ADRV9008BBCZ-1REEL [ADI]

Integrated Dual RF Receivers;
ADRV9008BBCZ-1REEL
型号: ADRV9008BBCZ-1REEL
厂家: ADI    ADI
描述:

Integrated Dual RF Receivers

文件: 总68页 (文件大小:1833K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated Dual RF Receivers  
ADRV9008-1  
In addition to automatic gain control (AGC), the ADRV9008-1 also  
features flexible external gain control modes, allowing dynamic  
gain control.  
Data Sheet  
FEATURES  
Dual receivers  
Maximum receiver bandwidth: 200 MHz  
Fully integrated, fractional-N, RF synthesizers  
Fully integrated clock synthesizer  
Multichip phase synchronization for RF LO and baseband clocks  
JESD204B datapath interface  
The received signals are digitized with a set of four, high dynamic  
range, continuous time, sigma-delta (Σ-Δ) ADCs that provide  
inherent antialiasing. The combination of the direct conversion  
architecture (which does not suffer from out of band image  
mixing) and the lack of aliasing reduces the requirements of the RF  
filters compared to the requirements of traditional intermediate  
frequency (IF) receivers.  
Tuning range (center frequency): 75 MHz to 6000 MHz  
APPLICATIONS  
3G/4G/5G FDD, macrocell base stations  
Wideband active antenna systems  
Massive multiple input, multiple output (MIMO)  
Phased array radar  
Electronic warfare  
Military communications  
The fully integrated phase-locked loop (PLL) provides high  
performance, low power, fractional-N, RF synthesis for the  
receiver signal paths. An additional synthesizer generates the  
clocks needed for the converters, digital circuits, and serial  
interface. A multichip synchronization mechanism synchronizes  
the phase of the RF local oscillator (LO) and baseband clocks  
between multiple ADRV9008-1 chips. The ADRV9008-1 features  
the isolation that high performance base station applications  
require. All voltage controlled oscillators (VCOs) and loop  
filter components are integrated.  
Portable test equipment  
GENERAL DESCRIPTION  
The ADRV9008-1 is a highly integrated, dual radio frequency (RF),  
agile receiver offering integrated synthesizers and digital signal  
processing functions. The IC delivers a versatile combination of  
high performance and low power consumption required by  
3G/4G/5G macrocell, frequency division duplex (FDD), base  
station applications.  
The high speed JESD204B interface supports up to 12.288 Gbps  
lane rates, resulting in a single lane per receiver in the widest  
bandwidth mode. The interface also supports interleaved mode  
for lower bandwidths, reducing the total number of high speed  
data interface lanes to one. Both fixed and floating point data  
formats are supported. The floating point format allows internal  
AGC to be invisible to the demodulator device.  
The receive path consists of two independent, wide bandwidth,  
direct conversion receivers with state-of-the-art dynamic range.  
The complete receive subsystem includes automatic and manual  
attenuation control, dc offset correction, quadrature error  
correction (QEC), and digital filtering, eliminating the need for  
these functions in the digital baseband. RF front-end control and  
several auxiliary functions, such as analog-to-digital converters  
(ADCs), digital-to-analog converters (DACs), and general-purpose  
input/outputs (GPIOs) for the power amplifier (PA), are also  
integrated.  
The core of the ADRV9008-1 can be powered directly from  
1.3 V and 1.8 V regulators and is controlled via a standard 4-wire  
serial port. Comprehensive power-down modes are included to  
minimize power consumption during normal use. The  
ADRV9008-1 is packaged in a 12 mm × 12 mm, 196-ball chip  
scale ball grid array (CSP_BGA).  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADRV9008-1  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 47  
Receivers...................................................................................... 47  
Clock Input.................................................................................. 47  
Synthesizers................................................................................. 47  
SPI................................................................................................. 47  
JTAG Boundary Scan................................................................. 47  
Power Supply Sequence............................................................. 47  
GPIO_x Pins ............................................................................... 48  
Auxiliary Converters.................................................................. 48  
JESD204B Data Interface .......................................................... 48  
Applications Information.............................................................. 49  
PCB Layout and Power Supply Recommendations............... 49  
PCB Material and Stackup Selection ....................................... 49  
Fanout and Trace Space Guidelines......................................... 51  
Component Placement and Routing Guidelines ................... 52  
RF and JESD204B Transmission Line Layout ........................ 58  
Isolation Techniques Used on the ADRV9008-1W/PCBZ... 60  
RF Port Interface Information.................................................. 61  
Outline Dimensions....................................................................... 68  
Ordering Guide .......................................................................... 68  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Current and Power Consumption Specifications..................... 8  
Timing Diagrams.......................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
Reflow Profile.............................................................................. 10  
Thermal Management ............................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 17  
75 MHz to 525 MHz Band ........................................................ 17  
650 MHz to 3000 MHz Band.................................................... 25  
3400 MHz to 4800 MHz Band.................................................. 33  
5100 MHz to 5900 MHz Band.................................................. 40  
Receiver Input Impedance......................................................... 45  
Terminology .................................................................................... 46  
REVISION HISTORY  
9/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 68  
 
Data Sheet  
ADRV9008-1  
FUNCTIONAL BLOCK DIAGRAM  
ADRV9008-1  
Rx2  
RX1_IN+  
SYNCIN0±  
SYNCIN1±  
Rx1  
RX1_IN–  
RX2_IN+  
ADC  
ADC  
SERDOUT0±  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
LPF  
LPF  
RX2_IN–  
DIGITAL  
PROCESSING  
SYSREF_IN±  
DECIMATION  
pFIR  
GP_INTERRUPT  
RX1_ENABLE  
RX2_ENABLE  
RESET  
TEST  
SCLK  
AGC  
DC OFFSET  
QEC  
JESD204B  
CIF/RIF  
RF_EXT_LO_I/O+  
RF_EXT_LO_I/O–  
RF LO  
SYNTHESIZER  
Arm  
Cortex-M3  
CS  
SDO  
SDIO  
GPIOs, AUXILIARY ADCs,  
AND AUXILIARY DACs  
REF_CLK_IN +  
REF_CLK_IN –  
CLOCK  
GENERATION  
GPIO_3p3_x  
GPIO_x  
AUXADC_x  
Figure 1.  
Rev. 0 | Page 3 of 68  
 
ADRV9008-1  
Data Sheet  
SPECIFICATIONS  
Electrical characteristics at VDDA1P31 = 1.3 V, VDDD1P3_DIG = 1.3 V, TJ = full operating temperature range, and LO frequency (fLO) =  
1800 MHz, unless otherwise noted. The specifications in Table 1 are not de-embedded. Refer to the Typical Performance Characteristics  
section for input/output circuit path loss. The device configuration profile for the 75 MHz to 525 MHz frequency range is as follows:  
receiver = 50 MHz bandwidth (inphase quadrature (I/Q) rate = 61.44 MHz), JESD204B rate = 9.8304 GSPS, and device clock = 245.76 MHz.  
Unless otherwise specified, the device configuration for all other frequency ranges is as follows: receiver = 200 MHz bandwidth (I/Q rate =  
245.76 MHz), JESD204B rate = 9.8304 GSPS, and device clock = 245.76 MHz.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RECEIVERS  
Center Frequency  
Gain Range  
Analog Gain Step  
75  
6000  
MHz  
dB  
dB  
30  
0.5  
1
Attenuator steps from 0 dB to 6 dB  
Attenuator steps from 6 dB to 30 dB  
dB  
Bandwidth Ripple  
0.5  
dB  
200 MHz bandwidth, compensated by  
programmable finite impulse response (FIR)  
filter  
0.2  
dB  
Any 20 MHz bandwidth span, compensated  
by programmable FIR filter  
Receiver (Rx) Bandwidth  
Receiver Alias Band  
Rejection  
200  
MHz  
dB  
80  
Due to digital filters  
Maximum Useable Input  
Level  
PHIGH  
0 dB attenuation, increases decibel  
for decibel with attenuation, continuous  
wave (CW) = 1800 MHz, corresponds to  
−1 dBFS at ADC  
−11  
−10.2  
−9.5  
dBm  
dBm  
dBm  
75 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
0 dB attenuation, at receiver port  
75 MHz < f ≤ 600 MHz  
Noise Figure  
Ripple  
NF  
11.5  
12  
13  
15.2  
1.8  
dB  
dB  
dB  
dB  
dB  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
At band edge maximum bandwidth mode  
Input Third-Order Intercept  
Point  
IIP3  
Difference Product  
12  
12  
dBm  
dBm  
75 MHz < f ≤ 600 MHz, (PHIGH − 12) dB per  
tone; 600 MHz < f ≤ 6000 MHz, (PHIGH − 10) dB  
per tone; two tones near band edge  
75 MHz < f ≤ 600 MHz, (PHIGH − 12) dB per  
tone; 600 MHz < f ≤ 6000 MHz, (PHIGH − 10) dB  
per tone; two tones at bandwidth/6 offset  
from the LO  
Sum Product  
Third-Order Harmonic  
Distortion  
HD3  
75 MHz < f ≤ 600 MHz, (PHIGH − 6) dB; 600  
MHz < f ≤ 6000 MHz, (PHIGH − 4) dB; CW tone  
at bandwidth/6 offset from the LO  
−65  
−66  
−62  
dBc  
dBc  
dBc  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Rev. 0 | Page 4 of 68  
 
 
Data Sheet  
ADRV9008-1  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Second-Order Input  
Intermodulation  
Intercept Point  
IIP2  
62  
dBm  
75 MHz < f ≤ 600 MHz, (PHIGH − 12) dB per  
tone; 600 MHz < f ≤ 6000 MHz, (PHIGH − 10) dB  
per tone; 0 dB attenuation, complex  
Image Rejection  
75  
dB  
QEC active, within 200 MHz receiver  
bandwidth  
Input Impedance  
Receiver to Receiver  
Isolation  
100  
77  
dB  
Differential (see Figure 168)  
75 MHz < f ≤ 600 MHz  
65  
61  
dB  
dB  
600 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Receiver Band Spurs  
Referenced to RF Input at  
Maximum Gain  
−95  
dBm  
No more than one spur at this level per  
10 MHz of receiver bandwidth  
Receiver LO Leakage at  
Receiver Input at  
Maximum Gain  
Leakage decreases decibel for decibel with  
attenuation for first 12 dB  
−70  
−70  
−65  
dBm  
dBm  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 6000 MHz  
LO SYNTHESIZER  
LO Frequency Step  
2.3  
Hz  
1.5 GHz to 2.8 GHz, 76.8 MHz phase  
frequency detector (PFD) frequency  
LO Spur  
Integrated Phase Noise  
75 MHz LO  
1900 MHz LO  
3800 MHz LO  
−85  
dBc  
Excludes integer boundary spurs  
2 kHz to 18 MHz  
Narrow PLL loop bandwidth (50 kHz)  
Narrow PLL loop bandwidth (50 kHz)  
Wide PLL loop bandwidth (300 kHz)  
Wide PLL loop bandwidth (300 kHz)  
0.014  
0.2  
0.36  
0.54  
°rms  
°rms  
°rms  
°rms  
5900 MHz LO  
Spot Phase Noise  
75 MHz LO  
Narrow PLL loop bandwidth  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
10 MHz Offset  
1900 MHz LO  
−126.5  
−132.8  
−150.1  
−150.7  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Narrow PLL loop bandwidth  
100 kHz Offset  
200 kHz Offset  
400 kHz Offset  
600 kHz Offset  
800 kHz Offset  
1.2 MHz Offset  
1.8 MHz Offset  
6 MHz Offset  
−100  
−115  
−120  
−129  
−132  
−135  
−140  
−150  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 MHz Offset  
3800 MHz LO  
Wide PLL loop bandwidth  
Wide PLL loop bandwidth  
100 kHz Offset  
1.2 MHz Offset  
10 MHz Offset  
5900 MHz LO  
−104  
−125  
−145  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100 kHz Offset  
1.2 MHz Offset  
10 MHz Offset  
LO PHASE SYNCHRONIZATION  
−99  
−119.7  
−135.4  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Change in LO delay per temperature  
change  
Phase Deviation  
1.6  
ps/°C  
Rev. 0 | Page 5 of 68  
ADRV9008-1  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
EXTERNAL LO INPUT  
Input Frequency  
fEXTLO  
300  
0
8000  
12  
MHz  
Input frequency must be 2× the desired LO  
frequency  
50 Ω matching at the source  
fEXTLO ≤ 2 GHz, add 0.5 dBm/GHz above  
2 GHz  
fEXTLO = 8 GHz  
Input Signal Power  
dBm  
dBm  
3
6
dBm  
External LO Input Signal  
Differential  
To ensure adequate QEC  
Phase Error  
3.6  
1
2
ps  
dB  
%
Amplitude Error  
Duty Cycle Error  
Even Order Harmonics  
CLOCK SYNTHESIZER  
Integrated Phase Noise  
1966.08 MHz LO  
Spot Phase Noise  
1966.08 MHz  
−50  
dBc  
1 kHz to 100 MHz  
PLL optimized for close in phase noise  
0.4  
°rms  
100 kHz Offset  
1 MHz Offset  
10 MHz Offset  
−109  
−129  
−149  
dBc/Hz  
dBc/Hz  
dBc/Hz  
REFERENCE CLOCK  
(REF_CLK_IN )  
Frequency Range  
Signal Level  
10  
0.3  
1000  
2.0  
MHz  
V p-p  
AC-coupled, common-mode voltage (VCM) =  
618 mV, use <1 V p-p input clock for best  
spurious performance  
AUXILIARY CONVERTERS  
ADC  
Resolution  
12  
Bits  
Input Voltage  
Minimum  
Maximum  
0.05  
V
V
VDDA_  
3P3 −  
0.05  
DAC  
Resolution  
Output Voltage  
Minimum  
Maximum  
10  
Bits  
Includes four offset levels  
0.7  
V
V
1 V VREF  
2.5 V VREF  
VDDA_  
3P3 −  
0.3  
Output Drive Capability  
10  
mA  
DIGITAL SPECIFICATIONS  
(CMOS): SERIAL PERIPHERAL  
INTERFACE (SPI), GPIO_x  
Logic Inputs  
Input Voltage  
High Level  
VDD_  
INTERFACE  
× 0.8  
VDD_  
INTERFACE  
V
V
Low Level  
0
VDD_  
INTERFACE  
× 0.2  
Input Current  
High Level  
−10  
+10  
μA  
Rev. 0 | Page 6 of 68  
Data Sheet  
ADRV9008-1  
Parameter  
Low Level  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
−10  
+10  
μA  
Logic Outputs  
Output Voltage  
High Level  
VDD_  
V
INTERFACE  
× 0.8  
Low Level  
VDD_  
V
INTERFACE  
× 0.2  
Drive Capability  
3
mA  
DIGITAL SPECIFICATIONS  
(CMOS): GPIO_3p3_x  
Logic Inputs  
Input Voltage  
High Level  
VDDA_  
3P3 × 0.8  
0
VDDA_3P3  
V
V
Low Level  
VDDA_  
3P3 × 0.2  
Input Current  
High Level  
Low Level  
−10  
−10  
+10  
+10  
μA  
μA  
Logic Outputs  
Output Voltage  
High Level  
VDDA_  
V
3P3 × 0.8  
Low Level  
VDDA_  
V
3P3 × 0.2  
Drive Capability  
4
mA  
DIGITAL SPECIFICATIONS, LOW  
VOLTAGE DIFFERENTIAL  
SIGNALING (LVDS)  
Logic Inputs (SYSREF_IN ,  
SYNCINx )  
Input Voltage Range  
Input Differential Voltage  
Threshold  
825  
−100  
1675  
+100  
mV  
mV  
Each differential input in the pair  
Receiver Differential  
Input Impedance  
100  
Ω
Internal termination enabled  
SPI TIMING  
See the UG-1295 for more information  
SCLK Period  
tCP  
tMP  
tSC  
20  
10  
3
ns  
ns  
ns  
SCLK Pulse Width  
CS Setup to First SCLK  
Rising Edge  
Last SCLK Falling Edge to CS tHC  
Hold  
0
2
0
3
ns  
ns  
ns  
ns  
SDIO Data Input Setup to  
SCLK  
tS  
SDIO Data Input Hold to  
SCLK  
tH  
SCLK Rising Edge to Output tCO  
Data Delay (3-Wire Mode  
or 4-Wire Mode)  
8
Bus Turnaround Time, Read  
After Baseband Processor  
(BBP) Drives Last Address  
Bit  
tHZM  
tH  
tCO  
ns  
Rev. 0 | Page 7 of 68  
ADRV9008-1  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Bus Turnaround Time, Read  
After ADRV9008-1 Drives  
Last Data Bit  
tHZS  
0
tCO  
ns  
JESD204B DATA OUTPUT  
TIMING  
AC-coupled  
Unit Interval  
Data Rate Per Channel (NRZ)  
Rise Time  
UI  
81.38  
3125  
24  
320  
12288  
ps  
Mbps  
ps  
tR  
tF  
39.5  
39.4  
20% to 80% in 100 Ω load  
20% to 80% in 100 Ω load  
AC-coupled  
Fall Time  
24  
ps  
Output Common-Mode  
Voltage  
VCM  
0
1.8  
V
Differential Output Voltage  
Short-Circuit Current  
Differential Termination  
Impedance  
VDIFF  
IDSHORT  
360  
−100  
80  
600  
770  
+100  
120  
mV  
mA  
94.2  
Total Jitter  
Uncorrelated Bounded  
High Probability Jitter  
Duty Cycle Distortion  
SYSREF_IN Setup Time to  
REF_CLK_IN  
15.13  
0.56  
ps  
ps  
Bit error rate (BER) = 10−15  
UBHPJ  
DCD  
0.369  
ps  
ns  
2.5  
See Figure 2  
SYSREF_IN Hold Time to  
REF_CLK_IN  
−1.5  
ns  
See Figure 2  
Latency  
tLAT_FRM  
REF_CLK_IN = 245.76 MHz  
89.4  
Clock  
cycles  
Receiver bandwidth = 200 MHz, IQ rate =  
245.76 MHz, lane rate = 9830.4 MHz,  
M = 2, L = 2, N = 16, S = 1  
364.18  
ns  
1 VDDA1P3 refers to all analog 1.3 V supplies, including VDDA1P3_RF_SYNTH, VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RF_VCO_LDO, VDDA1P3_RF_LO,  
VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and VDDA1P3_AUX_VCO_LDO.  
CURRENT AND POWER CONSUMPTION SPECIFICATIONS  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CHARACTERISTICS  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_AN Supply  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
VDDA_3P3 Supply  
1.267  
1.267  
1.71  
1.71  
1.71  
1.3  
1.3  
1.8  
1.8  
1.8  
3.3  
1.33  
1.33  
1.89  
1.89  
2.625  
3.465  
V
V
V
V
V
V
CMOS and LVDS supply, 1.8 V to 2.5 V nominal range  
3.135  
POSITIVE SUPPLY CURRENT  
200 MHz Receiver Bandwidth  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_AN Supply  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
VDDA_3P3 Supply  
LO at 2600 MHz  
Two receivers enabled  
1645  
984  
0.4  
68  
8
3
mA  
mA  
mA  
mA  
mA  
mA  
Receiver QEC active  
No Auxiliary DAC x or AUXADC_x enabled (if enabled,  
AUXADC_x adds 2.7 mA, and each Auxiliary DAC x  
adds 1.5 mA)  
Total Power Dissipation  
3.57  
W
Typical supply voltages, receiver QEC active  
1 VDDA1P3 refers to all analog 1.3 V supplies, including VDDA1P3_RF_SYNTH, VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and VDDA1P3_AUX_VCO_LDO.  
Rev. 0 | Page 8 of 68  
 
Data Sheet  
ADRV9008-1  
TIMING DIAGRAMS  
AT DEVICE PINS  
REF_CLK_IN± DELAY  
IN REFERENCE TO SYSREF_IN±  
AT DEVICE CORE  
t’H t’H  
tH  
tH  
tS  
tS  
t’S  
t’S  
REF_CLK_IN±  
tH = –1.5ns  
tS = +2.5ns  
CLK DELAY = 2ns  
t’H = +0.5ns  
t’S = +0.5ns  
NOTES  
1. tH AND tS ARE THE HOLD AND SETUP TIMES FOR THE REF_CLK_IN± PINS. t’H AND t’S REFER TO THE  
DELAYED HOLD AND SETUP TIMES AT THE DEVICE CORE IN REFERENCE TO THE SYSREF_N± SIGNALS  
DUE TO AN INTERNAL BUFFER THAT THE SIGNAL PASSES THROUGH.  
Figure 2. SYSREF_IN Setup and Hold Timing  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
REF_CLK_IN±  
SYSREF_IN±  
tH = –1.5ns  
tS = +2.5ns  
VALID SYSREF  
INVALID SYSREF  
Figure 3. SYSREF_IN Setup and Hold Timing Examples, Relative to Device Clock  
Rev. 0 | Page 9 of 68  
 
 
ADRV9008-1  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
exposed die package to provide the customer with the most  
Table 3.  
effective method of controlling the die temperature. The exposed  
die allows cooling of the die directly. Figure 4 shows the profile  
view of the device mounted to a user printed circuit board (PCB)  
and a heat sink (typically the aluminum case) to keep the junction  
(exposed die) below the maximum junction temperature shown  
in Table 3. The device is designed for a lifetime of 10 years when  
operating at the maximum junction temperature.  
Parameter  
Rating  
VDDA1P31 to VSSA  
VDDD1P3_DIG to VSSD  
VDD_INTERFACE to VSSA  
VDDA_3P3 to VSSA  
−0.3 V to +1.4 V  
−0.3 V to +1.4 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to VDD_  
INTERFACE + 0.3 V  
VDD_INTERFACE Logic Inputs and  
Outputs to VSSD  
JESD204B Logic Outputs to VSSA  
Input Current to Any Pin Except  
Supplies  
Maximum Input Power into RF Port  
Maximum Junction Temperature  
Storage Temperature Range  
−0.3 V to VDDA1P3_SER  
10 mA  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. Thermal  
resistance data for the ADRV9008-1 mounted on both a JEDEC  
2S2P test board and a 10-layer Analog Devices, Inc., evaluation  
board is listed in Table 4. Do not exceed the absolute maximum  
junction temperature rating in Table 3. Ten-layer PCB entries  
refer to the 10-layer Analog Devices evaluation board, which  
more accurately reflects the PCB used in customer applications.  
23 dBm (peak)  
110°C  
−65°C to +150°C  
1 VDDA1P3 refers to all analog 1.3 V supplies, including VDDA1P3_RF_SYNTH,  
VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_SYNTH, and  
VDDA1P3_CLOCK_VCO_LDO.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4. Thermal Resistance1, 2  
Package Type  
θJA  
θJC_TOP  
θJB  
ΨJT  
ΨJB  
Unit  
BC-196-13  
21.1  
0.04  
4.9  
0.3  
4.9  
°C/W  
1 For the θJC test, 100 µm thermal interface material (TIM) is used. TIM is  
assumed to have 3.6 thermal conductivity watts/(meter × Kelvin).  
2 Using enhanced heat removal techniques such as PCB, heat sink, and airflow  
improves the thermal resistance values.  
REFLOW PROFILE  
ESD CAUTION  
The ADRV9008-1 reflow profile is in accordance with the  
JEDEC JESD204B criteria for Pb-free devices. The maximum  
reflow temperature is 260°C.  
THERMAL MANAGEMENT  
The ADRV9008-1 is a high power device that can dissipate over  
3 W depending on the user application and configuration.  
Because of the power dissipation, the ADRV9008-1 uses an  
CUSTOMER CASE (HEAT SINK)  
CUSTOMER THERMAL FILLER  
SILICON (DIE)  
IC PROFILE  
PACKAGE SUBSTRATE  
CUSTOMER PCB  
Figure 4. Typical Thermal Management Solution  
Rev. 0 | Page 10 of 68  
 
 
 
 
 
 
 
 
Data Sheet  
ADRV9008-1  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
VSSA  
VSSA  
VSSA  
VSSA  
RX2_IN+  
RX2_IN–  
VSSA  
VSSA  
RX1_IN+  
RX1_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
RX_RF  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_3P3  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
AUX_VCO_  
LDO  
VDDA1P3_ VDDA1P3_RF_ VDDA1P1_  
RF_VCO_LDO VCO_LDO  
VDDA1P3_  
RF_LO  
RF_VCO  
VSSA  
GPIO_3p3_0 GPIO_3p3_3 VDDA1P3_RX  
GPIO_3p3_9  
RBIAS  
VDDA1P1_  
AUX_VCO  
GPIO_3p3_1 GPIO_3p3_4  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
GPIO_3p3_8 GPIO_3p3_10  
AUX_SYNTH_  
OUT  
GPIO_3p3_2 GPIO_3p3_5 GPIO_3p3_6 VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+  
VSSA  
AUXADC_3 VDDA1P8_AN GPIO_3p3_7 GPIO_3p3_11  
REF_CLK_IN–  
VSSA  
VSSA  
VSSA  
DNC  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
AUXADC_0  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDO  
AUXADC_2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
DNC  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
RF_SYNTH_  
VTUNE  
VDDA1P3_  
AUX_SYNTH  
G
H
J
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDIO  
SCLK  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_11  
GPIO_10  
GPIO_9  
GPIO_8  
GP_  
INTERRUPT  
DNC  
GPIO_18  
RESET  
DNC  
GPIO_2  
GPIO_1  
GPIO_0  
K
L
VSSA  
VSSA  
SYSREF_IN+ SYSREF_IN–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
VSSD  
CS  
VSSA  
GPIO_3  
VSSD  
VDDD1P3_  
DIG  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDD1P3_  
DIG  
SYNCIN1–  
SYNCIN0–  
SYNCIN1+  
SYNCIN0+  
VSSD  
GPIO_17  
VDDA1P1_  
CLOCK_VCO  
VDD_  
INTERFACE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
M
N
P
RX1_ENABLE  
RX2_ENABLE  
VSSA  
VSSA  
VSSD  
VDDA1P3_  
CLOCK_  
VCO_LDO  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
SERDOUT3– SERDOUT3+ SERDOUT2– SERDOUT2+  
VSSA  
AUX_SYNTH_  
VTUNE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
SERDOUT0+  
VSSA  
SERDOUT1– SERDOUT1+ SERDOUT0–  
VSSA  
ADRV9008-1  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Type  
Mnemonic  
Description  
Analog Supply Voltage (VSS).  
A1 to A4, A7, A8, A11 to A14, B2  
to B6, B9 to B14, C4, C9, C11,  
D3 to D9, D11, D12, E6, E9, F1,  
F2, F5 to F10, F12 to F14, G1  
to G4, G6, G10 to G14, H2 to  
H10, H13, J2, J13, K1, K2, K13,  
K14, L1, L2, M2, M9, N2, N7,  
N14, P2, P3, P10  
Input  
VSSA  
Rev. 0 | Page 11 of 68  
 
 
ADRV9008-1  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
A5, A6  
Input  
RX2_IN+, RX2_IN−  
Differential Input for Receiver 1. When unused, connect these  
pins to ground.  
A9, A10  
Input  
RX1_IN+, RX1_IN−  
VDDA1P3_RX_RF  
RF_EXT_LO_I/O−,  
RF_EXT_LO_I/O+  
Differential Input for Receiver 2. When unused, connect these  
pins to ground.  
Receiver Mixer Supply.  
Differential External LO Input/Output. If these pins are used  
for external LO, the input frequency must be 2× the desired  
carrier frequency. When unused, do not connect these pins.  
B1  
B7, B8  
Input  
Input  
C1  
C2  
Input/  
output  
GPIO_3p3_0  
GPIO Pin Referenced to 3.3 V Supply. The alternate function is  
Auxiliary DAC 4. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or this pin can be left floating, programmed as  
an output, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. Because this pin contains  
an input stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
Input/  
output  
GPIO_3p3_3  
C3  
Input  
Input  
VDDA1P3_RX  
1.3 V Supply for Receiver Baseband Circuits, Transimpedance  
Amplifier (TIA), Baseband Filters, and Auxiliary DACs.  
RF VCO Low Dropout (LDO) Supply Inputs. Connect Pin C5 to  
Pin C6. Use a separate trace to a common supply point.  
C5, C6  
VDDA1P3_RF_VCO_LDO  
C7  
C8  
Input  
Input  
VDDA1P1_RF_VCO  
VDDA1P3_RF_LO  
1.1 V VCO Supply. Decouple this pin with 1 µF.  
1.3 V LO Generator for RF Synthesizer. This pin is sensitive to  
aggressors.  
C10  
C12  
Input  
Input  
VDDA1P3_AUX_VCO_LDO  
VDDA_3P3  
1.3 V Supply.  
General-Purpose Output Pull-Up Voltage and Auxiliary DAC  
Supply Voltage.  
C13  
Input/  
output  
GPIO_3p3_9  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 9. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
C14  
D1  
Input/  
output  
RBIAS  
Bias Resistor. Tie this pin to ground using a 14.3 kΩ resistor.  
This pin generates an internal current based on an external  
1% resistor.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 5. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
Input/  
output  
GPIO_3p3_1  
D2  
Input/  
output  
GPIO_3p3_4  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 6. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
D10  
D13  
Input  
Input/  
output  
VDDA1P1_AUX_VCO  
GPIO_3p3_8  
1.1 V VCO Supply. Decouple with 1 µF.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 1. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
Rev. 0 | Page 12 of 68  
Data Sheet  
ADRV9008-1  
Pin No.  
Type  
Mnemonic  
Description  
D14  
Input/  
output  
GPIO_3p3_10  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 0. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
E1  
E2  
Input/  
output  
GPIO_3p3_2  
GPIO_3p3_5  
GPIO Pin Referenced to 3.3 V Supply. Because this pin contains  
an input stage, the voltage on the pin must be controlled.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 7. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
Input/  
output  
E3  
Input/  
output  
GPIO_3p3_6  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 8. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
E4  
E5  
E7, E8  
Input  
Input  
Input  
VDDA1P8_BB  
VDDA1P3_BB  
REF_CLK_IN+, REF_CLK_IN−  
1.8 V Supply for the ADC and DAC.  
1.3 V Supply for the ADC, DAC, and Auxiliary ADCs.  
Device Clock Differential Input.  
E10  
Output AUX_SYNTH_OUT  
Auxiliary PLL Output. When unused, do not connect this pin.  
E11, F3, F4, F11  
Input  
AUXADC_0 to AUXADC_3  
Auxiliary ADC Input. When unused, connect these pins to ground  
with a pull-down resistor, or connect directly to ground.  
E12  
E13  
Input  
Input/  
output  
VDDA1P8_AN  
GPIO_3p3_7  
1.8 V Bias Supply for Analog Circuitry.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 2. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
E14  
Input/  
output  
GPIO_3p3_11  
GPIO Pin Referenced to 3.3 V Supply. The alternative function  
is Auxiliary DAC 3. Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or this pin can be left floating,  
programmed as outputs, and driven low.  
G5  
G7  
Input  
Input  
Input  
VDDA1P3_CLOCK_SYNTH  
VDDA1P3_RF_SYNTH  
VDDA1P3_AUX_SYNTH  
1.3 V Supply Input for Clock Synthesizer. Use a separate trace  
on the PCB back to a common supply point.  
1.3 V RF Synthesizer Supply Input. This pin is sensitive to  
aggressors.  
1.3 V Auxiliary Synthesizer Supply Input.  
RF Synthesizer VTUNE Output.  
Do Not Connect. Do not connect these pins.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
G8  
G9  
Output RF_SYNTH_VTUNE  
DNC1  
Input/  
output  
H1, J1, H14, J14  
H11  
DNC  
GPIO_12  
H12  
Input/  
output  
GPIO_11  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
Rev. 0 | Page 13 of 68  
ADRV9008-1  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
J3  
Input/  
output  
GPIO_18  
Digital GPIO, 1.8 V to 2.5 V. The joint test action group (JTAG)  
function is test clock (TCLK). Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
J4  
J5  
Input  
RESET  
Active Low Chip Reset.  
Output GP_INTERRUPT  
General-Purpose Digital Interrupt Output Signal. When  
unused, do not connect this pin.  
J6  
J7  
Input  
TEST  
Pin Used for JTAG Boundary Scan. When unused, connect this  
pin to ground.  
Input/  
output  
GPIO_2  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to  
0. Because this pin contains an input stage, the voltage on the  
pin must be controlled. When unused, this pin can be tied to  
ground through a resistor to safeguard against misconfiguration,  
or it can be left floating, programmed as an output, and  
driven low.  
J8  
J9  
Input/  
output  
GPIO_1  
SDIO  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 0.  
Because this pin contains an input stage, the voltage on the pin  
must be controlled. When unused, this pin can be tied to ground  
through a resistor to safeguard against misconfiguration, or it can  
be left floating, programmed as an output, and driven low.  
Input/  
output  
Serial Data Input in 4-Wire Mode or Input/Output in 3-Wire  
Mode.  
J10  
J11  
Output SDO  
Serial Data Output. In SPI 3-Wire mode, do not connect this pin.  
Input/  
GPIO_13  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
output  
J12  
Input/  
output  
GPIO_10  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
K3, K4  
K5  
Input  
Input/  
output  
SYSREF_IN+, SYSREF_IN−  
GPIO_5  
LVDS Input.  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test data  
output (TDO). Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or it can be left floating, programmed as an  
output, and driven low.  
K6  
Input/  
output  
GPIO_4  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test rest (TRST).  
Because this pin contains an input stage, the voltage on the  
pin must be controlled. When unused, this pin can be tied to  
ground through a resistor to safeguard against  
misconfiguration, or it can be left floating, programmed as an  
output, and driven low.  
K7  
K8  
Input/  
output  
GPIO_3  
GPIO_0  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 1.  
Because this pin contains an input stage, the voltage on the pin  
must be controlled. When unused, this pin can be tied to ground  
through a resistor to safeguard against misconfiguration, or it can  
be left floating, programmed as an output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 1.  
Because this pin contains an input stage, the voltage on the pin  
must be controlled. When unused, this pin can be tied to ground  
through a resistor to safeguard against misconfiguration, or it can  
be left floating, programmed as an output, and driven low.  
Input/  
output  
K9  
K10  
Input  
Input  
SCLK  
CS  
Serial Data Bus Clock.  
Serial Data Bus Chip Select, Active Low.  
Rev. 0 | Page 14 of 68  
Data Sheet  
ADRV9008-1  
Pin No.  
Type  
Mnemonic  
Description  
K11  
Input/  
output  
GPIO_14  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
K12  
Input/  
output  
GPIO_9  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
L3, L4  
L5  
Input  
SYNCIN1−, SYNCIN1+  
GPIO_6  
LVDS Input. When unused, connect these pins to ground with a  
pull-down resistor, or connect directly to ground.  
Input/  
output  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test data input  
(TDI). Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied  
to ground through a resistor to safeguard against  
misconfiguration, or it can be left floating, programmed as an  
output, and driven low.  
L6  
Input/  
output  
GPIO_7  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test mode  
select input (TMS). Because this pin contains an input stage,  
the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor to safeguard  
against misconfiguration, or it can be left floating, programmed  
as an output, and driven low.  
L7, L10, M6, M8  
L8, L9  
Input  
Input  
VSSD  
VDDD1P3_DIG  
Digital VSS.  
1.3 V Digital Core. Connect Pin L8 to Pin L9. Use a separate  
trace to a common supply point.  
L11  
Input/  
output  
GPIO_15  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
L12  
Input/  
output  
GPIO_8  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
L13, L14, M13, M14, N8 to N13,  
P8, P9, P11 to P14  
Input  
VDDA1P3_SER  
1.3 V Supply for JESD204B Serializer.  
M1  
M3, M4  
Input  
Input  
VDDA1P1_CLOCK_VCO  
SYNCIN0−, SYNCIN0+  
1.1 V VCO Supply. Decouple this pin with 1 µF.  
JESD204B Receiver Channel 0. These pins form the synchro-  
nization signal associated with receiver channel data on the  
JESD204B interface. When unused, connect these pins to ground  
with a pull-down resistor, or connect directly to ground.  
M5  
Input  
Input  
RX1_ENABLE  
RX2_ENABLE  
GPIO_17  
Receiver 1 Enable Pin. When unused, connect this pin to ground  
with a pull-down resistor, or connect directly to ground.  
Receiver 2 Enable Pin. When unused, connect this pin to ground  
with a pull-down resistor, or connect directly to ground.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
M7  
M10  
Input/  
output  
M11  
Input/  
output  
GPIO_16  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or it can be left floating,  
programmed as an output, and driven low.  
M12  
N1  
Input  
Input  
VDD_INTERFACE  
Input/Output Interface Supply, 1.8 V to 2.5 V.  
VDDA1P3_CLOCK_VCO_LDO 1.3 V Supply. Use a separate trace to a common supply point.  
Rev. 0 | Page 15 of 68  
ADRV9008-1  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
N3, N4  
Output SERDOUT3−, SERDOUT3+  
RF Current Mode Logic (CML) Differential Output 3. When  
unused, do not connect these pins.  
N5, N6  
Output SERDOUT2−, SERDOUT2+  
RF CML Differential Output 2. When unused, do not connect  
these pins.  
P1  
Output AUX_SYNTH_VTUNE  
Auxiliary Synthesizer VTUNE Output.  
P4, P5  
Output SERDOUT1−, SERDOUT1+  
RF CML Differential Output 1. When unused, do not connect  
these pins.  
P6, P7  
Output SERDOUT0−, SERDOUT0+  
RF CML Differential Output 0. When unused, do not connect  
these pins.  
1 DNC means do not connect.  
Rev. 0 | Page 16 of 68  
Data Sheet  
ADRV9008-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
The temperature settings refer to the die temperature.  
75 MHz TO 525 MHz BAND  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
–10  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RECEIVER LO FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 6. Receiver LO Leakage vs. Receiver LO Frequency, 75 MHz, 300 MHz,  
525 MHz; Receiver Attenuation = 0 dB, RF Bandwidth = 50 MHz,  
Sample Rate = 61.44 MSPS  
Figure 9. Receiver Noise Figure vs. Receiver Attenuation, LO = 525 MHz,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS,  
Integration Bandwidth = 1 MHz to 25 MHz  
45  
20  
18  
40  
+110°C  
+110°C  
+25°C  
–40°C  
+25°C  
–40°C  
16  
35  
14  
30  
25  
20  
15  
10  
5
12  
10  
8
6
4
2
0
0
75  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
175  
275  
375  
475  
RECEIVER ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 7. Receiver Noise Figure vs. Receiver Attenuation, LO = 75 MHz,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS,  
Integration Bandwidth = 1 MHz to 25 MHz  
Figure 10. Receiver Noise Figure vs. Receiver LO Frequency, Receiver  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS,  
Integration Bandwidth = 25 MHz  
45  
20  
40  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–25  
–15  
–5  
5
15  
25  
RECEIVER ATTENUATION (dB)  
RECEIVER OFFSET FREQUENCY FROM LO (75MHz)  
Figure 8. Receiver Noise Figure vs. Receiver Attenuation, LO = 300 MHz,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS,  
Integration Bandwidth = 1 MHz to 25 MHz  
Figure 11. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
Integration Bandwidth = 200 kHz, LO = 75 MHz  
Rev. 0 | Page 17 of 68  
 
 
ADRV9008-1  
Data Sheet  
20  
18  
16  
14  
12  
10  
8
110  
100  
90  
+110°C  
+25°C  
–40°C  
80  
70  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
60  
50  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
–25  
–15  
–5  
5
15  
25  
RECEIVER ATTENUATION (dB)  
RECEIVER OFFSET FREQUENCY FROM LO (300MHz)  
Figure 15. Receiver IIP2 vs. Receiver Attenuation, LO = 300 MHz, Tones Placed  
at 310 MHz and 311 MHz, −23.5 dBm Plus Attenuation  
Figure 12. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
Integration Bandwidth = 200 kHz, LO = 300 MHz  
80  
75  
70  
65  
20  
+110°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
60  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
55  
50  
45  
40  
–25  
–15  
–5  
5
15  
25  
80.0  
81.0  
82.5  
83.5  
87.5  
88.5  
90.0  
91.0  
92.5  
93.5  
75  
95.0  
96.0  
97.5  
98.5  
100.0 102.5  
101.0 103.5  
RECEIVER OFFSET FREQUENCY FROM LO (525MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 13. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
Integration Bandwidth = 200 kHz, LO = 525 MHz  
Figure 16. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 75 MHz, 10 Tone Pairs,  
−23.5 dBm Each  
100  
95  
90  
85  
80  
75  
80  
75  
70  
65  
60  
+110°C (SUM)  
70  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
55  
50  
45  
40  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
65  
60  
55  
50  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
305.0 307.5 310.0 312.5 315.0 317.5 320.0 322.5 325.0 327.5  
306.0 308.5 311.0 313.5 316.0 318.5 321.0 323.5 326.0 328.5  
300  
RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 14. Receiver IIP2 vs. Receiver Attenuation, LO = 75 MHz,  
Tones Placed at 82.5 MHz and 83.5 MHz, −23.5 dBm Plus Attenuation  
Figure 17. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 300 MHz, 10 Tone pairs,  
−23.5 dBm Each  
Rev. 0 | Page 18 of 68  
Data Sheet  
ADRV9008-1  
110  
25  
20  
15  
10  
5
Rx1 (SUM) = +110°C  
Rx1 (DIFF) = +110°C  
Rx1 (SUM) = +25°C  
Rx1 (DIFF) = +25°C  
Rx1 (SUM) = –40°C  
Rx1 (DIFF) = –40°C  
100  
90  
80  
70  
60  
50  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx2 (SUM) = +110°C  
Rx2 (DIFF) = +110°C  
Rx2 (SUM) = +25°C  
Rx2 (DIFF) = +25°C  
Rx2 (SUM) = –40°C  
Rx2 (DIFF) = –40°C  
0
0
5
10  
15  
20  
25  
30  
305.0 307.5 310.0 312.5 315.0 317.5 320.0 322.5 325.0 327.5  
306.0 308.5 311.0 313.5 316.0 318.5 321.0 323.5 326.0 328.5  
RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 18. Receiver IIP2 vs. Receiver Attenuation, LO = 75 MHz, Tones Placed at  
77 MHz and 97 MHz, −23.5 dBm Plus Attenuation  
Figure 21. Receiver IIP3, Receiver Attenuation = 0 dB, LO = 300 MHz, Tone 2 =  
Tone 1 + 1 MHz, −21 dBm Each, Swept Across Pass Band  
80  
50  
45  
40  
35  
30  
25  
Rx1 (SUM) = +110°C  
Rx1 (DIFF) = +110°C  
Rx1 (SUM) = +25°C  
Rx1 (DIFF) = +25°C  
Rx1 (SUM) = –40°C  
Rx1 (DIFF) = –40°C  
75  
70  
65  
60  
55  
50  
45  
40  
20  
15  
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx2 (SUM) = +110°C  
Rx2 (DIFF) = +110°C  
Rx2 (SUM) = +25°C  
Rx2 (DIFF) = +25°C  
Rx2 (SUM) = –40°C  
Rx2 (DIFF) = –40°C  
0
0
5
10  
20  
25  
30  
35  
79.5  
77.0  
82.0  
77.0  
84.5  
77.0  
87.0  
77.0  
89.5  
77.0  
92.0  
77.0  
94.5  
77.0  
97.0  
77.0  
99.5  
77.0  
ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 22. Receiver IIP3 vs. Attenuation, LO = 300 MHz, Tone 1 = 302 MHz,  
Tone 2 = 322 MHz, −19 dBm Plus Attenuation  
Figure 19. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 75 MHz, Tone 1 =  
77 MHz, Tone 2 Swept, −23.5 dBm Each  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
0
0
0
5
10  
15  
20  
25  
30  
302.0 302.0 302.0 302.0 302.0 302.0 302.0 302.0 302.0 302.0  
304.5 307.0 309.5 312.0 314.5 317.0 319.5 322.0 324.5 327.0  
ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 23. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 Swept Across Pass Band, −19 dBm  
Each  
Figure 20. Receiver IIP3 vs. Attenuation, LO = 300 MHz, Tone 1 = 325 MHz,  
Tone 2 = 326 MHz, −21 dBm Plus Attenuation  
Rev. 0 | Page 19 of 68  
ADRV9008-1  
Data Sheet  
–10  
0
–20  
–20  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–30  
–40  
–40  
–50  
–60  
–60  
–70  
–80  
–80  
–90  
–100  
–120  
–100  
–110  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET  
ATTENUATOR SETTING (dB)  
Figure 24. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Tracking Calibration Active,  
Sample Rate = 61.44 MSPS, LO = 75 MHz  
Figure 27. Receiver Image vs. Attenuator Setting, RF Bandwidth = 25 MHz,  
Tracking Calibration Active, Sample Rate = 61.44 MSPS, LO = 75 MHz,  
Baseband Frequency = 25 MHz  
–10  
0
–20  
+110°C  
+110°C  
–20  
+25°C  
–40°C  
–40  
+25°C  
–40°C  
–30  
–40  
–60  
–50  
–60  
–70  
–80  
–80  
–90  
–100  
–120  
–100  
–110  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET  
ATTENUATOR SETTING (dB)  
Figure 25. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Tracking Calibration Active,  
Sample Rate = 61.44 MSPS, LO = 300 MHz  
Figure 28. Receiver Image vs. Attenuator Setting, RF Bandwidth = 25 MHz,  
Tracking Calibration Active, Sample Rate = 61.44 MSPS, LO = 325 MHz,  
Baseband Frequency = 25 MHz  
–10  
25  
–20  
20  
+110°C  
+110°C  
+25°C  
+25°C  
–30  
–40°C  
–40  
–40°C  
15  
10  
5
–50  
–60  
–70  
0
–80  
–5  
–10  
–15  
–90  
–100  
–110  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 26. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Tracking Calibration Active,  
Sample Rate = 61.44 MSPS, LO = 525 MHz  
Figure 29. Receiver Gain vs. Receiver Attenuator Setting,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, LO = 75 MHz  
Rev. 0 | Page 20 of 68  
Data Sheet  
ADRV9008-1  
25  
20  
15  
10  
5
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–5  
–10  
–15  
0
5
10  
15  
20  
25  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
RECEIVER ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 33. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 75 MHz  
Figure 30. Receiver Gain vs. Receiver Attenuator Setting,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, LO = 325 MHz  
25  
0.5  
0.4  
20  
+110°C  
+110°C  
+25°C  
–40°C  
+25°C  
–40°C  
0.3  
0.2  
15  
10  
5
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–5  
–10  
–15  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 34. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 325 MHz  
Figure 31. Receiver Gain vs. Receiver Attenuator Setting,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, LO = 525 MHz  
0.5  
24  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
22  
20  
18  
16  
14  
12  
10  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
75  
125  
175  
225  
275  
320  
375  
425  
475  
525  
RECEIVER ATTENUATOR SETTING (dB)  
LO FREQUENCY (MHz)  
Figure 35. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 525 MHz  
Figure 32. Receiver Gain vs. LO Frequency,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS  
Rev. 0 | Page 21 of 68  
ADRV9008-1  
Data Sheet  
0.5  
0.4  
–70  
–75  
0.3  
+110°C  
+25°C  
–40°C  
0.2  
–80  
0.1  
0
–85  
–0.1  
–0.2  
–0.3  
–90  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
I RIPPLE = +110°C  
I RIPPLE = +25°C  
I RIPPLE = –40°C  
Q RIPPLE = +110°C  
Q RIPPLE = +25°C  
Q RIPPLE = –40°C  
–95  
–100  
–105  
–110  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 39. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 525 MHz  
Figure 36. Normalized Receiver Baseband Flatness vs. Baseband Offset  
Frequency (Receiver Flatness), LO = 75 MHz  
–50  
–30  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
–40  
+110°C  
–60  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–50  
+25°C  
–40°C  
–60  
–70  
–70  
–80  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–90  
–100  
–110  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
–30  
–20  
–10  
0
10  
20  
30  
RECEIVER LO FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 37. Receiver DC Offset vs. Receiver LO Frequency  
Figure 40. Receiver Second-Order Harmonic Distortion (HD2) Left vs.  
Baseband Frequency Offset and Attenuation, Tone Level = −21 dBm at  
Attenuation = 0 dB, X-Axis Is Baseband Frequency Offset of Fundamental  
Tone, Not Frequency of HD2 Product (HD2 Product is 2× Baseband  
Frequency), HD2 Canceller Disabled, LO = 75MHz  
–30  
–70  
–75  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–40  
+110°C  
+25°C  
–40°C  
–50  
–80  
–60  
–70  
–85  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–95  
–100  
–105  
–110  
0
5
10  
15  
20  
25  
30  
–30  
–20  
–10  
0
10  
20  
30  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 41. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level −21 dBm at Attenuation = 0 dB, X-Axis Is Baseband Frequency  
Offset of Fundamental Tone, Not Frequency of HD2 Product (HD2 Product Is  
2× Baseband Frequency), HD2 Canceller Disabled, LO = 300 MHz  
Figure 38. Receiver DC Offset vs. Receiver Attenuator Setting,  
LO = 75 MHz  
Rev. 0 | Page 22 of 68  
Data Sheet  
ADRV9008-1  
–30  
–10  
–30  
ATTN = 15 +110°C  
+110°C Rx2 (RIGHT)  
+110°C Rx1 (RIGHT)  
+25°C Rx2 (RIGHT)  
+25°C Rx1 (RIGHT)  
–40°C Rx2 (RIGHT)  
–40°C Rx1 (RIGHT)  
+110°C Rx2 (LEFT)  
–40  
–50  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
+110°C Rx1 (LEFT)  
+25°C Rx2 (LEFT)  
+25°C Rx1 (LEFT)  
–40°C Rx2 (LEFT)  
–40°C Rx1 (LEFT)  
–60  
–50  
–70  
–80  
–70  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–110  
–130  
–150  
–30  
–20  
–10  
0
10  
20  
30  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
525  
FREQUENCY OFFSET FROM LO (MHz)  
Figure 45. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level −17 dBm at Attenuation = 0 dB, LO = 525 MHz  
Figure 42. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level −21 dBm at Attenuation = 0 dB, X-Axis Is Baseband Frequency  
Offset of Fundamental Tone, Not Frequency of HD2 Product (HD2 Product Is  
2× Baseband Frequency), HD2 Canceller Disabled, LO = 525 MHz  
0
–10  
+110°C Rx2 (RIGHT)  
+110°C Rx1 (RIGHT)  
+25°C Rx2 (RIGHT)  
+25°C Rx1 (RIGHT)  
–40°C Rx2 (RIGHT)  
–40°C Rx1 (RIGHT)  
+110°C Rx2 (LEFT)  
+110°C Rx1 (LEFT)  
+25°C Rx2 (LEFT)  
+25°C Rx1 (LEFT)  
–40°C Rx2 (LEFT)  
–40°C Rx1 (LEFT)  
–5  
+110°C  
+25°C  
–40°C  
–30  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–70  
–90  
–110  
–130  
–150  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
LTE 20MHz RF INPUT POWER (dBm)  
75  
FREQUENCY OFFSET FROM LO AND ATTENUATION (MHz)  
Figure 43. Receiver HD3, Left and Right vs. Frequency Offset from LO and  
Attenuation, Tone Level = −16 dBm at Attenuation = 0 dB, LO = 75 MHz  
Figure 46. Receiver Error Vector Magnitude (EVM) vs. LTE 20 MHz RF Input  
Power, LTE 20 MHz RF Signal, LO = 75 MHz, Default AGC Settings  
–10  
0
+110°C Rx2 (RIGHT)  
+110°C Rx1 (RIGHT)  
+25°C Rx2 (RIGHT)  
+25°C Rx1 (RIGHT)  
–40°C Rx2 (RIGHT)  
–40°C Rx1 (RIGHT)  
+110°C Rx2 (LEFT)  
+110°C Rx1 (LEFT)  
+25°C Rx2 (LEFT)  
+25°C Rx1 (LEFT)  
–40°C Rx2 (LEFT)  
–40°C Rx1 (LEFT)  
–5  
+110°C  
+25°C  
–40°C  
–30  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–70  
–90  
–110  
–130  
–150  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
300  
LTE 20MHz RF INPUT POWER (dBm)  
FREQUENCY OFFSET FROM LO (MHz)  
Figure 44. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level −17 dBm at Attenuation = 0 dB, LO = 300 MHz  
Figure 47. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 300 MHz, Default AGC Settings  
Rev. 0 | Page 23 of 68  
ADRV9008-1  
Data Sheet  
–80  
–85  
–90  
0
100Hz = –99.81dBc/Hz  
1kHz = –108.20dBc/Hz  
10kHz = –114.24dBc/Hz  
100kHz = –120.82dBc/Hz  
1MHz = –147.16dBc/Hz  
10MHz = –152.38dBc/Hz  
100MHz = –152.51dBc/Hz  
–5  
+110°C  
+25°C  
–40°C  
–95  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
100  
1k  
10k  
100k  
1M  
10M  
100M  
LTE 20MHz RF INPUT POWER (dBm)  
FREQUENCY (Hz)  
Figure 51. LO Phase Noise vs. Frequency Offset, LO = 300 MHz, PLL Loop  
Bandwidth = 50 kHz  
Figure 48. Receiver EVM vs. LTE 20 MHz RF Input Power,  
LTE 20 MHz RF Signal, LO = 525 MHz, Default AGC Settings  
–80  
0
100Hz = –95.48dBc/Hz  
–85  
1kHz  
= –103.55dBc/Hz  
10  
–90  
–95  
10kHz = –109.36dBc/Hz  
100kHz = –116.28dBc/Hz  
1MHz = –144.62dBc/Hz  
10MHz = –152.33dBc/Hz  
100MHz = –152.85dBc/Hz  
Rx1 TO Rx2  
Rx2 TO Rx1  
20  
30  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
40  
50  
60  
70  
80  
90  
100  
0
100  
200  
300  
400  
500  
600  
100  
1k  
10k  
100k  
1M  
10M  
100M  
LO FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 49. Receiver to Receiver Isolation vs. LO Frequency,  
Baseband Frequency = 10 MHz  
Figure 52. LO Phase Noise vs. Frequency Offset, LO = 525 MHz, PLL Loop  
Bandwidth = 50 kHz  
–80  
–85  
–90  
100Hz = –110.00dBc/Hz  
1kHz = –120.75dBc/Hz  
10kHz = –126.54dBc/Hz  
100kHz = –132.76dBc/Hz  
1MHz = –150.09dBc/Hz  
10MHz = –151.09dBc/Hz  
100MHz = –150.74dBc/Hz  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 50. LO Phase Noise vs. Frequency Offset, LO = 75 MHz, PLL Loop  
Bandwidth = 50 kHz  
Rev. 0 | Page 24 of 68  
Data Sheet  
ADRV9008-1  
650 MHz TO 3000 MHz BAND  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–3.00  
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
ATTENUATION (dB)  
LO FREQUENCY (MHz)  
Figure 53. Receiver Off Chip Matching Circuit Path Loss vs. LO Frequency,  
Can Be Used for De-Embedding Performance Data  
Figure 56. Receiver Noise Figure vs. Attenuation, LO = 1850 MHz,  
200 MHz Bandwidth, Sample Rate = 245.76 MSPS,  
Integration Bandwidth = 500 kHz to 100 MHz  
0
45  
+110°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
40  
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RECEIVER ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 57. Receiver Noise Figure vs. Receiver Attenuation, 2850 MHz LO,  
RF Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS,  
Integration Bandwidth = 500 kHz to 100 MHz  
Figure 54. Receiver LO Leakage vs. Receiver LO Frequency, Receiver  
Attenuation = 0 dB, RF Bandwidth = 200 MHz,  
Sample Rate = 245.76 MSPS  
20  
18  
16  
14  
12  
10  
45  
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
8
+110°C  
+25°C  
–40°C  
6
4
2
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 55. Receiver Noise Figure vs. Attenuation, LO = 650 MHz, RF  
Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS, Integration Bandwidth =  
500 kHz to 100 MHz  
Figure 58. Receiver Noise Figure vs. Receiver LO Frequency,  
Receiver Attenuation = 0 dB, RF Bandwidth = 200 MHz,  
Sample Rate = 245.76 MSPS, Integration Bandwidth = 100 MHz  
Rev. 0 | Page 25 of 68  
 
ADRV9008-1  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
20  
–40°C  
+25°C  
+110°C  
–40°C  
+25°C  
+110°C  
18  
16  
14  
12  
10  
8
0
–20  
–15  
–10  
–5  
0
5
10  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
CW OUT OF BAND BLOCKER LEVEL (dBm)  
RECEIVER OFFSET FREQUENCY FROM LO (650MHz)  
Figure 59. Receiver Noise Figure vs. Receiver Offset Frequency from LO, Integration  
Bandwidth = 200 kHz, LO = 650 MHz  
Figure 62. Receiver Noise Figure vs. CW Out of Band Blocker Level, LO =  
1685 MHz, Blocker = 2085 MHz  
20  
110  
–40°C  
–40°C (SUM)  
–40°C (DIFF)  
+25°C (SUM)  
+25°C  
+110°C  
18  
16  
14  
12  
10  
8
100  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
90  
80  
70  
60  
50  
–80 –60 –40 –20  
0
20  
40  
60  
80  
100  
–100  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
RECEIVER OFFSET FREQUENCY FROM LO (1850MHz)  
RECEIVER ATTENUATION (dB)  
Figure 60. Receiver Noise Figure vs. Receiver Offset Frequency from LO, Integration  
Bandwidth = 200 kHz, LO = 1850 MHz  
Figure 63. Receiver IIP2 vs. Receiver Attenuation, LO = 1800 MHz, Tones  
Placed at 1845 MHz and 1846 MHz, −21 dBm Each at Attenuation = 0 dB  
20  
80  
75  
70  
65  
60  
–40°C  
+25°C  
+110°C  
18  
16  
14  
12  
10  
8
55  
–40°C (SUM)  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
50  
45  
40  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
806  
805  
826  
825  
846  
845  
866  
865  
886  
885  
906  
905  
RECEIVER OFFSET FREQUENCY FROM LO (2850MHz)  
800  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 64. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 800 MHz, Six Tone Pairs,  
−21 dBm Each  
Figure 61. Receiver Noise Figure vs. Receiver Offset Frequency from LO, Integration  
Bandwidth = 200 kHz, LO = 2850 MHz  
Rev. 0 | Page 26 of 68  
Data Sheet  
ADRV9008-1  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
RX1 +110°C MAX OF IIP2_SUM_CF  
RX1 +110°C MAX OF IIP2_DIF_CF  
RX2 +110°C MAX OF IIP2_SUM_CF  
RX2 +110°C MAX OF IIP2_DIF_CF  
RX1 +25°C MAX OF IIP2_SUM_CF  
RX1 +25°C MAX OF IIP2_DIF_CF  
RX2 +25°C MAX OF IIP2_SUM_CF  
RX2 +25°C MAX OF IIP2_DIF_CF  
RX1 –40°C MAX OF IIP2_SUM_CF  
RX1 –40°C MAX OF IIP2_DIF_CF  
RX2 –40°C MAX OF IIP2_SUM_CF  
RX2 –40°C MAX OF IIP2_DIF_CF  
–40°C (SUM)  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
1806  
1805  
1826  
1825  
1846  
1845  
1866  
1865  
1886  
1885  
1906  
1905  
1800  
SWEPT PASS BAND FREQUENCY (MHz)  
TONE1 = 802MHz, TONE2 = SWEPT ACROSS PASSBAND  
ATTENUATOR = 0  
Figure 65. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 1800 MHz, Six Tone Pairs,  
−21 dBm Each  
Figure 68. Receiver IIP2 Sum and Difference Across Bandwidth, Receiver  
Attenuation = 0 dB, LO = 800 MHz, Tone 1 = 802 MHz, Tone 2 Swept,  
−21 dBm Each, IIP2_SUM_CF and IIP2_DIF_CF Indicate Sum and Difference  
Products  
100  
80  
75  
70  
65  
60  
Rx1 –40°C MAX OF IIP2_SUM_CF  
Rx1 –40°C MAX OF IIP2_DIF_CF  
95  
Rx1 +25°C MAX OF IIP2_SUM_CF  
Rx1 +25°C MAX OF IIP2_DIF_CF  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Rx1 +110°C MAX OF IIP2_SUM_CF  
Rx1 +110°C MAX OF IIP2_DIF_CF  
Rx2 –40°C MAX OF IIP2_SUM_CF  
Rx2 –40°C MAX OF IIP2_DIF_CF  
Rx2 +25°C MAX OF IIP2_SUM_CF  
Rx2 +25°C MAX OF IIP2_DIF_CF  
Rx2 +110°C MAX OF IIP2_SUM_CF  
Rx2 +110°C MAX OF IIP2_DIF_CF  
55  
–40°C (SUM)  
50  
45  
40  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
1807 1817 1827 1837 1847 1857 1867 1877 1887 1897 1907  
2906  
2905  
2926  
2925  
2946  
2945  
2966  
2965  
2986  
2985  
3006  
3005  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 66. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 2900 MHz, Six Tone Pairs,  
−21 dBm Each  
Figure 69. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 1800 MHz, Tone 1 =  
1802 MHz, Tone 2 Swept, −21 dBm Each, IIP2_SUM_CF and IIP2_DIF_CF  
Indicate Sum and Difference Products  
100  
100  
R
R
R
R
X
X
X
X
1 +110°C MAX OF IIP2_SUM_CF  
1 +110°C MAX OF IIP2_DIF_CF  
2 +110°C MAX OF IIP2_SUM_CF  
2 +110°C MAX OF IIP2_DIF_CF  
Rx1 –40°C (SUM)  
Rx1 –40°C (DIF)  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Rx1 +25°C (SUM)  
Rx1 +25°C (DIF)  
90  
Rx1 +110°C (SUM)  
Rx1 +110°C (DIF)  
85  
80  
75  
70  
65  
60  
55  
50  
Rx2 –40°C (SUM)  
Rx2 –40°C (DIF)  
Rx2 +110°C (SUM)  
Rx2 +110°C (DIF)  
R
R
R
R
R
R
R
R
X1 +25°C MAX OF IIP2_SUM_CF  
X1 +25°C MAX OF IIP2_DIF_CF  
X2 +25°C MAX OF IIP2_SUM_CF  
X2 +25°C MAX OF IIP2_DIF_CF  
X1 –40°C MAX OF IIP2_SUM_CF  
X1 –40°C MAX OF IIP2_DIF_CF  
X2 –40°C MAX OF IIP2_SUM_CF  
X2 –40°C MAX OF IIP2_DIF_CF  
2907 2917 2927 2937 2947 2957 2967 2977 2987 2997 3007  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
TONE1 = 1802MHz, TONE2 = 1892MHz  
ATTENUATOR = SWEPT  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 67. Receiver IIP2, LO = 1800 MHz, Tones Placed at 1802 MHz and  
1892 MHz, −21 dBm Each at Attenuation = 0 dB, IIP2_SUM_CF and IIP2_DIF_CF  
Indicate Sum and Difference Products  
Figure 70. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 2900 MHz, Tone 1 =  
2902 MHz, Tone 2 Swept, −21 dBm Each  
Rev. 0 | Page 27 of 68  
ADRV9008-1  
Data Sheet  
45  
25  
20  
15  
10  
5
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
ATTENUATION (dB)  
2905 2915 2925 2935 2945 2955 2965 2975 2985 2995 3005 3015 3025  
2906 2916 2926 2936 2946 2956 2966 2976 2986 2996 3006 3016 3026  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 71. Receiver IIP3 vs. Attenuation, LO = 1800 MHz, Tone 1 = 1890 MHz,  
Tone 2 = 1891 MHz, −21 dBm Each at Attenuation = 0 dB  
Figure 74. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 2900 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each,  
Swept Across Pass Band  
30  
60  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 –40°C  
50  
25  
Rx2 +25°C  
Rx2 +110°C  
Rx2 +25°C  
Rx2 +110°C  
20  
15  
10  
5
40  
30  
20  
10  
0
0
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
ATTENUATION (dB)  
805 815 825 835 845 855 865 875 885 895 905 915 925  
806 816 826 836 846 856 866 876 886 896 906 916 926  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 72. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 800 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each,  
Swept Across Pass Band  
Figure 75. Receiver IIP3 vs. Attenuation, LO = 1800 MHz, Tone 1 = 1802 MHz,  
Tone 2 = 1892 MHz, −21 dBm Each at Attenuation = 0 dB  
30  
30  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
25  
Rx2 –40°C  
Rx2 –40°C  
25  
Rx2 +25°C  
Rx2 +110°C  
Rx2 +25°C  
Rx2 +110°C  
20  
15  
10  
5
20  
15  
10  
5
0
807 817 827 837 847 857 867 877 887 897 907  
0
SWEPT PASS BAND FREQUENCY (MHz)  
1805 1815 1825 1835 1845 1855 1865 1875 1885 1895 1905 1915 1925  
1806 1816 1826 1836 1846 1856 1866 1876 1886 1896 1906 1916 1926  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 73. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 1800 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each,  
Swept Across Pass Band  
Figure 76. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 800 MHz, Tone 1 = 802 MHz, Tone 2 Swept Across Pass Band,  
−21 dBm Each  
Rev. 0 | Page 28 of 68  
Data Sheet  
ADRV9008-1  
0
–20  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+110°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
–40  
–60  
–80  
–100  
0
1807 1817 1827 1837 1847 1857 1867 1877 1887 1897 1907  
–120  
SWEPT PASS BAND FREQUENCY (MHz)  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
BASEBAND FREQUENCY OFFSET (Hz)  
Figure 77. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 Swept Across Pass Band,  
−21 dBm Each  
Figure 80. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 1850 MHz  
30  
25  
20  
15  
0
–40°C  
+25°C  
+110°C  
–20  
–40  
–60  
10  
–80  
Rx1 –40°C  
5
0
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +110°C  
–100  
–120  
2907 2917 2927 2937 2947 2957 2967 2977 2987 2997 3007  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
BASEBAND FREQUENCY OFFSET (Hz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 78. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation =  
0 dB, LO = 2900 MHz, Tone 1 = 2902 MHz, Tone 2 Swept Across Pass Band,  
−21 dBm Each  
Figure 81. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 2850 MHz  
0
0
–40°C  
+25°C  
+110°C  
–40°C  
+25°C  
+110°C  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
–120  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
BASEBAND FREQUENCY OFFSET (Hz)  
ATTENUATOR SETTING (dB)  
Figure 79. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, 200 MHz RF Bandwidth, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 650 MHz  
Figure 82. Receiver Image vs. Attenuator Setting,  
RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 1850 MHz  
Rev. 0 | Page 29 of 68  
ADRV9008-1  
Data Sheet  
25  
20  
15  
10  
5
0.10  
0.05  
0
–40°C  
+25°C  
+110°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
–0.75  
–0.80  
–0.85  
–0.90  
–0.95  
–1.00  
0
NORMALIZED I RIPPLE  
NORMALIZED I RIPPLE  
NORMALIZED I RIPPLE  
NORMALIZED Q RIPPLE  
NORMALIZED Q RIPPLE  
NORMALIZED Q RIPPLE  
–5  
–10  
–15  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 83. Receiver Gain vs. Receiver Attenuation, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS, LO = 1850 MHz  
Figure 86. Normalized Receiver Baseband Flatness vs. Baseband Offset  
Frequency, LO = 2600 MHz  
24  
–70  
–40°C  
+25°C  
+110°C  
–75  
–40°C  
+25°C  
+110°C  
22  
20  
–80  
–85  
–90  
–95  
18  
16  
14  
12  
–100  
10  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
RECEIVER LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 84. Receiver Gain vs. LO Frequency, RF Bandwidth = 20 MHz, Sample  
Rate = 245.76 MSPS  
Figure 87. Receiver DC Offset vs. Receiver LO Frequency  
–70  
0.5  
–40°C  
–40°C  
+25°C  
+25°C  
0.4  
+110°C  
+110°C  
–75  
–80  
0.3  
0.2  
0.1  
–85  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–90  
–95  
–100  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 88. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 1850 MHz  
Figure 85. Receiver Gain Step Error vs. Receiver Attenuator Setting over  
Temperature  
Rev. 0 | Page 30 of 68  
Data Sheet  
ADRV9008-1  
–30  
10  
–10  
ATTN = 15 –40°C  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
ATTN = 0 –40°C  
ATTN = 15 +25°C  
ATTN = 0 +25°C  
ATTN = 15 +110°C  
ATTN = 0 +110°C  
–50  
–70  
–30  
–50  
–90  
–70  
–90  
–110  
–130  
–150  
–110  
–130  
–150  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
650  
FREQUENCY OFFSET FROM LO (MHz)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 89. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level = −15 dBm at Attenuation = 0 dB, HD2 Correction Configured for  
Low-Side Optimization, X-Axis = Baseband Frequency Offset of Fundamental  
Tone and Not the Frequency of the HD2 Product (HD2 Product = 2× Baseband  
Frequency), LO = 650 MHz  
Figure 92. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 650 MHz  
10  
–30  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
ATTN = 15 –40°C  
ATTN = 0 –40°C  
ATTN = 15 +25°C  
–10  
–30  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
–50  
ATTN = 0 +25°C  
ATTN = 15 +110°C  
ATTN = 0 +110°C  
–70  
–90  
–50  
–70  
–90  
–110  
–130  
–150  
–110  
–130  
–150  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–40  
–30  
–20  
–10  
1850  
FREQUENCY OFFSET FROM LO (MHz)  
10  
20  
30  
40  
50  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 90. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level = −15 dBm at Attenuation = 0 dB, HD2 Correction Configured for  
Low-Side Optimization, X-Axis = Baseband Frequency Offset of the Fundamental  
Tone and Not the Frequency of the HD2 Product (HD2 Product = 2× the Baseband  
Frequency), LO = 1850 MHz  
Figure 93. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 1850 MHz  
10  
–30  
–50  
–70  
–90  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
–10  
–30  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
–50  
–70  
–90  
–110  
ATTN = 15dB, +110°C  
ATTN = 0dB, +110°C  
ATTN = 15dB, +25°C  
ATTN = 0dB, +25°C  
ATTN = 15dB, –40°C  
ATTN = 0dB, –40°C  
–110  
–130  
–150  
–130  
–150  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
–60  
–40  
–20  
0
–20  
–40  
60  
–50  
–40  
–30  
–20  
–10  
2850  
FREQUENCY OFFSET FROM LO (MHz)  
10  
20  
30  
40  
50  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 94. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 2850 MHz  
Figure 91. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level = −15 dBm at Attenuation = 0 dB, HD2 Correction Configured for  
Low-Side Optimization, X-Axis = Baseband Frequency Offset of the Fundamental  
Tone and Not the Frequency of the HD2 Product (HD2 Product = 2× the Baseband  
Frequency), LO = 2850 MHz  
Rev. 0 | Page 31 of 68  
ADRV9008-1  
Data Sheet  
10  
0
–5  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
–40°C  
+25°C  
+110°C  
–10  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–30  
–50  
–70  
–90  
–110  
–130  
–150  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
0 15 30 10 25 5 20 0 15 30 10 25 5 20 0 15 30 10 25 5 20 0 15 30  
–50 –40 –30 –20 –10 10 20 30 40 50  
1850  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
LTE 20MHz RF INPUT POWER (dBm)  
UPPER: RECEIVER ATTENUATION (dB)  
LOWER: FREQUENCY OFFSET FROM LO (MHz)  
Figure 98. Receiver EVM vs. LTE 20 MHz RF Input Power,  
LTE 20 MHz RF Signal, LO = 2700 MHz  
Figure 95. Receiver HD3, Left and Right vs. Receiver Attenuation and Frequency  
Offset from LO, Baseband Tone Held Constant, Tone Level Increased 1 for 1 as  
Attenuator is Swept from 0 dB to 30 dB, HD3 Right (High Side): Tone on Same Side  
as HD3 Product; HD3 Left (Low Side): Tone on Opposite Side as HD3 Product,  
CW Signal, LO = 1850 MHz, Tone Level = −15 dBm at Attenuation = 0 dB  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
–40°C  
–40°C  
+25°C  
+110°C  
+25°C  
–5  
+110°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
LTE 20MHz RF INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
Figure 96. Receiver EVM vs. LTE 20 MHz RF Input Power,  
LTE 20 MHz RF Signal, LO = 600 MHz  
Figure 99. Receiver to Receiver Isolation (dB) vs. LO Frequency (MHz)  
0
–5  
–70  
–80  
–40°C  
+25°C  
+110°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
100  
1k  
10k  
100k  
1M  
10M  
100M  
LTE 20MHz RF INPUT POWER (dBm)  
FREQUENCY OFFSET (Hz)  
Figure 100. LO Phase Noise vs. Frequency Offset, LO = 1900 MHz, Spectrum  
Analyzer Limits Far Out Noise  
Figure 97. Receiver EVM vs. LTE 20 MHz RF Input Power,  
LTE 20 MHz RF Signal, LO = 1800 MHz  
Rev. 0 | Page 32 of 68  
Data Sheet  
ADRV9008-1  
3400 MHz TO 4800 MHz BAND  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
5000  
RECEIVER ATTENUATION (dB)  
LO FREQUENCY (MHz)  
Figure 101. Receiver Off Chip Matching Circuit Path Loss vs. LO Frequency  
(Simulation), Can Be Used for De-Embedding Performance Data  
Figure 104. Receiver Noise Figure vs. Receiver Attenuation,  
LO = 4600 MHz, RF Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS,  
Integration Bandwidth = 500 kHz to 100 MHz  
0
120  
110  
100  
90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
80  
70  
60  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
3600  
4600  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
RECEIVER LO FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 102. Receiver LO Leakage from 3600 MHz to 4600 MHz, 0 dB Receiver  
Attenuation, 200 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
Figure 105. Receiver IIP2 vs. Receiver Attenuation, LO = 3600 MHz, Tones  
Placed at 3645 MHz and 3646 MHz, −21 dBm Plus Attenuation  
45  
110  
100  
90  
+110°C  
+25°C  
–40°C  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
60  
IIP2 DIFF –40°C  
10 12 14 16 18 20 22 24 26 28 30  
RECEIVER ATTENUATION (dB)  
0
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
RECEIVER ATTENUATION (dB)  
Figure 103. Receiver Noise Figure vs. Receiver Attenuation,  
LO = 3600 MHz, RF Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS,  
Integration Bandwidth = 500 kHz to 100 MHz  
Figure 106. Receiver IIP2 vs. Receiver Attenuation, LO = 4600 MHz, Tones  
Placed at 4645 MHz and 4646 MHz, −21 dBm Plus Attenuation  
Rev. 0 | Page 33 of 68  
 
ADRV9008-1  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
+110°C = Rx1 (DIFF)  
+110°C = Rx1 (SUM)  
+25°C = Rx1 (DIFF)  
+25°C = Rx1 (SUM)  
–40°C = Rx1 (DIFF)  
–40°C = Rx1 (SUM)  
+110°C = Rx2 (DIFF)  
+110°C = Rx2 (SUM)  
+25°C = Rx2 (DIFF)  
+25°C = Rx2 (SUM)  
–40°C = Rx2 (DIFF)  
–40°C = Rx2 (SUM)  
3606  
3605  
3626  
3625  
3646  
3645  
3666  
3665  
3686  
3685  
3706  
3705  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 110. Receiver IIP2 vs. Receiver Attenuation, LO = 4600 MHz, Tones  
Placed at 4602 MHz and 4692 MHz, −21 dBm Plus Attenuation  
Figure 107. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 3600 MHz,  
Six Tone Pairs, −21 dBm Plus Attenuation Each  
80  
75  
70  
65  
60  
100  
+110°C = Rx1 (DIFF)  
+110°C = Rx1 (SUM)  
+25°C = Rx1 (DIFF)  
+25°C = Rx1 (SUM)  
–40°C = Rx1 (DIFF)  
–40°C = Rx1 (SUM)  
+110°C = Rx2 (DIFF)  
+110°C = Rx2 (SUM)  
+25°C = Rx2 (DIFF)  
+25°C = Rx2 (SUM)  
–40°C = Rx2 (DIFF)  
–40°C = Rx2 (SUM)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
55  
IIP2 SUM +110°C  
50  
45  
40  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
3612 3622 3632 3642 3652 3662 3672 3682 3692 3702 3712  
4606  
4605  
4626  
4625  
4646  
4645  
4666  
4665  
4686  
4685  
4706  
4705  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 111. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 3600 MHz,  
Tone 1 = 3602 MHz, Tone 2 Swept, −21 dBm Each  
Figure 108. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 4600 MHz,  
Six Tone Pairs, −21 dBm Each  
100  
100  
95  
90  
85  
80  
75  
70  
Rx1 +110°C IIP2_SUM_CF  
Rx1 +110°C IIP2_DIF_CF  
Rx2 +110°C IIP2_SUM_CF  
Rx2 +110°C IIP2_DIF_CF  
Rx1 +25°C IIP2_SUM_CF  
Rx1 +25°C IIP2_DIF_CF  
Rx2 +25°C IIP2_SUM_CF  
Rx2 +25°C IIP2_DIF_CF  
Rx1 –40°C IIP2_SUM_CF  
Rx1 –40°C IIP2_DIF_CF  
Rx2 –40°C IIP2_SUM_CF  
Rx2 –40°C IIP2_DIF_CF  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
+110°C = Rx1 (DIFF)  
+110°C = Rx1 (SUM)  
+25°C = Rx1 (DIFF)  
+25°C = Rx1 (SUM)  
–40°C = Rx1 (DIFF)  
–40°C = Rx1 (SUM)  
+110°C = Rx2 (DIFF)  
+110°C = Rx2 (SUM)  
+25°C = Rx2 (DIFF)  
+25°C = Rx2 (SUM)  
–40°C = Rx2 (DIFF)  
–40°C = Rx2 (SUM)  
65  
60  
55  
50  
Tone2  
0
5
10  
15  
20  
25  
30  
4612 4622 4632 4642 4652 4662 4672 4682 4692 4702 4712  
RECEIVER ATTENUATION  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 112. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 4600 MHz,  
Tone 1 = 4602 MHz, Tone 2 Swept, −21 dBm Each, IIP2_SUM_CF and  
IIP2_DIF_CF Indicate Sum and Difference Products  
Figure 109. Receiver IIP2 vs. Receiver Attenuation, LO = 3600 MHz,  
Tone 1 = 4602 MHz and Tone 2 = 4692 MHz, −21 dBm Plus Attenuation  
Rev. 0 | Page 34 of 68  
Data Sheet  
ADRV9008-1  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
0
0
0
5
10  
15  
20  
25  
30  
4605  
4625  
4626  
4645  
4646  
4665  
4666  
4685  
4686  
4705  
4706  
ATTENUATION (dB)  
4606  
RECEIVER ATTENUATION (dB)  
Figure 113. Receiver IIP3 vs. Attenuation, LO = 3600 MHz, Tone 1 = 3695 MHz,  
Tone 2 = 3696 MHz, −21 dBm Plus Attenuation  
Figure 116. Receiver IIP3 vs. Receiver Attenuation, Receiver Attenuation = 0 dB,  
LO = 4600 MHz, Tone 2 = Tone 1 + 1 MHz,  
−21 dBm Each, Swept Across Pass Band  
50  
45  
40  
35  
30  
25  
45  
40  
35  
30  
25  
20  
20  
Rx1 = +110°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
15  
15  
10  
5
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
10  
5
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
TONE 1 = 4695MHz TONE 2 = 4696MHz  
RECEIVER ATTENUATION SWEPT (dB)  
Figure 117. Receiver IIP3 vs. Receiver Attenuation, LO = 3600 MHz, Tone 1 =  
3602 MHz, Tone 2 = 3692 MHz, −21 dBm Plus Attenuation  
Figure 114. Receiver IIP3 vs. Receiver Attenuation Swept, LO = 4600 MHz,  
Tone 1 = 4695 MHz, Tone 2 = 4696 MHz, −21 dBm Plus Attenuation  
50  
50  
40  
30  
30  
25  
20  
15  
Rx1 = +110°C  
20  
Rx1 = +110°C  
10  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
10  
5
Rx2 = +25°C  
Rx2 = –40°C  
0
0
3605  
3606  
0
5
10  
15  
20  
25  
30  
3625  
3626  
3645  
3646  
3665  
3666  
3685  
3686  
3705  
3706  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 118. Receiver IIP3 vs. Receiver Attenuation, LO = 4600 MHz,  
Tone 1 = 4602 MHz, Tone 2 = 4692 MHz, −21 dBm Plus Attenuation  
Figure 115. Receiver IIP3 Across Bandwidth, Receiver Attenuation = 0 dB, LO =  
3600 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each,  
Swept Across Pass Band  
Rev. 0 | Page 35 of 68  
ADRV9008-1  
Data Sheet  
35  
30  
25  
20  
15  
0
–20  
+110°C  
+25°C  
–40°C  
–40  
–60  
Rx1 = +110°C  
–80  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
10  
5
–100  
0
3612  
–120  
3632  
3652  
3672  
3692  
3712  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
SWEPT PASS BAND FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 119. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 Swept  
Across Pass Band, −21 dBm Each  
Figure 122. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 4600 MHz  
35  
30  
25  
20  
0
+110°C  
+25°C  
–40°C  
–20  
–40  
–60  
–80  
15  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
10  
5
–100  
–120  
0
4612  
4632  
4652  
4672  
4692  
4712  
0
5
10  
15  
20  
25  
30  
SWEPT PASS BAND FREQUENCY (MHz)  
ATTENUATOR SETTING (dB)  
Figure 123. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS,  
LO = 3600 MHz, Baseband Frequency= 10 MHz  
Figure 120. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 4600 MHz,  
Tone 1 = 4602 MHz, Tone 2 Swept Across Pass Band, −21 dBm Each  
0
0
+110°C  
+110°C  
+25°C  
–40°C  
+25°C  
–40°C  
–20  
–20  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET (MHz)  
ATTENUATOR SETTING (dB)  
Figure 124. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS,  
LO = 4600 MHz, Baseband Frequency = 10 MHz  
Figure 121. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 3600 MHz  
Rev. 0 | Page 36 of 68  
Data Sheet  
ADRV9008-1  
25  
20  
15  
10  
5
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–5  
–10  
–15  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 125. Receiver Gain vs. Receiver Attenuation, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS, LO = 3600 MHz  
Figure 128. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 3600 MHz  
25  
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
20  
15  
0.2  
10  
5
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–5  
–10  
–15  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 126. Receiver Gain vs. Receiver Attenuation, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS, LO = 4600 MHz  
Figure 129. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 4600 MHz  
24  
–50  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
22  
20  
18  
16  
14  
12  
10  
–60  
–70  
–80  
–90  
–100  
–110  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
RECEIVER LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 130. Receiver DC Offset vs. Receiver LO Frequency  
Figure 127. Receiver Gain vs. LO Frequency, RF Bandwidth = 200 MHz,  
Sample Rate = 245.76 MSPS  
Rev. 0 | Page 37 of 68  
ADRV9008-1  
Data Sheet  
–70  
–30  
–40  
+110°C  
+25°C  
–40°C  
–75  
–50  
–80  
–60  
–70  
–85  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–95  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
–100  
–105  
–110  
0
5
10  
15  
20  
25  
30  
–60  
–40  
–20  
0
20  
40  
60  
RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 131. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 3600 MHz  
Figure 134. Receiver HD2, Left vs. Baseband Frequency Offset and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0 dB, X-Axis =  
Baseband Frequency Offset of the Fundamental Tone, Not the Frequency of  
the HD2 Product (HD2 Product = 2× the Baseband Frequency), HD2  
Canceller Disabled, LO = 4600 MHz  
–70  
10  
Rx1 = +110°C (RIGHT)  
Rx1 = +110°C (LEFT)  
Rx1 = +25°C (RIGHT)  
Rx1 = +25°C (LEFT)  
Rx1 = –40°C (RIGHT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx2 = +110°C (LEFT)  
Rx2 = +25°C (RIGHT)  
Rx2 = +25°C (LEFT)  
Rx2 = –40°C (RIGHT)  
Rx2 = –40°C (LEFT)  
+110°C  
+25°C  
–40°C  
–75  
–80  
–10  
–30  
–85  
–90  
–50  
–70  
–95  
–90  
–100  
–105  
–110  
–110  
–130  
–150  
0
5
10  
15  
20  
25  
30  
–50  
–40  
–30  
–20  
–10  
3600  
FREQUENCY OFFSET FROM LO (MHz)  
10  
20  
30  
40  
50  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 132. Receiver DC Offset vs. Receiver Attenuator Setting,  
LO = 4600 MHz  
Figure 135. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 3600 MHz  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
Rx1 = +110°C (RIGHT)  
Rx1 = +110°C (LEFT)  
Rx1 = +25°C (RIGHT)  
Rx1 = +25°C (LEFT)  
Rx1 = –40°C (RIGHT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx2 = +110°C (LEFT)  
Rx2 = +25°C (RIGHT)  
Rx2 = +25°C (LEFT)  
Rx2 = –40°C (RIGHT)  
Rx2 = –40°C (LEFT)  
–10  
–30  
–50  
–70  
–90  
–110  
–120  
–130  
–140  
–150  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
–110  
–130  
–150  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–40  
–30  
–20  
–10  
4600  
FREQUENCY OFFSET FROM LO AND ATTENUATION (MHz)  
10  
20  
30  
40  
50  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 136. Receiver HD3, Left and Right vs. Frequency Offset from LO and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0 dB,  
LO = 4600 MHz  
Figure 133. Receiver HD2, Left vs. Baseband Frequency Offset and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0 dB, X-Axis =  
Baseband Frequency Offset of the Fundamental Tone Not the Frequency of  
the HD2 Product (HD2 Product = 2× the Baseband Frequency), HD2  
Canceller Disabled, LO = 3600 MHz  
Rev. 0 | Page 38 of 68  
Data Sheet  
ADRV9008-1  
0
–5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Rx1 TO Rx2 ISOLATION  
Rx2 TO Rx1 ISOLATION  
+110°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
LTE 20MHz RF INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
Figure 137. Receiver EVM vs. LTE 20 MHz RF Input Power, RF Signal =  
LTE 20 MHz, LO = 3600 MHz, Default AGC Settings  
Figure 139. Receiver to Receiver Isolation vs. LO Frequency  
0
–70  
–80  
–90  
+110°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
100  
1k  
10k  
100k  
1M  
10M  
100M  
LTE 20MHz RF INPUT POWER (dBm)  
FREQUENCY OFFSET (Hz)  
Figure 138. Receiver EVM vs. LTE 20 MHz RF Input Power,  
RF Signal = LTE 20 MHz, LO = 4600 MHz, Default AGC Settings  
Figure 140. LO Phase Noise vs. Frequency Offset, LO = 3800 MHz, PLL Loop  
Bandwidth = 300 kHz, Spectrum Analyzer Limits Far Out Noise  
Rev. 0 | Page 39 of 68  
ADRV9008-1  
Data Sheet  
5100 MHz TO 5900 MHz BAND  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0
–0.20  
–0.40  
–0.60  
–0.80  
–1.00  
–1.20  
–1.40  
–1.60  
–1.80  
–2.00  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
5805  
5806  
5825  
5826  
5845  
5846  
5865  
5866  
5885  
5886  
5905  
5906  
5000  
5200  
5400  
5600  
5800  
6000  
SWEPT PASS BAND FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 144. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 5800 MHz,  
Six Tone Pairs, −21 dBm Plus Attenuation Each  
Figure 141. Receiver Off Chip Matching Circuit Path Loss vs. LO Frequency  
(Simulation), Can Be Used for De-Embedding Performance Data  
110  
0
Rx1 IIP2 DIFF +110°C  
Rx1 IIP2 SUM +110°C  
Rx1 IIP2 DIFF +25°C  
Rx1 IIP2 SUM +25°C  
Rx1 IIP2 DIFF –40°C  
Rx1 IIP2 SUM –40°C  
+110°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
90  
80  
70  
60  
50  
Rx2 IIP2 DIFF +110°C  
Rx2 IIP2 SUM +110°C  
Rx2 IIP2 DIFF +25°C  
Rx2 IIP2 SUM +25°C  
Rx2 IIP2 DIFF –40°C  
Rx2 IIP2 SUM –40°C  
0
5
10  
15  
20  
25  
30  
5200  
5300  
5400  
5500  
5600  
5700  
5800  
RECEIVER ATTENUATION  
RECEIVER LO FREQUENCY (MHz)  
Figure 142. Receiver LO Leakage vs. Receiver LO Frequency, 5200 MHz,  
5500 MHz, and 5800 MHz, Receiver Attenuation = 0 dB, RF Bandwidth =  
200 MHz, Sample Rate = 245.76 MSPS  
Figure 145. Receiver IIP2 vs. Receiver Attenuation, LO = 5800 MHz, Tones  
Placed at 5802 MHz and 5892 MHz, −21 dBm Plus Attenuation  
110  
80  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
Rx1 IIP2 DIFF +110°C  
Rx1 IIP2 SUM +110°C  
Rx1 IIP2 DIFF +25°C  
75  
100  
Rx1 IIP2 SUM +25°C  
IIP2 DIFF +110°C  
Rx1 IIP2 DIFF –40°C  
Rx1 IIP2 SUM –40°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
90  
70  
65  
60  
80  
70  
60  
50  
55  
Rx2 IIP2 DIFF +110°C  
Rx2 IIP2 SUM +110°C  
Rx2 IIP2 DIFF +25°C  
Rx2 IIP2 SUM +25°C  
Rx2 IIP2 DIFF –40°C  
Rx2 IIP2 SUM –40°C  
50  
45  
40  
5802 5812 5822 5832 5842 5852 5862 5872 5882 5892 5902  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
ATTENUATION (dB)  
5802 5802 5802 5802 5802 5802 5802 5802 5802 5802 5802  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 143. Receiver IIP2 vs. Attenuation, LO = 5800 MHz, Tones Placed at  
5845 MHz and 5846 MHz, −21 dBm Plus Attenuation  
Figure 146. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 5800 MHz,  
Tone 1 = 5802 MHz, Tone 2 Swept, −21 dBm Each  
Rev. 0 | Page 40 of 68  
 
Data Sheet  
ADRV9008-1  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
0
0
0
5
10  
15  
20  
25  
30  
5802 5802 5802 5802 5802 5802 5802 5802 5802 5802 5802 5802  
5812 5822 5832 5842 5852 5862 5872 5882 5892 5902 5912 5922  
RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 147. Receiver IIP3 vs. Receiver Attenuation, LO = 5800 MHz, Tone 1 =  
5895 MHz, Tone 2 = 5896 MHz, −21 dBm Plus Attenuation  
Figure 150. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 5800 MHz, Tone 1 = 5802 MHz, Tone 2  
Swept Across Pass Band, −21 dBm Each  
30  
–10  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
+110°C  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
25  
20  
15  
10  
5
0
5805 5815 5825 5835 5845 5855 5865 5875 5888 5895 5905 5915  
5806 5816 5826 5836 5846 5856 5866 5876 5886 5896 5906 5916  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
SWEPT PASS BAND FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 151. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 5200 MHz  
Figure 148. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 5800 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm  
Each, Swept Across Pass Band  
60  
–10  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
+110°C  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 152. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 5900 MHz  
Figure 149. Receiver IIP3 vs. Receiver Attenuation, LO = 5800 MHz,  
Tone 1 = 5802 MHz, Tone 2 = 5892 MHz, −21 dBm Plus Attenuation  
Rev. 0 | Page 41 of 68  
ADRV9008-1  
Data Sheet  
0
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–20  
0.3  
0.2  
–40  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
2
10  
15  
20  
25  
30  
0
2
10  
15  
20  
25  
30  
ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING AND TEMPERATURE (dB)  
Figure 153. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS,  
LO = 5200 MHz, Baseband Frequency = 10 MHz  
Figure 156. Receiver Gain Step Error vs. Receiver Attenuator Setting and  
Temperature, LO = 5600 MHz  
0
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
–20  
0.2  
–40  
0.1  
–60  
–80  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–100  
–120  
0
2
10  
15  
20  
25  
30  
0
2
10  
15  
20  
25  
30  
ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING AND TEMPERATURE (dB)  
Figure 154. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS,  
LO = 5900MHz, Baseband Frequency = 10 MHz  
Figure 157. Receiver Gain Step Error vs. Receiver Attenuator Setting and  
Temperature, LO = 6000 MHz  
0.5  
0.5  
0.4  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
0.3  
0.2  
0.1  
0.2  
0
0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
MAX OF NORMALIZED I RIPPLE –40°C  
MAX OF NORMALIZED I RIPPLE +25°C  
MAX OF NORMALIZED I RIPPLE +110°C  
MAX OF NORMALIZED Q RIPPLE –40°C  
MAX OF NORMALIZED Q RIPPLE +25°C  
MAX OF NORMALIZED Q RIPPLE +110°C  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
0
2
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING AND TEMPERATURE (dB)  
BASEBAND FREQUENCY (MHz)  
Figure 155. Receiver Gain Step Error vs. Receiver Attenuator Setting and  
Temperature, LO = 5200 MHz  
Figure 158. Normalized Receiver Baseband Flatness vs. Baseband Frequency  
(Receiver Flatness)  
Rev. 0 | Page 42 of 68  
Data Sheet  
ADRV9008-1  
–30  
–40  
–10  
–30  
Rx2 = +110°C (LEFT)  
Rx1 = +110°C (LEFT)  
Rx2 = +25°C (LEFT)  
Rx1 = +25°C (LEFT)  
Rx2 = –40°C (LEFT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx1 = +110°C (RIGHT)  
Rx2 = +25°C (RIGHT)  
Rx1 = +25°C (RIGHT)  
Rx2 = –40°C (RIGHT)  
Rx1 = –40°C (RIGHT)  
–50  
–60  
–50  
–70  
–80  
–70  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–110  
–130  
–150  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–40  
–30  
–20  
–10  
5900  
FREQUENCY OFFSET FROM LO (MHz)  
10  
20  
30  
40  
50  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 162. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 5900 MHz  
Figure 159. Receiver HD2 Left vs. Baseband Frequency Offset, Tone Level =  
−15 dBm at Attenuation = 0 dB, X-Axis = Baseband Frequency Offset of the  
Fundamental Tone Not the Frequency of the HD2 Product (HD2 Product = 2×  
the Baseband Frequency), HD2 Canceller Disabled,  
LO = 5200 MHz  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–110  
–120  
–130  
–140  
–150  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–60  
–40  
–20  
0
20  
40  
60  
LTE 20MHz RF INPUT POWER (dBm)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 163. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 5200 MHz, Default AGC Settings  
Figure 160. Receiver HD2 Left vs. Baseband Frequency Offset, Tone Level =  
−15 dBm at Attenuation = 0 dB, X-Axis = Baseband Frequency Offset of the  
Fundamental Tone Not the Frequency of the HD2 Product (HD2 Product = 2×  
the Baseband Frequency), HD2 Canceller Disabled,  
LO = 5900 MHz  
0
–10  
Rx2 = +110°C (LEFT)  
Rx1 = +110°C (LEFT)  
Rx2 = +25°C (LEFT)  
Rx1 = +25°C (LEFT)  
Rx2 = –40°C (LEFT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx1 = +110°C (RIGHT)  
Rx2 = +25°C (RIGHT)  
Rx1 = +25°C (RIGHT)  
Rx2 = –40°C (RIGHT)  
Rx1 = –40°C (RIGHT)  
+110°C  
+25°C  
–40°C  
–5  
–10  
–30  
–50  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–70  
–90  
–110  
–130  
–150  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–50  
–40  
–30  
–20  
–10  
5200  
FREQUENCY OFFSET FROM LO (MHz)  
10  
20  
30  
40  
50  
LTE 20MHz RF INPUT POWER (dBm)  
Figure 161. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 5200 MHz  
Figure 164. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 5500 MHz, Default AGC Settings  
Rev. 0 | Page 43 of 68  
ADRV9008-1  
Data Sheet  
0
–20  
–40  
+110°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
LTE 20MHz RF INPUT POWER (dBm)  
FREQUENCY OFFSET (Hz)  
Figure 165. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 5800 MHz, Default AGC Settings  
Figure 167. LO Phase Noise vs. Frequency Offset, LO = 5900 MHz, PLL Loop  
Bandwidth > 300 kHz, Spectrum Analyzer Limits Far Out Noise  
0
Rx1 TO Rx2  
Rx2 TO Rx1  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000  
LO FREQUENCY (MHz)  
Figure 166. Receiver to Receiver Isolation vs. LO Frequency  
Rev. 0 | Page 44 of 68  
Data Sheet  
ADRV9008-1  
RECEIVER INPUT IMPEDANCE  
RX PORT SIMULATED IMPEDANCE: SEDZ  
M20  
M15  
FREQUENCY = 3.000GHz  
S (1,1) = 0.267 / –64.650  
FREQUENCY = 100.0MHz  
S (1,1) = 0.390 / –1.819  
IMPEDANCE = 113.933 – j3.331  
IMPEDANCE = 55.102 – j28.685  
M21  
M16  
FREQUENCY = 4.000GHz  
S (1,1) = 0.186 / –104.336  
IMPEDANCE = 42.821 – j16.026  
FREQUENCY = 300.0MHz  
S (1,1) = 0.390 / –5.495  
IMPEDANCE = 112.803 – j9.931  
M23  
M22  
M17  
M15  
M16  
M17  
M18  
FREQUENCY = 5.000GHz  
S (1,1) = 0.164 / –173.106  
IMPEDANCE = 35.977 – j1.455  
FREQUENCY = 500.0MHz  
S (1,1) = 0.388 / –9.198  
IMPEDANCE = 110.398 – j16.107  
M22  
M21  
M19  
M20  
M23  
M18  
FREQUENCY = 6.000GHz  
S (1,1) = 0.266 / 130.063  
IMPEDANCE = 32.890 + j14.399  
FREQUENCY = 1.000GHz  
S (1,1) = 0.377 / –18.643  
IMPEDANCE = 100.377 – j28.250  
M19  
FREQUENCY = 2.000GHz  
S (1,1) = 0.336 / –39.123  
IMPEDANCE = 74.966 – j35.800  
FREQUENCY (0Hz TO 6.000GHz)  
Figure 168. Receiver Input Impedance, Series Equivalent Differential Impedance (SEDZ)  
Rev. 0 | Page 45 of 68  
 
 
ADRV9008-1  
Data Sheet  
TERMINOLOGY  
Large Signal Bandwidth  
Backoff  
Large signal bandwidth, otherwise known as instantaneous  
bandwidth or signal bandwidth, is the bandwidth over which  
there are large signals. For example, for Band 42 LTE, the large  
signal bandwidth is 200 MHz.  
Backoff is the difference (in dB) between full-scale signal power  
and the rms signal power.  
PHIGH  
PHIGH is the largest signal that can be applied without overloading  
Occupied Bandwidth  
the ADC for the receiver input. This input level results in slightly  
less than full scale at the digital output because of the nature of the  
continuous-time, Σ-Δ ADCs, which, for example, exhibit a soft  
overload in contrast to the hard clipping of pipeline ADCs.  
Occupied bandwidth is the total bandwidth of the active signals.  
For example, three 20 MHz carriers have a 60 MHz occupied  
bandwidth, regardless of the placement of the carriers within  
the large signal bandwidth.  
Rev. 0 | Page 46 of 68  
 
Data Sheet  
ADRV9008-1  
THEORY OF OPERATION  
The ADRV9008-1 is a highly integrated, RF, agile receiver  
subsystem capable of configuration for a wide range of  
applications. The device integrates all RF, mixed-signal, and  
digital blocks necessary to provide all receiver functions in a  
single device. Programmability allows the receiver to be adapted  
for use in many TDD and 3G/4G/5G cellular standards. The  
ADRV9008-1 contains two high speed links each for the receiver  
chain. These links are JESD204B, Subclass 1 compliant.  
Clock PLL  
The ADRV9008-1 contains a PLL synthesizer that generates  
all the baseband related clock signals and serialization/  
deserialization (SERDES) clocks. This PLL is programmed  
based on the data rate and sample rate requirements of the  
system.  
SPI  
The ADRV9008-1 uses an SPI interface to communicate with  
the BBP. This interface can be configured as a 4-wire interface  
with a dedicated receiver port and transmitter port. The interface  
can also be configured as a 3-wire interface with a bidirectional  
data communications port. This bus allows the BBP to set all  
device control parameters using a simple address data serial bus  
protocol.  
The ADRV9008-1 also provides tracking correction of dc offset  
QEC errors to maintain high performance under varying temp-  
eratures and input signal conditions. The device also includes test  
modes that allow system designers to debug designs during  
prototyping and optimize radio configurations.  
RECEIVERS  
The ADRV9008-1 receivers contain all the blocks necessary to  
receive RF signals and convert them to digital data used by a BBP.  
Each receiver can be configured as a direct conversion system  
that supports up to a 200 MHz bandwidth. Each receiver contains  
a programmable attenuator stage and matched I and Q mixers  
that downconvert received signals to baseband for digitization.  
Write commands follow a 24-bit format. The first five bits set  
the bus direction and the number of bytes to transfer. The next  
11 bits set the address where the data is written. The final eight  
bits are the data transferred to the specific register address.  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SDIO pin and the final eight  
bits are read from the ADRV9008-1, either on the SDO pin in  
4-wire mode or on the SDIO pin in 3-wire mode.  
Achieve gain control by using the on-chip AGC or by allowing  
the BBP to make gain adjustments in a manual gain control  
mode. Optimize performance by mapping each gain control  
setting to specific attenuation levels at each adjustable gain block  
in the receiver signal path. Additionally, each channel contains  
independent receive signal strength indicator (RSSI) measurement  
capability, dc offset tracking, and all circuitry necessary for self  
calibration.  
JTAG BOUNDARY SCAN  
The ADRV9008-1 provides support for the JTAG boundary  
scan. There are five dual-function pins associated with the  
JTAG interface. These pins, listed in Figure 5, are used to access  
the on-chip test access port. To enable the JTAG functionality,  
set the GPIO_3 pin through the GPIO_0 pin to 1001 and pull  
the TEST pin high.  
The receivers include ADCs and adjustable sample rates that  
produce data streams from the received signals. The signals can  
be conditioned further by a series of decimation filters and a  
programmable FIR filter with additional decimation settings. The  
sample rate of each digital filter block is adjustable by changing  
decimation factors to produce the desired output data rate.  
POWER SUPPLY SEQUENCE  
The ADRV9008-1 requires a specific power-up sequence to  
avoid undesired power-up currents. In the optimal power-up  
sequence, the VDDD1P3_DIG supply and the VDDA1P3_x supply  
(VDDA1P3_x includes all 1.3 V domains) power up together  
first. If these supplies cannot be powered up simultaneously, then  
the VDDD1P3_DIG supply must power up first. Power up the  
VDDA_3P3 supply, the VDDA1P8_x supply, and the  
VDDA1P3_SER supply after powering up the 1.3 V supplies. The  
VDD_INTERFACE supply can be powered up at any time. No  
device damage occurs if this sequence is not followed, but failing to  
follow this sequence may result in higher than expected power-up  
CLOCK INPUT  
The ADRV9008-1 requires a differential clock connected to the  
REF_CLK_IN_x pins. The frequency of the clock input must be  
between 10 MHz and 1000 MHz, and the frequency must have  
low phase noise because this signal generates the RF LO and  
internal sampling clocks.  
SYNTHESIZERS  
RF PLL  
RESET  
currents. Toggle the  
signal after the power stabilizes, prior  
to configuration. The power-down sequence is not critical. If a  
power-down sequence is followed, remove the VDDD1P3_DIG  
supply last to avoid any back biasing of the digital control lines.  
The ADRV9008-1 contains a fractional-N PLL to generate the  
RF LO for the signal paths. The PLL incorporates an internal  
VCO and loop filter, requiring no external components. The  
LOs on multiple chips can be phase synchronized to support  
active antenna systems and beam forming applications.  
Rev. 0 | Page 47 of 68  
 
 
 
 
 
 
 
ADRV9008-1  
Data Sheet  
enabled, the auxiliary ADC is free running. The SPI reads provide  
the last value latched at the ADC output. The auxiliary ADC can  
also be multiplexed to a built in, diode-based temperature sensor.  
GPIO_x PINS  
The ADRV9008-1 provides nineteen 1.8 V to 2.5 V GPIO signals  
that can be configured for numerous functions. When configured  
as outputs, certain pins can provide real-time signal information to  
the BBP, allowing the BBP to determine receiver performance. A  
pointer register selects the information that is output to these pins.  
Signals used for manual gain mode, calibration flags, state machine  
states, and various receiver parameters are among the outputs that  
can be monitored on these pins. Additionally, certain pins can be  
configured as inputs and used for various functions, such as setting  
the receiver gain in real time.  
Auxiliary DAC x  
The ADRV9008-1 contains 10 identical auxiliary DACs that can  
be used for bias or other system functionality. The auxiliary  
DACs are 10 bits, have an output voltage range of approximately  
0.7 V to VDDA_3P3 − 0.3 V, and have a current drive of 10 mA.  
JESD204B DATA INTERFACE  
The digital data interface for the ADRV9008-1 uses JEDEC  
JESD204B Subclass 1. The serial interface operates at speeds of  
up to 12.288 Gbps. The benefits of the JESD204B interface  
include a reduction in required board area for data interface  
routing, resulting in smaller total system size. Four high speed  
serial lanes are provided for the receiver. The ADRV9008-1  
supports single-lane and dual-lane interfaces and supports fixed  
and floating point data formats for receiver.  
Twelve 3.3 V GPIO_x pins are also included on the device.  
These pins provide control signals to external components.  
AUXILIARY CONVERTERS  
AUXADC_x  
The ADRV9008-1 contains an auxiliary ADC that is multiplexed to  
four input pins (AUXADC_x). The auxiliary ADC is 12 bits with  
an input voltage range of 0.05 V to VDDA_3P3 − 0.05 V. When  
Table 6. Example Receiver Interface Rates (Other Output Rates, Bandwidths, and JESD204B Lanes Also Supported)  
Single-Channel Operation Dual-Channel Operation  
JESD204B Lane Rate JESD204B Number JESD204B Lane Rate JESD204B Number  
Output Rate  
(MSPS)  
Bandwidth (MHz)  
(Mbps)  
4915.2  
6144  
9830.4  
9830.4  
4915.2  
of Lanes  
(Mbps)  
9830.4  
12288  
9830.4  
9830.4  
4915.2  
of Lanes  
80  
122.88  
153.6  
245.76  
245.76  
245.76  
1
1
1
1
2
1
1
2
2
4
100  
100  
200  
200  
FIR  
FILTER  
(DECIMATION  
1, 2, 4)  
RECEIVE  
HALF-BAND  
FILTER  
3
RECEIVE  
HALF-BAND  
FILTER  
2
RECEIVE  
HALF-BAND  
FILTER  
1
DC  
DIGITAL  
GAIN  
JESD204B  
ADC  
ESTIMATION  
Figure 169. Receiver Datapath Filter Implementation  
Rev. 0 | Page 48 of 68  
 
 
 
Data Sheet  
ADRV9008-1  
APPLICATIONS INFORMATION  
PCB LAYOUT AND POWER SUPPLY  
RECOMMENDATIONS  
13 are crucial to maintaining the RF signal integrity and,  
ultimately, the ADRV9008-1 performance. Layer 3 and Layer 12  
are used to route power supply domains. To keep the RF section  
of the ADRV9008-1 isolated from the fast transients of the digital  
section, the JESD204B interface lines are routed on Layer 5 and  
Layer 10. These layers have impedance control set to a 100 Ω  
differential. The remaining digital lines from ADRV9008-1 are  
routed on Inner Layer 7 and Inner Layer 8. RF traces on the outer  
layers must be a controlled impedance for optimal performance  
of the device. The inner layers in this board use 0.5 ounce  
copper or 1 ounce copper. The outer layers use 1.5 ounce  
copper so that the RF traces are less prone to pealing. Ground  
planes on this board are full copper floods with no splits except  
for vias, through-hole components, and isolation structures.  
The ground planes must route entirely to the edge of the PCB  
under the Surface-Mount Type A (SMA) connectors to  
maintain signal launch integrity. Power planes can be pulled  
back from the board edge to decrease the risk of shorting from  
the board edge.  
Overview  
The ADRV9008-1 is a highly integrated, RF, agile receiver with  
significant signal conditioning integrated on one chip. Due to  
the increased complexity of the device and its high pin count,  
careful PCB layout is important to achieve optimal performance.  
This data sheet provides a checklist of issues to look for and  
guidelines on how to optimize the PCB to mitigate performance  
issues. The goal of this data sheet is to help achieve optimal  
performance of the ADRV9008-1 while reducing board layout  
effort. This data sheet assumes that the reader is an experienced  
analog and RF engineer with an understanding of RF PCB layout  
and RF transmission lines. This data sheet discusses the following  
issues and provides guidelines for system designers to achieve  
optimal performance of the ADRV9008-1:  
PCB material and stackup selection  
Fanout and trace space layout guidelines  
Component placement and routing guidelines  
RF and JESD204B transmission line layout  
Isolation techniques used on the ADRV9008-1W/PCBZ  
Power management considerations  
Unused pin instructions  
PCB MATERIAL AND STACKUP SELECTION  
Figure 170 shows the PCB stackup used for the ADRV9008-  
1W/PCBZ. Table 7 and Table 8 list the single-ended and  
differential impedance for the stackup shown in Figure 170. The  
dielectric material used on the top and the bottom layers is 8  
mil Rogers 4350B. The remaining dielectric layers are FR4-370  
HR. The board design uses the Rogers laminate for the top and  
the bottom layers for the low loss tangent at high frequencies.  
The ground planes under the Rogers laminate (Layer 2 and  
Layer 13) are the reference planes for the transmission lines  
routed on the outer surfaces. These layers are solid copper  
planes without any splits under the RF traces. Layer 2 and Layer  
Figure 170. ADRV9008-1W/PCBZ Trace Impedance and Stackup  
Rev. 0 | Page 49 of 68  
 
 
 
 
ADRV9008-1  
Data Sheet  
Table 7. Evaluation Board Single-Ended Impedance and Stackup1  
Single-  
Ended  
Reference  
Board  
Copper Starting  
Layer (%) Copper (oz.) Copper (oz.) Impedance  
Designed Trace  
Single-Ended  
(Inches)  
Finished Trace  
Single-Ended  
(Inches)  
Finished  
Single-Ended  
Calculated  
Impedance (Ω) Layers  
1
2
3
4
5
6
7
8
N/A  
65  
50  
65  
50  
65  
50  
50  
65  
50  
65  
50  
65  
0.5  
1
0.5  
1
0.5  
1
0.5  
0.5  
1
0.5  
0.5  
1
1
0.5  
1.71  
1
1
1
0.5  
1
0.5  
0.5  
1
1
1
50 Ω 10%  
N/A  
N/A  
N/A  
50 Ω 10%  
N/A  
50 Ω 10%  
50 Ω 10%  
N/A  
50 Ω 10%  
N/A  
0.0155  
N/A  
N/A  
N/A  
0.0045  
N/A  
0.0049  
0.0049  
N/A  
0.0045  
N/A  
0.0135  
N/A  
N/A  
N/A  
0.0042  
N/A  
0.0039  
0.0039  
N/A  
0.0039  
N/A  
49.97  
N/A  
N/A  
N/A  
49.79  
N/A  
50.05  
50.05  
N/A  
49.88  
N/A  
2
N/A  
N/A  
N/A  
4, 6  
N/A  
6, 9  
6, 9  
N/A  
9, 11  
N/A  
N/A  
N/A  
13  
9
10  
11  
12  
13  
14  
1
1
1.64  
N/A  
N/A  
50 Ω 10%  
N/A  
N/A  
0.0155  
N/A  
N/A  
0.0135  
N/A  
N/A  
49.97  
1 N/A means not applicable.  
Table 8. Evaluation Board Differential Impedance and Stackup1  
Gap Differential  
Designed for Designed  
Trace (Inches) Trace (Inches)  
Gap Differential  
for Finished  
Trace (Inches) Trace (Inches)  
Differential  
Layer Impedance  
Finished  
Calculated  
Differential  
Reference Layers  
Impedance (Ω)  
99.55  
50.11  
N/A  
N/A  
N/A  
99.95  
N/A  
100.51  
100.51  
N/A  
100.80  
N/A  
N/A  
1
100 Ω 10%  
50 Ω 10%  
N/A1  
0.008  
0.0032  
N/A  
0.006  
0.004  
N/A  
0.007  
0.0304  
N/A  
0.007  
0.0056  
N/A  
2
2
2
N/A  
N/A  
N/A  
4, 6  
N/A  
6, 9  
6, 9  
N/A  
9, 11  
N/A  
N/A  
13  
3
N/A  
N/A  
N/A  
N/A  
N/A  
4
N/A  
N/A  
N/A  
N/A  
N/A  
5
6
100 Ω 10%  
N/A  
0.0036  
N/A  
0.0064  
N/A  
0.0034  
N/A  
0.0065  
N/A  
7
8
9
100 Ω 10%  
100 Ω 10%  
N/A  
0.0036  
0.0038  
N/A  
0.0064  
0.0062  
N/A  
0.0034  
0.0034  
N/A  
0.0066  
0.0066  
N/A  
10  
11  
12  
13  
14  
100 Ω 10%  
N/A  
N/A  
100 Ω 10%  
50 Ω 10%  
0.0036  
N/A  
N/A  
0.008  
0.032  
0.0064  
N/A  
N/A  
0.006  
N/A  
0.003  
N/A  
N/A  
0.007  
0.004  
0.007  
N/A  
N/A  
0.007  
N/A  
99.55  
50.11  
13  
1 N/A means not applicable.  
Rev. 0 | Page 50 of 68  
 
 
Data Sheet  
ADRV9008-1  
The JESD204B interface signals are routed on two signal layers  
that use impedance control (Layer 5 and Layer 10). The spacing  
between the BGA pads is 17.5 mil. After the signal is on the inner  
layers, a 3.6 mil trace (50 Ω) connects the JESD204B signal to the  
field programmable gate array (FPGA) mezzanine card (FMC)  
connector. The recommended BGA land pad size is 15 mil.  
FANOUT AND TRACE SPACE GUIDELINES  
The ADRV9008-1 uses a 196-ball chip scale ball grid array  
(CSP_BGA), 12 mm × 12 mm package. The pitch between the  
pins is 0.8 mm. This small pitch makes it impractical to route all  
signals on a single layer. RF pins are placed on the outer edges  
of the ADRV9008-1 package. The location of the pins helps route  
the critical signals without a fanout via. Each digital signal is  
routed from the BGA pad using a 4.5 mil trace. The trace is  
connected to the BGA using a via in the pad structure. The signals  
are buried in the inner layers of the board for routing to other parts  
of the system.  
Figure 171 shows the fanout scheme of the ADRV9008-1W/PCBZ.  
As mentioned before, the ADRV9008-1W/PCBZ uses a via in  
the pad technique. This routing approach can be used for the  
ADRV9008-1 if there are no issues with manufacturing  
capabilities.  
4.5mil TRACE  
AIR GAP = 17.5mil  
JESD204B INTERFACE  
TRACE WIDTH = 3.6mil  
PAD SIZE = 15mil  
VIA SIZE = 14mil  
Figure 171. Trace Fanout Scheme on the ADRV9008-1W/PCBZ (PCB Layer Top and Layer 5 Enabled)  
Rev. 0 | Page 51 of 68  
 
 
ADRV9008-1  
Data Sheet  
Figure 170 shows the general directions in which each of the  
signals must be routed so that they can be properly isolated  
from noisy signals.  
COMPONENT PLACEMENT AND ROUTING  
GUIDELINES  
The ADRV9008-1 receiver requires few external components to  
function, but those that are used require careful placement and  
routing to optimize performance. This section provides a  
checklist for properly placing and routing critical signals and  
components.  
The receiver baluns and the matching circuits affect the overall  
RF performance of the ADRV9008-1 receiver. Make every effort  
to optimize the component selection and placement to avoid  
performance degradation. The RF Routing Guidelines section  
describes proper matching circuit placement and routing in  
more detail. Refer to the RF Port Interface Information section  
for more information.  
Signals with Highest Routing Priority  
RF lines and JESD204B interface signals are the signals that are  
most critical and must be routed with the highest priority.  
To achieve the desired level of isolation between RF signal paths,  
use the technique described in the Isolation Techniques Used on  
the ADRV9008-1W/PCBZ section in customer designs.  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX2_IN+  
VSSA  
RX2_IN–  
VSSA  
VSSA  
VSSA  
RX1_IN+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX1_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
RX_RF  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VDDA1P3_  
AUX_VCO_  
LDO  
VDDA1P3_  
RF_VCO_LDO  
VDDA1P3_RF_  
VCO_LDO  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_RX  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
AUX_SYNTH_  
OUT  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_AN  
REF_CLK_IN–  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDO  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
RF_SYNTH_  
VTUNE  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
DNC  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDIO  
SCLK  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
DNC  
GP_  
INTERRUPT  
DNC  
VSSA  
GPIO_18  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
RESET  
TEST  
VSSA  
DNC  
GPIO_2  
GPIO_1  
GPIO_0  
VSSA  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
VSSD  
CS  
VSSA  
VSSA  
GPIO_3  
VSSD  
VDDD1P3_  
DIG  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDD1P3_  
DIG  
VSSA  
VSSA  
VSSD  
GPIO_17  
GPIO_8  
VDDA1P1_  
CLOCK_VCO  
VDD_  
INTERFACE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VSSA  
RX1_ENABLE  
SERDOUT2–  
SERDOUT1+  
RX2_ENABLE  
VSSA  
VSSD  
VDDA1P3_  
CLOCK_  
VCO_LDO  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VSSA  
SERDOUT2+  
SERDOUT0–  
VSSA  
VSSA  
AUX_SYNTH_  
VTUNE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
SERDOUT0+  
VSSA  
VSSA  
Figure 172. RF Input/Output, REF_CLK_IN , and JESD204B Signal Routing Guidelines  
Rev. 0 | Page 52 of 68  
 
Data Sheet  
ADRV9008-1  
Figure 173 shows placement for ac coupling capacitors and a 100 Ω  
termination resistor near the ADRV9008-1 REF_CLK_IN pins.  
Shield the traces with ground flooding that is surrounded with vias  
staggered along the edge of the trace pair. The trace pair creates  
a shielded channel that shields the reference clock from any  
interference from other signals. Refer to the ADRV9008-1W/PCBZ  
layout and board support files included with the evaluation board  
software for exact details.  
The JESD204B Trace Routing Recommendations section  
outlines recommendations for JESD204B interface routing.  
Provide appropriate isolation between interface differential  
pairs. The Isolation Between JESD204B Lines section provides  
guidelines for optimizing isolation.  
The RF_EXT_LO_I/O− pin (B7) and RF_EXT_LO_I/O+ pin  
(B8) on the ADRV9008-1 are internally dc biased. If an external  
LO is used, connect the LO to the device via ac coupling capacitors.  
Route the JESD204B interface at the beginning of the PCB  
design and with the same priority as the RF signals.  
AC COUPLING  
CAPS  
100ΩTERMINATION  
RESISTOR  
TO  
BGA BALLS  
Figure 173. REF_CLK_IN Routing Recommendation  
Rev. 0 | Page 53 of 68  
 
ADRV9008-1  
Data Sheet  
Signals with Second Routing Priority  
When the recommendation is to use a trace to connect power to  
a particular domain, ensure that this trace is surrounded by  
ground.  
Power supply quality has a direct impact on overall system  
performance. To achieve optimal performance, follow  
recommendations for ADRV9008-1 power supply routing. The  
following recommendations outline how to route different  
power domains that can be connected together directly and to  
the same supply, but are separated by a 0 Ω placeholder resistor  
or ferrite bead.  
Figure 174 shows an example of such traces routed on the  
ADRV9008-1W/PCBZ on Layer 12. Each trace is separated  
from any other signal by the ground plane and vias. Separating  
the traces from other signals is essential to providing necessary  
isolation between the ADRV9008-1 power domains.  
Figure 174. Layout Example of Power Supply Domains Routed with Ground Shielding (Layer 12 to Power)  
Rev. 0 | Page 54 of 68  
 
Data Sheet  
ADRV9008-1  
Each power supply pin requires a 0.1 µF bypass capacitor near  
the pin at a minimum. Place the ground side of the bypass  
capacitor so that ground currents flow away from other power  
pins and the bypass capacitors.  
placed. The recommendation is to connect a ferrite bead between a  
power plane and the ADRV9008-1 at a distance away from the  
device. The ferrite bead and the reservoir capacitor provide stable  
voltage to the ADRV9008-1 during operation by isolating the pin  
or pins that the network is connected to from the power plane.  
Then, shield this trace with ground and provide power to the  
power pins on the ADRV9008-1. Place a 100 nF capacitor near the  
power supply pin with the ground side of the bypass capacitor  
placed so that ground currents flow away from other power  
pins and the bypass capacitors.  
For domains shown in Figure 175, like the domains powered  
through a 0 Ω placeholder resistor or ferrite bead (FB), place the  
0 Ω placeholder resistors or ferrite beads further away from the  
device. Space 0 Ω placeholder resistors or ferrite beads apart from  
each other to ensure the electric fields on the ferrite beads do not  
influence each other. Figure 176 shows an example of how the  
ferrite beads, reservoir capacitors, and decoupling capacitors are  
TRACE THROUGH 0Ω RES. TO 1.3V ANALOG PLANE (AP)  
MAINTAIN LOWEST POSSIBLE IMPEDANCE  
TRACE THROUGH 0.1Ω RESISTOR TO AP  
TRACE THROUGH 0Ω RESISTOR TO AP  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX2_IN+  
VSSA  
RX2_IN–  
VSSA  
VSSA  
VSSA  
RX1_IN+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX1_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TRACE THROUGH  
VDDA1P3_  
RX_RF  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
0Ω TO AP  
VDDA1P3_  
AUX_VCO_  
LDO  
TRACE THROUGH  
TRACE THROUGH FB  
TO 3.3V PLANE  
VDDA1P3_  
RF_VCO_LDO  
VDDA1P3_RF_  
VCO_LDO  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
0Ω TO AP  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_RX  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
TRACE THROUGH  
VDDA1P1_  
AUX_VCO  
0Ω TO AP  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
TRACE THROUGH  
0Ω TO 1.8V PLANE  
TRACE THROUGH 0Ω  
TO 1.8V PLANE  
AUX_SYNTH_  
OUT  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_AN  
REF_CLK_IN–  
TRACE THROUGH  
1Ω RESISTOR TO AP  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDO  
VSSA  
TRACE THROUGH 0Ω  
TO PLANE  
TRACE THROUGH  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
RF_SYNTH_  
VTUNE  
VDDA1P3_  
AUX_SYNTH  
0Ω TO AP  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
DNC  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDIO  
SCLK  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
DNC  
GP_  
INTERRUPT  
DNC  
VSSA  
GPIO_18  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
RESET  
TEST  
VSSA  
DNC  
GPIO_2  
GPIO_1  
GPIO_0  
VSSA  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
VSSD  
CS  
VSSA  
VSSA  
GPIO_3  
VSSD  
WIDE TRACE TO  
1.3V DIGITAL SUPPLY  
HIGH CURRENT  
VDDD1P3_  
DIG  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDD1P3_  
DIG  
VSSA  
VSSA  
VSSD  
GPIO_17  
GPIO_8  
TRACE THROUGH FB  
VDDA1P1_  
CLOCK_VCO  
VDD_  
INTERFACE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
TO INTERFACE SUPPLY  
VSSA  
RX1_ENABLE  
SERDOUT2–  
SERDOUT1+  
RX2_ENABLE  
VSSA  
TRACE THROUGH  
FB TO 1.3V  
JESD204B SUPPLY  
VSSD  
VDDA1P3_  
CLOCK_  
VCO_LDO  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VSSA  
SERDOUT2+  
SERDOUT0–  
VSSA  
VSSA  
TRACE THROUGH  
0Ω TO AP  
AUX_SYNTH_  
VTUNE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
SERDOUT0+  
VSSA  
VSSA  
Figure 175. Power Supply Domains Interconnection Guidelines  
Rev. 0 | Page 55 of 68  
 
ADRV9008-1  
Data Sheet  
0Ω RESISTOR  
PLACEHOLDERS  
FOR FERRITE BEADS  
RESERVOIR  
CAPACITORS  
DUT  
1µ + 100nF bypass  
CAPS ORIENTED SUCH  
THAT CURRENTS FLOW  
AWAY FROM OTHER  
POWER PINS  
0Ω RESISTOR  
PLACEHOLDERS  
FOR FERRITE BEADS  
Figure 176. Placement Example of 0 Ω Resistor Placeholders for Ferrite Beads, Reservoir and Bypass Capacitors on the ADRV9008-1W/PCBZ (Layer 12 to Power and  
Bottom)  
Rev. 0 | Page 56 of 68  
 
Data Sheet  
ADRV9008-1  
Signals with Lowest Routing Priority  
RESET  
pin (J4) high with a 10 kΩ resistor to  
4. Pull the  
VDD_INTERFACE for normal operation. To reset the  
RESET  
As a last step while designing the PCB layout, route the signals  
shown in Figure 177. The following list outlines the  
recommended order of signal routing:  
device, drive the  
pin low.  
When routing analog signals such as GPIO_3p3_x or AUXADC_x,  
it is recommended to route the signals away from the digital  
section (Row H through Row P). Do not cross the analog section of  
the ADRV9008-1, highlighted by a red dotted line in Figure 177, by  
any digital signal routing.  
1. Use ceramic 1 µF bypass capacitors at the VDDA1P1_  
RF_VCO, VDDA1P1_AUX_VCO, and VDDA1P1_CLOCK_  
VCO pins. Place these pins as close as possible to the  
ADRV9008-1 device with the ground side of the bypass  
capacitor placed so that ground currents flow away from  
other power pins and the bypass capacitors, if possible.  
2. Connect a 14.3 kΩ resistor to the RBIAS pin (C14). This  
resistor must have a 1% tolerance.  
3. Pull the TEST pin (J6) to ground for normal operation.  
The device supports JTAG boundary scan, and this pin is  
used to access that function. Refer to the JTAG Boundary  
Scan section for JTAG boundary scan information.  
When routing digital signals from Row H and below, it is  
important to route the signals away from the analog section  
(Row A through Row G). Do not cross the analog section of the  
ADRV9008-1, highlighted by a red dotted line in Figure 177, by  
any digital signal routing.  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX2_IN+  
RX2_IN–  
VSSA  
VSSA  
RX1_IN+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX1_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
1µF CAPACITOR  
1µF CAPACITOR  
VDDA1P3_  
RX_RF  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
AUX_VCO_  
LDO  
VDDA1P3_  
RF_VCO_LDO  
VDDA1P3_RF_  
VCO_LDO  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_RX  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
14.3kΩ RESISTOR  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
AUX_SYNTH_  
OUT  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_AN  
REF_CLK_IN–  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDO  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
RF_SYNTH_  
VTUNE  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ALL DIGITAL  
GPIO SIGNALS  
ROUTED BELOW  
THE RED LINE  
VSSA  
DNC  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
SDIO  
SCLK  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
DNC  
GP_  
INTERRUPT  
DNC  
VSSA  
GPIO_18  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
RESET  
TEST  
VSSA  
DNC  
GPIO_2  
GPIO_1  
GPIO_0  
VSSA  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
VSSD  
CS  
VSSA  
VSSA  
GPIO_3  
VSSD  
VDDD1P3_  
DIG  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDD1P3_  
DIG  
VSSA  
VSSA  
VSSD  
GPIO_17  
GPIO_8  
VDDA1P1_  
CLOCK_VCO  
VDD_  
INTERFACE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VSSA  
RX1_ENABLE  
SERDOUT2–  
SERDOUT1+  
RX2_ENABLE  
VSSA  
1µF CAPACITOR  
VSSD  
VDDA1P3_  
CLOCK_  
VCO_LDO  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VSSA  
SERDOUT2+  
SERDOUT0–  
VSSA  
VSSA  
AUX_SYNTH_  
VTUNE  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
VDDA1P3_  
SER  
SERDOUT0+  
VSSA  
VSSA  
Figure 177. AUXADC_x, Analog, and Digital GPIO Signals Routing Guidelines  
Rev. 0 | Page 57 of 68  
 
ADRV9008-1  
Data Sheet  
RF AND JESD204B TRANSMISSION LINE LAYOUT  
RF Routing Guidelines  
The ADRV9008-1W/PCBZ uses microstrip type lines for  
receiver traces. In general, Analog Devices does not  
recommend using vias to route RF traces unless a direct line  
route is not possible. Differential lines from the balun to the  
receiver pins must be as short as possible. Keep the length of the  
single-ended transmission line short to minimize the effects of  
parasitic coupling. It is important to note that these traces are  
the most critical when optimizing performance and are, therefore,  
routed before any other routing. These traces have the highest  
priority if trade-offs are needed.  
Figure 178 shows pi matching networks on the single-ended  
side of the baluns. The receiver front end is dc biased internally.  
Therefore, the differential side of the balun is ac-coupled. The  
system designer can optimize the RF performance with a proper  
selection of the balun, matching components, and ac coupling  
capacitors. The external LO traces and the REF_CLK_IN  
traces may also require matching components to ensure optimal  
performance.  
Figure 178. Pi Network Matching Components Available on Different RF Nets  
All the RF signals mentioned previously must have a solid ground  
reference under each trace. Do not run any of the critical traces  
over a section of the reference plane that is discontinuous. The  
ground flood on the reference layer must extend all the way to  
the edge of the board. This flood length ensures signal integrity  
for the SMA launch when an edge launch connector is used.  
Refer to the RF Port Interface Information section for more  
information on RF matching recommendations for the  
ADRV9008-1.  
Rev. 0 | Page 58 of 68  
 
 
 
Data Sheet  
ADRV9008-1  
JESD204B Trace Routing Recommendations  
Stripline Transmission Lines vs. Microstrip Transmission  
Lines  
The ADRV9008-1 receiver uses the JESD204B, high speed serial  
interface. To ensure optimal performance of this interface, keep the  
differential traces as short as possible by placing the ADRV9008-1  
as close as possible to the FPGA or BBP, and route the traces  
directly between the devices. Use a PCB material with a low  
dielectric constant (< 4) to minimize loss. For distances greater  
than 6 inches, use a premium PCB material, such as RO4350B  
or RO4003C.  
Stripline trasmission lines have less signal loss and emit less  
electromagnetic interference than microstrip trasmission lines.  
However, stripline trasmission lines require the use of vias that  
add line inductance, increasing the difficulty of controlling the  
impedance.  
Microstrip trasmission lines are easier to implement if the  
component placement and density allow routing on the top  
layer. Microstrip trasmission lines make controlling the  
impedance easier.  
Routing Recommendations  
Route the differential pairs on a single plane using a solid  
ground plane as a reference on the layers above and/or below  
these traces.  
If the top layer of the PCB is used by other circuits or signals,  
or if the advantages of stripline are more desirable over the  
advantages of microstrip, follow these recommendations:  
All JESD204B lane traces must be impedance controlled to  
achieve 50 Ω to ground. It is recommended that the differential  
pair be coplanar and loosely coupled. An example of a typical  
configuration is 5 mil trace width and 15 mil edge to edge  
spacing, with the trace width maximized as shown in Figure 179.  
Minimize the number of vias.  
Use blind vias where possible to eliminate via stub effects,  
and use micro vias to minimize via inductance.  
When using standard vias, use a maximum via length to  
minimize the stub size. For example, on an 8-layer board,  
use Layer 7 for the stripline pair.  
Match trace widths with pin and ball widths as closely as  
possible while maintaining impedance control. If possible, use  
1 oz. copper trace widths of at least 8 mil (200 µm). The  
coupling capacitor pad size must match JESD204B lane trace  
widths as closely as possible. If trace width does not match pad  
size, use a smooth transition between different widths.  
Place a pair of ground vias near each via pair to minimize  
the impedance discontinuity.  
Route the JESD204B lines on the top side of the board as a  
differential 100 Ω pair (microstrip). For the ADRV9008-  
1W/PCBZ, the JESD204B differential signals are routed on  
inner layers of the board (Layer 5 and Layer 10) as differential  
100 Ω pairs (stripline). To minimize potential coupling, these  
signals are placed on an inner layer using a via embedded in the  
component footprint pad where the ball connects to the PCB.  
The ac coupling capacitors (100 nF) on these signals are placed  
near the connector and away from the chip to minimize  
coupling. The JESD204B interface can operate at frequencies of  
up to 12 GHz. Ensure that signal integrity from the chip to the  
connector is maintained.  
The pad area for all connector and passive component choices  
must be minimized due to a capacitive plate effect that leads to  
problems with signal integrity.  
Reference planes for impedance controlled signals must not be  
segmented or broken for the entire length of a trace.  
The REF_CLK_IN signal trace and the SYSREF signal trace  
are impedance controlled for character impedance (ZO) = 50 Ω.  
DIFF A  
DIFF B  
DIFF A  
DIFF B  
TIGHTLY COUPLED  
DIFFERENTIAL LINES  
LOOSELY COUPLED  
DIFFERENTIAL LINES  
Figure 179. Routing JESD204B, Diff A and Diff B Correspond to Differential Positive Signals or Negative Signals (One Differential Pair)  
Rev. 0 | Page 59 of 68  
 
 
ADRV9008-1  
Data Sheet  
Figure 180. Isolation Structures on the ADRV9008-1W-PCBZ  
receivers. Spacing between square apertures must be no more  
than 1/10 of a wavelength. Calculate the wavelength using  
Equation 1:  
ISOLATION TECHNIQUES USED ON THE  
ADRV9008-1W/PCBZ  
Isolation Goals  
300  
Significant isolation challenges were overcome in designing the  
ADRV9008-1W/PCBZ. The following isolation requirement is  
used to accurately evaluate the ADRV9008-1 receiver  
performance: receiver to receiver, 65 dB out to 6 GHz.  
(1)  
Wavelength (m) =  
Frequency (MHz) × ER  
where ER is the dielectric constant of the isolator material. For  
RO4003C material, microstrip structure (+ air) ER = 2.8. For FR4-  
370HR material, stripline structure ER = 4.1.  
To meet these isolation goals with significant margin, isolation  
structures are introduced.  
For example, if the maximum RF signal frequency is 6 GHz,  
and ER = 2.8 for RO4003C material, microstrip structure (+ air),  
the minimum wavelength is approximately 29.8 mm.  
Figure 180 shows the isolation structures used on the ADRV9008-  
1W/PCBZ. These structures consist of a combination of slots and  
square apertures. These structures are present on every copper  
layer of the PCB stack. The advantage of using square apertures is  
that signals can be routed between the openings without affecting  
the isolation benefits of the array of apertures. When using these  
isolation structures, make sure to place ground vias around the  
slots and apertures.  
To follow the 1/10 wavelength spacing rule, square aperture  
spacing must be 2.98 mm or less.  
Isolation Between JESD204B Lines  
The JESD204B interface uses eight line pairs that can operate at  
speeds of up to 12 GHz. When configuring the PCB layout, ensure  
that these lines are routed according to the rules outlined in the  
JESD204B Trace Routing Recommendations section. In addition,  
use isolation techniques to prevent crosstalk between different  
JESD204B lane pairs.  
Figure 181 outlines the methodology used on the ADRV9008-  
1W/PCBZ. When using slots, ground vias must be placed at the  
ends of the slots and along the sides of the slots. When using  
square apertures, at least one single ground via must be placed  
adjacent to each square. These vias must be through-hole vias  
from the top to the bottom layer. The function of these vias is to  
steer return current to the ground planes near the apertures.  
Figure 182 shows a technique used on the ADRV9008-1W/PCBZ  
that involves via fencing. Placing ground vias around each  
JESD204B pair provides isolation and decreases crosstalk. The  
spacing between vias is 1.2 mm.  
For accurate slot spacing and square apertures layout, use  
simulation software when designing a PCB for the ADRV9008-1  
Rev. 0 | Page 60 of 68  
 
 
 
Data Sheet  
ADRV9008-1  
Figure 181. Current Steering Vias Placed Next to Isolation Structures  
1.24mm  
Figure 182. Via Fencing Around JESD204B Lines, PCB Layer 10  
Figure 182 shows the rule provided in Equation 1. JESD204B lines  
are routed on Layer 5 and Layer 10 so that the lines use stripline  
structures. The dielectric material used in the inner layers of the  
ADRV9008-1W/PCBZ PCB is FR4-370HR.  
The ADRV9008-1 is a highly integrated receiver device.  
External impedance matching networks are required on the  
receiver port to achieve performance levels indicated in the  
Specifications section.  
For accurate spacing of the JESD204B fencing vias, use layout  
simulation software. Input the following data into Equation 1 to  
calculate the wavelength and square aperture spacing:  
Analog Devices recommends the use of simulation tools in the  
design and optimization of impedance matching networks. To  
achieve the closest match between computer simulated results and  
measured results, accurate models of the board environment, SMD  
components (including baluns and filters), and ADRV9008-1 port  
impedances are required.  
Maximum JESD204B signal frequency is approximately  
12 GHz.  
For FR4-370HR material, stripline structure, ER = 4.1, the  
minimum wavelength is approximately 12.4 mm.  
RF Port Impedance Data  
This section provides the port impedance data for the receivers  
in the ADRV9008-1 integrated receiver. Note the following:  
To follow the 1/10 wavelength spacing rule, spacing between vias  
must be 1.24 mm or less. The minimum spacing recommendation  
according to transmission line theory is 1/4 wavelength.  
ZO is defined as 50 Ω.  
The ADRV9008-1 ball pads are the reference plane for  
this data.  
RF PORT INTERFACE INFORMATION  
This section details the RF receiver interfaces for optimal device  
performance. This section also includes data for the anticipated  
ADRV9008-1 RF port impedance values and examples of  
impedance matching networks used in the evaluation platform.  
This section also provides information on board layout techniques  
and balun selection guidelines.  
Single-ended mode port impedance data is not available.  
However, a rough assessment is possible by taking the  
differential mode port impedance data and dividing both  
the real and imaginary components by 2.  
Rev. 0 | Page 61 of 68  
 
 
 
ADRV9008-1  
Data Sheet  
1.0  
2.0  
0.5  
m15  
FREQUENCY = 100MHz  
S(1,1) = 0.390/–1.819  
m20  
IMPEDANCE = 113.933 – j3.331  
FREQUENCY = 3GHz  
S(1,1) = 0.267/–64.650  
0.2  
m16  
5.0  
FREQUENCY = 300MHz  
S(1,1) = 0.390/–5.495  
IMPEDANCE = 112.803 – j9.931  
IMPEDANCE = 55.102 – j28.685  
m21  
M23  
FREQUENCY = 4GHz  
S(1,1) = 0.186/–104.336  
IMPEDANCE = 42.821 – j16.026  
m17  
M15  
M16  
M17  
M22  
FREQUENCY = 500MHz  
S(1,1) = 0.388/–9.198  
IMPEDANCE = 110.398 – j16.107  
0
m22  
M21  
M20  
FREQUENCY = 5GHz  
S(1,1) = 0.164/–173.106  
IMPEDANCE = 35.977 – j1.455  
m18  
M19  
M18  
FREQUENCY = 1GHz  
S(1,1) = 0.377–18.643  
IMPEDANCE = 100.377 – j28.250  
m23  
FREQUENCY = 6GHz  
S(1,1) = 0.266/130.063  
IMPEDANCE = 32.890 + j14.399  
–0.2  
–5.0  
m19  
FREQUENCY = 2GHz  
S(1,1) = 0.336/–39.123  
IMPEDANCE = 74.966 – j35.800  
–0.5  
–2.0  
–1.0  
FREQUENCY (0Hz TO 6GHz)  
Figure 183. Receiver 1 and Receiver 2 SEDZ and Parallel Equivalent Differential Impedance (PEDZ) Data  
1.0  
2.0  
0.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
m1  
FREQUENCY = 100MHz  
S(1,1) = 0.018/–149.643  
IMPEDANCE = 48.491 – j0.866  
R_PEDZ  
L_OR_C_PE  
X_STATUS  
M5  
M6  
0.2  
m2  
5.0  
m7  
FREQUENCY = 750MHz  
S(1,1) = 0.074/–123.043  
IMPEDANCE = 45.753 – j5.744  
FREQUENCY = 5GHz  
L_OR_C_PE = 1.336  
m8  
FREQUENCY = 5GHz  
R_PEDZ = 31.172  
m9  
FREQUENCY = 5GHz  
X_STATUS = 1  
m3  
M4  
FREQUENCY = 1.5GHz  
S(1,1) = 0.147/–138.745  
IMPEDANCE = 39.362 – j7.804  
M1  
0
M2  
M3  
m4  
FREQUENCY = 3GHz  
S(1,1) = 0.292/–175.424  
IMPEDANCE = 27.426 – j1.397  
–0.2  
–5.0  
m5  
FREQUENCY = 6GHz  
S(1,1) = 0.538/123.271  
IMPEDANCE = 18.885 – j23.935  
m6  
FREQUENCY = 12GHz  
S(1,1) = 0.757/46.679  
IMPEDANCE = 40.002 – j103.036  
0
–0.5  
–2.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
–1.0  
FREQUENCY (100MHz TO 12GHz)  
Figure 184. RF_EXT_LO_I/O SEDZ and PEDZ Data  
Rev. 0 | Page 62 of 68  
Data Sheet  
ADRV9008-1  
1.0  
2.0  
0.5  
1.0  
13E+5  
1.2E+5  
1.1E+5  
1.0E+5  
9.0E+4  
8.0E+4  
7.0E+4  
6.0E+4  
5.0E+4  
4.0E+4  
m1  
FREQUENCY = 100MHz  
S(1,1) = 0.999/–1.396  
IMPEDANCE = 159.977 – j4.099E3  
R_PEDZ  
L_OR_C_PE  
X_STATUS  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.2  
m2  
5.0  
m7  
FREQUENCY = 250MHz  
S(1,1) = 0.999/–3.480  
IMPEDANCE = 30.567 – j1.645E3  
FREQUENCY = 1GHz  
L_OR_C_PE = 0.389  
m8  
FREQUENCY = 1GHz  
R_PEDZ = 4.761E4  
m9  
FREQUENCY = 1GHz  
X_STATUS = 0  
m3  
FREQUENCY = 500MHz  
M1  
0
S(1,1) = 0.999/–6.952  
M2  
M3  
M4  
M5  
IMPEDANCE = 9.723 – j823.070  
m4  
FREQUENCY = 750MHz  
S(1,1) = 0.998/–10.431  
IMPEDANCE = 5.273 – j547.733  
–0.2  
–5.0  
m5  
FREQUENCY = 1GHz  
S(1,1) = 0.999/–13.925  
IMPEDANCE = 3.521 – j409.400  
–0.5  
–2.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
FREQUENCY (GHz)  
–1.0  
FREQUENCY (0.000Hz TO 1.100GHz)  
Figure 185. REF_CLK_IN SEDZ and PEDZ Data—On Average, the Real Part of Parallel Equivalent Differential Impedance (RP) = ~70 kΩ  
Rev. 0 | Page 63 of 68  
ADRV9008-1  
Data Sheet  
Advanced Design System (ADS) Setup Using the  
DataAccessComponent and SEDZ File  
The mechanics of setting up a simulation for impedance  
measurement and impedance matching is as follows:  
Analog Devices supplies the port impedance as an .s1p file that  
can be downloaded from the ADRV9008-1 product page. This  
format allows simple interfacing to the ADS by using the data  
access component. In Figure 186, Term1 is the single-ended  
input or output, and Term2 is the differential input or output  
RF port on the ADRV9008-1. The pi on the single-ended side  
and the differential pi configuration on the differential side  
allow maximum flexibility in designing matching circuits. The  
pi configuration is suggested for all design layouts because the  
pi configuration can step the impedance up or down as needed  
with appropriate component population.  
1. The data access component block reads the RF port .s1p  
file. This file is the device RF port reflection coefficient.  
2. The two equations convert the RF port reflection coefficient  
to a complex impedance. The result is the RX_SEDZ  
variable.  
3. The RF port calculated complex impedance (RX_SEDZ) is  
used to define the Term2 impedance.  
4. Term2 is used in a differential mode, and Term1 is used in  
a single-ended mode.  
Setting up the simulation this way allows one to measure the  
input reflection (S11), output reflection (S22), and through  
reflection (S21) of the three port system without complex math  
operations within the display page.  
For the highest accuracy, the electromagnetic momentum (EM)  
modeling result of the PCB artwork and S parameters (S11, S22,  
and S21) of the matching components and balun must be used in  
the simulations.  
Figure 186 Simulation Setup in ADS with SEDZ .s1p Files and DataAccessComponent  
Rev. 0 | Page 64 of 68  
 
Data Sheet  
ADRV9008-1  
C
C
C
C
General Receiver Path Interface  
RX1_IN–  
RX1_IN+  
RECEIVER  
The ADRV9008-1 receivers can support up to a 200 MHz  
bandwidth.  
INPUT  
STAGE  
(MIXER OR LNA)  
The ADRV9008-1 receivers support a wide range of operation  
frequencies. In the case of the receiver channels, the differential  
signals interface to an integrated mixer. The mixer input pins have  
a dc bias of approximately 0.7 V and may need to be ac-coupled,  
depending on the common-mode voltage level of the external  
circuit.  
Figure 188. Differential Receiver Interface Using a Transmission Line Balun  
Impedance Matching Network Examples  
Impedance matching networks are required to achieve the  
ADRV9008-1 data sheet performance levels. This section provides  
a description of the matching network topology and components  
used on the ADRV9008-1W/PCBZ.  
Important considerations for the receiver port interface are as  
follows:  
Device models, board models, and balun and SMD component  
models are required to build an accurate system level simulation.  
The board layout model can be obtained from an EM simulator.  
The balun and SMD component models can be obtained from  
the device vendors or built locally. Contact Analog Devices  
applications engineering for ADRV9008-1 modeling details.  
The device to be interfaced (filter, balun, transmit/receive  
(T/R) switch, external low noise amplifier (LNA), external  
PA, and so on).  
The receiver maximum safe input power is 23 dBm (peak).  
The receiver optimum dc bias voltage is 0.7 V bias to  
ground.  
The impedance matching network provided in this section is  
not evaluated in terms of mean time to failure (MTTF) in high  
volume production. Consult with component vendors for long-  
term reliability concerns. Consult with balun vendors to determine  
appropriate conditions for dc biasing.  
The board design (reference planes, transmission lines,  
impedance matching, and so on).  
Figure 187 and Figure 188 show possible differential receiver  
port interface circuits. The options in Figure 187 and Figure 188  
are valid for all receiver inputs operating in differential mode,  
though only the Receiver 1 signal names are indicated. Impedance  
matching may be necessary to obtain data sheet performance levels.  
Figure 190 shows three elements in parallel marked do not  
install (DNI). However, only one set of SMD component pads  
is placed on the board. For example, the R202, L202, and C202  
components only have one set of SMD pads for one SMD  
component. Figure 190 shows that, in a generic port impedance  
matching network, the shunt or series elements may be a resistor,  
inductor, or capacitor.  
Given wide RF bandwidth applications, SMD balun devices  
function well. Decent loss and differential balance are available  
in a relatively small (0603, 0805) package.  
RX1_IN–  
RECEIVER  
INPUT  
STAGE  
(MIXER OR LNA)  
RX1_IN+  
Figure 187. Differential Receiver Interface Using a Transformer  
Rev. 0 | Page 65 of 68  
 
 
ADRV9008-1  
Data Sheet  
Rx TOPOLOGY  
3
4
BAL_OUT1  
BAL_OUT2  
Rx +  
Rx –  
1
1
UNBAL_IN  
Rx IN  
2
3 4 5  
NC_6 GND GND_DC_FEED_RFGND  
6
5
2
R328  
0Ω  
Figure 189. Impedance Matching Topology  
RX1  
T201  
TCM1-83X+  
J201  
C248  
18pF  
RX1_UNBAL  
RX1_BAL+  
R205  
R202  
RX1_IN+  
3
2
5
4
1
0Ω  
0Ω  
2
3
4
5
C201  
DNI  
C203  
DNI  
C204  
DNI  
C207  
DNI  
NC  
1
6
AGND  
R206  
RX1_IN-  
AGND  
AGND  
RX1_BAL–  
C240  
10pF  
DNI  
C241  
27pF  
0Ω  
AGND  
RX2  
T202  
TCM1-83X+  
J202  
1
C249  
RX2_UNBAL  
R209  
0Ω  
R212  
RX2_IN+  
RX2_BAL+  
3
2
5
4
0Ω  
18pF  
2
3
4
5
C208  
DNI  
C210  
DNI  
C214  
DNI  
C211  
DNI  
NC  
AGND  
6
1
AGND  
AGND  
R213  
RX2_IN-  
C243  
27pF  
RX2_BAL–  
0Ω  
C242  
DNI  
AGND  
Figure 190. Receiver 1 (RX1) and Receiver 2 (RX2) Generic Matching Network Topology  
Rev. 0 | Page 66 of 68  
 
Data Sheet  
ADRV9008-1  
Table 9 and shows the selected balun and component values  
used for three matching network sets. Refer to the ADRV9008-1  
schematics for a wideband matching example that operates across  
the entire device frequency range with somewhat reduced  
performance.  
The RF matching used in the ADRV9008-1W/PCBZ allows the  
ADRV9008-1 to operate across the entire chip frequency range  
with slightly reduced performance.  
Table 9. Receiver 1 and Receiver 2 Evaluation Board Matching Components for Frequency Band 75 MHz to 6000 MHz  
Component  
Value  
C201, C208  
Do not install (DNI)  
R202, R209  
0 Ω  
C203, C210  
DNI  
C248, C249  
18 pF  
C204, C211  
DNI  
R205/R206, R212/R213  
C207, C214  
0 Ω  
DNI  
T201, T202  
Mini circuits TMC1-83X+  
Rev. 0 | Page 67 of 68  
 
ADRV9008-1  
Data Sheet  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
PAD CORNER  
A1 BALL  
CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
PIN A1  
INDICATOR  
10.40 SQ  
G
7.755 REF  
H
J
K
L
0.80  
M
N
P
TOP VIEW  
BOTTOM VIEW  
0.80 REF  
8.090 REF  
DETAIL A  
1.27  
1.18  
1.09  
0.91  
0.84  
0.77  
DETAIL A  
0.39  
0.34  
0.29  
0.44 REF  
0.50  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 191. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-196-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range2  
Package Description  
Package Option  
ADRV9008BBCZ-1  
ADRV9008BBCZ-1REEL  
ADRV9008-1W/PCBZ  
−40°C to +85°C  
−40°C to +85°C  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Pb-Free Evaluation Board, 75 MHz to 6000 MHz  
BC-196-13  
BC-196-13  
1 Z = RoHS Compliant Part.  
2 See the Thermal Management section.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16830-0-9/18(0)  
Rev. 0 | Page 68 of 68  
 
 

相关型号:

ADRV9008BBCZ-2

Integrated Dual RF Transmitters and Observation Receiver
ADI

ADRV9008BBCZ-2REEL

Integrated Dual RF Transmitters and Observation Receiver
ADI

ADRV9009

Integrated Dual RF Transmitter, Receiver, and Observation Receiver
ADI

ADRV9009-W/PCBZ

Integrated Dual RF Transmitter, Receiver, and Observation Receiver
ADI

ADRV9009BBCZ

Integrated Dual RF Tx, Rx, and Observation Rx
ADI

ADRV9009BBCZ-REEL

Integrated Dual RF Transmitter, Receiver, and Observation Receiver
ADI

ADRV9010

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ-A

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ-A-RL

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ-REEL

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9026-HB/PCBZ

Integrated, Quad RF Transceiver with Observation Path
ADI