Figure 31. Operating Quiescent Current vs. Input Voltage (VIN) over  
Temperature, Both ENx Pins On  
Figure 28. Shutdown Quiescent Current vs. Input Voltage (VIN) over  
Temperature, Both ENx Pins Below Shutdown Threshold  
T
T
V
IN  
V
IN  
V
NEG  
2
1
V
POS  
2
1
V
FB2  
V
3
FB1  
3
B
B
CH1 1V  
CH3 5mV  
CH2 100mV  
W
4.00ms  
14.0ms  
CH1  
5.0V  
W
W
B
B
CH1 1.0V  
CH3 5.0mV  
CH2 100mV  
4.00ms  
W
CH1  
5.00V  
B
W
T
B
T
14.0ms  
W
Figure 32. Inverting Regulator Line Transient, VIN = 4.5 V to 5.5 V Step,  
Figure 29. Boost Regulator Line Transient, VIN = 4.5 V to 5.5 V Step,  
VNEG = −15 V, RLOAD2 = 300 Ω, fSW = 2.4 MHz, TA = 25°C  
VPOS = 15 V, RLOAD1 = 300 Ω, fSW = 2.4 MHz, TA = 25°C  
T
T
I
LOAD1  
I
LOAD2  
V
1
2
NEG  
2
1
V
POS  
V
FB2  
3
V
FB1  
3
B
CH1 10mA  
CH3 5mV  
CH2 50mV  
W
4.00ms  
13.0ms  
CH1  
50mA  
W
B
CH1 20mA  
CH3 25mV  
CH2 50mV  
W
4.00ms  
CH1  
137mA  
B
W
T
B
T
13.160ms  
Figure 33. Inverting Regulator Load Transient, VIN = 5 V Step, VNEG = −15 V,  
LOAD2 = 35 mA to 45 mA Step, fSW = 2.4 MHz, TA = 25°C  
Figure 30. Boost Regulator Load Transient, VIN = 5 V Step, VPOS = 15 V,  
LOAD1 = 120 mA to 150 mA Step, fSW = 2.4 MHz, TA = 25°C  
I
I
Rev. A | Page 12 of 27  
Data Sheet  
ADP5071  
T
T
I
INDUCTOR  
I
INDUCTOR  
1
1
2
SW2  
SW1  
2
3
V
V
NEG  
POS  
3
B
B
B
B
CH2 5V Ω  
CH1 200mA  
CH3 500mV  
CH2 2.5V Ω  
2.0µs  
34.6%  
CH1  
0.0A  
CH1 100mA  
CH3 500mV  
2.0µs  
17.4%  
CH1  
0A  
W
B
W
W
B
W
T
T
W
W
Figure 34. Boost Regulator Skip Mode Operation Showing Inductor Current  
(IINDUCTOR), Switch Node Voltage, and Output Ripple, VIN = 5 V,  
Figure 37. Inverting Regulator Skip Mode Operation Showing Inductor  
Current (IINDUCTOR), Switch Node Voltage, and Output Ripple, VIN = 5 V,  
VPOS = 15 V, ILOAD1 = 4 mA, fSW = 2.4 MHz, TA = 25°C  
VNEG = −5 V, ILOAD2 = 1 mA, fSW = 2.4 MHz, TA = 25°C  
T
T
I
INDUCTOR  
SW2  
I
INDUCTOR  
SW1  
1
1
2
2
3
V
V
POS  
NEG  
3
B
B
B
B
CH2 5.0V Ω  
CH1 200mA  
CH3 500mV  
CH2 2.5V Ω  
100ns  
34.6%  
CH1  
152mA  
CH1 100mA  
CH3 500mV  
100ns  
W
CH1  
80mA  
W
B
W
W
B
T
T 17.4%  
W
W
Figure 35. Boost Regulator Discontinuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VPOS = 15 V, ILOAD1 = 35 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 38. Inverting Regulator Discontinuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output Ripple,  
VIN = 5 V, VNEG = −5 V, ILOAD2 = 6 mA, fSW = 2.4 MHz, TA = 25°C  
T
T
I
INDUCTOR  
1
1
2
I
INDUCTOR  
SW2  
SW1  
2
3
V
NEG  
3
V
POS  
B
B
B
B
CH2 5V Ω  
CH1 200mA  
CH3 500mV  
CH2 2.5V Ω  
100ns  
CH1  
152mA  
CH1 100mA  
CH3 500mV  
100ns  
17.4%s  
CH1  
172mA  
W
B
W
W
B
W
T
34.6%  
T
W
W
Figure 39. Inverting Regulator Continuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VNEG = −5 V, ILOAD2 = 35 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 36. Boost Regulator Continuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VPOS = 15 V, ILOAD1 = 90 mA, fSW = 2.4 MHz, TA = 25°C  
Rev. A | Page 13 of 27  
ADP5071  
Data Sheet  
THEORY OF OPERATION  
V
IN  
CVREG  
PVIN1  
SYNC/FREQ  
PVINSYS  
VREG  
PVIN2  
C
IN  
CURRENT SENSE  
INVERTER  
INBK SWITCH  
CONTROL  
HV  
REGULATOR  
INBK  
PWM CONTROL  
D2  
SW2  
L2  
L1  
EN1  
EN2  
SLEW  
HV  
BAND GAP  
D1  
C
V
OUT2  
OUT1  
SW1  
SLEW  
C
OUT1  
PLL  
BOOST PWM  
CONTROL  
R
FT1  
ERROR  
AMP  
R
REF2  
FT2  
+
OSCILLATOR  
PGND  
FB1  
FB2  
CURRENT  
SENSE  
BOOST_ENABLE  
SEQUENCE  
CONTROL  
R
FB2  
ERROR  
AMP  
+
INVERTER_ENABLE  
VREF  
REF_1V6  
REF1  
R
REF1  
THERMAL  
SHUTDOWN  
FB1  
COMP1  
C
VREF  
VREG  
4µA  
COMP2  
UVLO  
R
C1  
REFERENCE  
GENERATOR  
START-UP  
TIMERS  
R
C2  
REF2  
FB1  
OVP  
REF_1V6  
FB2  
C
C1  
C
C2  
SLEW  
EN1  
EN2 SEQ  
SS  
AGND  
R
(OPTIONAL)  
SS  
Figure 40. Functional Block Diagram  
A phase-locked loop (PLL)-based oscillator generates the internal  
clock and offers a choice of two internally generated frequency  
options or external clock synchronization. The switching frequency  
is configured using the SYNC/FREQ pin options shown in Table 6.  
PWM MODE  
The boost and inverting regulators in the ADP5071 operate at a  
fixed frequency set by an internal oscillator. At the start of each  
oscillator cycle, the MOSFET switch turns on, applying a positive  
voltage across the inductor. The inductor current increases until  
the current sense signal crosses the peak inductor current threshold  
that turns off the MOSFET switch; this threshold is set by the error  
amplifier output. During the MOSFET off time, the inductor  
current declines through the external diode until the next  
oscillator clock pulse starts a new cycle. It regulates the output  
voltage by adjusting the peak inductor current threshold.  
For external synchronization, connect the SYNC/FREQ pin to a  
suitable clock source. The PLL locks to an input clock within  
the range specified by fSYNC  
.
Table 6. SYNC/FREQ Pin Options  
SYNC/FREQ Pin  
High  
Switching Frequency  
2.4 MHz  
Low  
1.2 MHz  
PSM MODE  
External Clock  
1 × clock frequency  
During light load operation, the regulators can skip pulses to  
maintain output voltage regulation. Skipping pulses increases  
the device efficiency.  
INTERNAL REGULATORS  
The internal VREG regulator in the ADP5071 provides a stable  
power supply for the internal circuitry. The VREG supply can be  
used to provide a logic high signal for device configuration pins but  
must not be used to supply external circuitry.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The undervoltage lockout circuitry monitors the PVINSYS pin  
voltage level. If the input voltage drops below the VUVLO_FALLING  
threshold, both regulators turn off. After the PVINSYS pin voltage  
rises above the VUVLO_RISING threshold, the soft start period initiates,  
and the regulators are enabled.  
The VREF regulator provides a reference voltage for the inverting  
regulator feedback network to ensure a positive feedback voltage on  
the FB2 pin.  
OSCILLATOR AND SYNCHRONIZATION  
A current-limit circuit is included for both regulators to protect the  
circuit from accidental loading.  
The ADP5071 initiates the drive of the boost regulator SW1 pin  
and the inverting regulator SW2 pin 180° out of phase to reduce  
peak current consumption and noise.  
Rev. A | Page 14 of 27  
 
 
 
 
 
 
 
Data Sheet  
ADP5071  
PRECISION ENABLING  
CURRENT-LIMIT PROTECTION  
The ADP5071 has an individual enable pin for the boost and  
inverting regulators: EN1 and EN2. The enable pins feature a  
precision enable circuit with an accurate reference voltage. This  
reference allows the ADP5071 to be sequenced easily from other  
supplies. It can also be used as a programmable UVLO input by  
using a resistor divider.  
The boost and inverting regulators in the ADP5071 include  
current-limit protection circuitry to limit the amount of forward  
current through the MOSFET switch.  
When the peak inductor current exceeds the overcurrent limit  
threshold for a number of clock cycles during an overload or  
short-circuit condition, the regulator enters hiccup mode. The  
regulator stops switching and then restarts with a new soft start  
cycle after tHICCUP and repeats until the overcurrent condition is  
removed.  
The enable pins have an internal pull-down resistor that defaults  
each regulator to off when the pin is floating.  
When the voltage at the enable pins is greater than the VTH_H  
reference level, the regulator is enabled.  
OVERVOLTAGE PROTECTION  
An overvoltage protection mechanism is present on the FB1  
and FB2 pins for the boost and inverting regulators.  
SOFT START  
Each regulator in the ADP5071 includes soft start circuitry that  
ramps the output voltage in a controlled manner during startup,  
thereby limiting the inrush current. The soft start time is internally  
set to the fastest rate when the SS pin is open.  
On the boost regulator, when the voltage on the FB1 pin exceeds  
the VOV1 threshold, the switching on SW1 stops until the voltage  
falls below the threshold again. This functionality is permanently  
enabled on this regulator.  
Connecting a resistor between SS and AGND allows the adjust-  
ment of the soft start delay. The delay length is common to both  
regulators.  
On the inverting regulator, when the voltage on the FB2 pin  
drops below the VOV2 threshold, the switching stops until the  
voltage rises above the threshold. This functionality is enabled  
after the soft start period has elapsed.  
SLEW RATE CONTROL  
The ADP5071 employs programmable output driver slew rate  
control circuitry. This circuitry reduces the slew rate of the  
switching node as shown in Figure 41, resulting in reduced  
ringing and lower EMI. To program the slew rate, connect the  
SLEW pin to the VREG pin for normal mode, to the AGND pin  
for slow mode, or leave it open for fast mode. This configuration  
allows the use of an open-drain output from a noise sensitive  
device to switch the slew rate from fast to slow, for example,  
during analog-to-digital converter (ADC) sampling.  
THERMAL SHUTDOWN  
In the event that the ADP5071 junction temperature rises above  
T
SHDN, the thermal shutdown circuit turns off the IC. Extreme  
junction temperatures can be the result of prolonged high current  
operation, poor circuit board design, and/or high ambient temper-  
ature. Hysteresis is included so that when thermal shutdown occurs,  
the ADP5071 does not return to operation until the on-chip  
temperature drops below TSHDN minus THYS. When resuming from  
thermal shutdown, a soft start is performed on each enabled  
channel.  
Note that slew rate control causes a trade-off between efficiency  
and low EMI.  
START-UP SEQUENCE  
The ADP5071 implements a flexible start-up sequence to meet  
different system requirements. Three different enabling modes  
can be implemented via the SEQ pin, as explained in Table 7.  
FASTEST  
SLOWEST  
Table 7. SEQ Pin Settings  
SEQ Pin  
Open  
VREG  
Low  
Description  
Manual enable mode  
Simultaneous enable mode  
Sequential enable mode  
To configure the manual enable mode, leave the SEQ pin open.  
The boost and inverting regulators are controlled separately from  
their respective precision enable pins.  
Figure 41. Switching Node at Various Slew Rate Settings  
Rev. A | Page 15 of 27  
 
 
 
 
 
 
 
 
 
ADP5071  
Data Sheet  
V
POS  
To configure the simultaneous enable mode, connect the SEQ pin  
to the VREG pin. Both regulators power up simultaneously  
when the EN2 pin is taken high. The EN1 pin enable can be  
used to enable the internal references ahead of enabling the  
outputs, if desired. The simultaneous enable mode timing is  
shown in Figure 42.  
V
IN  
DISCONNECT  
SWITCH TURN ON  
TIME  
V
POS  
V
V
NEG  
1. V  
POS  
FOLLOWED BY V  
NEG  
V
(SEQ = LOW, EN1 = HIGH, EN2 = LOW)  
IN  
DISCONNECT  
SWITCH TURN ON  
POS  
TIME  
V
IN  
DISCONNECT  
SWITCH TURN ON  
V
NEG  
TIME  
SIMULTANEOUS ENABLE MODE  
(SEQ = HIGH, EN2 = HIGH)  
Figure 42. Simultaneous Enable Mode  
V
NEG  
To configure the sequential enable mode, pull the SEQ pin low.  
In this mode, either VPOS or VNEG can be enabled first by using  
the respective EN1 pin or EN2 pin. Keep the other pin low. The  
secondary supply is enabled when the primary supply completes  
soft start and its feedback voltage reaches approximately 85% of  
the target value. The sequential enable mode timing is shown in  
Figure 43.  
2. V  
NEG  
FOLLOWED BY V  
POS  
(SEQ = LOW, EN2 = HIGH, EN1 = LOW)  
SEQUENTIAL ENABLE MODE  
Figure 43. Sequential Enable Mode  
Rev. A | Page 16 of 27  
 
 
Data Sheet  
ADP5071  
APPLICATIONS INFORMATION  
Set the positive output for the boost regulator by  
ADIsimPOWER DESIGN TOOL  
The ADP5071 is supported by the ADIsimPower design toolset.  
ADIsimPower is a collection of tools that produce complete  
power designs optimized to a specific design goal. These tools  
allow the user to generate a full schematic, bill of materials, and  
calculate performance in minutes. ADIsimPower can optimize  
designs for cost, area, efficiency, and parts count while taking  
into consideration the operating conditions and limitations of  
the IC and all real external components. The ADIsimPower tool  
can be found at www.analog.com/adisimpower, and the user  
can request an unpopulated board through the tool.  
R
FT1   
VPOS = VFB1 × 1+  
RFB1  
where:  
V
V
R
R
POS is the positive output voltage.  
FB1 is the FB1 reference voltage.  
FT1 is the feedback resistor from VPOS to FB1.  
FB1 is the feedback resistor from FB1 to AGND.  
Set the negative output for the inverting regulator by  
R
FT2  
FB2  
COMPONENT SELECTION  
Feedback Resistors  
VNEG = VFB2  
where:  
V
V
R
R
V
(
VREF VFB2  
)
R
The ADP5071 provides an adjustable output voltage for both boost  
and inverting regulators. An external resistor divider sets the output  
voltage where the divider output must equal the appropriate  
feedback reference voltage, VFB1 or VFB2. To limit the output voltage  
accuracy degradation due to feedback bias current, ensure that the  
NEG is the negative output voltage.  
FB2 is the FB2 reference voltage.  
FT2 is the feedback resistor from VNEG to FB2.  
FB2 is the feedback resistor from FB2 to VREF.  
REF is the VREF pin reference voltage.  
current through the divider is at least 10 times IFB1 or IFB2  
.
Table 8. Recommended Feedback Resistor Values  
Boost/SEPIC Regulator  
Inverting Regulator  
Calculated  
Desired Output  
Voltage (V)  
Calculated  
RFT1 (MΩ)  
0.143  
0.316  
0.357  
0.432  
0.604  
1.24  
1.4  
2.1  
2.43  
2.15  
RFB1 (kΩ)  
115  
115  
115  
102  
115  
121  
100  
137  
137  
100  
107  
107  
100  
137  
Output Voltage (V)  
RFT2 (MΩ)  
0.332  
0.475  
0.523  
0.715  
1.15  
1.62  
1.15  
2.8  
2.32  
RFB2 (kΩ)  
Output Voltage (V)  
1.8  
3
3.3  
4.2  
5
1.795  
2.998  
3.283  
4.188  
5.002  
8.998  
12.000  
13.063  
14.990  
18.000  
19.865  
23.903  
30.000  
35.253  
102  
100  
102  
115  
158  
133  
71.5  
162  
118  
113  
113  
102  
107  
−1.804  
−3.000  
−3.302  
−4.174  
−5.023  
−8.944  
−12.067  
−13.027  
−14.929  
−18.103  
−20.014  
−23.984  
−30.004  
−34.748  
9
12  
13  
15  
18  
20  
24  
30  
35  
2.67  
2.94  
3.16  
4.12  
2.55  
3.09  
3.65  
5.9  
5.11  
115  
Rev. A | Page 17 of 27  
 
 
 
ADP5071  
Data Sheet  
Output Capacitors  
VREF Capacitor  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
the output voltage dc bias.  
A 1.0 µF ceramic capacitor (CVREF) is required between the VREF  
pin and AGND.  
Soft Start Resistor  
A resistor can be connected between the SS pin and the AGND pin  
to increase the soft start time. The soft start time can be set by the  
resistor between 4 ms (268 kΩ) and 32 ms (50 kΩ). Leaving the  
SS pin open selects the fastest time of 4 ms. Figure 44 shows the  
behavior of this operation. Calculate the soft start time using the  
following formula:  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure the  
minimum capacitance over the necessary temperature range and  
dc bias conditions. X5R or X7R dielectrics with a voltage rating of  
25 V or 50 V (depending on output) are recommended for best  
performance. Y5V and Z5U dielectrics are not recommended  
for use with any dc-to-dc converter because of their poor  
temperature and dc bias characteristics.  
t
SS = 38.4 × 10−3 − 1.28 × 10−7 × RSS (Ω)  
where 50 kΩ ≤ RSS ≤ 268 kΩ.  
SOFT START  
TIMER  
Calculate the worst-case capacitance accounting for capacitor  
variation over temperature, component tolerance, and voltage  
using the following equation:  
32ms  
C
EFFECTIVE = CNOMINAL × (1 − TEMPCO) × (1 − DCBIASCO) ×  
(1 − Tolerance)  
where:  
4ms  
SS PIN OPEN  
R1  
SOFT START  
RESISTOR  
CEFFECTIVE is the effective capacitance at the operating voltage.  
CNOMINAL is the nominal data sheet capacitance.  
R2  
Figure 44. Soft Start Behavior  
TEMPCO is the worst-case capacitor temperature coefficient.  
DCBIASCO is the dc bias derating at the output voltage.  
Tolerance is the worst-case component tolerance.  
Diodes  
A Schottky diode with low junction capacitance is recommended  
for D1 and D2. At higher output voltages and especially at higher  
switching frequencies, the junction capacitance is a significant  
contributor to efficiency. Higher capacitance diodes also generate  
more switching noise. As a guide, a diode with less than 40 pF  
junction capacitance is preferred when the output voltage is  
above 5 V.  
To guarantee the performance of the device, it is imperative that  
the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Capacitors with lower effective series resistance (ESR) and  
effective series inductance (ESL) are preferred to minimize  
output voltage ripple.  
Inductor Selection for the Boost Regulator  
Note that the use of large output capacitors can require a slower  
soft start to prevent current limit during startup. A 10 µF capacitor  
is suggested as a good balance between performance and size.  
The inductor stores energy during the on time of the power  
switch, and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, inductance  
values in the range of 1 µH to 22 µH are recommended. In general,  
lower inductance values have higher saturation current and  
lower series resistance for a given physical size. However, lower  
inductance results in a higher peak current that can lead to reduced  
efficiency and greater input and/or output ripple and noise. A  
peak-to-peak inductor ripple current close to 30% of the maximum  
dc input current for the application typically yields an optimal  
compromise.  
Input Capacitor  
Higher value input capacitors help to reduce the input voltage  
ripple and improve transient response.  
To minimize supply noise, place the input capacitor as close as  
possible to the PVINSYS pin, PVIN1 pin, and PVIN2 pin. A low  
ESR capacitor is recommended.  
The effective capacitance needed for stability is a minimum of 10 µF.  
If the power pins are individually decoupled, it is recommended  
to use an effective minimum of a 5.6 µF capacitor on the PVIN1  
and PVIN2 pins and a 3.3 µF capacitor on the PVINSYS pin. The  
minimum values specified exclude dc bias, temperature, and  
tolerance effects that are application dependent and must be  
taken into consideration.  
VREG Capacitor  
A 1.0 µF ceramic capacitor (CVREG) is required between the VREG  
pin and AGND.  
Rev. A | Page 18 of 27  
 
Data Sheet  
ADP5071  
For the inductor ripple current in continuous conduction mode  
(CCM) operation, the input (VIN) and output (VPOS) voltages  
determine the switch duty cycle (DUTY1) by the following  
equation:  
Inductor Selection for the Inverting Regulator  
The inductor stores energy during the on time of the power  
switch, and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, inductance  
values in the range of 1 µH to 22 µH are recommended. In  
general, lower inductance values have higher saturation current  
and lower series resistance for a given physical size. However,  
lower inductance results in a higher peak current that can lead  
to reduced efficiency and greater input and/or output ripple and  
noise. A peak-to-peak inductor ripple current close to 30% of  
the maximum dc current in the inductor typically yields an  
optimal compromise.  
DIODE1   
V
POS VIN +V  
DUTY =  
1
VPOS +VDIODE1  
where VDIODE1 is the forward voltage drop of the Schottky diode  
(D1).  
The dc input current in CCM (IIN) can be determined by the  
following equation:  
IOUT1  
(1DUTY )  
IIN  
=
For the inductor ripple current in continuous conduction mode  
(CCM) operation, the input (VIN) and output (VNEG) voltages  
determine the switch duty cycle (DUTY2) by the following  
equation:  
1
Using the duty cycle (DUTY1) and switching frequency (fSW),  
determine the on time (tON1) using the following equation:  
DUTY  
fSW  
1
tON1  
=
|VNEG | + VDIODE2  
DUTY  
=
2
VIN + |VNEG | + V  
DIODE2   
The inductor ripple current (IL1) in steady state is calculated by  
VIN ×tON1  
where VDIODE2 is the forward voltage drop of the Schottky diode  
(D2).  
IL1  
=
L1  
The dc current in the inductor in CCM (IL2) can be determined  
by the following equation:  
Solve for the inductance value (L1) using the following equation:  
VIN × tON1  
L1 =  
IOUT2  
(1DUTY )  
IL2  
=
IL1  
2
Assuming an inductor ripple current of 30% of the maximum  
dc input current results in  
Using the duty cycle (DUTY2) and switching frequency (fSW),  
determine the on time (tON2) by the following equation:  
VIN × tON1 × (1DUTY  
1)  
DUTY  
fSW  
2
L1 =  
tON2  
=
0.3
×
I
OUT1  
Ensure that the peak inductor current (the maximum input  
current plus half the inductor ripple current) is below the rated  
saturation current of the inductor. Likewise, ensure that the  
maximum rated rms current of the inductor is greater than the  
maximum dc input current to the regulator.  
The inductor ripple current (IL2) in steady state is calculated by  
VIN ×tON2  
IL2  
=
L2  
Solve for the inductance value (L2) by the following equation:  
When the ADP5071 boost regulator is operated in CCM at duty  
cycles greater than 50%, slope compensation is required to stabilize  
the current mode loop. This slope compensation is built in to  
the ADP5071 For stable current mode operation, ensure that  
the selected inductance is equal to or greater than the minimum  
calculated inductance, LMIN1, for the application parameters in  
the following equation:  
VIN × tON2  
L2 =  
IL2  
Assuming an inductor ripple current of 30% of the maximum  
dc current in the inductor results in  
VIN × tON2 ×(1DUTY )  
2
L2 =  
0.3
×
I
OUT2  
0.13  
(1 DUTY )  
(µH)  
Ensure that the peak inductor current (the maximum input current  
plus half the inductor ripple current) is below the rated saturation  
current of the inductor. Likewise, ensure that the maximum rated  
rms current of the inductor is greater than the maximum dc  
input current to the regulator.  
L1 > LMIN1 =VIN ×  
0.16  
1
Table 10 suggests a series of inductors to use with the ADP5071  
boost regulator.  
Rev. A | Page 19 of 27  
ADP5071  
Data Sheet  
When the ADP5071 inverting regulator is operated in CCM at  
duty cycles greater than 50%, slope compensation is required to  
stabilize the current mode loop. For stable current mode operation,  
ensure that the selected inductance is equal to or greater than  
the minimum calculated inductance, LMIN2, for the application  
parameters in the following equation:  
G
CS1 is the current sense transconductance gain (the inductor  
current divided by the voltage at COMP1), which is internally  
set by the ADP5071and is 12.5 A/V.  
ZOUT1 is the impedance of the load in parallel with the output  
capacitor.  
To determine the crossover frequency (fC1), it is important to  
note that, at that frequency, the compensation impedance (ZCOMP1  
is dominated by a resistor (RC1), and the output impedance (ZOUT1  
is dominated by the impedance of an output capacitor (COUT1).  
Therefore, when solving for the crossover frequency, the equation  
(by definition of the crossover frequency) is simplified to  
)
)
0.13  
(1 DUTY  
(µH)  
L2 > LMIN2 =VIN ×  
0.16  
2
)
Table 11 suggests a series of inductors to use with the ADP5071  
inverting regulator.  
VFB1 VIN  
VPOS VPOS  
LOOP COMPENSATION  
AVL1  
=
×
×GM1 × RC1 ×GCS1 ×  
The ADP5071 uses external components to compensate the  
regulator loop, allowing the optimization of the loop dynamics  
for a given application. It is recommended to use the ADIsimPower  
tool to calculate compensation components.  
1
=1  
2π × fC1 ×COUT1  
where fC1 is the crossover frequency.  
Boost Regulator  
To solve for RC1, use the following equation:  
The boost converter produces an undesirable right half plane  
zero in the regulation feedback loop. This feedback loop requires  
compensating the regulator such that the crossover frequency  
occurs well below the frequency of the right half plane zero. The  
right half plane zero is determined by the following equation:  
2
2π × fC1 ×COUT1 ×(VPOS  
)
RC1  
=
VFB1 ×VIN ×GM1 ×GCS1  
where GCS1 = 12.5 A /V.  
2
Using typical values for VFB1 and GM1 results in  
R
LOAD1(1DUTY  
1)  
fZ1(RHP) =  
where:  
2
2094 × fC1 ×COUT1 ×(VPOS  
)
2
π ×
L1  
RC1  
=
VIN  
fZ1(RHP) is the right half plane zero frequency.  
LOAD1 is the equivalent load resistance or the output voltage  
divided by the load current.  
For better accuracy, it is recommended to use the value of output  
capacitance, COUT1, expected for the dc bias conditions under  
which it operates under in the calculation for RC1.  
R
DIODE1   
V
POS VIN +V  
After the compensation resistor is known, set the zero formed  
by the compensation capacitor and resistor to one-fourth of the  
crossover frequency, or  
DUTY =  
1
VPOS +VDIODE1  
where VDIODE1 is the forward voltage drop of the Schottky  
2
diode (D1).  
CC1  
=
π × fC1 × RC1  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-tenth of the right half  
plane zero frequency.  
where CC1 is the compensation capacitor value.  
ERROR  
AMPLIFIER  
FB1  
The boost regulator loop gain is  
COMP1  
g
M1  
REF1  
VFB1 VIN  
VPOS VPOS  
R
C1  
AVL1  
=
×
× GM1 × ROUT1||ZCOMP1 × GCS1 × ZOUT1  
C
B1  
C
C1  
where:  
A
V
V
V
G
VL1 is the loop gain.  
Figure 45. Compensation Components  
FB1 is the feedback regulation voltage  
POS is the regulated positive output voltage.  
IN is the input voltage.  
The capacitor, CB1, is chosen to cancel the zero introduced by  
the output capacitor ESR. Solve for CB1 as follows:  
M1 is the error amplifier transconductance gain.  
ESR × COUT1  
CB1 =  
R
Z
OUT1 is the output impedance of the error amplifier and is 33 MΩ.  
COMP1 is the impedance of the series RC network from  
RC1  
COMP1 to AGND.  
Rev. A | Page 20 of 27  
 
Data Sheet  
ADP5071  
For low ESR output capacitance such as with a ceramic capacitor,  
To determine the crossover frequency, it is important to note  
that, at that frequency, the compensation impedance (ZCOMP2) is  
C
B1 is optional. For optimal transient performance, RC1 and CC1  
may need to be adjusted by observing the load transient response  
of the ADP5071. For most applications, RC1 must be within the  
range of 1 kΩ to 200 kΩ, and CC1 must be within the range of  
1 nF to 68 nF.  
dominated by a resistor, RC2, and the output impedance (ZOUT2  
)
is dominated by the impedance of the output capacitor, COUT2  
.
Therefore, when solving for the crossover frequency, the equation  
(by definition of the crossover frequency) is simplified to  
Inverting Regulator  
VFB2  
VIN  
A
=
×
× GM2 ×  
VL2  
|VNEG| (VIN + 2 ×|VNEG|)  
The inverting converter, like the boost converter, produces an  
undesirable right half plane zero in the regulation feedback loop.  
This feedback loop requires compensating the regulator such that  
the crossover frequency occurs well below the frequency of the  
right half plane zero. The right half plane zero frequency is  
determined by the following equation:  
1
RC2 × GCS 2 ×  
=1  
2π × fC2 × COUT2  
where fC2 is the crossover frequency.  
To solve for RC2, use the following equation:  
2
RLOAD2(1DUTY  
2π × L2 × DUTY  
2
)
2π × fC2 × COUT2 ×|VNEG|×(VIN + (2 ×|VNEG|)  
VFB2 ×VIN × GM2 × GCS2  
fZ2(RHP) =  
RC2 =  
2
where:  
fZ2(RHP) is the right half plane zero frequency.  
LOAD2 is the equivalent load resistance or the output voltage  
divided by the load current.  
where GCS2 = 12.5 A /V.  
Using typical values for VFB2 and GM2 results in  
R
2094× fC2 ×COUT2×|VNEG|× (VIN + (2 ×|VNEG|)  
RC2  
=
VIN  
|VNEG|+VDIODE2  
VIN +|VNEG|+ V  
DUTY =  
2
For better accuracy, it is recommended to use the value of output  
capacitance, COUT2, expected under the dc bias conditions that it  
operates under in the calculation for RC2.  
DIODE2   
where VDIODE2 is the forward voltage drop of the Schottky diode  
(D2).  
After the compensation resistor is known, set the zero formed  
by the CC2 and RC2 to one-fourth of the crossover frequency, or  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-tenth of the right half  
plane zero frequency.  
2
CC2 =  
π × fC2 × RC2  
The inverting regulator loop gain is  
where CC2 is the compensation capacitor.  
VFB2  
VIN  
ERROR  
A
=
×
× GM2 ×  
VL2  
AMPLIFIER  
FB2  
|VNEG  
|
(VIN + 2 × |VNEG|)  
COMP2  
g
M2  
REF2  
R
C2  
C
B2  
ROUT2||ZCOMP2 × GCS2 × ZOUT2  
where:  
C
C2  
A
V
V
V
G
VL2 is the loop gain.  
FB2 is the feedback regulation voltage.  
NEG is the regulated negative output voltage.  
IN is the input voltage.  
Figure 46. Compensation Component  
The capacitor, CB2, is chosen to cancel the zero introduced by  
output capacitance, ESR.  
M2 is the error amplifier transconductance gain.  
Solve for CB2 as follows:  
R
Z
OUT2 is the output impedance of the error amplifier and is 33 MΩ.  
COMP2 is the impedance of the series RC network from COMP2  
ESR × COUT2  
CB2 =  
to AGND.  
CS2 is the current sense transconductance gain (the inductor  
RC2  
For low ESR output capacitance, such as with a ceramic capacitor,  
B2 is optional. For optimal transient performance, RC2 and CC2  
may need to be adjusted by observing the load transient response  
of the ADP5071. For most applications, RC2 must be within the  
range of 1 kΩ to 200 kΩ, and CC2 must be within the range of  
1 nF to 68 nF.  
G
current divided by the voltage at COMP2), which is internally  
set by the ADP5071 and is 12.5 A/V.  
C
ZOUT2 is the impedance of the load in parallel with the output  
capacitor.  
Rev. A | Page 21 of 27  
ADP5071  
Data Sheet  
Figure 47 shows the schematic referenced by Table 9 through  
Table 11 with example component values for +5 V to 15 V  
generation. Table 9 shows the components common to all of the  
COMMON APPLICATIONS  
Table 9 through Table 11 list a number of common component  
selections for typical VIN and VOUT conditions. These have been  
bench tested and provide an off the shelf solution. Note that when  
pairing a boost and inverting regulator bill of materials, choose  
the same VIN and switching frequency. To optimize components  
for an application, it is recommend to use the ADIsimPower  
toolset.  
V
IN and VOUT conditions.  
Table 9. Recommended Common Components Selections  
REF Value Part Number  
CIN1 10 µF TMK316B7106KL-TD  
Manufacturer  
Taiyo Yuden  
CVREG 1 µF  
CVREF 1 μF  
GRM188R71A105KA61D Murata  
GRM188R71A105KA61D Murata  
ADP5071  
R
5.6kΩ  
L1  
3.3µH  
SS  
INBK  
C1  
V
+15V  
D1  
DFLS240  
POS  
COMP1  
C
47nF  
C1  
SW1  
FB1  
EN1  
R
FT1  
2.43MΩ  
C
OUT1  
VREG  
10µF  
R
C
FB1  
VREG  
137kΩ  
1µF  
PVIN1  
PVIN2  
PVINSYS  
V
+5V  
IN  
PGND  
VREF  
C
IN1  
10µF  
C
VREF  
1µF  
EN2  
R
FB2  
C
R
12kΩ  
OUT2  
C2  
118kΩ  
10µF  
FB2  
COMP2  
R
FT2  
C
C2  
47nF  
2.32MΩ  
SYNC/FREQ  
SLEW  
SW2  
V
NEG  
D2  
SEQ  
–15V  
AGND  
DFLS240  
L2  
6.8µH  
Figure 47. Typical +5 V to 15 V Application  
Rev. A | Page 22 of 27  
 
 
 
Data Sheet  
ADP5071  
Table 10. Recommended Boost Regulator Components  
VIN VPOS Freq.  
(V) (V) (MHz) (µH) Part  
L1  
L1, Coilcraft®  
COUT1  
(µF)  
D1, Diodes,  
Inc. Part  
RFT1  
(MΩ)  
RFB1  
(kΩ)  
CC1  
(nF)  
RC1  
(kΩ)  
COUT1, Murata Part  
3.3  
3.3  
3.3  
3.3  
3.3 15  
3.3 15  
3.3 24  
3.3 24  
3.3 34  
3.3 34  
5
5
5
5
5
5
5
5
5
5
9
9
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
2.2  
1
XAL4020-222ME_  
XAL4020-102ME_  
XAL4020-222ME_  
XAL4020-152ME_  
XAL4030-332ME_  
XAL4020-152ME_  
XAL4030-332ME_  
XAL4030-332ME_  
XAL4030-472ME_  
XAL4030-472ME_  
XAL4030-332ME_  
XAL4020-152ME_  
XAL4030-332ME_  
XAL4020-222ME_  
XAL4030-472ME_  
XAL4030-332ME_  
XAL4030-472ME_  
XAL4030-472ME_  
XAL4030-682ME_  
XAL4030-332ME_  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
GRM32ER71H106KA12L DFLS240L  
GRM32ER71H106KA12L DFLS240L  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
0.604  
0.604  
1.24  
1.24  
2.43  
2.43  
3.09  
3.09  
4.22  
4.22  
1.24  
1.24  
2.43  
2.43  
3.09  
3.09  
4.22  
4.22  
3.09  
3.09  
115  
115  
121  
121  
137  
137  
107  
107  
102  
102  
121  
121  
137  
137  
107  
107  
102  
102  
107  
107  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
4.7  
4.7  
3.3  
3.3  
14  
14  
18  
18  
33  
2.2  
1.5  
3.3  
1.5  
3.3  
3.3  
4.7  
4.7  
3.3  
1.5  
3.3  
2.2  
4.7  
3.3  
4.7  
4.7  
6.8  
3.3  
33  
9
9
1.8  
2.2  
5.6  
8.2  
10  
10  
12  
12  
4.7  
4.7  
15  
15  
24  
24  
34  
34  
24  
24  
12  
12  
Table 11. Recommended Inverting Regulator Components  
VIN VNEG Freq.  
L2  
(MHz) (µH) L2, Coilcraft Part  
COUT2  
(µF)  
D2, Diodes,  
Inc. Part  
RFT2  
(MΩ)  
RFB2  
(kΩ)  
CC2  
(nF)  
RC2  
(kΩ)  
(V) (V)  
3.3 −5  
3.3 −5  
3.3 −9  
3.3 −9  
COUT2, Murata Part  
1.2  
2.4  
1.2  
2.4  
3.3  
2.2  
4.7  
2.2  
4.7  
2.2  
4.7  
3.3  
6.8  
4.7  
6.8  
3.3  
6.8  
3.3  
10  
XAL4030-332ME_  
XAL4020-222ME_  
XAL4030-472ME_  
XAL4020-222ME_  
XAL4030-472ME_  
XAL4020-222ME_  
XAL4030-472ME_  
XAL4030-332ME_  
XAL4030-682ME_  
XAL4030-472ME_  
XAL4030-682ME_  
XAL4030-332ME_  
XAL4030-682ME_  
XAL4030-332ME_  
XAL4040-103ME_  
XAL4030-472ME_  
XAL4040-103ME_  
XAL4030-472ME_  
XAL4040-153ME_  
XAL4030-682ME_  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
GRM32ER71H106KA12L DFLS240L  
GRM32ER71H106KA12L DFLS240L  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
GRM32ER71H106KA12L DFLS240  
1.15  
1.15  
1.62  
1.62  
2.32  
2.32  
3.16  
3.16  
4.99  
4.99  
1.62  
1.62  
2.32  
2.32  
3.16  
3.16  
4.99  
4.99  
3.16  
3.16  
158  
158  
133  
133  
118  
118  
102  
102  
115  
115  
133  
133  
118  
118  
102  
102  
115  
115  
102  
102  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
68  
47  
47  
47  
47  
47  
47  
47  
8.2  
8.2  
10  
15  
18  
18  
39  
47  
33  
33  
5.6  
5.6  
12  
12  
27  
27  
39  
39  
15  
15  
3.3 −15 1.2  
3.3 −15 2.4  
3.3 −24 1.2  
3.3 −24 2.4  
3.3 −34 1.2  
3.3 −34 2.4  
5
5
−9  
−9  
1.2  
2.4  
5
5
5
5
5
5
12  
12  
−15 1.2  
−15 2.4  
−24 1.2  
−24 2.4  
−34 1.2  
−34 2.4  
−24 1.2  
−24 2.4  
4.7  
10  
4.7  
15  
6.8  
Rev. A | Page 23 of 27  
 
 
ADP5071  
Data Sheet  
SUPER LOW NOISE WITH OPTIONAL LDOS  
Low dropout regulators (LDOs) can be added to the ADP5071  
output to provide super low noise supplies for high performance  
ADCs, digital-to-analog converters (DACs), and other precision  
applications. Table 12 shows recommended companion devices,  
and Figure 48 shows a typical application schematic for 15 V  
generation from a +5 V supply.  
ADP5071  
R
5.6kΩ  
L1  
3.3µH  
SS  
INBK  
C1  
D1  
COMP1  
ADP7142  
VIN VOUT  
DFLS240  
V
= +15V  
POS  
C
+16V  
C
1µF  
C1  
SW1  
FB1  
47nF  
R
20kΩ  
C
1µF  
EN1  
FT3  
NR3  
IN3  
R
C
FT1  
2.15MΩ  
OUT3  
ADJ  
(5V)  
2.2µF  
C
R
R
1kΩ  
OUT1  
10µF  
FB3  
NR3  
VREG  
R
10kΩ  
C
FB1  
VREG  
EN  
SS  
113kΩ  
1µF  
PVIN1  
PVIN2  
PVINSYS  
GND  
V
IN  
PGND  
VREF  
C
1nF  
+5V  
C
SS3  
IN1  
10µF  
C
VREF  
1µF  
ADP7182  
EN VOUT  
V
= –15V  
NEG  
EN2  
C
R
OUT2  
10µF  
FB2  
R
R
FT4  
52.3kΩ  
C
C2  
NR4  
47µF  
100kΩ  
C
OUT4  
12kΩ  
FB2  
2.2µF  
ADJ  
COMP2  
R
R
FT2  
2.1MΩ  
R
5.9kΩ  
FB4  
NR4  
C
C2  
SYNC/FREQ  
SLEW  
5.9kΩ  
–16V  
47nF  
SW2  
VIN  
GND  
C
IN4  
D2  
DFLS240  
SEQ  
2.2µF  
AGND  
L2  
6.8µH  
Figure 48. Super Low Noise 15 V Generation with Post Regulation by the ADP7142 (+40 V, +200 mA, Low Noise LDO) and ADP7182 (−28 V, −200 mA, Low Noise LDO)  
Table 12. Recommended LDOs for Super Low Noise Operation  
Parameter  
VIN Range  
Fixed VOUT  
Adjustable VOUT  
IOUT  
IQ at No Load  
ISHDN Typical  
Soft Start  
PGOOD  
ADP7102  
3.3 V to 20 V  
1.5 V to 9 V  
1.22 V to 19 V  
300 mA  
400 µA  
40 µA  
No  
Yes  
ADP7104  
3.3 V to 20 V  
1.5 V to 9 V  
1.22 V to 19 V  
500 mA  
400 µA  
40 µA  
No  
Yes  
ADP7105  
3.3 V to 20 V  
1.8 V, 3.3 V, 5 V  
1.22 V to 19 V  
500 mA  
400 µA  
40 µA  
Yes  
Yes  
ADP7118  
2.7 V to 20 V  
1.2 V to 5 V  
1.2 V to 19 V  
200 mA  
50 µA  
2 µA  
Yes  
No  
ADP7142  
2.7 V to 40 V  
1.2 V to 5 V  
1.2 V to 39 V  
200 mA  
50 µA  
2 µA  
Yes  
No  
ADP7182  
−2.7 V to −28 V  
−1.8 V to −5 V  
−1.22 V to−27 V  
−200 mA  
−33 µA  
−2 µA  
No  
No  
Noise (Fixed), 10 Hz 15 µV rms  
to 100 kHz  
15 µV rms  
15 µV rms  
11 µV rms  
11 µV rms  
18 µV rms  
PSRR (100 kHz)  
PSRR (1 MHz)  
Package  
60 dB  
40 dB  
8-lead LFCSP,  
8-lead SOIC  
60 dB  
40 dB  
8-lead LFCSP,  
8-lead SOIC  
60 dB  
40 dB  
8-lead LFCSP,  
8-lead SOIC  
68 dB  
50 dB  
6-lead LFCSP,  
8-lead SOIC,  
5-lead TSOT  
68 dB  
50 dB  
6-lead LFCSP,  
8-lead SOIC,  
5-lead TSOT  
45 dB  
45 dB  
6-lead LFCSP, 8-lead  
LFCSP, 5-lead TSOT  
Rev. A | Page 24 of 27  
 
 
 
Data Sheet  
ADP5071  
SEPIC STEP-UP/STEP-DOWN OPERATION  
SEPIC operation allows the positive output channel to produce  
a voltage higher or lower than VIN. Both standalone and coupled  
inductors are supported for this application. SEPIC designs are  
supported in the ADIsimPower toolset.  
ADP5071  
SS  
INBK  
STANDALONE OR  
L1A  
L1B  
D1  
COUPLED-INDUCTOR  
R
C1  
COMP1  
+5V/400mA  
C
C1  
SW1  
FB1  
EN1  
C
S1  
C
R
VREG  
FT1  
VREG  
C
OUT1  
R
FB1  
1µF  
PVIN1  
V
= +12V  
PVIN2  
PVINSYS  
IN  
PGND  
VREF  
C
IN1  
10µF  
C
VREF  
EN2  
1µF  
R
FB2  
C
OUT2  
R
C2  
FB2  
COMP2  
R
FT2  
C
C2  
SYNC/FREQ  
SLEW  
SW2  
–5V/400mA  
D2  
SEQ  
AGND  
L2  
Figure 49. SEPIC Application for +12 V in to 5 V Output Generation  
Rev. A | Page 25 of 27  
 
ADP5071  
Data Sheet  
LAYOUT CONSIDERATIONS  
Layout is important for all switching regulators but is particularly  
important for regulators with high switching frequencies. To  
achieve high efficiency, good regulation, good stability, and low  
noise, a well-designed PCB layout is required. Follow these  
guidelines when designing PCBs:  
Keep the input bypass capacitor, CIN1, close to the PVIN1 pin,  
the PVIN2 pin, and the PVINSYS pin. Route each of these  
pins individually to the pad of this capacitor to minimize noise  
coupling between the power inputs rather than connecting the  
three pins at the device. A separate capacitor can be used on  
the PVINSYS pin for the best noise performance.  
Keep the high current paths as short as possible. These  
paths include the connections between CIN1, L1, L2, D1,  
D2, COUT1, COUT2, and PGND and their connections to  
the ADP5071.  
Keep AGND and PGND separate on the top layer of the  
board. This separation avoids pollution of AGND with  
switching noise. Do not connect PGND to the EPAD on  
the top layer of the layout. Connect both AGND and PGND  
to the board ground plane with vias. Ideally, connect PGND  
to the plane at a point between the input and output  
capacitors. Connect the EPAD on its own to this ground  
layer with vias and connect AGND as near to the pin as  
possible between the CVREF and CVREG capacitors.  
Keep high current traces as short and wide as possible to  
minimize parasitic series inductance, which causes spiking  
and electromagnetic interference (EMI).  
Figure 50. Suggested LFCSP Layout; Vias Connected to the PCB Ground  
Plane, Not to Scale  
Avoid routing high impedance traces near any node con-  
nected to the SW1 and SW2 pins or near Inductors L1and  
L2 to prevent radiated switching noise injection.  
Place the feedback resistors as close to the FB1 and FB2 pins as  
possible to prevent high frequency switching noise injection.  
Place the top of the upper feedback resistors, RFT1 and RFT2,  
or route traces to them from as close as possible to the top  
of COUT1 and COUT2 for optimum output voltage sensing.  
Place the compensation components as close as possible  
to COMP1 and COMP2. Do not share vias to the ground  
plane with the feedback resistors to avoid coupling high  
frequency noise into the sensitive COMP1 and COMP2 pins.  
Place the CVREF and CVREG capacitors as close to the  
VREG and VREF pins as possible. Ensure that short traces  
Figure 51. Suggested TSSOP Layout; Vias Connected to the PCB Ground  
Plane, Not to Scale  
are used between VREF and RFB2  
.
Rev. A | Page 26 of 27  
 
Data Sheet  
ADP5071  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.75  
2.60 SQ  
2.35  
11  
5
6
BOTTOM VIEW  
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 52. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-8)  
Dimensions shown in millimeters  
4.25  
4.20  
4.15  
6.60  
6.50  
6.40  
20  
11  
3.05  
3.00  
2.95  
4.50  
4.40  
4.30  
EXPOSED  
PAD  
(Pins Up)  
TOP  
VIEW  
6.40  
BSC  
1
10  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.65 BSC  
1.05  
1.00  
0.80  
1.20 MAX  
SECTION OF THIS DATA SHEET.  
8°  
0°  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.75  
0.60  
0.45  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-ACT  
Figure 53. 20-Lead Thin Shrink Small Outline With Exposed Pad [TSSOP_EP]  
(RE-20-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADP5071ACPZ  
ADP5071ACPZ-R7  
ADP5071AREZ  
ADP5071AREZ-R7  
ADP5071CP-EVALZ  
ADP5071RE-EVALZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Thin Shrink Small Outline With Exposed Pad [TSSOP_EP]  
20-Lead Thin Shrink Small Outline With Exposed Pad [TSSOP_EP]  
Evaluation Board for the LFCSP_WQ  
CP-20-8  
CP-20-8  
RE-20-1  
RE-20-1  
Evaluation Board for the TSSOP_EP  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12069-0-6/15(A)  
Rev. A | Page 27 of 27  
 
 

相关型号:

ADP5071ACPZ-R7

Independent Positive and Negative Outputs
ADI

ADP5071AREZ

Independent Positive and Negative Outputs
ADI

ADP5071AREZ-R7

Independent Positive and Negative Outputs
ADI

ADP5071CP-EVALZ

Independent Positive and Negative Outputs
ADI

ADP5071RE-EVALZ

Independent Positive and Negative Outputs
ADI

ADP5072

1 A/0.6 A DC to DC Switching Regulator Independent Positive and Negative Outputs
ADI

ADP5072ACBZ-R7

1 A/0.6 A DC to DC Switching Regulator Independent Positive and Negative Outputs
ADI

ADP5072CB-EVALZ

1 A/0.6 A DC to DC Switching Regulator Independent Positive and Negative Outputs
ADI

ADP5073

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5073ACPZ-R7

1.2 A, DC-to-DC Inverting Regulator
ADI

ADP5073CP-EVALZ

1.2 A, DC-to-DC Inverting Regulator
ADI

ADP5074

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI