ADSP-BF539YBCZ-4F8 [ADI]

16-BIT, 50MHz, OTHER DSP, PBGA316, LEAD FREE, MO-205AM, MBGA-316;
ADSP-BF539YBCZ-4F8
型号: ADSP-BF539YBCZ-4F8
厂家: ADI    ADI
描述:

16-BIT, 50MHz, OTHER DSP, PBGA316, LEAD FREE, MO-205AM, MBGA-316

时钟 外围集成电路
文件: 总70页 (文件大小:2678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin®  
Embedded Processor  
a
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
External memory controller with glueless support  
for SDRAM, SRAM, flash, and ROM  
Flexible memory booting options from SPI®, external  
memory  
FEATURES  
1.0 V to 1.2 V core VDD with on-chip voltage regulation  
3.3 V tolerant I/O with specific 5 V tolerant pins  
316-ball Pb-free mini-BGA package  
Up to 500 MHz high performance Blackfin processor  
Two 16-bit MACs, two 40-bit ALUs, four 8-bit video ALUs,  
40-bit shifter  
RISC-like register and instruction model for ease of  
programming and compiler friendly support  
Advanced debug, trace, and performance monitoring  
PERIPHERALS  
Parallel peripheral interface (PPI),  
supporting ITU-R 656 video data formats  
Four dual-channel, full-duplex synchronous serial ports, sup-  
porting 16 stereo I2S® channels  
Two DMA controllers supporting 26 channels  
Controller area network (CAN) 2.0B controller  
Media transceiver (MXVR) for connection  
to a MOST® network  
MEMORY  
148K bytes of on-chip memory:  
16K bytes of instruction SRAM/cache  
64K bytes of instruction SRAM  
32K bytes of data SRAM  
32K bytes of data SRAM/cache  
4K bytes of scratchpad SRAM  
512K x 16-bits or 256K x 16-bits of flash memory  
(ADSP-BF539F only)  
Four dual-channel memory DMA controllers  
Memory management unit providing memory protection  
Three SPI-compatible ports  
Three timer/counters with PWM support  
Three UARTs with support for IrDA®  
Two TWI controllers compatible with I2C® industry standard  
38 general purpose I/O pins (GPIO)  
16 general purpose flag pins (GPF)  
Real time clock  
Watchdog timer  
Debug/JTAG interface  
On-chip PLL capable of 0.5x To 64x frequency multiplication  
EVENT  
JTAG TEST AND  
WATCHDOG TIMER  
MXVR  
CONTROLLER/  
EMULATION  
CORE TIMER  
REAL TIME CLOCK  
PPI / GPF  
VOLTAGE  
B
REGULATOR  
CAN 2.0B  
L1  
L1  
MMU  
INSTRUCTION  
MEMORY  
DATA  
MEMORY  
TIMER0, 1, 2  
UART0, 1, 2  
CORE / SYSTEM BUS INTERFACE  
GPIO  
TWI0, 1  
DMA  
CONTROLLER  
SPORT0, 1, 2,3  
SPI PORT  
BOOT ROM  
EXTERNAL PORT  
FLASH, SDRAM  
CONTROL  
256K X 16-BIT OR  
512K X 16-BIT  
FLASH MEMORY  
Figure 1. Functional Block Diagram  
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.  
Rev. PrE  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2006 Analog Devices, Inc. All rights reserved.  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
TABLE OF CONTENTS  
General Description ................................................. 4  
Low Power Architecture ......................................... 4  
System Integration ................................................ 4  
ADSP-BF539/ADSP-BF539F Processor Peripherals ....... 4  
Blackfin Processor Core .......................................... 5  
Memory Architecture ............................................ 5  
DMA Controllers ................................................ 10  
Real Time Clock ................................................. 10  
Watchdog Timer ................................................ 11  
Timers ............................................................. 11  
Serial Ports (SPORTs) .......................................... 11  
Serial Peripheral Interface (SPI) Ports ...................... 11  
Two Wire Interface ............................................. 12  
UART Port ........................................................ 12  
Programmable I/O Pins ........................................ 12  
Parallel Peripheral Interface ................................... 13  
Controller Area Network (CAN) Interface ................ 14  
Media Transceiver MAC layer (MXVR) ................... 14  
Dynamic Power Management ................................ 15  
Voltage Regulation .............................................. 16  
Clock Signals ..................................................... 16  
Booting Modes ................................................... 17  
Instruction Set Description ................................... 18  
Development Tools ............................................. 18  
Designing an Emulator Compatible Processor Board ... 19  
Example Connections and Layout Considerations ...... 19  
Voltage Regulator Layout Guidelines ....................... 19  
MXVR Board Layout Guidelines ............................ 19  
Pin Descriptions .................................................... 22  
Specifications ........................................................ 27  
Recommended Operating Conditions ...................... 27  
Electrical Characteristics ....................................... 27  
Absolute Maximum Ratings ................................... 28  
Package Information ............................................ 28  
ESD Sensitivity ................................................... 28  
Timing Specifications ........................................... 29  
Clock and Reset Timing ..................................... 30  
Asynchronous Memory Read Cycle Timing ............ 31  
Asynchronous Memory Write Cycle Timing ........... 35  
SDRAM Interface Timing .................................. 37  
External Port Bus Request and Grant Cycle Timing .. 38  
Parallel Peripheral Interface Timing ...................... 41  
Serial Ports Timing ........................................... 44  
Serial Peripheral Interface (SPI) Port  
—Master Timing ........................................... 48  
Serial Peripheral Interface (SPI) Port  
—Slave Timing ............................................. 49  
Universal Asynchronous Receiver-Transmitter  
(UART) Port Timing ..................................... 50  
Programmable Flags Cycle Timing ....................... 51  
Timer Cycle Timing .......................................... 52  
JTAG Test And Emulation Port Timing ................. 53  
TWI Controller Timing ..................................... 54  
MXVR Timing ................................................ 58  
CAN Timing ................................................... 59  
Output Drive Currents ......................................... 60  
Power Dissipation ............................................... 62  
Test Conditions .................................................. 62  
Environmental Conditions .................................... 65  
316-Ball Mini-BGA Pinout ....................................... 66  
Outline Dimensions ................................................ 69  
Ordering Guide ..................................................... 70  
Recommended Operating Conditions  
—Applies to 5V Tolerant pins ............................. 27  
REVISION HISTORY  
5/06—Revision PrE:  
Changes Ordering Guide .......................................... 67  
12/05—Revision PrD:  
Added Maximum Duty Cycle for Input Transient Voltage 28  
Added Package Information ..................................... 28  
Added values in Power Dissipation ............................ 61  
Added graphs in Output Drive Currents ...................... 59  
Added graphs in Capacitive Loading .......................... 62  
Changes number of GPIO and GPF pins Peripherals ........ 1  
Changes wording in System Integration ........................ 4  
Changes voltage regulator range in ADSP-BF539 processor  
Peripherals ............................................................ 4  
Rev. PrE  
|
Page 2 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Changes voltage regulator range in Voltage Regulation .... 15  
Changes to Figure 8 and MXVR Board Layout Guidelines 19  
Modified Example connections of ADSP-BF539 to MOST  
Network ............................................................... 19  
Changes to CAN, MXVR., and UART pullup in Pin  
Descriptions .......................................................... 20  
Adds footnotes to Recommended Operating Conditions .. 25  
Adds footnotes to Absolute Maximum Ratings .............. 26  
Adds die temperature specification Absolute Maximum Ratings  
26  
Adds table and figure to Asynchronous Memory Read Cycle  
Timing ................................................................. 29  
Adds table and figure to Asynchronous Memory Write Cycle  
Timing ................................................................. 31  
Deletes footnotes in External Port Bus Request and Grant Cycle  
Timing ................................................................. 34  
Adds tWBR to External Port Bus Request and Grant Cycle Timing  
34  
Replaced Figure 17, Figure 18, Figure 19, and Figure 20 ... 38  
Added footnotes in Serial Ports—External Clock and Serial  
Ports—Internal Clock .............................................. 39  
Changes to lower diagram in Serial Ports ...................... 40  
Changes to External Late Frame Sync (Frame Sync Setup <  
tSCLKE/2) ............................................................ 41  
Replace section Power Dissipation .............................. 57  
Added overbar to AOE in 316-Ball Sparse Mini-BGA Pin  
Assignment (Alphabetically by Signal) .........................63  
Adds section Surface Mount Design ............................ 65  
Rev. PrE  
|
Page 3 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
GENERAL DESCRIPTION  
The ADSP-BF539/ADSP-BF539F processors are a members of  
the Blackfin family of products, incorporating the Analog  
Devices/Intel Micro Signal Architecture (MSA). Blackfin pro-  
cessors combine a dual-MAC state-of-the-art signal processing  
engine, the advantages of a clean, orthogonal RISC-like micro-  
processor instruction set, and single-instruction, multiple-data  
(SIMD) multimedia capabilities into a single instruction set  
architecture.  
substantial reduction in power consumption, compared with  
just varying the frequency of operation. This translates into  
longer battery life and lower heat dissipation.  
SYSTEM INTEGRATION  
The ADSP-BF539/ADSP-BF539F processor is a highly inte-  
grated system-on-a-chip solution for the next generation of  
industrial and automotive applications including audio and  
video signal processing. By combining advanced memory con-  
figurations, such as on-chip flash memory, with industry-  
standard interfaces with a high performance signal processing  
core, users can develop cost-effective solutions quickly without  
the need for costly external components. The system peripherals  
include a MOST® Network Media Transceiver (MXVR), three  
UART ports, three SPI ports, four serial ports (SPORT), one  
CAN interface, two Two-Wire-Interfaces (TWI), four general  
purpose timers (three with PWM capability), a real-time clock, a  
watchdog timer, a Parallel Peripheral Interface, general purpose  
I/O, and general purpose flag pins.  
The ADSP-BF539/ADSP-BF539F processors are completely  
code compatible with other Blackfin processors, differing only  
with respect to performance, peripherals, and on-chip memory.  
Specific performance, peripherals, and memory configurations  
are shown in Table 1 on Page 4.  
Table 1. Processor Features  
ADSP-BF539 ADSP-BF539F4 ADSP-BF539F8  
Maximum  
500 MHz  
500 MHz  
500 MHz  
1000 MMACs  
Performance 1000 MMACs 1000 MMACs  
Instruction  
SRAM/Cache  
16K bytes  
64K bytes  
32K bytes  
16K bytes  
64K bytes  
32K bytes  
16K bytes  
64K bytes  
32K bytes  
ADSP-BF539/ADSP-BF539F PROCESSOR  
PERIPHERALS  
Instruction  
SRAM  
The ADSP-BF539/ADSP-BF539F processor contains a rich set  
of peripherals connected to the core via several high bandwidth  
buses, providing flexibility in system configuration as well as  
excellent overall system performance (see the block diagram  
on Page 1). The general purpose peripherals include functions  
such as UART, Timers with PWM (Pulse Width Modulation)  
and pulse measurement capability, general purpose flag I/O  
pins, a Real Time Clock, and a Watchdog Timer. This set of  
functions satisfies a wide variety of typical system support needs  
and is augmented by the system expansion capabilities of the  
device. In addition to these general purpose peripherals, the  
ADSP-BF539/ADSP-BF539F processor contains high speed  
serial and parallel ports for interfacing to a variety of audio,  
video, and modem codec functions. An MXVR transceiver  
transmits and receives audio and video data and control infor-  
mation on a MOST® automotive multimedia network. A CAN  
2.0B controller is provided for automotive control networks. An  
interrupt controller manages interrupts from the on-chip  
peripherals or external sources. And power management con-  
trol functions tailor the performance and power characteristics  
of the processor and system to many application scenarios.  
Data  
SRAM/Cache  
Data SRAM  
Scratchpad  
Flash  
32K bytes  
4K bytes  
32K bytes  
4K bytes  
32K bytes  
4K bytes  
Not  
applicable  
256K x 16-bit  
512K x 16-bit  
SPORTs  
SPI  
4
3
2
3
1
1
1
4
4
3
3
TWI  
2
2
UARTs  
PPI  
3
3
1
1
CAN  
MXVR  
1
1
1
1
Packageoption 316  
316  
316  
By integrating a rich set of industry-leading system peripherals  
and memory, Blackfin processors are the platform of choice for  
next generation applications that require RISC-like program-  
mability, multimedia support and leading edge signal  
processing in one integrated package.  
All of the peripherals, except for general purpose I/O, CAN,  
TWI, Real Time Clock, and timers, are supported by a flexible  
DMA structure. There are also four separate memory DMA  
controllers dedicated to data transfers between the processor's  
various memory spaces, including external SDRAM and asyn-  
chronous memory. Multiple on-chip buses running at up to  
133 MHz provide enough bandwidth to keep the processor core  
running along with activity on all of the on-chip and external  
peripherals.  
LOW POWER ARCHITECTURE  
Blackfin processors provide world class power management and  
performance. Blackfin processors are designed in a low power  
and low voltage design methodology and feature Dynamic  
Power Management, the ability to vary both the voltage and fre-  
quency of operation to significantly lower overall power  
consumption. Varying the voltage and frequency can result in a  
The ADSP-BF539/ADSP-BF539F processor includes an on-chip  
voltage regulator in support of the ADSP-BF539/ADSP-BF539F  
processor Dynamic Power Management capability. The voltage  
Rev. PrE  
|
Page 4 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
regulator provides a range of core voltage levels from a single  
2.7 V to 3.6 V input. The voltage regulator can be bypassed at  
the user's discretion.  
memory holds instructions only. The two data memories hold  
data, and a dedicated scratchpad data memory stores stack and  
local variable information.  
In addition, multiple L1 memory blocks are provided, offering a  
configurable mix of SRAM and cache. The Memory Manage-  
ment Unit (MMU) provides memory protection for individual  
tasks that may be operating on the core and can protect system  
registers from unintended access.  
BLACKFIN PROCESSOR CORE  
As shown in Figure 2 on Page 6, the Blackfin processor core  
contains two 16-bit multipliers, two 40-bit accumulators, two  
40-bit ALUs, four video ALUs, and a 40-bit shifter. The compu-  
tation units process 8-bit, 16-bit, or 32-bit data from the register  
file.  
The architecture provides three modes of operation: User mode,  
Supervisor mode, and Emulation mode. User mode has  
restricted access to certain system resources, thus providing a  
protected software environment, while Supervisor mode has  
unrestricted access to the system and core resources.  
The compute register file contains eight 32-bit registers. When  
performing compute operations on 16-bit operand data, the  
register file operates as 16 independent 16-bit registers. All  
operands for compute operations come from the multiported  
register file and instruction constant fields.  
The Blackfin processor instruction set has been optimized so  
that 16-bit opcodes represent the most frequently used instruc-  
tions, resulting in excellent compiled code density. Complex  
DSP instructions are encoded into 32-bit opcodes, representing  
fully featured multifunction instructions. Blackfin processors  
support a limited multi-issue capability, where a 32-bit instruc-  
tion can be issued in parallel with two 16-bit instructions,  
allowing the programmer to use many of the core resources in a  
single instruction cycle.  
Each MAC can perform a 16-bit by 16-bit multiply in each  
cycle, accumulating the results into the 40-bit accumulators.  
Signed and unsigned formats, rounding, and saturation are  
supported.  
The ALUs perform a traditional set of arithmetic and logical  
operations on 16-bit or 32-bit data. In addition, many special  
instructions are included to accelerate various signal processing  
tasks. These include bit operations such as field extract and pop-  
ulation count, modulo 232 multiply, divide primitives, saturation  
and rounding, and sign/exponent detection. The set of video  
instructions include byte alignment and packing operations, 16-  
bit and 8-bit adds with clipping, 8-bit average operations, and 8-  
bit subtract/absolute value/accumulate (SAA) operations. Also  
provided are the compare/select and vector search instructions.  
The Blackfin processor assembly language uses an algebraic syn-  
tax for ease of coding and readability. The architecture has been  
optimized for use in conjunction with the C/C++ compiler,  
resulting in fast and efficient software implementations.  
MEMORY ARCHITECTURE  
The ADSP-BF539/ADSP-BF539F processor views memory as a  
single unified 4G byte address space, using 32-bit addresses. All  
resources, including internal memory, external memory, and  
I/O control registers, occupy separate sections of this common  
address space. The memory portions of this address space are  
arranged in a hierarchical structure to provide a good cost/per-  
formance balance of some very fast, low latency on-chip  
memory as cache or SRAM, and larger, lower cost and perfor-  
mance off-chip memory systems. See Figure 3 on Page 7.  
For certain instructions, two 16-bit ALU operations can be per-  
formed simultaneously on register pairs (a 16-bit high half and  
16-bit low half of a compute register). By also using the second  
ALU, quad 16-bit operations are possible.  
The 40-bit shifter can perform shifts and rotates and is used to  
support normalization, field extract, and field deposit  
instructions.  
The program sequencer controls the flow of instruction execu-  
tion, including instruction alignment and decoding. For  
program flow control, the sequencer supports PC relative and  
indirect conditional jumps (with static branch prediction), and  
subroutine calls. Hardware is provided to support zero over-  
head looping. The architecture is fully interlocked, meaning that  
the programmer need not manage the pipeline when executing  
instructions with data dependencies.  
The L1 memory system is the primary highest performance  
memory available to the Blackfin processor. The off-chip mem-  
ory system, accessed through the External Bus Interface Unit  
(EBIU), provides expansion with SDRAM, flash memory, and  
SRAM, optionally accessing up to 132M bytes of physical  
memory.  
The memory DMA controller provides high bandwidth data  
movement capability. It can perform block transfers of code or  
data between the internal memory and the external memory  
spaces.  
The address arithmetic unit provides two addresses for simulta-  
neous dual fetches from memory. It contains a multiported  
register file consisting of four sets of 32-bit Index, Modify,  
Length, and Base registers (for circular buffering), and eight  
additional 32-bit pointer registers (for C style indexed stack  
manipulation).  
Internal (On-chip) Memory  
The ADSP-BF539/ADSP-BF539F processor has three blocks of  
on-chip memory providing high bandwidth access to the core.  
Blackfin processors support a modified Harvard architecture in  
combination with a hierarchical memory structure. Level 1 (L1)  
memories are those that typically operate at the full processor  
speed with little or no latency. At the L1 level, the instruction  
The first is the L1 instruction memory, consisting of 80K bytes  
SRAM, of which 16K bytes can be configured as a four way set-  
associative cache. This memory is accessed at full processor  
speed.  
Rev. PrE  
|
Page 5 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
ADDRESS ARITHMETIC UNIT  
SP  
FP  
P5  
P4  
P3  
P2  
P1  
P0  
I3  
I2  
I1  
I0  
L3  
L2  
L1  
L0  
B3  
B2  
B1  
B0  
M3  
M2  
M1  
M0  
DAG1  
DAG0  
DA1  
DA0  
32  
32  
32  
32  
PREG  
RAB  
SD  
LD1  
LD0  
32  
32  
32  
ASTAT  
32  
32  
SEQUENCER  
R7.H  
R7.L  
R6.H  
R5.H  
R4.H  
R3.H  
R2.H  
R1.H  
R0.H  
R6.L  
R5.L  
R4.L  
R3.L  
R2.L  
R1.H  
R0.L  
ALIGN  
16  
16  
8
8
8
8
DECODE  
BARREL  
SHIFTER  
LOOP BUFFER  
40  
40  
40 40  
A0  
A1  
CONTROL  
UNIT  
32  
32  
DATA ARITHMETIC UNIT  
Figure 2. Blackfin Processor Core  
The second on-chip memory block is the L1 data memory, con-  
sisting of two banks of up to 32K bytes each. Each memory bank  
is configurable, offering both cache and SRAM functionality.  
This memory block is accessed at full processor speed.  
1M byte segment regardless of the size of the devices used, so  
that these banks will only be contiguous if each is fully popu-  
lated with 1M byte of memory.  
Flash Memory (ADSP-BF539F only)  
The third memory block is a 4K byte scratchpad SRAM which  
runs at the same speed as the L1 memories, but is only accessible  
as data SRAM and cannot be configured as cache memory.  
The ADSP-BF539F4 and ADSP-BF539F8 processors contain a  
separate flash die, connected to the EBIU bus, within the pack-  
age of the ADSP-BF539F processors. Figure 4 on Page 7 shows  
how the flash memory die and Blackfin processor die are  
connected.  
External (Off-Chip) Memory  
External memory is accessed via the EBIU. This 16-bit interface  
provides a glueless connection to a bank of synchronous DRAM  
(SDRAM) as well as up to four banks of asynchronous memory  
devices including flash, EPROM, ROM, SRAM, and memory  
mapped I/O devices.  
The ADSP-BF539F4 contains a 4 Mbit (256K x 16-bits) bottom  
boot sector flash memory. The ADSP-BF539F8 contains an 8  
Mbit (512K x 16-bits) bottom boot sector flash memory. Fea-  
tures include the following.  
The PC133-compliant SDRAM controller can be programmed  
to interface to up to 128M bytes of SDRAM. The SDRAM con-  
troller allows one row to be open for each internal SDRAM  
bank, for up to four internal SDRAM banks, improving overall  
system performance.  
• access times as fast as 70 ns (EBIU registers be set  
appropriately)  
• sector protection  
• one million write cycles per sector  
• 20 year data retention  
The asynchronous memory controller can be programmed to  
control up to four banks of devices with very flexible timing  
parameters for a wide variety of devices. Each bank occupies a  
The Blackfin processor connects to the flash memory die with  
address, data, chip enable, write enable, and output enable con-  
trols as if it were an external memory device.  
Rev. PrE  
|
Page 6 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Flash Memory Programming  
0xFFFF FFFF  
CORE MMR REGISTERS (2M BYTE)  
0xFFE0 0000  
SYSTEM MMR REGISTERS (2M BYTE)  
0xFFC0 0000  
The ADSP-BF539F4 and ADSP-BF539F8 flash memory may be  
programmed before or after mounting on the printed circuit  
board.  
RESERVED  
0xFFB0 1000  
SCRATCHPAD SRAM (4K BYTE)  
0xFFB0 0000  
To program the flash prior to mounting on the printed circuit  
board, use a hardware programming tool that can provide the  
data, address, and control stimuli to the flash die through the  
external pins on the package. During this programming, VDDEXT  
and GND must be provided to the package and the Blackfin  
must be held in reset with bus request (BR) asserted and a  
CLKIN provided.  
RESERVED  
0xFFA1 4000  
INSTRUCTION SRAM / CACHE (16K BYTE)  
0xFFA1 0000  
INSTRUCTION SRAM (32K BYTE)  
0xFFA0 8000  
RESERVED  
0xFF90 8000  
DATA BANK B SRAM / CACHE (16K BYTE)  
0xFF90 4000  
RESERVED  
The VDSP++ tools may be used to program the flash memory  
after the device is mounted on a printed circuit board.  
0xFF80 8000  
DATA BANK A SRAM / CACHE (16K BYTE)  
0xFF80 4000  
RESERVED  
0xEF00 0000  
RESERVED  
0x2040 0000  
Flash Memory Sector Protection  
To use the sector protection feature, a high voltage (+12 V nom-  
inal) must be applied to the flash FRESET pin. Refer to the flash  
datasheet for details.  
ASYNC MEMORY BANK 3 (1M BYTE) OR  
ON-CHIP FLASH  
0x2030 0000  
ASYNC MEMORY BANK 2 (1M BYTE) OR  
ON-CHIP FLASH  
0x2020 0000  
I/O Memory Space  
ASYNC MEMORY BANK 1 (1M BYTE) OR  
ON-CHIP FLASH  
0x2010 0000  
Blackfin processors do not define a separate I/O space. All  
resources are mapped through the flat 32-bit address space. On-  
chip I/O devices have their control registers mapped into mem-  
ory mapped registers (MMRs) at addresses near the top of the  
4G byte address space. These are separated into two smaller  
blocks, one which contains the control MMRs for all core func-  
tions, and the other which contains the registers needed for  
setup and control of the on-chip peripherals outside of the core.  
The MMRs are accessible only in supervisor mode and appear  
as reserved space to on-chip peripherals.  
ASYNC MEMORY BANK 0 (1M BYTE) OR  
ON-CHIP FLASH  
0x2000 0000  
RESERVED  
0x0800 0000  
SDRAM MEMORY (16M BYTE - 128M BYTE)  
0x0000 0000  
Figure 3. ADSP-BF539/ADSP-BF539F Internal/External Memory Map  
Booting  
The ADSP-BF539/ADSP-BF539F processor contains a small  
boot kernel, which configures the appropriate peripheral for  
booting. If the ADSP-BF539/ADSP-BF539F processor is config-  
ured to boot from boot ROM memory space, the processor  
starts executing from the on-chip boot ROM. For more infor-  
mation, see Booting Modes on Page 17.  
ADDR19-1  
A18-0  
OE  
WE  
RY/BY  
DQ15-0  
VSS  
VCC  
BYTE  
CE  
ARE  
AWE  
ARDY  
DATA15-0  
GND  
DDEXT  
V
AMS3-0  
RESET  
RESET  
Event Handling  
The event controller on the ADSP-BF539/ADSP-BF539F pro-  
cessor handles all asynchronous and synchronous events to the  
processor. The ADSP-BF539/ADSP-BF539F processor provides  
event handling that supports both nesting and prioritization.  
Nesting allows multiple event service routines to be active  
simultaneously. Prioritization ensures that servicing of a higher  
priority event takes precedence over servicing of a lower priority  
event. The controller provides support for five different types of  
events:  
ADSP-BF539F  
package  
Figure 4. Internal Connection of Flash Memory  
The flash chip enable pin FCE must be connected to AMS0 or  
AMS3–1 through a printed circuit board trace. When connected  
to AMS0 the Blackfin processor can boot from the flash die.  
When connnected to AMS3–1 the flash memory will appear as  
non-volatile memory in the processor memory map shown in  
Figure 3 on Page 7.  
• Emulation – An emulation event causes the processor to  
enter emulation mode, allowing command and control of  
the processor via the JTAG interface.  
• Reset – This event resets the processor.  
Rev. PrE  
|
Page 7 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
• Non-Maskable Interrupt (NMI) – The NMI event can be  
generated by the software watchdog timer or by the NMI  
input signal to the processor. The NMI event is frequently  
used as a power-down indicator to initiate an orderly shut-  
down of the system.  
cessor. Table 2 describes the inputs to the CEC, identifies their  
names in the Event Vector Table (EVT), and lists their  
priorities.  
Table 2. Core Event Controller (CEC)  
• Exceptions – Events that occur synchronously to program  
flow (i.e., the exception will be taken before the instruction  
is allowed to complete). Conditions such as data alignment  
violations and undefined instructions cause exceptions.  
Priority  
(0 is Highest)  
Event Class  
EVT Entry  
0
Emulation/Test Control  
Reset  
EMU  
RST  
1
• Interrupts – Events that occur asynchronously to program  
flow. They are caused by input pins, timers, and other  
peripherals, as well as by an explicit software instruction.  
2
Non-Maskable Interrupt  
Exception  
NMI  
3
EVX  
Each event type has an associated register to hold the return  
address and an associated return-from-event instruction. When  
an event is triggered, the state of the processor is saved on the  
supervisor stack.  
4
Reserved  
5
Hardware Error  
IVHW  
IVTMR  
IVG7  
IVG8  
IVG9  
IVG10  
IVG11  
IVG12  
IVG13  
IVG14  
IVG15  
6
Core Timer  
7
General Interrupt 7  
General Interrupt 8  
General Interrupt 9  
General Interrupt 10  
General Interrupt 11  
General Interrupt 12  
General Interrupt 13  
General Interrupt 14  
General Interrupt 15  
The ADSP-BF539/ADSP-BF539F processor Event Controller  
consists of two stages, the Core Event Controller (CEC) and the  
System Interrupt Controller (SIC). The Core Event Controller  
works with the System Interrupt Controller to prioritize and  
control all system events. Conceptually, interrupts from the  
peripherals enter into the SIC, and are then routed directly into  
the general purpose interrupts of the CEC.  
8
9
10  
11  
12  
13  
14  
15  
Core Event Controller (CEC)  
The CEC supports nine general purpose interrupts (IVG15–7),  
in addition to the dedicated interrupt and exception events. Of  
these general purpose interrupts, the two lowest priority inter-  
rupts (IVG15–14) are recommended to be reserved for software  
interrupt handlers, leaving seven prioritized interrupt inputs to  
support the peripherals of the ADSP-BF539/ADSP-BF539F pro-  
System Interrupt Controller (SIC)  
The System Interrupt Controller provides the mapping and  
routing of events from the many peripheral interrupt sources to  
the prioritized general purpose interrupt inputs of the CEC.  
Although the ADSP-BF539/ADSP-BF539F processor provides a  
default mapping, the user can alter the mappings and priorities  
of interrupt events by writing the appropriate values into the  
Interrupt Assignment Registers (IAR). Table 3 describes the  
inputs into the SIC and the default mappings into the CEC.  
Table 3. System and Core Event Mapping  
Event Source  
Core  
Event Name  
PLL Wakeup Interrupt  
DMA Controller 0 Error  
DMA Controller 1 Error  
PPI Error Interrupt  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
SPORT0 Error Interrupt  
SPORT1 Error Interrupt  
SPORT2 Error Interrupt  
SPORT3 Error Interrupt  
MXVR Synchronous Data Interrupt  
SPI0 Error Interrupt  
SPI1 Error Interrupt  
SPI2 Error Interrupt  
Rev. PrE  
|
Page 8 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Table 3. System and Core Event Mapping (Continued)  
Event Control  
The ADSP-BF539/ADSP-BF539F processor provides the user  
with a very flexible mechanism to control the processing of  
events. In the CEC, three registers are used to coordinate and  
control events. Each register is 16 bits wide:  
Event Source  
Core  
Event Name  
UART0 Error Interrupt  
IVG7  
UART1 Error Interrupt  
IVG7  
• CEC Interrupt Latch Register (ILAT) – The ILAT register  
indicates when events have been latched. The appropriate  
bit is set when the processor has latched the event and  
cleared when the event has been accepted into the system.  
This register is updated automatically by the controller, but  
it may also be written to clear (cancel) latched events. This  
register may be read while in supervisor mode and may  
only be written while in supervisor mode when the corre-  
sponding IMASK bit is cleared.  
UART2 Error Interrupt  
IVG7  
CAN Error Interrupt  
IVG7  
Real Time Clock Interrupts  
DMA0 Interrupt (PPI)  
IVG8  
IVG8  
DMA1 Interrupt (SPORT0 RX)  
DMA2 Interrupt (SPORT0 TX)  
DMA3 Interrupt (SPORT1 RX)  
DMA4 Interrupt (SPORT1 TX)  
DMA12 Interrupt (SPORT2 RX)  
DMA13 Interrupt (SPORT2 TX)  
DMA14 Interrupt (SPORT3 RX)  
DMA15 Interrupt (SPORT3 TX)  
DMA5 Interrupt (SPI0)  
IVG9  
IVG9  
IVG9  
• CEC Interrupt Mask Register (IMASK) – The IMASK reg-  
ister controls the masking and unmasking of individual  
events. When a bit is set in the IMASK register, that event is  
unmasked and will be processed by the CEC when asserted.  
A cleared bit in the IMASK register masks the event, pre-  
venting the processor from servicing the event even though  
the event may be latched in the ILAT register. This register  
may be read or written while in supervisor mode. (Note  
that general purpose interrupts can be globally enabled and  
disabled with the STI and CLI instructions, respectively.)  
IVG9  
IVG9  
IVG9  
IVG9  
IVG9  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG11  
IVG11  
IVG11  
IVG11  
IVG11  
IVG11  
IVG11  
IVG11  
IVG12  
IVG13  
IVG13  
IVG13  
IVG13  
IVG13  
DMA18 Interrupt (SPI1)  
DMA19 Interrupt (SPI2)  
• CEC Interrupt Pending Register (IPEND) – The IPEND  
register keeps track of all nested events. A set bit in the  
IPEND register indicates the event is currently active or  
nested at some level. This register is updated automatically  
by the controller but may be read while in supervisor mode.  
DMA6 Interrupt (UART0 RX)  
DMA7 Interrupt (UART0 TX)  
DMA20 Interrupt (UART1 RX)  
DMA21 Interrupt (UART1 TX)  
DMA22 Interrupt (UART2 RX)  
DMA23 Interrupt (UART2 TX)  
Timer0, Timer1, Timer2 Interrupts  
TWI0 Interrupt  
The SIC allows further control of event processing by providing  
three 32-bit interrupt control and status registers. Each register  
contains a bit corresponding to each of the peripheral interrupt  
events shown in Table 3 on Page 8.  
• SIC Interrupt Mask Registers (SIC_IMASKx)– These regis-  
ters control the masking and unmasking of each peripheral  
interrupt event. When a bit is set in these registers, that  
peripheral event is unmasked and will be processed by the  
system when asserted. A cleared bit in these registers masks  
the peripheral event, preventing the processor from servic-  
ing the event.  
TWI1 Interrupt  
CAN Receive Interrupt  
CAN Transmit Interrupt  
MXVR Status Interrupt  
MXVR Control Message Interrupt  
MXVR Asynchronous Packet Interrupt  
Programmable Flags Interrupt  
MDMA0 Stream 0 Interrupt  
MDMA0 Stream 1 Interrupt  
MDMA1 Stream 0 Interrupt  
MDMA1 Stream 1 Interrupt  
Software Watchdog Timer  
• SIC Interrupt Status Registers (SIC_ISRx) – As multiple  
peripherals can be mapped to a single event, these registers  
allow the software to determine which peripheral event  
source triggered the interrupt. A set bit indicates the  
peripheral is asserting the interrupt, and a cleared bit indi-  
cates the peripheral is not asserting the event.  
• SIC Interrupt Wakeup Enable Registers (SIC_IWRx) – By  
enabling the corresponding bit in these registers, a periph-  
eral can be configured to wake up the processor, should the  
core be idled when the event is generated. (For more infor-  
mation, see Dynamic Power Management on Page 15.)  
Because multiple interrupt sources can map to a single general  
purpose interrupt, multiple pulse assertions can occur simulta-  
neously, before or during interrupt processing for an interrupt  
Rev. PrE  
|
Page 9 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
event already detected on this interrupt input. The IPEND reg-  
ister contents are monitored by the SIC as the interrupt  
acknowledgement.  
DMA transfers can be controlled by a very flexible descriptor  
based methodology or by a standard register based autobuffer  
mechanism.  
The appropriate ILAT register bit is set when an interrupt rising  
edge is detected (detection requires two core clock cycles). The  
bit is cleared when the respective IPEND register bit is set. The  
IPEND bit indicates that the event has entered into the proces-  
sor pipeline. At this point the CEC will recognize and queue the  
next rising edge event on the corresponding event input. The  
minimum latency from the rising edge transition of the general  
purpose interrupt to the IPEND output asserted is three core  
clock cycles; however, the latency can be much higher, depend-  
ing on the activity within and the state of the processor.  
REAL TIME CLOCK  
The ADSP-BF539/ADSP-BF539F processor Real Time Clock  
(RTC) provides a robust set of digital watch features, including  
current time, stopwatch, and alarm. The RTC is clocked by a  
32.768 KHz crystal external to the ADSP-BF539/ADSP-BF539F  
processor. The RTC peripheral has dedicated power supply pins  
so that it can remain powered up and clocked even when the  
rest of the processor is in a low power state. The RTC provides  
several programmable interrupt options, including interrupt  
per second, minute, hour, or day clock ticks, interrupt on pro-  
grammable stopwatch countdown, or interrupt at a  
DMA CONTROLLERS  
programmed alarm time.  
The ADSP-BF539/ADSP-BF539F processor has multiple, inde-  
pendent DMA controllers that support automated data transfers  
with minimal overhead for the processor core. DMA transfers  
can occur between the ADSP-BF539/ADSP-BF539F processor  
internal memories and any of its DMA capable peripherals.  
Additionally, DMA transfers can be accomplished between any  
of the DMA capable peripherals and external devices connected  
to the external memory interfaces, including the SDRAM con-  
troller and the asynchronous memory controller. DMA capable  
peripherals include the SPORTs, SPI port, UART, and PPI. Each  
individual DMA capable peripheral has at least one dedicated  
DMA channel. The MXVR peripheral has its own dedicated  
DMA controller, which supports its own unique set of operating  
modes.  
The 32.768 KHz input clock frequency is divided down to a  
1 Hz signal by a prescaler. The counter function of the timer  
consists of four counters: a 60 second counter, a 60 minute  
counter, a 24 hour counter, and an 32,768 day counter.  
When enabled, the alarm function generates an interrupt when  
the output of the timer matches the programmed value in the  
alarm control register. There are two alarms: The first alarm is  
for a time of day. The second alarm is for a day and time of that  
day.  
The stopwatch function counts down from a programmed  
value, with one second resolution. When the stopwatch is  
enabled and the counter underflows, an interrupt is generated.  
Like the other peripherals, the RTC can wake up the ADSP-  
BF539/ADSP-BF539F processor from Sleep mode upon genera-  
tion of any RTC wakeup event. Additionally, an RTC wakeup  
event can wake up the ADSP-BF539/ADSP-BF539F processor  
from Deep Sleep mode, and wake up the on-chip internal volt-  
age regulator from a powered down state.  
The ADSP-BF539/ADSP-BF539F processor DMA controllers  
support both 1-dimensional (1D) and 2-dimensional (2D)  
DMA transfers. DMA transfer initialization can be imple-  
mented from registers or from sets of parameters called  
descriptor blocks.  
The 2D DMA capability supports arbitrary row and column  
sizes up to 64K elements by 64K elements, and arbitrary row  
and column step sizes up to 32K elements. Furthermore, the  
column step size can be less than the row step size, allowing  
implementation of interleaved data streams. This feature is  
especially useful in video applications where data can be de-  
interleaved on the fly.  
Connect RTC pins RTXI and RTXO with external components  
as shown in Figure 5.  
RTXI  
RTXO  
R1  
X1  
Examples of DMA types supported by the ADSP-BF539/ADSP-  
BF539F processor DMA controller include:  
C1  
C2  
• A single, linear buffer that stops upon completion  
• A circular, auto-refreshing buffer that interrupts on each  
full or fractionally full buffer  
• 1-D or 2-D DMA using a linked list of descriptors  
SUGGESTED COMPONENTS:  
ECLIPTEK EC38J (THROUGH-HOLE PACKAGE)  
• 2-D DMA using an array of descriptors, specifying only the  
base DMA address within a common page  
EPSON MC405 12 pF LOAD (SURFACE-MOUNT PACKAGE)  
C1 = 22 pF  
C2 = 22 pF  
R1 = 10 M  
In addition to the dedicated peripheral DMA channels, there are  
four memory DMA channels provided for transfers between the  
various memories of the ADSP-BF539/ADSP-BF539F processor  
system. This enables transfers of blocks of data between any of  
the memories—including external SDRAM, ROM, SRAM, and  
flash memory—with minimal processor intervention. Memory  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2  
SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 pF.  
Figure 5. External Components for RTC  
Rev. PrE  
|
Page 10 of 70  
|
May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
• Clocking – Each transmit and receive port can either use an  
external serial clock or generate its own, in frequencies  
ranging from (fSCLK/131,070) Hz to (fSCLK/2) Hz.  
WATCHDOG TIMER  
The ADSP-BF539/ADSP-BF539F processor includes a 32-bit  
timer that can be used to implement a software watchdog func-  
tion. A software watchdog can improve system availability by  
forcing the processor to a known state through generation of a  
hardware reset, non-maskable interrupt (NMI), or general pur-  
pose interrupt, if the timer expires before being reset by  
software. The programmer initializes the count value of the  
timer, enables the appropriate interrupt, then enables the timer.  
Thereafter, the software must reload the counter before it  
counts to zero from the programmed value. This protects the  
system from remaining in an unknown state where software,  
which would normally reset the timer, has stopped running due  
to an external noise condition or software error.  
• Word length – Each SPORT supports serial data words  
from 3 to 32 bits in length, transferred most significant bit  
first or least significant bit first.  
• Framing – Each transmit and receive port can run with or  
without frame sync signals for each data word. Frame sync  
signals can be generated internally or externally, active high  
or low, and with either of two pulsewidths and early or late  
frame sync.  
• Companding in hardware – Each SPORT can perform  
A-law or µ-law companding according to ITU recommen-  
dation G.711. Companding can be selected on the transmit  
and/or receive channel of the SPORT without additional  
latencies.  
If configured to generate a hardware reset, the watchdog timer  
resets both the core and the ADSP-BF539/ADSP-BF539F pro-  
cessor peripherals. After a reset, software can determine if the  
watchdog was the source of the hardware reset by interrogating  
a status bit in the watchdog timer control register.  
• DMA operations with single-cycle overhead – Each SPORT  
can automatically receive and transmit multiple buffers of  
memory data. The processor can link or chain sequences of  
DMA transfers between a SPORT and memory.  
The timer is clocked by the system clock (SCLK), at a maximum  
frequency of fSCLK  
.
• Interrupts – Each transmit and receive port generates an  
interrupt upon completing the transfer of a data word or  
after transferring an entire data buffer or buffers through  
DMA.  
TIMERS  
There are four general purpose programmable timer units in the  
ADSP-BF539/ADSP-BF539F processor. Three timers have an  
external pin that can be configured either as a Pulse Width  
Modulator (PWM) or timer output, as an input to clock the  
timer, or as a mechanism for measuring pulse widths and peri-  
ods of external events. These timers can be synchronized to an  
external clock input to the PF1 pin, an external clock input to  
the PPI_CLK pin, or to the internal SCLK.  
• Multichannel capability – Each SPORT supports 128 chan-  
nels out of a 1024 channel window and is compatible with  
the H.100, H.110, MVIP-90, and HMVIP standards.  
SERIAL PERIPHERAL INTERFACE (SPI) PORTS  
The ADSP-BF539/ADSP-BF539F processors incorporate three  
SPI compatible ports that enable the processor to communicate  
with multiple SPI compatible devices.  
The timer units can be used in conjunction with the UART to  
measure the width of the pulses in the data stream to provide an  
auto-baud detect function for a serial channel.  
The SPI interface uses three pins for transferring data: two data  
pins (master output-slave input, MOSIx, and master input-slave  
output, MISOx) and a clock pin (serial clock, SCKx). An SPI  
chip select input pin (SPIxSS) lets other SPI devices select the  
processor. For SPI0, seven SPI chip select output pins  
(SPI0SEL7–1) let the processor select other SPI devices. The SPI  
select pins are reconfigured GPIO pins. SPI1 and SPI2 have a  
single SPI select for SPI point-to-point communication. Using  
these pins, the SPI ports provide a full-duplex, synchronous  
serial interface, which supports both master/slave modes and  
multimaster environments.  
The timers can generate interrupts to the processor core provid-  
ing periodic events for synchronization, either to the system  
clock or to a count of external signals.  
In addition to the three general purpose programmable timers,  
a fourth timer is also provided. This extra timer is clocked by the  
internal processor clock and is typically used as a system tick  
clock for generation of operating system periodic interrupts.  
SERIAL PORTS (SPORTS)  
The ADSP-BF539/ADSP-BF539F processor incorporates four  
dual-channel synchronous serial ports for serial and multipro-  
cessor communications. The SPORTs support the following  
features:  
The SPI ports’ baud rate and clock phase/polarities are pro-  
grammable, and it has an integrated DMA controller,  
configurable to support transmit or receive data streams. Each  
SPI’s DMA controller can only service unidirectional accesses at  
any given time.  
• I2S capable operation.  
• Bidirectional operation – Each SPORT has two sets of inde-  
pendent transmit and receive pins, enabling eight channels  
of I2S stereo audio.  
The SPI port clock rate is calculated as:  
fSCLK  
SPI Clock Rate = --------------------------------  
2 × SPI_Baud  
• Buffered (8-deep) transmit and receive ports – Each port  
has a data register for transferring data words to and from  
other processor components and shift registers for shifting  
data in and out of the data registers.  
Where the 16-bit SPI_Baud register contains a value of 2 to  
65,535.  
Rev. PrE  
|
Page 11 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
During transfers, the SPI port simultaneously transmits and  
receives by serially shifting data in and out on its two serial data  
lines. The serial clock line synchronizes the shifting and sam-  
pling of data on the two serial data lines.  
The capabilities of the UARTs are further extended with sup-  
port for the Infrared Data Association (IrDA®) Serial Infrared  
Physical Layer Link Specification (SIR) protocol.  
PROGRAMMABLE I/O PINS  
TWO WIRE INTERFACE  
The ADSP-BF539/ADSP-BF539F processor has numerous  
peripherals that may not all be required for every application.  
Many of the pins thus have a secondary function, as general  
purpose I/O pins. There are two types of programmable I/O  
pins on the ADSP-BF539/ADSP-BF539F processor, with  
slightly different functionality: programmable flags and general  
purpose I/O.  
The ADSP-BF539/ADSP-BF539F processor incorporates two  
Two Wire Interface (TWI) modules that are compatible with  
the Philips Inter-IC bus standard. The TWI modules offer the  
capabilities of simultaneous master and slave operation, support  
for 7-bit addressing and multimedia data arbitration. The TWI  
also includes master clock synchronization and support for  
clock low extension.  
Programmable Flags (PFx)  
The TWI interface uses two pins for transferring clock (SCL)  
and data (SDA) and supports the protocol at speeds up to 400  
kbits/sec.  
The ADSP-BF539/ADSP-BF539F processor has 16 bi-direc-  
tional, general purpose Programmable Flag (PF15–0) pins.  
Each programmable flag can be individually controlled by  
manipulation of the flag control, status and interrupt registers:  
The TWI interface pins are compatible with 5V logic levels.  
UART PORT  
• Flag Direction Control Register – Specifies the direction of  
each individual PFx pin as input or output.  
The ADSP-BF539/ADSP-BF539F processor incorporates three  
full-duplex Universal Asynchronous Receiver/Transmitter  
(UART) ports, which are fully compatible with PC standard  
UARTs. The UART ports provide a simplified UART interface  
to other peripherals or hosts, supporting full-duplex, DMA sup-  
ported, asynchronous transfers of serial data. The UART port  
includes support for 5 to 8 data bits, 1 or 2 stop bits, and none,  
even, or odd parity. The UART port supports two modes of  
operation:  
• Flag Control and Status Registers – The ADSP-  
BF539/ADSP-BF539F processor employs a “write one to  
modify” mechanism that allows any combination of indi-  
vidual flags to be modified in a single instruction, without  
affecting the level of any other flags. Four control registers  
are provided. One register is written in order to set flag val-  
ues, one register is written in order to clear flag values, one  
register is written in order to toggle flag values, and one  
register is written in order to specify a flag value. Reading  
the flag status register allows software to interrogate the  
sense of the flags.  
• PIO (Programmed I/O) – The processor sends or receives  
data by writing or reading I/O mapped UART registers.  
The data is double buffered on both transmit and receive.  
• Flag Interrupt Mask Registers – The two Flag Interrupt  
Mask Registers allow each individual PFx pin to function as  
an interrupt to the processor. Similar to the two Flag Con-  
trol Registers that are used to set and clear individual flag  
values, one Flag Interrupt Mask Register sets bits to enable  
interrupt function, and the other Flag Interrupt Mask reg-  
ister clears bits to disable interrupt function. PFx pins  
defined as inputs can be configured to generate hardware  
interrupts, while output PFx pins can be triggered by soft-  
ware interrupts.  
• DMA (Direct Memory Access) – The DMA controller  
transfers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
The UART port's baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
• Supporting bit rates ranging from (fSCLK/ 1,048,576) to  
(fSCLK/16) bits per second.  
• Flag Interrupt Sensitivity Registers – The two Flag Inter-  
rupt Sensitivity Registers specify whether individual PFx  
pins are level- or edge-sensitive and specify—if edge-sensi-  
tive—whether just the rising edge or both the rising and  
falling edges of the signal are significant. One register  
selects the type of sensitivity, and one register selects which  
edges are significant for edge-sensitivity.  
• Supporting data formats from 7 to12 bits per frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
The UART port’s clock rate is calculated as:  
fSCLK  
UART Clock Rate = -----------------------------------------------  
16 × UART_Divisor  
General Purpose I/O  
The ADSP-BF539/ADSP-BF539F has 38 General Purpose I/O  
pins that are multiplexed with other peripherals. They are  
arranged into Port C, D, E as shown in Table 4 on Page 13. The  
GPIO differ from the Programmable Flags in that the GPIO  
pins cannot generate interrupts to the processor.  
Where the 16-bit UART_Divisor comes from the DLH register  
(most significant 8 bits) and DLL register (least significant  
8 bits).  
In conjunction with the general purpose timer functions, auto-  
baud detection is supported.  
Rev. PrE  
|
Page 12 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
The general purpose I/O pins may be individually controlled by  
manipulation of the control and status registers. These pins will  
not cause interrupts to be generated to the processor, but may  
be polled to determine their status.  
up to 16 data pins. The input clock supports parallel data rates  
up to fSCLK/2 MHz, and the synchronization signals can be con-  
figured as either inputs or outputs.  
The PPI supports a variety of general purpose and ITU-R 656  
modes of operation. In general purpose mode, the PPI provides  
half-duplex, bi-directional data transfer with up to 16 bits of  
data. Up to 3 frame synchronization signals are also provided.  
In ITU-R 656 mode, the PPI provides half-duplex, bi-direc-  
tional transfer of 8- or 10-bit video data. Additionally, on-chip  
decode of embedded start-of-line (SOL) and start-of-field (SOF)  
preamble packets is supported.  
• GPIO Direction Control Register – Specifies the direction  
of each individual GPIOx pin as input or output.  
• GPIO Control and Status Registers – The ADSP-  
BF539/ADSP-BF539F processor employs a “write one to  
modify” mechanism that allows any combination of indi-  
vidual GPIO to be modified in a single instruction, without  
affecting the level of any other GPIO. Four control registers  
and a Data register are provided for each GPIO port. One  
register is written in order to set GPIO values, one register  
is written in order to clear GPIO values, one register is  
written in order to toggle GPIO values, and one register is  
written in order to specify a GPIO input or output. Reading  
the GPIO Data allows software to determine the state of the  
input GPIO pins.  
General Purpose Mode Descriptions  
The General Purpose modes of the PPI are intended to suit a  
wide variety of data capture and transmission applications.  
Three distinct submodes are supported:  
• Input Mode – Frame Syncs and data are inputs into the  
PPI.  
Note that the GP pin is used to specify the status of the GPIO  
ports C9–C4 at power up. If GP is tied high, then ports C9–C4  
are configured as GPIO pins after reset. The ports cannot be  
reconfigured through software and special care must be taken  
with the MLF pin. If the GP pin is tied low, then the ports are  
configured as MXVR pins after reset, but may be reconfigured  
as GPIO pins through software.  
• Frame Capture Mode – Frame Syncs are outputs from the  
PPI, but data are inputs.  
• Output Mode – Frame Syncs and data are outputs from the  
PPI.  
Input Mode  
This mode is intended for ADC applications, as well as video  
communication with hardware signaling. In its simplest form,  
PPI_FS1 is an external frame sync input that controls when to  
read data. The PPI_DELAY MMR allows for a delay (in  
PPI_CLK cycles) between reception of this frame sync and the  
initiation of data reads. The number of input data samples is  
user programmable and defined by the contents of the  
PPI_Count register. Data widths of 8, 10, 11, 12, 13, 14, 15 and  
16-bits are supported, as programmed by the PPI_CONTROL  
register.  
Table 4. Programmable Flag / GPIO Ports  
Peripheral  
Alternate Programmable  
Flag / GPIO Port Function  
PPI  
PF15–0  
SPORT0  
SPORT1  
SPORT2  
SPORT3  
SPI0  
GPIO Port E7–0  
GPIO Port E15–8  
Frame Capture Mode  
This mode allows the video source(s) to act as a slave (e.g., for  
frame capture). The ADSP-BF539/ADSP-BF539F processor  
controls when to read from the video source(s). PPI_FS1 is an  
HSYNC output and PPI_FS2 is a VSYNC output.  
SPI1  
GPIO Port D4–0  
GPIO Port D9–5  
SPI2  
UART0  
UART1  
UART2  
CAN  
Output Mode  
GPIO Port D11–10  
GPIO Port D13–12  
GPIO Port C1–0  
GPIO Port C9–4  
This mode is used for transmitting video or other data with up  
to three output frame syncs. Typically, a single frame sync is  
appropriate for data converter applications, whereas two or  
three frame syncs could be used for sending video with hard-  
ware signaling.  
MXVR  
TWI0  
TWI1  
ITU-R 656 Mode Descriptions  
The ITU-R 656 modes of the PPI are intended to suit a wide  
variety of video capture, processing, and transmission applica-  
tions. Three distinct submodes are supported:  
PARALLEL PERIPHERAL INTERFACE  
The ADSP-BF539/ADSP-BF539F processor provides a Parallel  
Peripheral Interface (PPI) that can connect directly to parallel  
A/D and D/A converters, video encoders and decoders, and  
other general purpose peripherals. The PPI consists of a dedi-  
cated input clock pin, up to 3 frame synchronization pins, and  
• Active Video Only Mode  
• Vertical Blanking Only Mode  
• Entire Field Mode  
Rev. PrE  
|
Page 13 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
The electrical characteristics of each network connection are  
very stringent, therefore the CAN interface is typically divided  
into 2 parts: a controller and a transceiver. This allows a single  
controller to support different drivers and CAN networks. The  
ADSP-BF539/ADSP-BF539F CAN module represents the con-  
troller part of the interface. This module's network I/O is a  
single transmit output and a single receive input, which connect  
to a line transceiver.  
Active Video Only Mode  
This mode is used when only the active video portion of a field  
is of interest and not any of the blanking intervals. The PPI will  
not read in any data between the End of Active Video (EAV)  
and Start of Active Video (SAV) preamble symbols, or any data  
present during the vertical blanking intervals. In this mode, the  
control byte sequences are not stored to memory; they are fil-  
tered by the PPI. After synchronizing to the start of Field 1, the  
PPI will ignore incoming samples until it sees an SAV code. The  
user specifies the number of active video lines per frame (in  
PPI_Count register).  
The CAN clock is derived from the processor System Clock  
(SCLK) through a programmable divider and therefore does not  
require an additional crystal.  
MEDIA TRANSCEIVER MAC LAYER (MXVR)  
Vertical Blanking Interval Mode  
In this mode, the PPI only transfers vertical blanking interval  
(VBI) data.  
The ADSP-BF539/ADSP-BF539F processor provides a Media  
Transceiver (MXVR) MAC layer, allowing the processor to be  
connected directly to a MOST® network through just an FOT or  
Electrical PHY.  
Entire Field Mode  
In this mode, the entire incoming bit stream is read in through  
the PPI. This includes active video, control preamble sequences,  
and ancillary data that may be embedded in horizontal and ver-  
tical blanking intervals. Data transfer starts immediately after  
synchronization to Field 1. The MXVR supports synchronous  
data, asynchronous packets and control messages. Data is trans-  
ferred to or from the synchronous channels through eight DMA  
engines that work autonomously from the processor core.  
The MXVR is fully compatible with the industry standard stan-  
dalone MOST controller devices, supporting 22.579 Mbps or  
24.576 Mbps data transfer. It offers faster lock times, greater jit-  
ter immunity, a sophisticated DMA scheme for data transfers,  
and the high-speed internal interface to the core and L1 mem-  
ory allows the full bandwidth of the network to be utilized. The  
MXVR can operate as either the network master or as a network  
slave.  
The MXVR supports synchronous data, asynchronous packets,  
and control messages using dedicated DMA engines which  
operate autonomously from the processor core moving data to  
and from L1 memory. Synchronous data is transferred to or  
from the synchronous data channels through eight programma-  
ble DMA engines. The synchronous data DMA engines can  
operate in various modes including modes which trigger DMA  
operation when data patterns are detected in the receive data  
stream. Furthermore two DMA engines support asynchronous  
traffic and a further two support control message traffic.  
CONTROLLER AREA NETWORK (CAN) INTERFACE  
The ADSP-BF539/ADSP-BF539F processor provides a CAN  
controller that is a communication controller implementing the  
Controller Area Network (CAN) V2.0B protocol. This protocol  
is an asynchronous communications protocol used in both  
industrial and automotive control systems. CAN is well suited  
for control applications due to its capability to communicate  
reliably over a network since the protocol incorporates CRC  
checking message error tracking, and fault node confinement.  
The CAN controller is based on a 32 entry mailbox RAM and  
supports both the standard and extended identifier (ID) mes-  
sage formats specified in the CAN protocol specification,  
revision 2.0, part B.  
Interrupts are generated when a user defined amount of syn-  
chronous data has been sent or received by the processor or  
when asynchronous packets or control messages have been sent  
or received.  
Each mailbox consists of eight 16-bit data words. The data is  
divided into fields, which includes a message identifier, a time  
stamp, a byte count, up to 8 bytes of data, and several control  
bits. Each node monitors the messages being passed on the net-  
work. If the identifier in the transmitted message matches an  
identifier in one of it's mailboxes, then the module knows that  
the message was meant for it, passes the data into it's appropri-  
ate mailbox, and signals the processor of message arrival with an  
interrupt.  
The MXVR peripheral can wake up the ADSP-BF539/ADSP-  
BF539F processor from Sleep mode when a wakeup preamble is  
received over the network or based on any other MXVR inter-  
rupt event. Additionally, detection of network activity by the  
MXVR can be used to wake up the ADSP-BF539/ADSP-BF539F  
processor from Deep Sleep or Hibernate mode, and wake up the  
on-chip internal voltage regulator from a powered-down state.  
These features allow the ADSP-BF539/ADSP-BF539F to operate  
in a low-power state when there is no network activity or when  
data is not currently being received or transmitted by the  
MXVR.  
The CAN Controller can wake up the ADSP-BF539/ADSP-  
BF539F processor from Sleep mode upon generation of a  
wakeup event, such that the processor can be maintained in a  
low power mode during idle conditions. Additionally, a CAN  
wakeup event can wake up the ADSP-BF539/ADSP-BF539F  
processor from Deep Sleep or Hibernate mode, and wake up the  
on-chip internal voltage regulator from a powered-down state.  
The MXVR clock is provided through a dedicated external crys-  
tal or crystal oscillator. For 44.1 KHz frame syncs, a 45.1584  
MHz crystal or oscillator should be used; or for 48 KHz frame  
syncs, a 49.152 MHz crystal or oscillator should be used.  
Rev. PrE  
|
Page 14 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Deep Sleep Operating Mode—Maximum Dynamic Power  
Savings  
DYNAMIC POWER MANAGEMENT  
The ADSP-BF539/ADSP-BF539F processor provides five oper-  
ating modes, each with a different performance/power profile.  
In addition, Dynamic Power Management provides the control  
functions to dynamically alter the processor core supply voltage,  
further reducing power dissipation. Control of clocking to each  
of the ADSP-BF539/ADSP-BF539F processor peripherals also  
reduces power consumption. See Table 5 for a summary of the  
power settings for each mode.  
The Deep Sleep mode maximizes dynamic power savings by  
disabling the clocks to the processor core (CCLK) and to all syn-  
chronous peripherals (SCLK). Asynchronous peripherals such  
as the RTC may still be running, but will not be able to access  
internal resources or external memory. This powered down  
mode can only be exited by assertion of the reset interrupt  
(RESET) or by an asynchronous interrupt generated by the  
RTC. When in Deep Sleep mode, an RTC asynchronous inter-  
rupt causes the processor to transition to the Active mode.  
Assertion of RESET while in Deep Sleep mode causes the pro-  
cessor to transition to the Full On mode.  
Full-On Operating Mode—Maximum Performance  
In the Full-On mode, the PLL is enabled and is not bypassed,  
providing capability for maximum operational frequency. This  
is the powerup default execution state in which maximum per-  
formance can be achieved. The processor core and all enabled  
peripherals run at full speed.  
Hibernate Operating Mode—Maximum Static Power  
Savings  
The Hibernate mode maximizes static power savings by dis-  
abling the voltage and clocks to the processor core (CCLK) and  
to all the synchronous peripherals (SCLK). The internal voltage  
regulator for the processor can be shut off by writing b#00 to the  
FREQ bits of the VR_CTL register. This disables both CCLK  
and SCLK. Furthermore, it sets the internal power supply volt-  
age (VDDINT) to 0 V to provide the lowest static power  
dissipation. Any critical information stored internally (memory  
contents, register contents, etc.) must be written to a non-vola-  
tile storage device prior to removing power if the processor state  
is to be preserved. Since VDDEXT is still supplied in this mode, all  
of the external pins three-state, unless otherwise specified. This  
allows other devices that may be connected to the processor to  
have power still applied without drawing unwanted current.  
The internal supply regulator can be woken up either by a Real  
Time Clock wakeup, by CAN bus traffic, by asserting the RESET  
pin or by MOST bus traffic causing the MRXON pin to assert.  
Active Operating Mode—Moderate Power Savings  
In the Active mode, the PLL is enabled but bypassed. Because  
the PLL is bypassed, the processor’s core clock (CCLK) and sys-  
tem clock (SCLK) run at the input clock (CLKIN) frequency. In  
this mode, the CLKIN to CCLK multiplier ratio can be changed,  
although the changes are not realized until the Full-On mode is  
entered. DMA access is available to appropriately configured L1  
memories.  
In the Active mode, it is possible to disable the PLL through the  
PLL Control register (PLL_CTL). If disabled, the PLL must be  
re-enabled before transitioning to the Full-On or Sleep modes.  
Table 5. Power Settings  
Power Savings  
Full On  
Active  
Sleep  
Enabled  
No  
Enabled Enabled On  
Enabled Enabled On  
Disabled Enabled On  
Disabled Disabled On  
Disabled Disabled Off  
As shown in Table 6, the ADSP-BF539/ADSP-BF539F proces-  
sor supports three different power domains. The use of multiple  
power domains maximizes flexibility, while maintaining com-  
pliance with industry standards and conventions. By isolating  
the internal logic of the ADSP-BF539/ADSP-BF539F processor  
into its own power domain, separate from the RTC and other  
I/O, the processor can take advantage of Dynamic Power Man-  
agement, without affecting the RTC or other I/O devices. There  
are no sequencing requirements for the various power domains.  
Enabled/ Disabled Yes  
Enabled  
Deep Sleep Disabled  
Hibernate Disabled  
Sleep Operating Mode—High Dynamic Power Savings  
The Sleep mode reduces dynamic power dissipation by dis-  
abling the clock to the processor core (CCLK). The PLL and  
system clock (SCLK), however, continue to operate in this  
mode. Typically an external event or RTC activity will wake up  
the processor. When in the Sleep mode, assertion of wakeup will  
cause the processor to sense the value of the BYPASS bit in the  
PLL Control register (PLL_CTL). If BYPASS is disabled, the  
processor will transition to the Full On mode. If BYPASS is  
enabled, the processor will transition to the Active mode. When  
in the Sleep mode, system DMA access to L1 memory is not  
supported.  
Table 6. Power Domains  
Power Domain  
VDD Range  
VDDRTC  
MXEVDD  
MPIVDD  
VDDINT  
RTC crystal I/O and logic  
MXVR crystal I/O  
MXVR PLL analog and logic  
All internal logic except RTC and MXVR PLL  
All I/O except RTC and MXVR crystals  
VDDEXT  
The power dissipated by a processor is largely a function of the  
clock frequency of the processor and the square of the operating  
voltage. For example, reducing the clock frequency by 25%  
Rev. PrE  
|
Page 15 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
results in a 25% reduction in power dissipation, while reducing  
the voltage by 25% reduces power dissipation by more than  
40%. Further, these power savings are additive, in that if the  
clock frequency and supply voltage are both reduced, the power  
savings can be dramatic.  
I/O  
POWER  
PINS  
100 µF  
2.7 V - 3.6 V  
INPUT VOLTAGE  
RANGE  
10 µH  
0.1 µF  
ZHCS1000  
INTERNAL  
POWER  
PINS  
The Dynamic Power Management feature of the ADSP-  
BF539/ADSP-BF539F processor allows both the processor’s  
input voltage (VDDINT) and clock frequency (fCCLK) to be dynam-  
ically controlled.  
FDS9431A  
100 µF  
1 µF  
The savings in power dissipation can be modeled using the  
Power Savings Factor and % Power Savings calculations.  
VROUT1-0  
EXTERNAL COMPONENTS  
The Power Savings Factor is calculated as:  
NOTE: VROUT1-0 SHOULD BE TIED TOGETHER EXTERNALLY  
AND DESIGNER SHOULD MINIMIZE TRACE LENGTH TO FDS9431A.  
Power Savings Factor  
2
Figure 6. Voltage Regulator Circuit  
fCCLKRED  
---------------------  
fCCLKNOM  
VDDINTRED  
--------------------------  
VDDINTNOM  
TRED  
------------  
TNOM  
=
×
×
If an external clock is used, it should be a TTL compatible signal  
and must not be halted, changed, or operated below the speci-  
fied frequency during normal operation. This signal is  
connected to the processor’s CLKIN pin. When an external  
clock is used, the XTAL pin must be left unconnected.  
where the variables in the equations are:  
fCCLKNOM is the nominal core clock frequency  
• fCCLKRED is the reduced core clock frequency  
• VDDINTNOM is the nominal internal supply voltage  
• VDDINTRED is the reduced internal supply voltage  
• TNOM is the duration running at fCCLKNOM  
Alternatively, because the ADSP-BF539/ADSP-BF539F proces-  
sor includes an on-chip oscillator circuit, an external crystal  
may be used. The crystal should be connected across the CLKIN  
and XTAL pins, with two capacitors connected as shown in  
Figure 7. Capacitor values are dependent on crystal type and  
should be specified by the crystal manufacturer. A parallel-reso-  
nant, fundamental frequency, microprocessor-grade crystal  
should be used.  
• TRED is the duration running at fCCLKRED  
The Power Savings Factor is calculated as:  
% Power Savings = (1 Power Savings Factor) × 100%  
VOLTAGE REGULATION  
The Blackfin processor provides an on-chip voltage regulator  
that can generate processor core voltage levels  
XTAL  
CLKOUT  
CLKIN  
1.0 V(–5%/+10%) to 1.2V(–5% / +10%) from an external  
2.7 V to 3.6 V supply. Figure 6 shows the typical external com-  
ponents required to complete the power management system.†  
The regulator controls the internal logic voltage levels and is  
programmable with the Voltage Regulator Control Register  
(VR_CTL) in increments of 50 mV. To reduce standby power  
consumption, the internal voltage regulator can be programmed  
to remove power to the processor core while I/O power  
(VDDRTC, MXEVDD, VDDEXT) is still supplied. While in  
Hibernate mode, I/O power is still being applied, eliminating  
the need for external buffers. The voltage regulator can be acti-  
vated from this power-down state either through an RTC  
wakeup, a CAN wakeup, an MXVR wakeup, or by asserting  
RESET, which will then initiate a boot sequence. The regulator  
can also be disabled and bypassed at the user’s discretion.  
BLACKFIN  
PROCESSOR  
Figure 7. External Crystal Connections  
As shown in Figure 8 on Page 17, the core clock (CCLK) and  
system peripheral clock (SCLK) are derived from the input  
clock (CLKIN) signal. An on-chip PLL is capable of multiplying  
the CLKIN signal by a user programmable 0.5× to 64× multipli-  
cation factor (bounded by specified minimum and maximum  
VCO frequencies). The default multiplier is 10×, but it can be  
modified by a software instruction sequence. On-the-fly fre-  
quency changes can be effected by simply writing to the  
PLL_DIV register.  
CLOCK SIGNALS  
All on-chip peripherals are clocked by the system clock (SCLK).  
The system clock frequency is programmable by means of the  
SSEL3–0 bits of the PLL_DIV register. The values programmed  
The ADSP-BF539/ADSP-BF539F processor can be clocked by  
an external crystal, a sine wave input, or a buffered, shaped  
clock derived from an external clock oscillator.  
See EE-228: Switching Regulator Design Considerations for ADSP-BF533  
Blackfin Processors.  
Rev. PrE  
|
Page 16 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
BOOTING MODES  
“FINE” ADJUSTMENT  
REQUIRES PLL SEQUENCING  
COARSE” ADJUSTMENT  
ON-THE-FLY  
The ADSP-BF539/ADSP-BF539F processor has three mecha-  
nisms (listed in Table 9) for automatically loading internal L1  
instruction memory after a reset. A fourth mode is provided to  
execute from external memory, bypassing the boot sequence.  
÷ 1, 2, 4, 8  
CCLK  
SCLK  
PLL  
0.5×-64×  
CLKIN  
VCO  
Table 9. Booting Modes  
÷ 1:15  
BMODE1–0 Description  
00  
Execute from 16-bit external memory  
(bypass boot ROM)  
SCLK CCLK  
SCLK 133MHz  
01  
Boot from 8-bit or 16-bit flash (ADSP-BF539 only) or  
Boot from onboard flash (ADSP-BF539F only)  
Figure 8. Frequency Modification Methods  
10  
11  
Boot from SPI serial master  
into the SSEL fields define a divide ratio between the PLL output  
(VCO) and the system clock. SCLK divider values are 1 through  
15. Table 7 illustrates typical system clock ratios:  
Boot from SPI serial slave EEPROM /flash  
(8-,16-, or 24-bit address range, or Atmel  
AT45DB041, AT45DB081, or AT45DB161serial flash)  
Table 7. Example System Clock Ratios  
The BMODE pins of the Reset Configuration Register, sampled  
during power-on resets and software initiated resets, implement  
the following modes:  
Signal Name Divider Ratio Example Frequency Ratios (MHz)  
SSEL3–0  
VCO/SCLK  
VCO  
100  
300  
500  
SCLK  
100  
50  
0001  
0110  
1010  
1:1  
• Execute from 16-bit external memory – Execution starts  
from address 0x2000 0000 with 16-bit packing. The boot  
ROM is bypassed in this mode. All configuration settings  
are set for the slowest device possible (3-cycle hold time;  
15-cycle R/W access times; 4-cycle setup).  
6:1  
10:1  
50  
The maximum frequency of the system clock is fSCLK. Note that  
the divisor ratio must be chosen to limit the system clock fre-  
quency to its maximum of fSCLK. The SSEL value can be changed  
dynamically without any PLL lock latencies by writing the  
appropriate values to the PLL divisor register (PLL_DIV).  
• Boot from 8-bit external flash memory – The 8-bit flash  
boot routine located in boot ROM memory space is set up  
using asynchronous memory bank 0. If FCE is connected  
to AMS0, then the on-chip flash is booted from the ADSP-  
BF539F. All configuration settings are set for the slowest  
device possible (3-cycle hold time; 15-cycle R/W access  
times; 4-cycle setup).  
Note that when the SSEL value is changed, it will affect all the  
peripherals that derive their clock signals from the SCLK signal.  
The core clock (CCLK) frequency can also be dynamically  
changed by means of the CSEL1–0 bits of the PLL_DIV register.  
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in  
Table 8. This programmable core clock capability is useful for  
fast core frequency modifications.  
• Boot from SPI serial EEPROM/flash (8-, 16-, or 24-bit  
addressable, or Atmel AT45DB041, AT45DB081, or  
AT45DB161) – The SPI uses the PF2 output pin to select a  
single SPI EEPROM/flash device, submits a read command  
and successive address bytes (0x00) until a valid 8-, 16-, or  
24-bit, or Atmel addressable device is detected, and begins  
clocking data into the beginning of the L1 instruction  
memory.  
Table 8. Core Clock Ratios  
Signal Name Divider Ratio Example Frequency Ratios  
CSEL1–0  
VCO/CCLK  
• Boot from SPI host device – The Blackfin processor oper-  
ates in SPI slave mode and is configured to receive the bytes  
of the .LDR file from an SPI host (master) agent. To hold  
off the host device from transmitting while the boot ROM  
is busy, the Blackfin processor asserts a GPIO pin, called  
host wait (HWAIT), to signal the host device not to send  
any more bytes until the flag is deasserted. The flag is cho-  
sen by the user and this information is transferred to the  
Blackfin processor via bits 10:5 of the FLAG header.  
VCO  
300  
300  
500  
200  
CCLK  
300  
150  
125  
25  
00  
01  
10  
11  
1:1  
2:1  
4:1  
8:1  
For each of the boot modes, a 10-byte header is first read from  
an external memory device. The header specifies the number of  
bytes to be transferred and the memory destination address.  
Rev. PrE  
|
Page 17 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Multiple memory blocks may be loaded by any boot sequence.  
Once all blocks are loaded, program execution commences from  
the start of L1 instruction SRAM.  
VisualDSP++®development environment. The same emulator  
hardware that supports other Blackfin processors also fully  
emulates the ADSP-BF539/ADSP-BF539F processor.  
In addition, bit 4 of the Reset Configuration Register can be set  
by application code to bypass the normal boot sequence during  
a software reset. For this case, the processor jumps directly to  
the beginning of L1 instruction memory.  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy to use assembler (which is based on an alge-  
braic syntax), an archiver (librarian/library builder), a linker, a  
loader, a cycle-accurate instruction-level simulator, a C/C++  
compiler, and a C/C++ runtime library that includes DSP and  
mathematical functions. A key point for these tools is C/C++  
code efficiency. The compiler has been developed for efficient  
translation of C/C++ code to processor assembly. The processor  
has architectural features that improve the efficiency of com-  
piled C/C++ code.  
To augment the boot modes, a secondary software loader is pro-  
vided that adds additional booting mechanisms. This secondary  
loader provides the capability to boot from 16-bit flash memory,  
fast flash, variable baud rate, and other sources. In all Boot  
modes except Bypass, program execution starts from on-chip L1  
memory address 0xFFA0 0000.  
INSTRUCTION SET DESCRIPTION  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity. Sta-  
tistical profiling enables the programmer to non intrusively poll  
the processor as it is running the program. This feature, unique  
to VisualDSP++, enables the software developer to passively  
gather important code execution metrics without interrupting  
the real time characteristics of the program. Essentially, the  
developer can identify bottlenecks in software quickly and effi-  
ciently. By using the profiler, the programmer can focus on  
those areas in the program that impact performance and take  
corrective action.  
The Blackfin processor family assembly language instruction set  
employs an algebraic syntax designed for ease of coding and  
readability. The instructions have been specifically tuned to pro-  
vide a flexible, densely encoded instruction set that compiles to  
a very small final memory size. The instruction set also provides  
fully featured multifunction instructions that allow the pro-  
grammer to use many of the processor core resources in a single  
instruction. Coupled with many features more often seen on  
microcontrollers, this instruction set is very efficient when com-  
piling C and C++ source code. In addition, the architecture  
supports both user (algorithm/application code) and supervisor  
(O/S kernel, device drivers, debuggers, ISRs) modes of opera-  
tion, allowing multiple levels of access to core processor  
resources.  
The assembly language, which takes advantage of the proces-  
sor’s unique architecture, offers the following advantages:  
Debugging both C/C++ and assembly programs with the  
VisualDSP++ debugger, programmers can:  
• Seamlessly integrated DSP/CPU features are optimized for  
both 8-bit and 16-bit operations.  
• View mixed C/C++ and assembly code (interleaved source  
and object information).  
• A multi-issue load/store modified Harvard architecture,  
which supports two 16-bit MAC or four 8-bit ALU plus  
two load/store plus two pointer updates per cycle.  
• Insert breakpoints.  
• Set conditional breakpoints on registers, memory,  
and stacks.  
• All registers, I/O, and memory are mapped into a unified  
4G byte memory space, providing a simplified program-  
ming model.  
• Trace instruction execution.  
• Perform linear or statistical profiling of program execution.  
• Fill, dump, and graphically plot the contents of memory.  
• Perform source level debugging.  
• Microcontroller features, such as arbitrary bit and bit-field  
manipulation, insertion, and extraction; integer operations  
on 8-, 16-, and 32-bit data types; and separate user and  
supervisor stack pointers.  
• Create custom debugger windows.  
• Code density enhancements, which include intermixing of  
16- and 32-bit instructions (no mode switching, no code  
segregation). Frequently used instructions are encoded in  
16 bits.  
The VisualDSP++ IDDE lets programmers define and manage  
software development. Its dialog boxes and property pages let  
programmers configure and manage all of the Blackfin develop-  
ment tools, including the color syntax highlighting in the  
VisualDSP++ editor. This capability permits programmers to:  
DEVELOPMENT TOOLS  
• Control how the development tools process inputs and  
generate outputs.  
The ADSP-BF539/ADSP-BF539F processor is supported with a  
complete set of CROSSCORE®software and hardware develop-  
ment tools, including Analog Devices emulators and  
• Maintain a one-to-one correspondence with the tool’s  
command line switches.  
CROSSCORE is a registered trademark of Analog Devices, Inc.  
VisualDSP++ is a registered trademark of Analog Devices, Inc.  
Rev. PrE  
|
Page 18 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
The VisualDSP++ Kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning, when  
developing new application code. The VDK features include  
Threads, Critical and Unscheduled regions, Semaphores,  
Events, and Device flags. The VDK also supports Priority-based,  
Preemptive, Cooperative, and Time-Sliced scheduling  
uses the TAP to access the internal features of the processor,  
allowing the developer to load code, set breakpoints, observe  
variables, observe memory, and examine registers. The proces-  
sor must be halted to send data and commands, but once an  
operation has been completed by the emulator, the processor  
system is set running at full speed with no impact on system  
timing.  
To use these emulators, the target board must include a header  
that connects the processor’s JTAG port to the emulator.  
approaches. In addition, the VDK was designed to be scalable. If  
the application does not use a specific feature, the support code  
for that feature is excluded from the target system.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, see EE-68: Analog Devices JTAG Emulation Technical Ref-  
erence on the Analog Devices web site (www.analog.com)—use  
site search on “EE-68.” This document is updated regularly to  
keep pace with improvements to emulator support.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
EXAMPLE CONNECTIONS AND LAYOUT  
CONSIDERATIONS  
Figure 9 shows an example circuit connection of the ADSP-  
BF539/ADSP-BF539F connecting to a MOST network. This  
diagram is intended as an example and exact connections and  
recommended circuit values should be obtained from Analog  
Devices.  
VCSE is Analog Devices technology for creating, using, and  
reusing software components (independent modules of sub-  
stantial functionality) to quickly and reliably assemble software  
applications. Download components from the Web and drop  
them into the application. Publish component archives from  
within VisualDSP++. VCSE supports component implementa-  
tion in C/C++ or assembly language.  
VOLTAGE REGULATOR LAYOUT GUIDELINES  
Regulator external component placement, board routing, and  
bypass capacitors all have a significant effect on noise injected  
into the other analog circuits on-chip. The VROUT1-0 traces  
and voltage regulator external components should be consid-  
ered as noise sources when doing board layout and should not  
be routed or placed near sensitive circuits or components on the  
board. All internal and I/O power supplies should be well  
bypassed with bypass capacitors placed as close to the ADSP-  
BF539/ADSP-BF539F as possible.  
Use the Expert Linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color coded graphical form, easily move code and data  
to different areas of the processor or external memory with the  
drag of the mouse, examine run time stack and heap usage. The  
Expert Linker is fully compatible with existing Linker Definition  
File (LDF), allowing the developer to move between the graphi-  
cal and textual environments.  
Analog Devices emulators use the IEEE 1149.1 JTAG Test  
Access Port of the ADSP-BF539/ADSP-BF539F processor to  
monitor and control the target board processor during emula-  
tion. The emulator provides full speed emulation, allowing  
inspection and modification of memory, registers, and proces-  
sor stacks. Non intrusive in-circuit emulation is assured by the  
use of the processor’s JTAG interface—the emulator does not  
affect target system loading or timing.  
For further details on the on-chip voltage regulator and related  
board design guidelines, see the EE-228: Switching Regulator  
Design Considerations for ADSP-BF533 Blackfin Processors  
applications note on the Analog Devices web site (www.ana-  
log.com)—use site search on “EE-228.”.  
MXVR BOARD LAYOUT GUIDELINES  
MLF pin  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the Blackfin processor family. Hard-  
ware tools include Blackfin processor PC plug-in cards. Third  
party software tools include DSP libraries, real time operating  
systems, and block diagram design tools.  
• Capacitors:  
C1: 0.1µF (PPS type, 2% tolerance recommended)  
C2: 0.01µF (PPS type, 2% tolerance recommended)  
• Resistor:  
R1: 220 ohm (1% tolerance)  
DESIGNING AN EMULATOR COMPATIBLE  
PROCESSOR BOARD  
• The RC network connected to the MLF pin should be  
located physically close to the MLF pin on the board.  
The Analog Devices family of emulators are tools that every sys-  
tem developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG  
Test Access Port (TAP) on each JTAG processor. The emulator  
• The RC network should be wired up and connected to the  
MLF pin using wide traces.  
• The capacitors in the RC network should be grounded to  
MXEGND.  
Rev. PrE  
|
Page 19 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
5 V  
5 V  
MOST FOT  
VDDINT (1.2 V)  
Rx_Vdd  
ADSP-BF539F  
FB  
Tx_Vdd  
MTXON  
Power Gating Circuit  
27 6  
PIVDD  
MOST  
Network  
TX_Data  
RX_Data  
Status  
MTX  
0.1 MF  
0.01 MF  
MRX  
MXEGND  
MRXON  
49.152 MHz Oscillator  
CLKO  
MXI  
MXO  
MLF  
RFS0  
MFS  
33 6  
33 6  
33 6  
L/RCLK  
MCLK  
Audio  
DAC  
MMCLK  
MBCLK  
R1  
220 6  
Audio  
C2  
Channels  
BCLK  
0.01 MF  
TSCLK0  
RSCLK0  
C1  
0.1 MF  
MXEGND  
DT0PRI  
SDATA  
Figure 9. Example connections of ADSP-BF539/ADSP-BF539F to MOST Network  
• The RC network should be shielded using MXEGND  
traces.  
MXEGND - MXVR Crystal Oscillator and MXVR PLL Ground  
• Should be routed with wide traces or as ground plane.  
• Avoid routing other switching signals near the RC network  
to avoid crosstalk.  
• Should be tied together to other board grounds at only one  
point on the board.  
MXI driven with external Clock Oscillator IC (recommended)  
• Avoid routing other switching signals near to MXEGND to  
avoid crosstalk.  
• MXI should be driven with the clock output of a  
49.152MHz or 45.1584MHz clock oscillator IC.  
MXEVDD - MXVR Crystal Oscillator 3.3V Power  
• Should be routed with wide traces or as power plane.  
• MXO should be left unconnected.  
• Avoid routing other switching signals near the oscillator  
and clock output trace to avoid crosstalk. When not possi-  
ble, shield traces with ground.  
• Locally bypass MXEVDD with 0.1µF and 0.01µF decou-  
pling capacitors to MXEGND.  
• Avoid routing other switching signals near to MXEVDD to  
avoid crosstalk.  
MXI/MXO with external Crystal  
• The crystal must be a 49.152MHz or 45.1584MHz funda-  
mental mode crystal.  
MPIVDD - MXVR PLL 1.2V Power  
• Should be routed with wide traces or as power plane.  
• The crystal and load capacitors should be placed physically  
close to the MXI and MXO pins on the board.  
• A ferrite bead should be placed between the 1.2V VDDINT  
power plane and the MPIVDD pin for noise isolation.  
• The load capacitors should be grounded to MXEGND.  
• Locally bypass MPIVDD with 0.1µF and 0.01µF decou-  
pling capacitors to MXEGND.  
• The crystal and load capacitors should be wired up using  
wide traces.  
• Avoid routing other switching signals near to MPIVDD to  
avoid crosstalk.  
• Board trace capacitance on each lead should not be more  
than 3pF.  
Fiber Optic Transceiver (FOT) Connections  
• Trace capacitance plus load capacitance should equal the  
load capacitance specification for the crystal.  
• The traces between ADSP-BF539/ADSP-BF539F and the  
FOT should be kept as short as possible.  
• Avoid routing other switching signals near the crystal and  
components to avoid crosstalk. When not possible, shield  
traces and components with ground.  
• The receive data trace connecting the FOT Receive Data  
output pin to the ADSP-BF539/ADSP-BF539F MRX input  
pin should not have a series termination resistor. The edge  
Rev. PrE  
|
Page 20 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
rate of the FOT Receive Data signal driven by the FOT is  
typically very slow and further degradation of the edge rate  
is not desirable.  
• The transmit data trace connecting the ADSP-  
BF539/ADSP-BF539F MTX output pin to the FOT Trans-  
mit Data input pin should have a 27 Ohm series  
termination resistor placed close to the ADSP-  
BF539/ADSP-BF539F MTX pin.  
• The receive data trace and the transmit data trace between  
the ADSP-BF539/ADSP-BF539F and the FOT should not  
be routed close to each other in parallel over long distances  
to avoid crosstalk.  
Rev. PrE  
|
Page 21 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
PIN DESCRIPTIONS  
ADSP-BF539/ADSP-BF539F processor pin definitions are listed  
in Table 10. In order to maintain maximum functionality and  
reduce package size and pin count, some pins have dual, multi-  
plexed functionality. In cases where pin functionality is  
reconfigurable, the default state is shown in plain text, while  
alternate functionality is shown in italics.  
Table 10. Pin Descriptions  
Driver  
Pin Name  
Type Function  
Type1 Pull-Up/Down Requirement  
Memory Interface  
ADDR19–1  
O
Address Bus for Async/Sync Access  
A
DATA15–0  
I/O  
O
I
Data Bus for Async/Sync Access  
A
Byte Enables/Data Masks for Async/Sync Access A  
Bus Request  
ABE1–0/SDQM1–0  
BR  
Pull High When Not Used  
Pull LOW when not used.  
BG  
O
O
Bus Grant  
A
A
BGH  
Bus Grant Hang  
Asynchronous Memory Control  
AMS3–0  
O
I
Bank Select  
A
ARDY  
Hardware Ready Control  
Output Enable  
Read Enable  
AOE  
O
O
O
A
A
A
ARE  
AWE  
Write Enable  
Flash Control  
FCE  
I
I
Flash Enable (ADSP-BF539F only)  
Flash Reset (ADSP-BF539F only)  
Leave unconnected for ADSP-BF539  
Leave unconnected for ADSP-BF539  
FRESET  
Synchronous Memory Control  
A
A
A
A
A
B
SRAS  
O
O
O
O
O
O
O
Row Address Strobe  
Column Address Strobe  
Write Enable  
SCAS  
SWE  
SCKE  
Clock Enable  
CLKOUT  
Clock Output  
A10 Pin  
SA10  
A
A
SMS  
Bank Select  
Timers  
TMR0  
I/O  
I/O  
I/O  
Timer 0  
C
C
C
TMR1/PPI_FS1  
Timer 1/PPI Frame Sync1  
Timer 2/PPI Frame Sync2  
TMR2/PPI_FS2  
Parallel Peripheral Interface Port/GPIO  
PF0/SPI0SS  
I/O  
I/O  
Programmable Flag 0/SPI Slave Select Input  
C
C
PF1/SPI0SEL1/TMRCLK  
Programmable Flag 1/SPI Slave Select Enable 1/  
External Timer Reference  
PF2/SPI0SEL2  
I/O  
I/O  
Programmable Flag 2/SPI Slave Select Enable 2  
C
C
PF3/SPI0SEL3/PPI_FS3  
Programmable Flag 3/SPI Slave Select Enable 3/  
PPI Frame Sync 3  
Rev. PrE  
|
Page 22 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Table 10. Pin Descriptions (Continued)  
Driver  
Pin Name  
Type Function  
Type1 Pull-Up/Down Requirement  
PF4/SPI0SEL4/PPI15  
I/O  
I/O  
I/O  
I/O  
Programmable Flag 4/  
SPI Slave Select Enable 4/PPI 15  
C
C
C
C
PF5/SPI0SEL5/PPI14  
PF6/SPI0SEL6/PPI13  
PF7/SPI0SEL7/PPI12  
Programmable Flag 5/  
SPI Slave Select Enable 5/PPI 14  
Programmable Flag 6/  
SPI Slave Select Enable 6/PPI 13  
Programmable Flag 7/  
SPI Slave Select Enable 7/PPI 12  
PF8/PPI11  
PF9/PPI10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Programmable Flag 8/PPI 11  
Programmable Flag 9/PPI 10  
Programmable Flag 10/PPI 9  
Programmable Flag 11/PPI 8  
Programmable Flag 12/PPI 7  
Programmable Flag 13/PPI 6  
Programmable Flag 14/PPI 5  
Programmable Flag 15/PPI 4  
PPI3–0  
C
C
C
C
C
C
C
C
C
PF10/PPI9  
PF11/PPI8  
PF12/PPI7  
PF13/PPI6  
PF14/PPI5  
PF15/PPI4  
PPI3–0  
PPI_CLK  
PPI Clock  
Controller Area Network  
CANTX/GPIOC0  
CANRX/GPIOC1  
I/O 5V CAN Transmit/GPIO_C_0  
I/O 5V CAN Receive/GPIO_C_1  
C
C
Media Transceiver ( MXVR)/  
General Purpose I/O  
MTX/GPIOC5  
MTXON/GPIOC9  
MRX/GPIOC4  
MRXON  
I/O  
I/O  
MXVR Transmit Data/GPIO_C_5  
MXVR Transmit FOT On/GPIO_C_9  
C
C
I/O 5V MXVR Receive Data/GPIO_C_4  
C
Pull LOW when not used.  
Pull High When Not Used  
Pull LOW when not used.  
Leave unconnected when not used.  
Pull LOW when not used.  
I 5V  
I
MXVR FOT Receive On  
MXVR Crystal Input  
MXI  
MXO  
O
MXVR Crystal Output  
MXVR Loop Filter  
MLF  
I
MMCLK/GPIOC6  
MBCLK/GPIOC7  
MFS/GPIOC8  
GP  
I/O  
I/O  
I/O  
I
MXVR Master Clock/GPIO_C_6  
MXVR Bit Clock/GPIO_C_7  
MXVR Frame Sync/GPIO_C_8  
GPIO_C_4–9 Enable  
C
C
C
Pull LOW when not used.  
Two Wire Interface Port  
SDA0  
I/O 5V TWI0 Serial Data  
I/O 5V TWI0 Serial Clock  
I/O 5V TWI1 Serial Data  
I/O 5V TWI1 Serial Clock  
E2  
E2  
E2  
E2  
SCL0  
SDA1  
SCL1  
Rev. PrE  
|
Page 23 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Table 10. Pin Descriptions (Continued)  
Driver  
Pin Name  
Type Function  
Type1 Pull-Up/Down Requirement  
Serial Port0  
RSCLK0  
I/O  
I/O  
I
SPORT0 Receive Serial Clock  
SPORT0 Receive Frame Sync  
SPORT0 Receive Data Primary  
SPORT0 Receive Data Secondary  
SPORT0 Transmit Serial Clock  
SPORT0 Transmit Frame Sync  
SPORT0 Transmit Data Primary  
SPORT0 Transmit Data Secondary  
D
C
RFS0  
DR0PRI  
DR0SEC  
I
TSCLK0  
I/O  
I/O  
O
D
C
C
C
TFS0  
DT0PRI  
DT0SEC  
O
Serial Port1  
RSCLK1  
I/O  
I/O  
I
SPORT1 Receive Serial Clock  
SPORT1 Receive Frame Sync  
SPORT1 Receive Data Primary  
SPORT1 Receive Data Secondary  
SPORT1 Transmit Serial Clock  
SPORT1 Transmit Frame Sync  
SPORT1 Transmit Data Primary  
SPORT1 Transmit Data Secondary  
D
C
RFS1  
DR1PRI  
DR1SEC  
I
TSCLK1  
I/O  
I/O  
O
D
C
C
C
TFS1  
DT1PRI  
DT1SEC  
O
Serial Port2  
RSCLK2 / GPIOE0  
RFS2 / GPIOE1  
DR2PRI /GPIOE2  
DR2SEC / GPIOE3  
TSCLK2 / GPIOE4  
TFS2 / GPIOE5  
DT2PRI / GPIOE6  
DT2SEC / GPIOE7  
Serial Port3  
RSCLK3 / GPIOE8  
RFS3 / GPIOE9  
DR3PRI / GPIOE10  
DR3SEC / GPIOE11  
TSCLK3 / GPIOE12  
TFS3 / GPIOE13  
DT3PRI / GPIOE14  
DT3SEC / GPIOE15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPORT2 Receive Serial Clock/GPIO_E_0  
SPORT2 Receive Frame Sync/GPIO_E_1  
SPORT2 Receive Data Primary/GPIO_E_2  
SPORT2 Receive Data Secondary/GPIO_E_3  
SPORT2 Transmit Serial Clock/GPIO_E_4  
SPORT2 Transmit Frame Sync/GPIO_E_5  
SPORT2 Transmit Data Primary/GPIO_E_6  
SPORT2 Transmit Data Secondary/GPIO_E_7  
D
C
D
C
C
C
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPORT3 Receive Serial Clock/GPIO_E_8  
SPORT3 Receive Frame Sync/GPIO_E_9  
SPORT3 Receive Data Primary/GPIO_E_10  
SPORT3 Receive Data Secondary/GPIO_E_11  
SPORT3 Transmit Serial Clock/GPIO_E_12  
SPORT3 Transmit Frame Sync/GPIO_E_13  
SPORT3 Transmit Data Primary/GPIO_E_14  
SPORT3 Transmit Data Secondary/GPIO_E_15  
D
C
D
C
C
C
Rev. PrE  
|
Page 24 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Table 10. Pin Descriptions (Continued)  
Driver  
Pin Name  
SPI0 Port  
Type Function  
Type1 Pull-Up/Down Requirement  
MOSI0  
I/O  
I/O  
I/O  
SPI0 Master Out Slave In  
SPI0 Master In Slave Out  
SPI0 Clock  
C
C3  
MISO0  
SCK0  
D
SPI1 Port  
MOSI1 / GPIOD0  
MISO1 / GPIOD1  
SCK1 / GPIOD2  
SPI1SS / GPIOD3  
SPI1SEL / GPIOD4  
SPI2 Port  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI1 Master Out Slave In/GPIO_D_0  
SPI1 Master In Slave Out/GPIO_D_1  
SPI1 Clock/GPIO_D_2  
C
C
D
C
C
SPI1 Slave Select Input/GPIO_D_3  
SPI1 Slave Select Enable/GPIO_D_4  
MOSI2 / GPIOD5  
MISO2 / GPIOD6  
SCK2 / GPIOD7  
SPI2SS / GPIOD8  
SPI2SEL / GPIOD9  
UART0 Port  
RX0  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI2 Master Out Slave In/GPIO_D_5  
SPI2 Master In Slave Out/GPIO_D_6  
SPI2 Clock/GPIO_D_7  
C
C
D
C
C
SPI2 Slave Select Input/GPIO_D_8  
SPI2 Slave Select Enable/GPIO_D_9  
I
UART Receive  
UART Transmit  
TX0  
O
C
UART1 Port  
RX1 / GPIOD10  
TX1 / GPIOD11  
UART2 Port  
RX2 / GPIOD12  
TX2 / GPIOD13  
Real Time Clock  
RTXI  
I/O  
I/O  
UART1 Receive/GPIO_D_10  
UART1 Transmit/GPIO_D_11  
C
C
I/O  
I/O  
UART2 Receive/GPIO_D_12  
UART2 Transmit/GPIO_D_13  
C
C
I
RTC Crystal Input  
Pull LOW when not used.  
RTXO  
O
RTC Crystal Output  
JTAG Port  
TCK  
I
JTAG Clock  
TDO  
O
I
JTAG Serial Data Out  
JTAG Serial Data In  
JTAG Mode Select  
JTAG Reset  
C
TDI  
TMS  
I
TRST  
I
Pull LOW when JTAG port not used.  
C
EMU  
O
Emulation Output  
Clock  
CLKIN  
I
Clock/Crystal Input  
Crystal Output  
XTAL  
O
Rev. PrE  
|
Page 25 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Table 10. Pin Descriptions (Continued)  
Driver  
Pin Name  
Mode Controls  
RESET  
Type Function  
Type1 Pull-Up/Down Requirement  
I
I
I
Reset  
NMI  
Non-maskable Interrupt  
Boot Mode Strap  
Pull High When Not Used  
BMODE1–0  
Voltage Regulator  
VROUT0  
VROUT1  
Supplies  
O
O
External FET Drive 0  
External FET Drive 1  
Leave unconnected when not used.  
Leave unconnected when not used.  
VDDEXT  
VDDINT  
P
P
P
P
P
G
G
I/O Power Supply  
Internal Power Supply  
Real Time Clock Power Supply  
MXVR Internal Power Supply  
MXVR External Power Supply  
MXVR Ground  
VDDRTC  
MPIVDD  
MXEVDD  
MXEGND  
GND  
Ground  
1 Refer to Figure 38 on Page 59 to Figure 49 on Page 60.  
2 Open drain output. See version 2.1 of I2C specification for proper resistor value.  
3 Pull HIGH through a 4.7 kW resistor if booting via the SPI port.  
Rev. PrE  
|
Page 26 of 70  
| May 2006  
Preliminary Technical Data  
SPECIFICATIONS  
ADSP-BF539/ADSP-BF539F  
Component specifications are subject to change  
without notice.  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Min  
0.95  
2.7  
Nominal  
1.2  
Max  
1.32  
3.6  
3.6  
3.6  
3.6  
0.6  
85  
Unit  
V
VDDINT  
VDDEXT  
VDDRTC  
VIH  
Internal Supply Voltage1  
External Supply Voltage2  
3.3  
V
Real Time Clock Power Supply Voltage  
High Level Input Voltage3, @ VDDEXT =maximum  
High Level Input Voltage4, @ VDDEXT =maximum  
Low Level Input Voltage3, 5, @ VDDEXT =minimum  
Automotive Ambient Operating Temperature  
2.25  
2.0  
V
V
VIHCLKIN  
VIL  
2.2  
V
–0.3  
–40  
V
TAMBIENT  
ºC  
1 Parameter value applies also to MPIVDD.  
2 Parameter value applies also to MXEVDD.  
3 The 3.3 V tolerant pins are capable of accepting up to 3.6 V maximum VIH The following bi-directional pins are 3.3 V tolerant: DATA15–0, MISO0, MOSI0, PF15–0, PPI3–0,  
MTXON, MMCLK, MBCLK, MFS, MTX, SCK1, MISO1, MOSI1, SPI1SS, SPI1SEL, SCK2, MISO2, MOSI2, SPI2SS, SPI2SEL, RX1, TX1, RX2, TX2, DT2PRI, DT2SEC,  
TSCLK2, DR2PRI, DT2SEC, RSCLK2, RFS2, TFS2, DT3PRI, DT3SEC, DR3PRI, DR3SEC, RSCLK3, RFS3, TFS3, RFS0, RFS1, RSCLK0, RSCLK1, TSCLK0, TSCLK1, SCK0,  
TFS0, TFS1, and TMR2–0. The following input-only pins are 3.3 V tolerant: RESET, RX0, TCK, TDI, TMS, TRST, ARDY, BMODE1–0, BR, DR0PRI, DR0SEC, DR1PRI,  
DR1SEC, NMI, PPI_CLK, RTXI, and GP.  
4 Parameter value applies to the CLKIN and MXI input pins.  
5 Parameter value applies to all input and bi-directional pins.  
RECOMMENDED OPERATING CONDITIONS  
—APPLIES TO 5V TOLERANT PINS  
Parameter1  
Min  
2.0  
Nominal  
Max  
5.5  
Unit  
V
2
VIH5V  
High Level Input Voltage, @ VDDEXT =maximum  
Low Level Input Voltage, @ VDDEXT =minimum  
2
VIL5V  
–0.3  
0.8  
V
1 Specifications subject to change without notice.  
2 The 5.V tolerant pins are capable of accepting up to 5.5 V maximum VIH. The following bi-directional pins are 5 V tolerant: SCL0, SCL1, SDA0, SDA1, MRX, CANRX, CANTX.  
The following input-only pins are 5 V tolerant: MRXON.  
ELECTRICAL CHARACTERISTICS  
Parameter1  
VOH High Level Output Voltage2  
VOL Low Level Output Voltage2  
Test Conditions  
Min  
Max  
Unit  
V
@ VDDEXT =3.0V, IOH = –0.5 mA  
@ VDDEXT =3.0V, IOL = 2.0 mA  
2.4  
0.4  
V
IIH  
IIL  
High Level Input Current3  
Low Level Input Current4  
@ VDDEXT =maximum, VIN = VDD maximum  
@ VDDEXT =maximum, VIN = 0 V  
@ VDDEXT = maximum, VIN = VDD maximum  
@ VDDEXT = maximum, VIN = 0 V  
fIN = 1 MHz, TAMBIENT = 25°C, VIN = 2.5 V  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
pF  
IOZH Three-State Leakage Current4  
IOZL Three-State Leakage Current5  
CIN  
Input Capacitance5, 6  
1 Specifications subject to change without notice.  
2 Applies to output and bidirectional pins.  
3 Applies to input pins.  
4 Applies to three-statable pins.  
5 Applies to all signal pins.  
6 Guaranteed, but not tested.  
Rev. PrE  
|
Page 27 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in the table may cause perma-  
nent damage to the device. These are stress ratings only.  
Functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
PACKAGE INFORMATION  
The information presented in Figure 10 and Table 12 provides  
information about how to read the package brand and relate it  
to specific product features. For a complete listing of product  
offerings, see the Ordering Guide on Page 69.  
Parameter  
Rating  
a
ADSP-BF539  
1
Internal (Core) Supply Voltage (VDDINT  
)
2
0.3 V to +1.4 V  
0.3 V to +3.8 V  
0.5 V to 3.6 V  
0.5 V to 5.5 V  
–0.5 V to VDDEXT +0.5 V  
200 pF  
tppZccc  
External (I/O) Supply Voltage (VDDEXT  
Input Voltage3  
Input Voltage4  
)
vvvvvv.x n.n  
yyww country_of_origin  
B
Output Voltage Swing  
Load Capacitance5  
Figure 10. Product Information on Package  
Junction Temperature Under Bias  
Storage Temperature Range  
1 Parameter value applies also to MPIVDD.  
+125ºC  
Table 12. Package Brand Information  
65ºC to +150ºC  
Brand Key  
Field Description  
Automotive Grade (Optional)  
Temperature Range  
Package Type  
2 Parameter value applies also to MXEVDD and VDDRTC.  
3 Applies to 100% transient duty cycle. For other duty cycles see Table 11.  
4 Applies to pins designated as 5V tolerant only.  
W
t
5 ForproperSDRAMcontrolleroperation, themaximumloadcapacitanceis50pF(at3.3V)  
or 30 pF (at 2.5V) for ADDR19–1, DATA15–0, ABE1–0/SDQM1–0, CLKOUT, SCKE,  
SA10, SRAS, SCAS, SWE, and SMS.  
pp  
Z
Lead Free Option (Optional)  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Table 11. Maximum Duty Cycle for Input Transient Voltage1  
ccc  
vvvvvv.x  
n.n  
VIN Min (V)  
–0.50  
VIN Max (V)  
+3.80  
Maximum Duty Cycle  
100%  
40%  
25%  
15%  
10%  
yyww  
Date Code  
–0.70  
+4.00  
–0.80  
+4.10  
–0.90  
+4.20  
–1.00  
+4.30  
1 Applies to all signal pins with the exception of CLKIN, MXI, MXO, MLF,  
VROUT1–0, XTAL.  
ESD SENSITIVITY  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-BF539/ADSP-BF539F processor feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
Rev. PrE  
|
Page 28 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
TIMING SPECIFICATIONS  
Table 13 describes the timing requirements for the ADSP-  
BF539/ADSP-BF539F processor clocks. Take care in selecting  
MSEL, SSEL, and CSEL ratios so as not to exceed the maximum  
core clock, system clock and Voltage Controlled Oscillator  
(VCO) operating frequencies, as described in Absolute Maxi-  
mum Ratings on Page 28. Table 14 describes Phase Locked  
Loop operating conditions.  
Table 13. Core Clock Requirements—ADSP-BF539/ADSP-BF539F—500 MHz  
Parameter  
Minimum  
2.00  
Maximum  
Unit  
ns  
tCCLK  
tCCLK  
tCCLK  
tCCLK  
tCCLK  
Core Cycle Period (VDDINT =1.20 V minimum)  
Core Cycle Period (VDDINT =1.045 V minimum)  
Core Cycle Period (VDDINT =0.95 V minimum)  
Core Cycle Period (VDDINT =0.85 V minimum)  
Core Cycle Period (VDDINT =0.80 V minimum)  
2.25  
ns  
2.50  
ns  
3.00  
ns  
4.00  
ns  
Table 14. Phase Locked Loop Operating Conditions  
Parameter  
Minimum  
Maximum  
Unit  
fVCO  
Voltage Controlled Oscillator (VCO) Frequency  
50  
Max CCLK  
MHz  
Table 15. Maximum SCLK Conditions  
Parameter1  
VDDEXT = 3.3 V  
VDDEXT = 2.5 V  
Unit  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
133  
100  
133  
100  
MHz  
MHz  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT < 1.14 V)  
1 tSCLK (= 1/fSCLK) must be greater than or equal to tCCLK  
.
Rev. PrE  
|
Page 29 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Clock and Reset Timing  
Table 16 and Figure 11 describe clock and reset operations. Per  
Absolute Maximum Ratings on Page 28, combinations of  
CLKIN and clock multipliers must not select core/peripheral  
clocks in excess of 500/133 MHz.  
Table 16. Clock and Reset Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tCKIN  
CLKIN Period  
CLKIN Low Pulse1  
CLKIN High Pulse1  
RESET Asserted Pulsewidth Low2  
20.0  
8.0  
100.0  
ns  
ns  
ns  
ns  
tCKINL  
tCKINH  
tWRST  
8.0  
11 tCKIN  
1 Applies to bypass mode and non-bypass mode.  
2 Applies after power-up sequence is complete. At power-up, the processor’s internal phase locked loop requires no more than 2000 CLKIN cycles, while RESET is asserted,  
assuming stable power supplies and CLKIN (not including startup time of external clock oscillator).  
tCKIN  
CLKIN  
tCKINL  
tCKINH  
tWRST  
RESET  
Figure 11. Clock and Reset Timing  
Rev. PrE  
|
Page 30 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Asynchronous Memory Read Cycle Timing  
Table 17 and Table 18 on Page 31 and Figure 12 and Figure 13  
on Page 33 describe asynchronous memory read cycle opera-  
tions for synchronous and for asynchronous ARDY.  
Table 17. Asynchronous Memory Read Cycle Timing with Synchronous ARDY  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSDAT  
tHDAT  
tSARDY  
tHARDY  
tDO  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
2.1  
0.8  
tbd  
tbd  
ns  
ns  
ns  
ns  
ns  
ns  
ARDY Setup Before the Falling Edge of CLKOUT  
ARDY Hold After the Falling Edge of CLKOUT  
Output Delay After CLKOUT1  
6.0  
tHO  
Output Hold After CLKOUT1  
0.8  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, AOE, ARE.  
Table 18. Asynchronous Memory Read Cycle Timing with Asynchronous ARDY  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSDAT  
tHDAT  
tDANR  
tHAA  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
ARDY Negated Delay from AMSx Asserted1  
ARDY Asserted Hold After ARE Negated  
Output Delay After CLKOUT2  
2.1  
0.8  
ns  
ns  
(S+RA–2)*tSCLK ns  
ns  
0.0  
0.8  
tDO  
6.0  
ns  
ns  
tHO  
Output Hold After CLKOUT2  
1 S = number of programmed setup cycles, RA = number of programmed read access cycles.  
2 Output pins include AMS3–0, ABE1–0, ADDR19–1, AOE, ARE.  
Rev. PrE  
|
Page 31 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
HOLD  
1 CYCLE  
SETUP  
2 CYCLES  
PROGRAMMED READ ACCESS  
4 CYCLES  
ACCESS EXTENDED  
3 CYCLES  
CLKOUT  
tDO  
tHO  
AMSx  
ABE1–0  
BE, ADDRESS  
ADDR19–1  
AOE  
tDO  
tHO  
ARE  
tHARDY  
tSARDY  
tHARDY  
ARDY  
tSARDY  
tSDAT  
tHDAT  
DATA15–0  
READ  
Figure 12. Asynchronous Memory Read Cycle Timing with Synchronous ARDY  
Rev. PrE  
|
Page 32 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
HOLD  
1 CYCLE  
SETUP  
2 CYCLES  
PROGRAMMED READ ACCESS  
4 CYCLES  
ACCESS EXTENDED  
CLKOUT  
tDO  
tHO  
AMSx  
ABE1–0  
BE, ADDRESS  
ADDR19–1  
AOE  
ARE  
tDO  
tHO  
tHAA  
tDANR  
ARDY  
tSDAT  
tHDAT  
DATA15–0  
READ  
Figure 13. Asynchronous Memory Read Cycle Timing with Asynchronous ARDY  
Rev. PrE  
|
Page 33 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Asynchronous Memory Write Cycle Timing  
Table 19 and Table 20 on Page 34 and Figure 14 and Figure 15  
on Page 35 describe asynchronous memory write cycle opera-  
tions for synchronous and for asynchronous ARDY.  
Table 19. Asynchronous Memory Write Cycle Timing with Synchronous ARDY  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSARDY  
tHARDY  
Switching Characteristics  
ARDY Setup Before the Falling Edge of CLKOUT  
tbd  
tbd  
ns  
ns  
ARDY Hold After the Falling Edge of CLKOUT  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6.0  
6.0  
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT1  
Output Hold After CLKOUT1  
1.0  
0.8  
tHO  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, AWE.  
Table 20. Asynchronous Memory Write Cycle Timing with Asynchronous ARDY  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDANR  
tHAA  
Switching Characteristics  
ARDY Negated Delay from AMSx Asserted1  
ARDY Asserted Hold After ARE Negated  
(S+WA–2)*tSCLK ns  
ns  
0.0  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6.0  
6.0  
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT2  
Output Hold After CLKOUT2  
1.0  
0.8  
tHO  
1 S = number of programmed setup cycles, WA = number of programmed write access cycles.  
2 Output pins include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, AWE.  
Rev. PrE  
|
Page 34 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
ACCESS  
EXTENDED  
1 CYCLE  
SETUP  
2 CYCLES  
HOLD  
1 CYCLE  
PROGRAMMED WRITE  
ACCESS 2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
BE, ADDRESS  
ADDR19–1  
tDO  
tHO  
AWE  
tSARDY  
ARDY  
tSARDY  
tHARDY  
tHARDY  
tDDAT  
tENDAT  
DATA15–0  
WRITE DATA  
Figure 14. Asynchronous Memory Write Cycle Timing with Synchronous ARDY  
ACCESS  
EXTENDED  
SETUP  
2 CYCLES  
HOLD  
1 CYCLE  
PROGRAMMED WRITE  
ACCESS 2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
BE, ADDRESS  
ADDR19–1  
tDO  
tHO  
AWE  
tDANW  
tHAA  
ARDY  
tENDAT  
DATA15–0  
WRITE DATA  
Figure 15. Asynchronous Memory Write Cycle Timing with Asynchronous ARDY  
Rev. PrE  
|
Page 35 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
SDRAM Interface Timing  
Table 21. SDRAM Interface Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before CLKOUT  
DATA Hold After CLKOUT  
2.1  
0.8  
ns  
ns  
Switching Characteristics  
tSCLK  
CLKOUT Period  
7.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
CLKOUT Width High  
CLKOUT Width Low  
Command, ADDR, Data Delay After CLKOUT1  
Command, ADDR, Data Hold After CLKOUT1  
Data Disable After CLKOUT  
Data Enable After CLKOUT  
6.0  
6.0  
0.8  
1.0  
1 Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
tSCLK  
tSCLKH  
CLKOUT  
tSSDAT  
tSCLKL  
tHSDAT  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
Figure 16. SDRAM Interface Timing  
Rev. PrE  
|
Page 36 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
External Port Bus Request and Grant Cycle Timing  
Table 22 and Table 23 on Page 37 and Figure 17 and Figure 18  
on Page 39 describe external port bus request and grant cycle  
operations for synchronous and for asynchronous BR.  
Table 22. External Port Bus Request and Grant Cycle Timing with Synchronous BR  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tBS  
BR Setup to Falling Edge of CLKOUT  
tbd  
tbd  
ns  
ns  
tBH  
Falling Edge of CLKOUT to BR Deasserted Hold Time  
Switching Characteristics  
tSD  
CLKOUT Low to xMS, Address, and RD/WR disable  
4.5  
4.5  
3.6  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tSE  
CLKOUT Low to xMS, Address, and RD/WR enable  
CLKOUT High to BG High Setup  
tDBG  
tEBG  
tDBH  
tEBH  
CLKOUT High to BG Deasserted Hold Time  
CLKOUT High to BGH High Setup  
CLKOUT High to BGH Deasserted Hold Time  
Table 23. External Port Bus Request and Grant Cycle Timing with Asynchronous BR  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tWBR  
BR Pulsewidth  
2 x tSCLK  
ns  
Switching Characteristics  
tSD  
CLKOUT Low to xMS, Address, and RD/WR disable  
4.5  
4.5  
3.6  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tSE  
CLKOUT Low to xMS, Address, and RD/WR enable  
CLKOUT High to BG High Setup  
tDBG  
tEBG  
tDBH  
tEBH  
CLKOUT High to BG Deasserted Hold Time  
CLKOUT High to BGH High Setup  
CLKOUT High to BGH Deasserted Hold Time  
Rev. PrE  
|
Page 37 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
CLKOUT  
tBH  
tBS  
BR  
tSD  
tSE  
AMSx  
tSD  
tSE  
ADDR19-1  
ABE1-0  
tSD  
tSE  
AWE  
ARE  
tDBG  
tEBG  
BG  
tDBH  
tEBH  
BGH  
Figure 17. External Port Bus Request and Grant Cycle Timing with Synchronous BR  
Rev. PrE  
|
Page 38 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
CLKOUT  
tWBR  
BR  
tSD  
tSE  
AMSx  
tSD  
tSE  
ADDR19-1  
ABE1-0  
tSD  
tSE  
AWE  
ARE  
tDBG  
tEBG  
BG  
tDBH  
tEBH  
BGH  
Figure 18. External Port Bus Request and Grant Cycle Timing with Asynchronous BR  
Rev. PrE  
|
Page 39 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Parallel Peripheral Interface Timing  
Table 24 and Figure 19, Figure 20, Figure 21, and Figure 22  
describe Parallel Peripheral Interface operations.  
Table 24. Parallel Peripheral Interface Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCLKW  
tPCLK  
PPI_CLK Width  
PPI_CLK Period1  
6.0  
15.0  
3.0  
3.0  
2.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
tSFSPE  
tHFSPE  
tSDRPE  
tHDRPE  
External Frame Sync Setup Before PPI_CLK  
External Frame Sync Hold After PPI_CLK  
Receive Data Setup Before PPI_CLK  
Receive Data Hold After PPI_CLK  
Switching Characteristics — GP Output and Frame Capture Modes  
tDFSPE  
tHOFSPE  
tDDTPE  
tHDTPE  
Internal Frame Sync Delay After PPI_CLK  
Internal Frame Sync Hold After PPI_CLK  
Transmit Data Delay After PPI_CLK  
Transmit Data Hold After PPI_CLK  
10.0  
10.0  
ns  
ns  
ns  
ns  
0.0  
0.0  
1 PPI_CLK frequency cannot exceed fSCLK/2  
FRAME  
SYNC IS  
DRIVEN  
OUT  
DATA0  
IS  
SAMPLED  
POLC = 0  
PPI_CLK  
PPI_CLK  
POLC = 1  
t
DFSPE  
t
HOFSPE  
POLS = 1  
PPI_FS1  
POLS = 0  
POLS = 1  
PPI_FS2  
POLS = 0  
t
t
SDRPE  
HDRPE  
PPI_DATA  
Figure 19. PPI GP Rx Mode with Internal Frame Sync Timing  
Rev. PrE  
|
Page 40 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
FRAME  
SYNC IS  
SAMPLED  
FOR  
DATA0 IS  
DATA1 IS  
SAMPLED  
DATA0  
SAMPLED  
PPI_CLK  
POLC = 0  
PPI_CLK  
POLC = 1  
t
HFSPE  
t
SFSPE  
POLS = 1  
POLS = 0  
PPI_FS1  
POLS = 1  
POLS = 0  
PPI_FS2  
t
t
SDRPE  
HDRPE  
PPI_DATA  
Figure 20. PPI GP Rx Mode with External Frame Sync Timing  
FRAME  
SYNC IS  
SAMPLED  
DATA0 IS  
DRIVEN  
OUT  
PPI_CLK  
POLC = 0  
PPI_CLK  
POLC = 1  
t
HFSPE  
t
SFSPE  
POLS = 1  
POLS = 0  
PPI_FS1  
POLS = 1  
POLS = 0  
PPI_FS2  
t
HDTPE  
PPI_DATA  
DATA0  
Figure 21. PPI GP Tx Mode with External Frame Sync Timing  
Rev. PrE  
|
Page 41 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
FRAME  
SYNC IS  
DRIVEN  
OUT  
DATA0 IS  
DRIVEN  
OUT  
PPI_CLK  
POLC = 0  
PPI_CLK  
POLC = 1  
t
DFSPE  
t
HOFSPE  
POLS = 1  
PPI_FS1  
POLS = 0  
POLS = 1  
PPI_FS2  
POLS = 0  
t
DDTPE  
t
HDTPE  
PPI_DATA  
DATA0  
Figure 22. PPI GP Tx Mode with Internal Frame Sync Timing  
Rev. PrE  
|
Page 42 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Serial Ports Timing  
Table 25 through Table 28 on Page 44 and Figure 23 on Page 44  
through Figure 25 on Page 46 describe Serial Port operations.  
Table 25. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSE  
TFS/RFS Setup Before TSCLK/RSCLK (externally generated TFS/RFS)1  
3.0  
3.0  
3.0  
3.0  
4.5  
15.0  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
TFS/RFS Hold After TSCLK/RSCLK (externally generated TFS/RFS)1  
Receive Data Setup Before RSCLK1  
Receive Data Hold After RSCLK1  
TSCLK/RSCLK Width  
tSDRE  
tHDRE  
tSCLKEW  
tSCLKE  
TSCLK/RSCLK Period  
Switching Characteristics  
tDFSE  
tHOFSE  
tDDTE  
tHDTE  
TFS/RFS Delay After TSCLK/RSCLK (Internally Generated TFS/RFS)2  
TFS/RFS Hold After TSCLK/RSCLK (Internally Generated TFS/RFS)2  
Transmit Data Delay After TSCLK2  
10.0  
10.0  
ns  
ns  
ns  
ns  
0.0  
0.0  
Transmit Data Hold After TSCLK2  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 26. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSI  
TFS/RFS Setup Before TSCLK/RSCLK (externally generated TFS/RFS)1  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSI  
TFS/RFS Hold After TSCLK/RSCLK (externally generated TFS/RFS)1  
Receive Data Setup Before RSCLK1  
Receive Data Hold After RSCLK1  
TSCLK/RSCLK Width  
–2.0  
6.0  
tSDRI  
tHDRI  
tSCLKEW  
tSCLKE  
0.0  
4.5  
TSCLK/RSCLK Period  
15.0  
Switching Characteristics  
tDFS  
TFS/RFS Delay After TSCLK/RSCLK (Internally Generated TFS/RFS)2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
I
tHOFS  
TFS/RFS Hold After TSCLK/RSCLK (Internally Generated TFS/RFS)2  
Transmit Data Delay After TSCLK2  
–1.0  
I
tDDT  
I
tHDT  
Transmit Data Hold After TSCLK2  
–2.0  
4.5  
I
tSCLKIW  
TSCLK/RSCLK Width  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 27. Serial Ports—Enable and Three-State  
Parameter  
Min  
0
Max  
Unit  
Switching Characteristics  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
Data Enable Delay from External TSCLK1  
Data Disable Delay from External TSCLK1  
Data Enable Delay from Internal TSCLK1  
Data Disable Delay from Internal TSCLK1  
ns  
ns  
ns  
ns  
10.0  
3.0  
–2.0  
1 Referenced to drive edge.  
Rev. PrE  
|
Page 43 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Table 28. External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDDTLFSE  
tDTENLFS  
Data Delay from Late External TFS or External RFS with MCE = 1, MFD = 01, 2  
Data Enable from late FS or MCE = 1, MFD = 01, 2  
10.0  
ns  
ns  
0
1 MCE = 1, TFS enable and TFS valid follow tDTENLFS and tDDTLFSE  
2 If external RFS/TFS setup to RSCLK/TSCLK > tSCLKE/2, then tDDTE/I and tDTENE/I apply; otherwise tDDTLFSE and tDTENLFS apply.  
.
DATA RECEIVE- INTERNAL CLOCK  
DATA RECEIVE- EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKEW  
RSCLK  
RSCLK  
tDFSE  
tDFSE  
tHOFSE  
RFS  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
RFS  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DR  
DR  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT- INTERNAL CLOCK  
DATA TRANSMIT- EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKEW  
TSCLK  
TSCLK  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
TFS  
DT  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TSCLK (EXT)  
TFS ("LATE", EXT.)  
TSCLK / RSCLK  
tDDTTE  
tDTENE  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TSCLK (INT)  
TFS ("LATE", INT.)  
TSCLK / RSCLK  
tDTENI  
tDDTTI  
DT  
Figure 23. Serial Ports  
Rev. PrE  
|
Page 44 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
EXTERNAL RFS WITH MCE = 1, MFD = 0 (INTERNAL OR EXTERNAL CLOCK)  
DRIVE SAMPLE DRIVE  
RSCLK  
RFS  
tHOFSE/I  
tSFSE/I  
tDDTE/I  
tDTENLFS  
tHDTE/I  
1ST BIT  
2ND BIT  
DT  
tDDTLFSE  
LATE EXTERNAL TFS (INTERNAL OR EXTERNAL CLOCK)  
DRIVE SAMPLE  
DRIVE  
TSCLK  
tSFSE/I  
tHOFSE/I  
TFS  
tDDTE/I  
TDTENLFS  
tHDTE/I  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 24. External Late Frame Sync (Frame Sync Setup < tSCLKE/2)  
Rev. PrE  
|
Page 45 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RSCLK  
RFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
1ST BIT  
DT  
2ND BIT  
tDDTLSCK  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TSCLK  
TFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
DT  
1ST BIT  
2ND BIT  
tDDTLSCK  
Figure 25. External Late Frame Sync (Frame Sync Setup > tSCLKE/2)  
Rev. PrE  
|
Page 46 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Serial Peripheral Interface (SPI) Port  
—Master Timing  
Table 29 and Figure 26 describe SPI port master operations.  
Table 29. Serial Peripheral Interface (SPI) Port—Master Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid to SCK Edge (Data Input Setup)  
7.5  
ns  
ns  
SCK Sampling Edge to Data Input Invalid  
–1.5  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLK  
SPI0SELx Low to First SCK edge (x=0 or 1)  
2tSCLK –1.5  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High period  
Serial Clock Low period  
Serial Clock Period  
tHDSM  
Last SCK Edge to SPI0SELx High (x=0 or 1)  
Sequential Transfer Delay  
tSPITDM  
tDDSPIDM  
tHDSPIDM  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
6
–1.0  
4.0  
SPISELx  
(OUTPUT)  
tSPICLK  
tHDSM  
tSPITDM  
tSDSCIM  
tSPICHM  
tSPICLM  
SCK  
(CPOL = 0)  
(OUTPUT)  
tSPICLM  
tSPICHM  
SCK  
(CPOL = 1)  
(OUTPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
CPHA=1  
tSSPIDM  
tHSPIDM  
tSSPIDM  
tHSPIDM  
MISO  
(INPUT)  
MSB VALID  
LSB VALID  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
CPHA=0  
tSSPIDM  
tHSPIDM  
MISO  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 26. Serial Peripheral Interface (SPI) Port—Master Timing  
Rev. PrE  
|
Page 47 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Serial Peripheral Interface (SPI) Port  
—Slave Timing  
Table 30 and Figure 27 describe SPI port slave operations.  
Table 30. Serial Peripheral Interface (SPI) Port—Slave Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
Serial Clock High Period  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock low Period  
Serial Clock Period  
Last SCK Edge to SPI0SS Not Asserted  
Sequential Transfer Delay  
tSPITDS  
tSDSCI  
tSSPID  
tHSPID  
SPI0SS Assertion to First SCK Edge  
Data Input Valid to SCK Edge (Data Input Setup)  
SCK Sampling Edge to Data Input Invalid  
1.6  
Switching Characteristics  
tDSOE  
SPI0SS Assertion to Data Out Active  
0
0
0
0
8
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPID  
tHDSPID  
SPI0SS Deassertion to Data High impedance  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
8
10  
10  
SPISS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
tSPITDS  
SCK  
(CPOL = 0)  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
SCK  
(CPOL = 1)  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
MSB  
tDDSPID  
tDSDHI  
LSB  
MISO  
(OUTPUT)  
tHSPID  
tSSPID  
CPHA=1  
tSSPID  
tHSPID  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
tDSOE  
tDDSPID  
tDSDHI  
MISO  
(OUTPUT)  
MSB  
LSB  
tHSPID  
CPHA=0  
tSSPID  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 27. Serial Peripheral Interface (SPI) Port—Slave Timing  
Rev. PrE  
|
Page 48 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Universal Asynchronous Receiver-Transmitter  
(UART) Port Timing  
Figure 28 describes UART port receive and transmit operations.  
The maximum baud rate is SCLK/16. As shown in Figure 28  
there is some latency between the generation internal UART  
interrupts and the external data operations. These latencies are  
negligible at the data transmission rates for the UART.  
CLKOUT  
(SAMPLE CLOCK)  
RXD  
DATA(5–8)  
STOP  
RECEIVE  
INTERNAL  
UART RECEIVE  
INTERRUPT  
UART RECEIVE BIT SET BY DATA STOP;  
CLEARED BY FIFO READ  
START  
TXD  
DATA(5–8)  
STOP (1–2)  
TRANSMIT  
INTERNAL  
UART TRANSMIT  
INTERRUPT  
UART TRANSMIT BIT SET BY PROGRAM;  
CLEARED BY WRITE TO TRANSMIT  
Figure 28. UART Port—Receive and Transmit Timing  
Rev. PrE  
|
Page 49 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Programmable Flags Cycle Timing  
Table 31 and Figure 29 describe programmable flag operations.  
Table 31. Programmable Flags Cycle Timing  
Parameter  
Minimum  
Maximum  
Unit  
ns  
Timing Requirement  
tWFI  
Switching Characteristic  
tDFO Flag output delay from CLKOUT low  
Flag input pulsewidth  
tSCLK + 1  
6
ns  
CLKOUT  
tDFO  
PF (OUTPUT)  
FLAG OUTPUT  
FLAG INPUT  
tWFI  
PF (INPUT)  
Figure 29. Programmable Flags Cycle Timing  
Rev. PrE  
|
Page 50 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Timer Cycle Timing  
Table 32 and Figure 30 describe timer expired operations. The  
input signal is asynchronous in “width capture mode” and  
“external clock mode” and has an absolute maximum input fre-  
quency of fSCLK/2 MHz.  
Table 32. Timer Cycle Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Characteristics  
tWL  
tWH  
Timer Pulsewidth Input Low1 (measured in SCLK cycles)  
Timer Pulsewidth Input High1 (measured in SCLK cycles)  
1
1
SCLK  
SCLK  
Switching Characteristic  
tHTO  
Timer Pulsewidth Output2 (measured in SCLK cycles)  
1
(232–1)  
SCLK  
1 The minimum pulsewidths apply for TMRx input pins in width capture and external clock modes. They also apply to the PF1 or PPI_CLK input pins in PWM output mode.  
2 The minimum time for tHTO is one cycle, and the maximum time for tHTO equals (232–1) cycles.  
CLKOUT  
tHTO  
TMRx  
(PWM OUTPUT MODE)  
TMRx  
tWL  
tWH  
(WIDTH CAPTURE AND  
EXTERNAL CLOCK MODES)  
Figure 30. Timer PWM_OUT Cycle Timing  
Rev. PrE  
|
Page 51 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
JTAG Test And Emulation Port Timing  
Table 33 and Figure 31 describe JTAG port operations.  
Table 33. JTAG Port Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tTCK  
TCK Period  
20  
4
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High1  
System Inputs Hold After TCK High1  
TRST Pulsewidth2 (measured in TCK cycles)  
ns  
4
ns  
4
ns  
5
ns  
4
TCK  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low3  
10  
12  
ns  
ns  
0
1 System Inputs=ARDY, BMODE1–0, BR, DATA15–0.DR0PRI, DR0SEC, DR1PRI, DR1SEC, MISO0, MOSI0, NMI, PF15–0, PPI_CLK, PPI3–0.SCL0, SCL1, SDA0, SDA1,  
SCK, MTXON, MRXON, MMCLK, MBCLK, MFS, MTX, MRX, SCK1, MISO1, MOSI1, SPI1SS, SPI1SEL, SCK2, MISO2, MOSI2, SPI2SS, SPI2SEL, RX1, TX1, RX2, TX2,  
DT2PRI, DT2SEC, TSCLK2, DR2PRI, DT2SEC, RSCLK2, RFS2, TFS2, DT3PRI, DT3SEC, DR3PRI, DR3SEC, RSCLK3, RFS3, TFS3, CANTX, CANRX, RESET, RFS0, RFS1,  
RSCLK0, RSCLK1, TSCLK0, TSCLK1, RX0,.SCK0, TFS0, TFS1, and TMR2–0,  
2 50 MHz Maximum  
3 System Outputs = AMS, AOE, ARE, AWE, ABE, BG, DATA15–0, DT0PRI, DT0SEC, DT1PRI, DT1SEC, MISO0, MOSI0, PF15–0, PPI3–0, MTXON, MRXON, MMCLK,  
MBCLK, MFS, MTX, MRX, SCK1, MISO1, MOSI1, SPI1SS, SPI1SEL, SCK2, MISO2, MOSI2, SPI2SS, SPI2SEL, RX1, TX1, RX2, TX2, DT2PRI, DT2SEC, TSCLK2, DR2PRI,  
DR2SEC, RSCLK2, RFS2, TFS2, DT3PRI, DT3SEC, TSCLK3, DR3PRI, DR3SEC, RSCLK3, RFS3, TFS3, CANTX, CANRX, RFS0, RFS1, RSCLK0, RSCLK1, TSCLK0, TSCLK1,  
CLKOUT, TX0, SA10, SCAS, SCK0, SCKE, SMS, SRAS, SWE, and TMR2–0.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 31. JTAG Port Timing  
Rev. PrE  
|
Page 52 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
TWI Controller Timing  
Table 34 through Table 41 and Figure 32 through Figure 35  
describe the TWI Controller operations.  
Table 34. TWI Controller Timing: Bus Start/Stop Bits, Slave Mode, 100 kHz  
Parameter  
Min  
4.7  
4.0  
4.0  
4.7  
Max  
Unit  
µs  
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
Start condition setup time  
Start condition hold time  
µs  
Stop condition setup time  
µs  
Bus free time between STOP and START condition  
µs  
Table 35. TWI Controller Timing: Bus Data Requirements, Slave Mode, 100 kHz  
Parameter  
Min  
4.0  
Max  
Unit  
µs  
tHIGH  
tLOW  
tR  
Clock high time  
Clock low time  
4.7  
µs  
SDA and SCL rise time  
SDA and SCL fall time  
Data input hold time  
Data input setup time1  
Bus capacitive loading  
1000  
300  
ns  
tF  
ns  
tHD:DAT  
tSU:DAT  
CB  
0
ns  
250  
ns  
400  
pF  
1 As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. TBD ns) of the falling edge of SCL to avoid unintended  
generation of START or STOP conditions.  
Table 36. TWI Controller Timing: Bus Start/Stop Bits, Slave Mode, 400 kHz  
Parameter  
tSU:STA  
Min  
0.6  
0.6  
0.6  
1.3  
Max  
Unit  
µs  
Start condition setup time  
tHD:STA  
Start condition hold time  
µs  
tSU:STO  
Stop condition setup time  
µs  
tBUF  
Bus free time between STOP and START condition  
µs  
Table 37. TWI Controller Timing: Bus Data Requirements, Slave Mode, 400 kHz  
Parameter  
Min  
0.6  
Max  
Unit  
µs  
tHIGH  
tLOW  
tR  
Clock high time  
Clock low time  
1.3  
µs  
SDA and SCL rise time  
SDA and SCL fall time  
Data input hold time  
Data input setup time1  
Bus capacitive loading  
TBD  
TBD  
0
300  
300  
0.9  
ns  
tF  
ns  
tHD:DAT  
tSU:DAT  
CB  
µs  
100  
ns  
400  
pF  
1 As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. TBD ns) of the falling edge of SCL to avoid unintended  
generation of START or STOP conditions.  
Rev. PrE  
|
Page 53 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Table 38. TWI Controller Timing: Bus Start/Stop Bits, Master Mode, 100 kHz  
Parameter  
Min  
4.7  
4.0  
4.0  
4.7  
Max  
Unit  
µs  
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
Start condition setup time  
Start condition hold time  
µs  
Stop condition setup time  
µs  
Bus free time between STOP and START condition  
µs  
Table 39. TWI Controller Timing: Bus Data Requirements, Master Mode, 100 kHz  
Parameter  
Min  
4.0  
Max  
Unit  
µs  
tHIGH  
tLOW  
tR  
Clock high time  
Clock low time  
4.7  
µs  
SDA and SCL rise time  
SDA and SCL fall time  
Data input hold time  
Data input setup time1  
Bus capacitive loading  
1000  
300  
ns  
tF  
ns  
tHD:DAT  
tSU:DAT  
CB  
0
ns  
250  
ns  
400  
pF  
1 A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement TSU:DAT >= 250 ns must then be met. This will automatically be the case if the  
device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
Before the SCL line is released, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification).  
Table 40. TWI Controller Timing: Bus Start/Stop Bits, Master Mode, 400 kHz  
Parameter  
tSU:STA  
Min  
0.6  
0.6  
0.6  
1.3  
Max  
Unit  
µs  
Start condition setup time  
tHD:STA  
Start condition hold time  
µs  
tSU:STO  
Stop condition setup time  
µs  
tBUF  
Bus free time between STOP and START condition  
µs  
Table 41. TWI Controller Timing: Bus Data Requirements, Master Mode, 400 kHz  
Parameter  
Min  
0.6  
Max  
Unit  
µs  
tHIGH  
tLOW  
tR  
Clock high time  
Clock low time  
1.3  
µs  
SDA and SCL rise time  
SDA and SCL fall time  
Data input hold time  
Data input setup time1  
Bus capacitive loading  
TBD  
TBD  
0
300  
300  
0.9  
ns  
tF  
ns  
tHD:DAT  
tSU:DAT  
CB  
µs  
100  
ns  
400  
pF  
1 A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement TSU:DAT >= 250 ns must then be met. This will automatically be the case if the  
device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
Before the SCL line is released, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification).  
Rev. PrE  
|
Page 54 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
SCL  
tHD:STA  
tHD:STO  
tSU:STA  
tSU:STO  
SDA  
STOP  
START  
Figure 32. TWI Controller Timing: Bus Start/Stop Bits, Slave Mode  
tF  
tR  
tHIGH  
tLO W  
SCL  
tSU:S TA  
tHD:STA  
tHD:DAT  
tSU:DAT  
tS U:STO  
SDA  
(I N)  
tAA  
tBUF  
tAA  
SDA  
(OUT)  
Figure 33. TWI Controller Timing: Bus Data, Slave Mode  
SCL  
tHD:STA  
tHD:STO  
tSU:STO  
tSU:STA  
SDA  
STOP  
START  
Figure 34. TWI Controller Timing: Bus Start/Stop Bits, Master Mode  
Rev. PrE  
|
Page 55 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
tF  
tR  
tHIGH  
tLO W  
SCL  
tSU:STA  
tHD:STA  
tHD:DAT  
tS U:DAT  
tSU:STO  
SDA  
(I N)  
tAA  
tBUF  
tAA  
SDA  
(OUT)  
Figure 35. TWI Controller Timing: Bus Data, Master Mode  
Rev. PrE  
|
Page 56 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
MXVR Timing  
Table 42 through Table 43 and Figure 36 describe the MXVR  
operations.  
Table 42. MXVR Timing—Input Clock Requirements  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tCKIN  
MXI Period1  
20  
8
ns  
ns  
ns  
tCKINL  
tCKINH  
MXI Low Pulse  
MXI High Pulse  
8
1 For FS=48 KHz, fMXI should be 49.152 MHz. For Fs=44.1 KHz, fMXI should be 45.1584 MHz. For FS=38 KHz, fMXI should be 38.912 MHz.  
Table 43. MXVR Timing—Rise and Fall Time  
Parameter  
Min  
Max  
TBD  
TBD  
Unit  
ns  
tR  
tF  
MTX/MMCLK/MBCLK/MFS/MTXON Rise Time  
MTX/MMCLK/MBCLK/MFS/MTXON Fall Time  
-
-
ns  
TBD  
Figure 36. MXVR Timing  
Rev. PrE  
|
Page 57 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
CAN Timing  
Table 44 and Figure 37 describe the CAN operations.  
Table 44. CAN Timing—Rise and Fall Time  
Parameter  
Minimum  
Maximum  
TBD  
Unit  
ns  
tR  
tF  
CANTX rise time  
CANTX fall time  
-
-
TBD  
ns  
TBD  
Figure 37. CAN Timing  
Rev. PrE  
|
Page 58 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
OUTPUT DRIVE CURRENTS  
200  
150  
VDD E XT = 3.0V @ 95°C  
VDD E XT = 3.3V @ 25°C  
Figure 38 shows typical current-voltage characteristics for the  
output drivers of the ADSP-BF539/ADSP-BF539F processor.  
The curves represent the current drive capability of the output  
drivers as a function of output voltage.  
VDDEXT = 3.6V @  
-40°C  
100  
50  
0
VO H  
120  
VDDEXT = 2.25V @ 95°C  
VDDEXT = 2.50V @ 25°C  
VDDEXT = 2.75V @ 40°C  
100  
80  
-50  
-
-
-
-
100  
150  
200  
60  
40  
20  
VOL  
VOH  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
SOURCE VOLTAGE (V)  
-
20  
40  
Figure 41. Drive Current B (High VDDEXT  
)
-
VOL  
-
60  
80  
80  
60  
-
VDDEXT = 2.25V @ 95°C  
VDDEXT = 2.50V @ 25°C  
-100  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
VDDEX T = 2.75V @ -40°C  
SOURCE VOLTAGE (V)  
40  
20  
0
VOH  
Figure 38. Drive Current A (Low VDDEXT  
)
150  
100  
50  
VDDEXT = 3.0V @ 95°C  
VDDEXT = 3.3V @ 25°C  
-
20  
VDDEXT = 3.6V @ -40°C  
VOL  
-
40  
60  
VO H  
-
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
-50  
Figure 42. Drive Current C (Low VDDEXT  
)
VOL  
-
100  
100  
80  
VDDEX T = 3.0V @ 95°C  
DDEX T = 3.3V @ 25°C  
VDDE XT = 3.6V @ 40°C  
-150  
V
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-
60  
SOURCE VOLTAGE (V)  
40  
Figure 39. Drive Current A (High VDDEXT  
)
VOH  
20  
0
150  
100  
50  
VDDEX T = 2.25V @ 95°C  
DDE XT = 2.50V @ 25°C  
-20  
-40  
-60  
-80  
V
VDDE XT = 2.75V @  
-40°C  
VO L  
VOH  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
SOURCE VOLTAGE (V)  
-50  
Figure 43. Drive Current C (High VDDEXT  
)
VOL  
-100  
-150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 40. Drive Current B (Low VDDEXT  
)
Rev. PrE  
|
Page 59 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
100  
80  
80  
60  
40  
VDDEXT = 2.25V @ 95°C  
VDDEXT = 2.50V @ 25°C  
VDDEX T = 3.0V @ 95°C  
VDDEX T = 3.3V @ 25°C  
VDDE XT = 2.75V @ -40°C  
60  
VDD E XT = 3.6V @  
-40°C  
40  
20  
0
VOH  
VO H  
20  
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
VOL  
VOL  
4.0  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 47. Drive Current E (High VDDEXT  
)
Figure 44. Drive Current D (Low VDDEXT  
)
0
150  
100  
VDDEXT = 3.0V @ 95°C  
VDDEXT = 3.3V @ 25°C  
VDDE XT = 2.25V @ 95°C  
VDDE XT = 2.50V @ 25°C  
-10  
-20  
-30  
-40  
-50  
-60  
V
DD E XT = 3.6V @ -40°C  
VDDEX T = 2.75V @ -40°C  
50  
0
VOH  
VOL  
-50  
VOL  
-
100  
150  
-
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 45. Drive Current D (High VDDEXT  
)
Figure 48. Drive Current F (Low VDDEXT  
)
50  
40  
30  
20  
10  
0
0
-10  
-20  
VDDEX T = 2.25V @ 95°C  
DDEX T = 2.50V @ 25°C  
VDDEX T = 2.75V @ 40°C  
VDDEX T = 3.0V @ 95°C  
VDDEX T = 3.3V @ 25°C  
V
-
VDDEXT = 3.6V @ -40°C  
VOH  
-30  
-40  
VOL  
-10  
-20  
-30  
-40  
-50  
-50  
-60  
-70  
-80  
VOL  
4.0  
3. 0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 49. Drive Current F (High VDDEXT  
)
Figure 46. Drive Current E (Low VDDEXT  
)
Rev. PrE  
|
Page 60 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
POWER DISSIPATION  
TEST CONDITIONS  
Total power dissipation has two components: one due to inter-  
nal circuitry (PINT) and one due to the switching of external  
output drivers (PEXT). Table 45 through Table 47 show the power  
dissipation for internal circuitry (VDDINT).  
All timing parameters appearing in this data sheet were mea-  
sured under the conditions described in this section. Figure 50  
shows the measurement point for AC measurements (except  
output enable/disable). The measurement point VMEAS is 1.5 V  
for VDDEXT (nominal) = 2.5/3.3 V.  
See the ADSP-BF53x Blackfin Processor Hardware Reference  
Manual for definitions of the various operating -modes and for  
instructions on how to minimize system power.  
INPUT  
OR  
OUTPUT  
VMEAS  
VMEAS  
Many operating conditions can affect power dissipation. System  
designers should refer to EE-229: Estimating Power for  
ADSP-BF531/ADSP-BF532 Blackfin Processors on the Analog  
Devices website (www.analog.com)—use site search on  
“EE-229.” This document provides detailed information for  
optimizing your design for lowest power.  
Figure 50. Voltage Reference Levels for AC  
Measurements (Except Output Enable/Disable)  
Output Enable Time Measurement  
Table 45. Internal Power Dissipation (Hibernate mode)  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to the point when they  
start driving.  
IDD (nominal1)  
Unit  
µA  
2
IDDHIBERNATE  
50  
20  
The output enable time tENA is the interval from the point when  
a reference signal reaches a high or low voltage level to the point  
when the output starts driving as shown on the right side of Fig-  
ure 51, “Output Enable/Disable,” on page 62.  
3
IDDRTC  
µA  
1 Nominal assumes an operating temperature of 25°C.  
2 Measured at VDDEXT = 3.65 V with voltage regulator off (VDDINT = 0 V).  
3 Measured at VDDRTC = 3.3 V at 25°C.  
The time tENA_MEASURED is the interval, from when the reference  
signal switches, to when the output voltage reaches VTRIP(high)  
or VTRIP(low). VTRIP(high) is 2.0 V and VTRIP(low) is 1.0 V for  
DDEXT (nominal) = 2.5/3.3 V. Time tTRIP is the interval from  
when the output starts driving to when the output reaches the  
VTRIP(high) or VTRIP(low) trip voltage.  
Table 46. Internal Power Dissipation (Deep Sleep mode)  
1
IDD (nominal2)  
28.00  
Unit  
mA  
mA  
mA  
mA  
V
VDDINT  
0.95  
1.00  
1.10  
1.26  
32.00  
Time tENA is calculated as shown in the equation:  
40.00  
tENA = tENA_MEASURED tTRIP  
54.00  
If multiple pins (such as the data bus) are enabled, the measure-  
ment value is that of the first pin to start driving.  
1 Assumes VDDINT is regulated externally.  
2 Nominal assumes an operating temperature of 25°C.  
Output Disable Time Measurement  
Table 47. Internal Power Dissipation (Full On1 mode)  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The output disable time tDIS is the  
difference between tDIS_MEASURED and tDECAY as shown on the left  
VDDINT2 @ fCCLK (MHz)  
0.95 @ 50 MHz  
IDD (nominal3)  
46.00  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
side of Figure 51.  
0.95 @ 250 MHz  
0.95 @ 300 MHz  
1.00 @ 350 MHz  
1.10 @ 444 MHz  
1.26 @ 500 MHz  
98.00  
tDIS = tDIS_MEASURED tDECAY  
110.00  
The time for the voltage on the bus to decay by V is dependent  
on the capacitive load CL and the load current IL. This decay time  
can be approximated by the equation:  
132.00  
180.00  
235.00  
tDECAY = (CLV) ⁄ IL  
1 Processor executing 75% dual MAC, 25% ADD with moderate data bus activity.  
2 Assumes VDDINT is regulated externally.  
The time tDECAY is calculated with test loads CL and IL, and with  
V equal to 0.5 V for VDDEXT (nominal) = 2.5/3.3 V.  
3 Nominal assumes an operating temperature of 25°C.  
The time tDIS+_MEASURED is the interval from when the reference  
signal switches, to when the output voltage decays V from the  
measured output high or output low voltage.  
Rev. PrE  
|
Page 61 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
The delay and hold specifications given should be derated by a  
factor derived from these figures. The graphs in these figures  
may not be linear outside the ranges shown.  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-BF539/ADSP-BF539F  
processor’s output voltage and the input threshold for the  
device requiring the hold time. CL is the total bus capacitance  
(per data line), and IL is the total leakage or three-state current  
(per data line). The hold time will be tDECAY plus the various out-  
put disable times as specified in the Timing Specifications on  
Page 29 (for example tDSDAT for an SDRAM write cycle as shown  
in Table 21 on Page 36).  
ABE_B[0] (133 MHz DRIVER), V  
(MIN) = 2.25V,TEMPERATURE = 85°C  
DDEXT  
14  
12  
RISE TIME  
10  
FALL TIME  
8
6
4
REFERENCE  
SIGNAL  
2
0
tDIS_MEASURED  
tENA_MEASURED  
tDIS  
tENA  
0
50  
100  
150  
200  
250  
VOH  
VOH(MEASURED)  
LOAD CAPACITANCE (pF)  
(MEASURED)  
VOH (MEASURED) ؊V  
VOL (MEASURED) + V  
VTRIP(HIGH)  
Figure 53. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver A at VDDEXT (min)  
VTRIP(LOW)  
VOL  
VOL(MEASURED)  
(MEASURED)  
tDECAY  
tTRIP  
ABE0 (133 MHz DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
12  
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
10  
8
HIGH IMPEDANCE STATE  
RISE TIME  
Figure 51. Output Enable/Disable  
FALL TIME  
50  
TO  
OUTPUT  
PIN  
6
V
LOAD  
4
30pF  
2
Figure 52. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Capacitive Loading  
Figure 54. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver A at VDDEXT (max)  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 52). VLOAD is 1.5 V for VDDEXT  
(nominal) = 2.5/3.3 V. Figure 53 on Page 62 through Figure 60  
on Page 63 show how output rise time varies with capacitance.  
Rev. PrE  
|
Page 62 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
CLKOUT (CLKOUT DRIVER), V  
(MIN) = 2.25V,TEMPERATURE = 85  
°C  
PF9 (33 MHz DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
DDEXT  
12  
20  
18  
16  
14  
10  
RISE TIME  
RISE TIME  
8
6
4
2
0
12  
10  
FALL TIME  
FALL TIME  
8
6
4
2
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 58. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver C at VDDEXT (max)  
Figure 55. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver B at VDDEXT (min)  
SCK (66 MHz DRIVER), V  
(MIN) = 2.25V,TEMPERATURE = 85°C  
CLKOUT (CLKOUT DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
DDEXT  
18  
16  
14  
12  
10  
8
10  
9
8
7
RISE TIME  
RISE TIME  
6
5
FALL TIME  
FALL TIME  
4
3
2
1
0
6
4
2
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 59. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver D at VDDEXT (min)  
Figure 56. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver B at VDDEXT (max)  
SCK (66 MHz DRIVER), V (MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
PF9 (33 MHz DRIVER), V  
(MIN) = 2.25V,TEMPERATURE = 85°C  
DDEXT  
14  
30  
25  
20  
15  
10  
5
12  
10  
8
RISE TIME  
RISE TIME  
FALL TIME  
FALL TIME  
6
4
2
0
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 60. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver D at VDDEXT (max)  
Figure 57. Typical Rise and Fall Times (10%–90%) versus Load Capacitance  
for Driver C at VDDEXT (min)  
Rev. PrE  
|
Page 63 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
ENVIRONMENTAL CONDITIONS  
To determine the junction temperature on the application  
printed circuit board use:  
TJ = TCASE + JT × PD)  
where:  
TJ = Junction temperature (؇C)  
TCASE = Case temperature (؇C) measured by customer at top  
center of package.  
ΨJT = From Table 48 or Table 49  
PD = Power dissipation (see Power Dissipation on Page 61 for  
the method to calculate PD)  
Values of θJA are provided for package comparison and printed  
circuit board design considerations. θJA can be used for a first  
order approximation of TJ by the equation:  
TJ = TA + JA × PD)  
where:  
TA = Ambient temperature (؇C)  
Values of θJC are provided for package comparison and printed  
circuit board design considerations when an external heatsink is  
required.  
Values of θJB are provided for package comparison and printed  
circuit board design considerations.  
In Table 48 and Table 49, airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6, and the junction-to-  
board measurement complies with JESD51-8. The junction-to-  
case measurement complies with MIL-STD-883 (Method  
1012.1). All measurements use a 2S2P JEDEC test board.  
Table 48. Thermal Characteristics BC-316 Without Flash  
Parameter  
θJA  
Condition  
Typical  
21.6  
Unit  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
0 linear m/s air flow  
1 linear m/s air flow  
2 linear m/s air flow  
θJMA  
θJMA  
θJC  
18.8  
18.1  
5.36  
0.13  
0.25  
0.25  
ΨJT  
0 linear m/s air flow  
1 linear m/s air flow  
2 linear m/s air flow  
ΨJT  
ΨJT  
Table 49. Thermal Characteristics BC-316 With Flash  
Parameter  
θJA  
Condition  
Typical  
20.9  
Unit  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
0 linear m/s air flow  
1 linear m/s air flow  
2 linear m/s air flow  
θJMA  
θJMA  
θJC  
18.1  
17.4  
5.01  
0.12  
0.24  
0.24  
ΨJT  
0 linear m/s air flow  
1 linear m/s air flow  
2 linear m/s air flow  
ΨJT  
ΨJT  
Rev. PrE  
|
Page 64 of 70  
| May 2006  
Preliminary Technical Data  
316-BALL MINI-BGA PINOUT  
Figure 61 lists the top view of the mini-BGA pin configuration.  
Figure 62 lists the bottom view of the mini-BGA pin  
configuration.  
ADSP-BF539/ADSP-BF539F  
Table 50 on Page 66 lists the mini-BGA pinout by pin number.  
Table 51 on Page 67 lists the mini-BGA pinout by signal.  
A1 BALL  
A1 BALL  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
U
V
W
Y
U
V
W
Y
1
2
3
4
5
6
7
8 9 10 11 12 13 14 15 16 17 18 19 20  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
GND  
I/O  
GND  
VDDRTC  
VDDRTC  
VROUTx  
NC  
VDDINT  
VDDEXT  
VDDINT  
NC  
I/O  
VROUTx  
VDDEXT  
Note: H18 andY14 are NC for ADSP-BF539  
and I/O (FCE and FRESET) for ADSP-BF539F  
Note: H18 andY14 are NC for ADSP-BF539  
and I/O (FCE and FRESET) for ADSP-BF539F  
Figure 61. 316-Ball Mini-BGA Pin Configuration (Top View)  
Figure 62. 316-Ball Mini-BGA Pin Configuration (Bottom View)  
Rev. PrE  
|
Page 65 of 70  
|
May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
Table 50. 316-Ball Mini-BGA Pin Assignment (Numerically by Pin Number)  
Ball No. Signal  
Ball No. Signal Ball No. Signal Ball No. Signal Ball No. Signal Ball No. Signal  
Ball No. Signal  
A1  
GND  
PF10  
PF11  
C7  
C8  
C9  
SPI2SEL F8  
SPI2SS F9  
MOSI2 F10  
MISO2 F11  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J12  
J13  
J14  
J18  
J19  
J20  
K1  
GND  
GND  
GND  
AMS0  
AMS2  
SA10  
RFS1  
TMR2  
GP  
M19  
M20  
N1  
ABE0  
ABE1  
TFS0  
T3  
T7  
T8  
GND  
W1  
TCK  
A2  
VDDEXT W2  
VDDEXT W3  
VDDEXT W4  
VDDEXT W5  
VDDEXT W6  
VDDINT W7  
VDDINT W8  
VDDINT W9  
GND  
A3  
DATA15  
DATA13  
DATA11  
DATA9  
DATA7  
DATA5  
DATA3  
DATA1  
RSCK2  
DR2PRI  
DT2PRI  
RX2  
A4  
PPI_CLK C10  
N2  
DR0PRI T9  
A5  
PPI0  
PPI2  
PF15  
PF13  
C11  
C12  
C13  
C14  
SCK2  
F12  
N3  
GND  
T10  
A6  
MPIVDD F13  
SPI1SEL F14  
MISO1 F18  
SPI1SS F19  
MOSI1 F20  
N7  
VDDEXT T11  
A7  
N8  
GND  
GND  
GND  
GND  
GND  
GND  
T12  
T13  
T14  
T18  
T19  
T20  
A8  
DT3PRI K2  
N9  
A9  
VDDRTC C15  
MRX  
MFS  
SCK0  
K3  
K7  
K8  
N10  
N11  
N12  
N13  
N14  
N18  
N19  
N20  
P1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
RTXO  
RTXI  
GND  
CLKIN  
XTAL  
MLF  
C16  
C17  
C18  
C19  
C20  
D1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AMS3  
AMS1  
AOE  
RFS3  
W10  
SCK1  
GND  
G1  
G2  
ADDR7 W11  
ADDR8 W12  
MOSI0 K9  
DT0SEC K10  
MMCLK G3  
VDDINT U1  
DT3SEC U2  
ADDR1 U3  
ADDR2 U7  
TRST  
TMS  
GND  
W13  
W14  
W15  
SCKE  
PF4  
G7  
G8  
G9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BR  
K11  
K12  
K13  
K14  
K18  
K19  
K20  
L1  
TX2  
MXO  
MXI  
D2  
PF5  
VDDEXT W16  
VDDEXT W17  
VDDEXT W18  
VDDEXT W19  
VDDEXT W20  
VDDINT Y1  
VDDINT Y2  
VDDINT Y3  
ADDR18  
ADDR15  
ADDR13  
GND  
D3  
DT1SEC G10  
TSCK0  
RFS0  
GND  
U8  
MRXON D7  
VROUT1 D8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
G11  
G12  
G13  
G14  
G18  
G19  
G20  
H1  
P2  
U9  
P3  
U10  
GND  
PF8  
D9  
P7  
VDDEXT U11  
ADDR14  
GND  
D10  
D11  
D12  
D13  
D14  
D18  
D19  
D20  
E1  
RSCK1  
TMR1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
TSCK3  
ARE  
P8  
GND  
GND  
GND  
GND  
GND  
GND  
U12  
U13  
U14  
U18  
U19  
U20  
B2  
GND  
PF9  
L2  
P9  
TDO  
B3  
CLKOUT L3  
SRAS L7  
DT1PRI L8  
TSCK1 L9  
DR1SEC L10  
P10  
P11  
P12  
P13  
P14  
P18  
P19  
P20  
R1  
DATA14  
DATA12  
DATA10  
DATA8  
DATA6  
DATA4  
DATA2  
DATA0  
RFS2  
B4  
PF3  
RSCK3  
Y4  
B5  
PPI1  
ADDR9 Y5  
ADDR10 Y6  
B6  
PPI3  
H2  
B7  
PF14  
PF12  
SCL0  
SDA0  
CANRX  
CANTX  
NMI  
MBCLK H3  
VDDINT V1  
DR3SEC V2  
ADDR3 V3  
ADDR4 V4  
TDI  
Y7  
Y8  
Y9  
B8  
SMS  
PF1  
H7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
FCE  
L11  
L12  
L13  
L14  
L18  
L19  
L20  
M1  
M2  
M3  
M7  
M8  
GND  
GND  
B9  
H8  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C1  
E2  
PF2  
H9  
BMODE1 Y10  
BMODE0 Y11  
E3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MTX  
ARDY  
PF0  
H10  
H11  
H12  
H13  
H14  
H18  
H19  
H20  
J1  
TX0  
V5  
V6  
V7  
E7  
R2  
RSCK0  
GND  
GND  
Y12  
TSCK2  
TFS2  
E8  
R3  
VDDEXT Y13  
VDDEXT Y14  
VDDEXT Y15  
VDDEXT Y16  
VDDEXT Y17  
VDDINT Y18  
DR2SEC Y19  
RESET  
E9  
AWE  
R7  
VDDEXT V8  
FRESET  
SCL1  
MXEVDD E10  
MXEGND E11  
MTXON E12  
DT0PRI R8  
GND  
GND  
GND  
GND  
GND  
GND  
V9  
TMR0  
GND  
R9  
V10  
V11  
V12  
V13  
V14  
SDA1  
SCAS  
SWE  
TFS1  
R10  
ADDR19  
ADDR17  
ADDR16  
GND  
GND  
GND  
E13  
E14  
VDDEXT R11  
GND  
GND  
GND  
GND  
GND  
GND  
R12  
R13  
R14  
R18  
R19  
R20  
VROUT0 E18  
J2  
DR1PRI M9  
DR0SEC M10  
BG  
Y20  
PF6  
E19  
E20  
F1  
J3  
VDDINT V15  
DR3PRI V16  
ADDR5 V17  
ADDR6 V18  
BGH  
C2  
PF7  
J7  
GND  
GND  
GND  
GND  
GND  
M11  
M12  
M13  
M14  
M18  
DT2SEC  
GND  
C3  
GND  
GND  
RX1  
TX1  
J8  
C4  
F2  
MISO0 J9  
GND  
C5  
F3  
GND  
GND  
J10  
J11  
VDDINT T1  
RX0  
V19  
V20  
ADDR11  
ADDR12  
C6  
F7  
TFS3  
T2  
EMU  
Rev. PrE  
|
Page 66 of 70  
|
May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
Table 51. 316-Ball Mini-BGA Pin Assignment (Alphabetically by Signal)  
Signal  
ABE0  
Ball No. Signal Ball No. Signal Ball No. Signal Ball No. Signal  
Ball No. Signal Ball No. Signal Ball No.  
M19  
M20  
N19  
N20  
P19  
P20  
R19  
R20  
T19  
T20  
U19  
U20  
V19  
V20  
W18  
W20  
W17  
Y19  
Y18  
W16  
Y17  
J18  
DATA8 Y6  
DATA9 W6  
DATA10 Y5  
DATA11 W5  
DATA12 Y4  
DATA13 W4  
DATA14 Y3  
DATA15 W3  
DR0PRI N2  
DR0SEC J3  
DR1PRI J2  
DR1SEC H3  
DR2PRI W12  
DR2SEC V13  
DR3PRI R18  
DR3SEC P18  
DT0PRI M1  
DT0SEC G3  
DT1PRI H1  
DT1SEC D3  
DT2PRI W13  
DT2SEC V16  
DT3PRI F18  
DT3SEC N18  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
E7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K11  
K12  
K13  
K14  
L3  
GND  
GND  
GND  
GND  
GND  
GND  
GP  
V17  
V18  
W2  
W19  
Y1  
PPI2  
PPI3  
A6  
B6  
TSCK1  
TSCK2  
TSCK3  
TX0  
H2  
ABE1  
E8  
Y12  
L18  
R1  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
E9  
RESET B14  
E10  
E11  
E12  
E13  
E14  
E18  
F3  
RFS0  
RFS1  
RFS2  
RFS3  
P2  
K1  
TX1  
C6  
L7  
Y20  
K3  
Y11  
T18  
TX2  
W15  
L8  
VDDEXT M7  
VDDEXT N7  
VDDEXT P7  
VDDEXT R7  
VDDEXT T7  
VDDEXT T8  
VDDEXT T9  
VDDEXT T10  
VDDEXT T11  
VDDEXT U7  
VDDEXT U8  
VDDEXT U9  
VDDEXT U10  
VDDEXT U11  
VDDEXT V7  
VDDEXT V8  
VDDEXT V9  
VDDEXT V10  
VDDEXT V11  
VDDINT M14  
VDDINT N14  
VDDINT P14  
VDDINT R14  
VDDINT T12  
VDDINT T13  
VDDINT T14  
VDDINT U12  
VDDINT U13  
VDDINT U14  
VDDINT V12  
VDDRTC A9  
VROUT0 B20  
VROUT1 A19  
L9  
MBCLK  
MFS  
D19  
F20  
RSCK0 R2  
RSCK1 L1  
RSCK2 W11  
RSCK3 U18  
L10  
L11  
L12  
L13  
L14  
M3  
M8  
M9  
M10  
M11  
M12  
M13  
N3  
MMCLK C19  
F7  
MLF  
A15  
F2  
F8  
MISO0  
MISO1  
MISO2  
MOSI0  
MOSI1  
MOSI2  
RTXI  
RTXO  
RX0  
A11  
A10  
T1  
F9  
C14  
C10  
G2  
F10  
F11  
F12  
F13  
F14  
G7  
RX1  
C5  
C16  
C9  
RX2  
W14  
J20  
H19  
G1  
SA10  
SCAS  
SCK0  
SCK1  
SCK2  
SCKE  
SCL0  
SCL1  
SDA0  
SDA1  
SMS  
MPIVDD C12  
MRXON A18  
G8  
MRX  
MTX  
F19  
E19  
C17  
C11  
C20  
B9  
G9  
G10  
G11  
G12  
G13  
G14  
H7  
N8  
MTXON B17  
MXEGND B16  
MXEVDD B15  
AMS1  
K19  
J19  
N9  
AMS2  
N10  
N11  
N12  
N13  
P3  
Y15  
B10  
Y16  
D20  
AMS3  
K18  
K20  
E20  
L19  
L20  
V14  
V15  
V5  
EMU  
FCE  
T2  
MXI  
MXO  
NMI  
PF0  
A17  
A16  
B13  
F1  
AOE  
H18  
ARDY  
FRESET Y14  
ARE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A1  
H8  
SPI1SEL C13  
SPI1SS C15  
SPI2SEL C7  
SPI2SS C8  
AWE  
A12  
A20  
B2  
H9  
P8  
PF1  
E1  
BG  
H10  
H11  
H12  
H13  
H14  
J7  
P9  
PF2  
E2  
BGH  
P10  
P11  
P12  
P13  
R3  
PF3  
B4  
BMODE0  
BMODE1  
BR  
B18  
B19  
C3  
PF4  
D1  
D2  
C1  
C2  
B1  
SRAS  
SWE  
TCK  
G20  
H20  
W1  
V1  
V4  
PF5  
G18  
B11  
B12  
A13  
G19  
Y10  
W10  
Y9  
PF6  
CANRX  
CANTX  
CLKIN  
C4  
PF7  
TDI  
C18  
D7  
J8  
R8  
PF8  
TDO  
TFS0  
TFS1  
TFS2  
TFS3  
TMR0  
TMR1  
TMR2  
TMS  
Y2  
J9  
R9  
PF9  
B3  
N1  
J1  
CLKOUT  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
D8  
J10  
J11  
J12  
J13  
J14  
K7  
R10  
R11  
R12  
R13  
T3  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
A2  
A3  
B8  
D9  
Y13  
M18  
M2  
L2  
D10  
D11  
D12  
D13  
D14  
D18  
E3  
XTAL  
A14  
A8  
B7  
W9  
Y8  
U3  
A7  
K2  
W8  
K8  
V2  
PPI_CLK A4  
U2  
Y7  
K9  
V3  
PPI0  
PPI1  
A5  
B5  
TRST  
U1  
W7  
K10  
V6  
TSCK0 P1  
Rev. PrE  
|
Page 67 of 70  
|
May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
Dimensions in Figure 63316-Ball Mini Ball Grid Array  
(BC-316) are shown in millimeters.  
15.20 BSC SQ  
17.00 BSC SQ  
A1 BALL  
0.80 BSC BALL PITCH  
A1 BALL INDICATOR  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
20 19 18 17 16 1514 13 12 11 10  
9 8 7 6 5 4 3 2 1  
BOTTOM VIEW  
TOP VIEW  
0.30 MIN  
0.12 MAX  
COPLANARITY  
1.70  
1.61  
SIDE VIEW  
0.50  
SEATING PLANE  
1.46  
BALL DIAMETER 0.45  
0.40  
DETAIL A  
DETAIL A  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. COMPLIANT TO JEDEC REGISTERED OUTLINE MO-205, VARIATION AM,  
WITH THE EXCEPTION OF BALL DIAMETER.  
3. CENTER DIMENSIONS ARE NOMINAL.  
Figure 63. 316-Ball Mini Ball Grid Array (BC-316)  
Rev. PrE  
|
Page 68 of 70  
| May 2006  
Preliminary Technical Data  
ADSP-BF539/ADSP-BF539F  
SURFACE MOUNT DESIGN  
Table 52 is provided as an aid to PCB design. For industry-  
standard design recommendations, refer to IPC-7351,  
Generic Requirements for Surface Mount Design and Land Pat-  
tern Standard.  
Table 52. BGA Data for Use with Surface Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
Ball Pad Size  
316-Ball Mini Ball Grid Array (BC-316)  
Solder Mask Defined  
0.40 mm diameter  
0.50 mm diameter  
ORDERING GUIDE  
Model1, 2  
Temperature  
Range3  
Package Instruction Operating Voltage  
Option Rate (Max) (Nominal)  
Package Description  
ADSP-BF539BBCZ-5A  
ADSP-BF539WBBCZ-5A  
ADSP-BF539YBCZ-4A  
ADSP-BF539WYBCZ-4A  
ADSP-BF539BBCZ-5F44  
ADSP-BF539WBBCZ5F44  
ADSP-BF539BBCZ-5F85  
ADSP-BF539WBBCZ5F85  
ADSP-BF539YBCZ-4F44  
ADSP-BF539WYBCZ4F44  
ADSP-BF539YBCZ-4F85  
ADSP-BF539WYBCZ4F85  
–40ºC to +85ºC  
–40ºC to +85ºC  
316-Ball Mini Ball Grid Array  
316-Ball Mini Ball Grid Array  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
BC-316  
500 MHz  
500 MHz  
400 MHz  
400 MHz  
500 MHz  
500 MHz  
500 MHz  
500 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.0 V internal, 2.5 V or 3.3 V I/O  
1.0 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.0 V internal, 2.5 V or 3.3 V I/O  
1.0 V internal, 2.5 V or 3.3 V I/O  
1.0 V internal, 2.5 V or 3.3 V I/O  
1.0 V internal, 2.5 V or 3.3 V I/O  
–40ºC to +105ºC 316-Ball Mini Ball Grid Array  
–40ºC to +105ºC 316-Ball Mini Ball Grid Array  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
316-Ball Mini Ball Grid Array  
316-Ball Mini Ball Grid Array  
316-Ball Mini Ball Grid Array  
316-Ball Mini Ball Grid Array  
–40ºC to +105ºC 316-Ball Mini Ball Grid Array  
–40ºC to +105ºC 316-Ball Mini Ball Grid Array  
–40ºC to +105ºC 316-Ball Mini Ball Grid Array  
–40ºC to +105ºC 316-Ball Mini Ball Grid Array  
1 W indicates this product is available for use in specific automotive applications. Contact your local ADI sales office for specific ordering information.  
2 Z indicates Pb-free part.  
3 Referenced temperature is ambient temperature.  
4 F4 indicates 256K x 16-bit flash memory.  
5 F8 indicates 512K x 16-bit flash memory.  
Rev. PrE  
|
Page 69 of 70  
| May 2006  
ADSP-BF539/ADSP-BF539F  
Preliminary Technical Data  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06167-0-5/06(PrE)  
Rev. PrE  
|
Page 70 of 70  
| May 2006  

相关型号:

ADSP-BF539_08

Blackfin Embedded Processor
ADI

ADSP-BF539_15

Blackfin Embedded Processor
ADI

ADSP-BF542

Embedded Processor
ADI

ADSP-BF542BBCZ-4A

Embedded Processor
ADI

ADSP-BF542BBCZ-5A

Embedded Processor
ADI

ADSP-BF542BBCZ-5X

IC 16-BIT, 50 MHz, OTHER DSP, PBGA400, 17 X 17 MM, ROHS COMPLIANT, MO-205AM, CSPBGA-400, Digital Signal Processor
ADI

ADSP-BF542KBCZ-6A

Embedded Processor
ADI

ADSP-BF542MBBCZ-5M

Embedded Processor
ADI

ADSP-BF542_07

Embedded Processor
ADI

ADSP-BF542_1

Embedded Processor
ADI

ADSP-BF542_15

Blackfin Embedded Processor
ADI

ADSP-BF544

Embedded Processor
ADI