ADW54012Z-0REEL7 [ADI]

I2C® CMOS 8 x 8 Unbuffered Analog Switch Array with Dual/Single Supplies;
ADW54012Z-0REEL7
型号: ADW54012Z-0REEL7
厂家: ADI    ADI
描述:

I2C® CMOS 8 x 8 Unbuffered Analog Switch Array with Dual/Single Supplies

文件: 总29页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
I2C® CMOS 8 × 8 Unbuffered Analog  
Switch Array with Dual/Single Supplies  
Data Sheet  
ADG2188  
FEATURES  
GENERAL DESCRIPTION  
I2C-compatible interface  
The ADG2188 is an analog cross point switch with an array size of  
8 × 8. The switch array is arranged so that there are eight columns  
by eight rows, for a total of 64 switch channels. The array is  
bidirectional, and the rows and columns can be configured as  
either inputs or outputs. Each of the 64 switches can be addressed  
and configured through the I2C-compatible interface. Standard,  
full speed, and high speed (3.4 MHz) I2C interfaces are supported.  
Any simultaneous switch combination is allowed. An additional  
feature of the ADG2188 is that switches can be updated simul-  
3.4 MHz high speed I2C option  
32-lead LFCSP_WQ (5 mm × 5 mm)  
Double-buffered input logic  
Simultaneous update of multiple switches  
Up to 300 MHz bandwidth  
Fully specified at dual 5 V/single +12 V operation  
On resistance 35 Ω maximum  
Low quiescent current < 20 µA  
Qualified for automotive applications  
RESET  
taneously, using the LDSW command. In addition, a  
option  
allows all of the switch channels to be reset/off. At power on, all  
switches are in the off condition. The device is packaged in a  
32-lead, 5 mm × 5 mm LFCSP_WQ.  
APPLICATIONS  
AV switching in TV  
Automotive infotainment  
AV receivers  
CCTV  
Ultrasound applications  
KVM switching  
Telecom applications  
Test equipment/instrumentation  
PBX systems  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
L
DD  
SS  
ADG2188  
1
1
INPUT  
SCL  
REGISTER  
AND  
7 TO 64  
LATCHES  
8 × 8 SWITCH ARRAY  
X0 TO X7 (I/O)  
SDA  
DECODER  
64  
64  
LDSW  
LDSW  
A2 A1 A0  
GND  
Y0 TO Y7 (I/O)  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2006–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADG2188* PRODUCT PAGE QUICK LINKS  
Last Content Update: 08/30/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADG2188 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADG2188 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADG2188 EngineerZone Discussions.  
ADG2188: 12C™ CMOS 8 X 8 Unbuffered Analog Switch  
Array with Dual/Single Supplies Data Sheet  
SAMPLE AND BUY  
User Guides  
Visit the product page to see pricing options.  
UG-915: Evaluation Board for I2C CMOS 8 × 8 Analog  
Switch Array with Dual/Single Supplies  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Product Selection Guide  
DOCUMENT FEEDBACK  
High Speed Switches  
Submit feedback for this data sheet.  
Switches and Multiplexers Product Selection Guide  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADG2188  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Readback ..................................................................................... 18  
Serial Interface ................................................................................ 19  
High Speed I2C Interface........................................................... 19  
Serial Bus Address...................................................................... 19  
Writing to the ADG2188............................................................... 20  
Input Shift Register .................................................................... 20  
Write Operation.......................................................................... 22  
Read Operation........................................................................... 22  
Evaluation Board ............................................................................ 24  
Using the ADG2188 Evaluation Board ................................... 24  
Power Supply............................................................................... 24  
Schematics................................................................................... 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Automotive Products................................................................. 27  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 7  
Timing Diagram ........................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 15  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
RESET  
/Power-On Reset ............................................................ 18  
Load Switch (LDSW)................................................................. 18  
REVISION HISTORY  
7/2017—Rev. A to Rev. B  
Changes to Figure 3........................................................................ 10  
RESET  
Changes to  
/Power-On Reset Section.............................. 18  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide .......................................................... 27  
2/2015—Rev. 0 to Rev. A  
Changed NC Pins to DNC Pins.................................................... 10  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide .......................................................... 27  
Added Automotive Products Section........................................... 27  
4/2006—Revision 0: Initial Version  
Rev. B | Page 2 of 28  
 
Data Sheet  
ADG2188  
SPECIFICATIONS  
VDD = 12 V 10%, VSS = 0 V, VL = 5 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.1  
Table 1.  
B Version  
−40°C to  
Y Version  
−40°C to  
Parameter  
+25°C  
+85°C  
+25°C  
+125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD − 2 V  
VDD − 2 V  
V max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
30  
35  
32  
37  
45  
50  
4.5  
8
2.3  
3.5  
14.5  
18  
30  
35  
32  
37  
45  
50  
4.5  
8
2.3  
3.5  
14.5  
18  
VDD = 10.8 V, VIN = 0 V, IS = −10 mA  
VDD = 10.8 V, VIN = 1.4 V, IS = −10 mA  
VDD = 10.8 V, VIN = 5.4 V, IS = −10 mA  
VDD = 10.8 V, VIN = 0 V, IS = −10 mA  
VDD = 10.8 V, VIN = 0 V to 1.4 V, IS = −10 mA  
VDD = 10.8 V, VIN = 0 V to 5.4 V, IS = −10 mA  
40  
42  
57  
9
42  
47  
62  
10  
5
On Resistance Matching  
Between Channels, ∆RON  
On Resistance Flatness, RFLAT(ON)  
4
20  
22  
LEAKAGE CURRENTS  
VDD = 13.2 V  
Channel Off Leakage, IOFF  
Channel On Leakage, ION  
0.03  
0.03  
0.03  
0.03  
μA typ  
μA typ  
VX = 7 V/1 V, VY = 1 V/7 V  
VX = VY = 1 V or 7 V  
DYNAMIC CHARACTERISTICS2  
COFF  
CON  
tON  
11  
11  
pF typ  
pF typ  
ns typ  
ns max  
ns typ  
ns max  
% typ  
18.5  
170  
185  
210  
250  
0.04  
18.5  
170  
185  
210  
250  
0.04  
90  
RL = 300 Ω, CL = 35 pF  
190  
255  
195  
260  
tOFF  
RL = 300 Ω, CL = 35 pF  
THD + N  
PSRR  
RL = 10 kΩ, f = 20 Hz to 20 kHz, VS = 1 V p-p  
f = 20 kHz; without decoupling; see  
Figure 24  
dB typ  
−3 dB Bandwidth  
210  
16.5  
−69  
210  
16.5  
−69  
MHz typ  
MHz typ  
dB typ  
Individual inputs to outputs  
8 inputs to 1 output  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
Off Isolation  
Channel-to-Channel Crosstalk  
Adjacent Channels  
Nonadjacent Channels  
Differential Gain  
Differential Phase  
−63  
−76  
0.4  
0.6  
−3.5  
−63  
−76  
0.4  
0.6  
−3.5  
dB typ  
dB typ  
% typ  
° typ  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
VS = 4 V, RS = 0 Ω, CL = 1 nF  
Charge Injection  
pC typ  
LOGIC INPUTS (Ax, RESET)2  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
2.0  
0.8  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.005  
7
0.005  
7
1
1
Input Capacitance, CIN  
Rev. B | Page 3 of 28  
 
ADG2188  
Data Sheet  
B Version  
−40°C to  
Y Version  
−40°C to  
Parameter  
LOGIC INPUTS (SCL, SDA)2  
+25°C  
+85°C  
+25°C  
+125°C  
Unit  
Test Conditions/Comments  
Input High Voltage, VINH  
0.7 VL  
VL + 0.3  
−0.3  
0.7 VL  
VL + 0.3  
−0.3  
V min  
V max  
V min  
V max  
μA typ  
μA max  
V min  
pF typ  
Input Low Voltage, VINL  
0.3 VL  
0.3 VL  
Input Leakage Current, IIN  
0.005  
7
0.005  
7
VIN = 0 V to VL  
1
1
Input Hysteresis  
0.05 VL  
0.05 VL  
Input Capacitance, CIN  
LOGIC OUTPUT (SDA)2  
Output Low Voltage, VOL  
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
μA max  
ISINK = 3 mA  
ISINK = 6 mA  
Floating State Leakage Current  
POWER REQUIREMENTS  
IDD  
0.05  
0.05  
0.05  
0.05  
μA typ  
μA max  
μA typ  
μA max  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
1
1
1
1
ISS  
IL  
Interface Inactive  
0.3  
0.1  
0.4  
0.3  
0.1  
0.4  
μA typ  
2
2
μA max  
mA typ  
mA max  
mA typ  
mA max  
Interface Active: 400 kHz fSCL  
Interface Active: 3.4 MHz fSCL  
0.2  
0.2  
-HS model only  
1.2  
1.7  
1 Temperature range is as follows: B version: −40°C to +85°C; Y version: −40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. B | Page 4 of 28  
Data Sheet  
ADG2188  
VDD = +5 V 10% , VSS = −5 V 10% , VL = 5 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.1  
Table 2.  
B Version  
−40°C to  
+25°C +85°C  
Y Version  
−40°C to  
+25°C +125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD − 2 V V max  
Ω typ  
34  
34  
40  
50  
55  
66  
75  
4.5  
8
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = 0 V, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = +1.4 V, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5V, VIN = VSS to 0 V, IS = −10 mA  
40  
50  
55  
66  
75  
4.5  
8
17  
20  
34  
45  
65  
85  
9
50  
70  
95  
10  
25  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
On Resistance Matching  
Between Channels, ∆RON  
On Resistance Flatness, RFLAT(ON)  
17  
20  
34  
23  
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS to +1.4 V,  
IS = −10 mA  
42  
45  
42  
48  
Ω max  
LEAKAGE CURRENTS  
VDD = 5.5 V, VSS = 5.5 V  
Channel Off Leakage, IOFF  
Channel On Leakage, ION  
0.03  
0.03  
0.03  
0.03  
µA typ  
µA typ  
VX = +4.5 V/−2 V, VY = −2 V/+4.5 V  
VX = VY = −2 V or +4.5 V  
DYNAMIC CHARACTERISTICS2  
COFF  
CON  
tON  
6
9.5  
6
9.5  
pF typ  
pF typ  
ns typ  
ns max  
ns typ  
ns max  
% typ  
170  
200  
210  
250  
0.04  
170  
200  
210  
250  
0.04  
90  
RL = 300 Ω, CL = 35 pF  
RL = 300 Ω, CL = 35 pF  
215  
255  
220  
260  
tOFF  
THD + N  
PSRR  
RL = 10 kΩ, f = 20 Hz to 20 kHz, VS = 1 V p-p  
f = 20 kHz; without decoupling; see Figure 24  
dB typ  
−3 dB Bandwidth  
300  
18  
300  
18  
MHz typ Individual inputs to outputs  
MHz typ 8 inputs to 1 output  
Off Isolation  
Channel-to-Channel Crosstalk  
Adjacent Channels  
Nonadjacent Channels  
Differential Gain  
Differential Phase  
−66  
−64  
dB typ  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
−62  
−79  
1.5  
1.8  
−3  
−62  
−79  
1.5  
1.8  
−3  
dB typ  
dB typ  
% typ  
° typ  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
VS = 0 V, RS = 0 Ω, CL = 1 nF  
Charge Injection  
pC typ  
LOGIC INPUTS (Ax, RESET)2  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
2.0  
0.8  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
0.005  
7
0.005  
7
1
1
Input Capacitance, CIN  
LOGIC INPUTS (SCL, SDA)2  
Input High Voltage, VINH  
0.7 VL  
VL + 0.3  
−0.3  
0.7 VL  
VL + 0.3  
−0.3  
V min  
V max  
V min  
Input Low Voltage, VINL  
0.3 VL  
0.3 VL  
V max  
µA typ  
µA max  
Input Leakage Current, IIN  
0.005  
0.005  
VIN = 0 V to VL  
1
1
Rev. B | Page 5 of 28  
ADG2188  
Data Sheet  
B Version  
−40°C to  
+25°C +85°C  
Y Version  
−40°C to  
+25°C +125°C  
Parameter  
Unit  
Test Conditions/Comments  
Input Hysteresis  
0.05 VL  
0.05 VL  
V min  
pF typ  
Input Capacitance, CIN  
LOGIC OUTPUT (SDA)2  
Output Low Voltage, VOL  
7
7
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
µA max  
ISINK = 3 mA  
ISINK = 6 mA  
Floating State Leakage Current  
POWER REQUIREMENTS  
IDD  
0.05  
1
0.05  
1
0.005  
1
0.005  
1
µA typ  
µA max  
µA typ  
µA max  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
ISS  
IL  
Interface Inactive  
0.3  
0.3  
µA typ  
2
2
µA max  
mA typ  
mA max  
mA typ  
mA max  
Interface Active: 400 kHz fSCL  
Interface Active: 3.4 MHz fSCL  
0.1  
0.1  
0.4  
0.3  
0.1  
0.1  
0.4  
0.3  
-HS model only  
1 Temperature range is as follows: B version: –40°C to +85°C; Y version: –40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. B | Page 6 of 28  
Data Sheet  
ADG2188  
I2C TIMING SPECIFICATIONS  
VDD = 5 V to 12 V; VSS = −5 V to 0 V; VL = 5 V; GND = 0 V; TA = TMIN to TMAX, unless otherwise noted (see Figure 2).  
Table 3.  
ADG2188 Limit at TMIN, TMAX  
Parameter1 Test Conditions/Comments  
Min  
Max  
100  
400  
Unit  
kHz  
kHz  
Description  
fSCL  
Standard mode  
Fast mode  
Serial clock frequency  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
3.4  
1.7  
MHz  
MHz  
µs  
t1  
4
0.6  
tHIGH, SCL high time  
tLOW, SCL low time  
µs  
60  
ns  
ns  
µs  
µs  
120  
4.7  
1.3  
t2  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
High speed mode2  
Standard mode  
Fast mode  
160  
320  
250  
100  
10  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
t3  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
3
t4  
0
0
3.45  
0.9  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
High speed mode2  
Standard mode  
Fast mode  
0
0
70  
150  
ns  
ns  
µs  
µs  
ns  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
t5  
t6  
4.7  
0.6  
160  
4
0.6  
160  
4.7  
1.3  
4
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time for a (repeated) start condition  
High speed mode2  
Standard mode  
Fast mode  
t7  
t8  
tBUF, bus free time between a stop and a start condition  
tSU;STO, setup time for a stop condition  
Standard mode  
Fast mode  
High speed mode2  
Standard mode  
Fast mode  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
0.6  
160  
t9  
1000  
300  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
20 + 0.1 CB  
10  
20  
80  
ns  
ns  
ns  
ns  
160  
300  
300  
t10  
20 + 0.1 CB  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
10  
20  
80  
160  
ns  
ns  
Rev. B | Page 7 of 28  
 
ADG2188  
Data Sheet  
ADG2188 Limit at TMIN, TMAX  
Parameter1 Test Conditions/Comments  
Min  
Max  
1000  
300  
Unit  
ns  
ns  
Description  
t11  
t11A  
t12  
tSP  
Standard mode  
Fast mode  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
tRCL, rise time of SCL signal  
20 + 0.1 CB  
10  
20  
40  
80  
ns  
ns  
ns  
ns  
1000  
300  
tRCL1, rise time of SCL signal after a repeated start condition  
and after an acknowledge bit  
Fast mode  
20 + 0.1 CB  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
10  
20  
80  
ns  
ns  
ns  
ns  
160  
300  
300  
tFCL, fall time of SCL signal  
Fast mode  
20 + 0.1 CB  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Fast mode  
10  
20  
0
40  
80  
50  
10  
ns  
ns  
ns  
ns  
Pulse width of suppressed spike  
High speed mode2  
0
1 Guaranteed by initial characterization. All values measured with input filtering enabled. CB refers to capacitive load on the bus line; tR and tF are measured between  
0.3 VDD and 0.7 VDD  
.
2 High speed I2C is available only in -HS models  
3 A device must provide a data hold time for SDA to bridge the undefined region of the SCL falling edge.  
TIMING DIAGRAM  
t11  
t12  
t2  
t6  
SCL  
SDA  
t6  
t5  
t10  
t8  
t3  
t4  
t1  
t9  
t7  
S
P
S
P
S = START CONDITION  
P = STOP CONDITION  
Figure 2. Timing Diagram for 2-Wire Serial Interface  
Rev. B | Page 8 of 28  
 
 
Data Sheet  
ADG2188  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
Rating  
VDD to VSS  
15 V  
VDD to GND  
VSS to GND  
VL to GND  
Analog Inputs  
Digital Inputs  
−0.3 V to +15 V  
+0.3 V to −7 V  
−0.3 V to +7 V  
VSS − 0.3 V to VDD + 0.3 V  
−0.3 V to VL + 0.3 V or 30 mA,  
whichever occurs first  
ESD CAUTION  
Continuous Current  
10 V on Input; Single Input  
Connected to Single Output  
1 V on Input; Single Input  
Connected to Single Output  
10 V on Input; Eight Inputs  
Connected to Eight Outputs  
65 mA  
90 mA  
25 mA  
Operating Temperature Range  
Industrial (B Version)  
Automotive (Y Version)  
Storage Temperature Range  
Junction Temperature  
32-Lead LFCSP_WQ  
–40°C to +85°C  
–40°C to +125°C  
–65°C to +150°C  
150°C  
θJA Thermal Impedance  
Reflow Soldering (Pb Free)  
Peak Temperature  
108.2°C/W  
260°C (+0/–5)  
Time at Peak Temperature  
10 sec to 40 sec  
Rev. B | Page 9 of 28  
 
 
ADG2188  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
V
DD  
SS  
DNC  
X0  
X1  
X2  
X3  
DNC  
DNC  
DNC  
DNC  
DNC  
X7  
ADG2188  
TOP VIEW  
(Not to Scale)  
X4  
X5  
17 X6  
NOTESꢀ  
1. NC = NO CONNECT.  
2. THE EXPOSED PADDLE IS SOLDERED TO V  
.
SS  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions1  
Pin No.  
Mnemonic Description  
1
VSS  
Negative Power Supply in a Dual-Supply Application. For single-supply applications, this pin must be tied to GND.  
2, 19 to 23 DNC  
Do No Connect.  
3 to 8,  
17, 18  
X0 to X7  
Can be inputs or outputs.  
9 to 16  
24  
Y0 to Y7  
VDD  
Can be inputs or outputs.  
Positive Power Supply Input.  
25  
VL  
Logic Power Supply Input.  
26  
27  
SDA  
SCL  
Digital I/O. Bidirectional open drain data line. External pull-up resistor required.  
Digital Input, Serial Clock Line. Open drain input that is used in conjunction with SDA to clock data into the  
device. External pull-up resistor required.  
28  
29  
30  
31  
32  
A0  
A1  
A2  
RESET  
GND  
EPAD  
Logic Input. Address pin that sets the least significant bit of the 7-bit slave address.  
Logic Input. Address pin that sets the second least significant bit of the 7-bit slave address.  
Logic Input. Address pin that sets the third least significant bit of the 7-bit slave address.  
Active Low Logic Input. When this pin is low, all switches are open, and appropriate registers are cleared to 0.  
Ground. Reference point for all circuitry on the ADG2188.  
Exposed Paddle. The exposed paddle is soldered to VSS.  
1 It is recommended that the exposed paddle be soldered to VSS to improve heat dissipation and crosstalk.  
Rev. B | Page 10 of 28  
 
Data Sheet  
ADG2188  
TYPICAL PERFORMANCE CHARACTERISTICS  
90  
80  
70  
60  
50  
40  
30  
T
I
= 25°C  
= 10mA  
200  
A
T
I
= 25°C  
= 10mA  
DS  
A
180 DS  
160  
140  
120  
100  
80  
V
= 7.2V  
DD  
V
DD  
= 0V  
SS  
V
= +8V  
V
= 8V  
DD  
V
V
= –5V  
= +5V  
SS  
DD  
60  
V
= 8.8V  
DD  
V
DD  
= 0V  
SS  
40  
V
8
= +12V  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
9 10 11 12  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 4. Signal Range  
Figure 7. RON vs. Source Voltage, VDD = 8 V 10%  
85  
75  
65  
55  
45  
35  
25  
80  
V
V
= +5V  
= –5V  
= 10mA  
DD  
SS  
T
= 25°C  
= 10mA  
A
I
DS  
70  
60  
50  
40  
30  
20  
10  
0
I
DS  
T
= +125°C  
A
V
/V = ±4.5V  
DD SS  
T
= +85°C  
A
V
/V = ±5V  
DD SS  
T
= +25°C  
A
T
= –40°C  
A
V
/V = ±5.5V  
DD SS  
–5  
–4  
–3  
–2  
–1  
0
1
–5.5  
–4.5  
–3.5  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 5. RON vs. Source Voltage, Dual 5 V Supplies  
Figure 8. RON vs. Temperature, Dual 5 V Supplies  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
50  
40  
30  
20  
10  
0
V
V
= 12V  
= 0V  
= 10mA  
T
I
= 25°C  
= 10mA  
DD  
SS  
A
T
= +125°C  
A
DS  
I
DS  
V
= 10.8V  
DD  
T
= +85°C  
A
V
= 12V  
DD  
T
= +25°C  
A
T
= –40°C  
A
V
6
= 13.2V  
DD  
0
1
2
3
4
5
7
8
0
1
2
3
4
5
6
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 6. RON vs. Supplies, VDD = 12 V 10%  
Figure 9. RON vs. Temperature, VDD = 12 V  
Rev. B | Page 11 of 28  
 
 
ADG2188  
Data Sheet  
80  
18  
16  
14  
12  
10  
8
V
V
= 12V  
= 0V  
DD  
SS  
V
V
= 8V  
= 0V  
= 10mA  
DD  
SS  
70  
60  
50  
40  
30  
20  
10  
0
Y CHANNELS, V  
= 7V  
BIAS  
I
DS  
T
= +125°C  
A
X CHANNELS, V  
= 7V  
BIAS  
T
= +85°C  
A
Y CHANNELS, V  
= 1V  
BIAS  
T
= +25°C  
A
6
T
= –40°C  
A
4
2
0
–2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
20  
40  
60  
80  
100  
120  
SOURCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. RON vs. Temperature, VDD = 8 V  
Figure 13. On Leakage vs. Temperature, 12 V Single Supply  
16  
14  
12  
10  
8
9
V
V
= 12V  
= 0V  
V
V
= +5V  
= –5V  
DD  
SS  
DD  
SS  
8
7
X, Y CHANNELS;  
= 7V ON X CHANNEL;  
1V ON Y CHANNEL  
V
BIAS  
6
5
X CHANNELS,  
= +4V  
V
BIAS  
4
3
6
X, Y CHANNELS;  
V = 1V ON X CHANNEL;  
BIAS  
7V ON Y CHANNEL  
Y CHANNELS,  
= –2V  
2
V
BIAS  
4
1
2
0
0
–1  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. On Leakage vs. Temperature, Dual 5 V Supplies  
Figure 14. Off Leakage vs. Temperature, 12 V Single Supply  
12  
0
V
V
= +5V  
= –5V  
DD  
SS  
–0.5  
10  
8
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
X, Y CHANNELS;  
= +4V ON X CHANNEL;  
–2V ON Y CHANNEL  
V
BIAS  
6
4
X, Y CHANNELS;  
= –2V ON X CHANNEL;  
+4V ON Y CHANNEL  
V
BIAS  
V
= +5V, V = –5V  
SS  
2
DD  
V
= +12V, V = 0V  
SS  
DD  
0
–2  
0
20  
40  
60  
80  
100  
120  
–5  
–3  
–1  
1
3
5
7
9
11  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 12. Off Leakage vs. Temperature, Dual 5 V Supplies  
Figure 15. Charge Injection vs. Supply Voltage  
Rev. B | Page 12 of 28  
Data Sheet  
ADG2188  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
240  
220  
tOFF  
200  
V
= +5V, V = –5V  
180  
DD SS  
tON  
160  
V
= 12V, V = 0V  
SS  
DD  
140  
120  
100  
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
T
A
10  
1k  
100k  
10M  
1G  
10G  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. tON/tOFF Times vs. Temperature  
Figure 19. One Input to Eight Outputs Bandwidth, 5 V Dual Supply  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–10  
V
V
= +5V TO +12V  
= –5V TO 0V  
= 25°C  
DD  
SS  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
T
A
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
T
A
10  
1k  
100k  
10M  
1G 10G  
10  
1k  
100k  
10M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Individual Inputs to Individual Outputs Bandwidth,  
Dual 5 V Supply  
Figure 20. Off Isolation vs. Frequency  
–1  
–2  
–3  
–4  
–5  
–6  
V
V
= +5V TO +12V  
= –5V TO 0V  
= 25°C  
DD  
SS  
–20  
–40  
T
A
ADJACENT  
CHANNELS  
–60  
–80  
NON-ADJACENT  
CHANNELS  
V
V
= 12V  
= 0V  
= 25°C  
–7  
–100  
–120  
DD  
SS  
T
A
–8  
10  
1k  
100k  
10M  
1G  
10G  
10  
1k  
100k  
10M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Individual Inputs to Individual Outputs Bandwidth,  
12 V Single Supply  
Figure 21. Crosstalk vs. Frequency  
Rev. B | Page 13 of 28  
ADG2188  
Data Sheet  
0.35  
0
–20  
V
= +5V  
= –5V  
V
V
A
= 5V/12V  
= –5V/0V  
DD  
DD  
SS  
V
SS  
T
= 25°C  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.2V p-p RIPPLE  
V
= 5V  
L
SWITCH ON,  
WITHOUT DECOUPLING  
–40  
SWITCH OFF,  
WITHOUT DECOUPLING  
–60  
–80  
WITH DECOUPLING  
V
= 3V  
L
–100  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 22. Digital Curr  
ent (IL) vs. Frequency  
Figure 24. ACPSRR  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
L
V
= 3V  
L
0
1
2
3
4
5
6
V
(V)  
LOGIC  
Figure 23. Digital Current (IL) vs. VLOGIC for Varying Digital Supply Voltage  
Rev. B | Page 14 of 28  
 
Data Sheet  
ADG2188  
TEST CIRCUITS  
The test circuits show measurements on one channel for clarity, but the circuit applies to any of the switches in the matrix.  
I
DS  
V1  
X
Y
V
R
= V1/I  
S
ON  
DS  
Figure 25. On Resistance  
I
I
OFF  
A
OFF  
X
Y
A
V
V
Y
X
Figure 26. Off Leakage  
I
ON  
X
Y
A
NC  
V
Y
Figure 27. On Leakage  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
50%  
9TH DATA BIT  
DD  
SS  
V
OUT  
X
Y
90%  
V
R
300  
OUT  
C
35pF  
L
L
V
X
tOFF AND tON  
GND  
Figure 28. Switching Times, tON, tOFF  
V
V
SS  
DD  
DD  
0.1  
µ
F
0.1  
µ
F
SW OFF  
SW ON  
V
V
SS  
Y
R
X
DATA BIT  
X
V
OUT  
C
L
V
X
1nF  
V
ΔV  
OUT  
OUT  
GND  
Q
= C × ΔV  
L OUT  
INJ  
Figure 29. Charge Injection  
Rev. B | Page 15 of 28  
 
ADG2188  
Data Sheet  
V
V
V
SS  
V
V
SS  
DD  
DD  
DD  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
V
SS  
SS  
DD  
X
X
50Ω  
50Ω  
50Ω  
V
X
V
X
Y
Y
V
V
OUT  
OUT  
V
V
R
R
L
L
50Ω  
50Ω  
GND  
GND  
V
WITH SWITCH  
V
OUT  
OUT  
INSERTION LOSS = 20 log  
OFF ISOLATION = 20 log  
V
WITHOUT SWITCH  
V
OUT  
S
Figure 31. Bandwidth  
Figure 30. Off Isolation  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
DD  
SS  
V
OUT  
Y1  
X2  
X1  
Y2  
R
50Ω  
R
50Ω  
L
R
50Ω  
50Ω  
DATA  
BIT  
V
X
GND  
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
Figure 32. Channel-to-Channel Crosstalk  
Rev. B | Page 16 of 28  
Data Sheet  
ADG2188  
TERMINOLOGY  
On Resistance (RON)  
Total Harmonic Distortion + Noise (THD + N)  
The series on-channel resistance measured between the  
X input/output and the Y input/output.  
The ratio of the harmonic amplitudes plus noise of a signal to  
the fundamental.  
On Resistance Match (∆RON)  
The channel-to-channel matching of on resistance when  
channels are operated under identical conditions.  
−3 dB Bandwidth  
The frequency at which the output is attenuated by 3 dB.  
Off Isolation  
On Resistance Flatness (RFLAT(ON)  
)
The measure of unwanted signal coupling through an off switch.  
The variation of on resistance over the specified range produced  
by the specified analog input voltage change with a constant  
load current.  
Crosstalk  
The measure of unwanted signal that is coupled through from  
one channel to another as a result of parasitic capacitance.  
Channel Off Leakage (IOFF  
The sum of leakage currents into or out of an off channel input.  
)
Differential Gain  
The measure of how much color saturation shift occurs when  
the luminance level changes. Both attenuation and amplification  
can occur; therefore, the largest amplitude change between any  
two levels is specified and is expressed as a percentage of the  
largest chrominance amplitude.  
Channel On Leakage (ION)  
The current loss/gain through an on-channel resistance,  
creating a voltage offset across the device.  
Input Leakage Current (IIN)  
The current flowing into a digital input when a specified low  
level or high level voltage is applied to that input.  
Differential Phase  
The measure of how much hue shift occurs when the luminance  
level changes. It can be a negative or positive value and is expressed  
in degrees of subcarrier phase.  
Input Off Capacitance (COFF  
)
The capacitance between an analog input and ground when the  
switch channel is off.  
Charge Injection  
The measure of the glitch impulse transferred from the digital  
input to the analog output during on/off switching.  
Input/Output On Capacitance (CON)  
The capacitance between the inputs or outputs and ground  
when the switch channel is on.  
Input High Voltage (VINH  
The minimum input voltage for Logic 1.  
Input Low Voltage (VINL  
)
Digital Input Capacitance (CIN)  
The capacitance between a digital input and ground.  
)
The maximum input voltage for Logic 0.  
Output On Switching Time (tON)  
The time required for the switch channel to close. The time is  
measured from 50% of the logic input change to the time the  
output reaches 10% of the final value.  
Output Low Voltage (VOL)  
The minimum input voltage for Logic 1.  
Input Low Voltage (VINL  
)
Output Off Switching Time (tOFF  
)
The maximum output voltage for Logic 0.  
The time required for the switch to open. This time is measured  
from 50% of the logic input change to the time the output  
reaches 90% of the switch off condition.  
IDD  
Positive supply current.  
ISS  
Negative supply current.  
Rev. B | Page 17 of 28  
 
ADG2188  
Data Sheet  
THEORY OF OPERATION  
The ADG2188 is an analog cross point switch with an array size  
of 8 × 8. The eight rows are referred to as the X input/output  
lines, and the eight columns are referred to as the Y input/output  
lines. The device is fully flexible in that it connects any X line or  
number of X lines with any Y line when turned on. Similarly, it  
connects any X line with any number of Y lines when turned on.  
RESET  
does not drop out during the 200 ns  
initialization phase because it can result in an incorrect  
operation of the ADG2188.  
Ensure that  
Ensure a minimum of 50 ns reset pulse width to achieve a  
complete reset.  
LOAD SWITCH (LDSW)  
Control of the ADG2188 is carried out via an I2C interface. The  
device can be operated from single supplies of up to 13.2 V or  
from dual 5 V supplies. The ADG2188 has many attractive  
features, such as the ability to reset all the switches, the ability to  
update many switches at the same time, and the option of reading  
back the status of any switch. All of these features are described  
in more detail here in the Theory of Operation section.  
LDSW is an active high command that allows a number of  
switches to be simultaneously updated. This is useful in  
applications where it is important to have synchronous  
transmission of signals. There are two LDSW modes: the  
transparent mode and the latched mode.  
Transparent Mode  
In this mode, the switch position changes after the new word is  
written into the input shift register. LDSW is set to 1.  
RESET/POWER-ON RESET  
The ADG2188 offers the ability to reset all of the 64 switches  
Latched Mode  
RESET  
to the off state. This is done through the  
pin. When the  
pin is low, all switches are open (off), and appropriate  
RESET  
In this mode, the switch positions are not updated at the same  
time that the input registers are written to. This is achieved by  
setting LDSW to 0 for each word (apart from the last word) written  
to the device. Then, setting LDSW to 1 for the last word allows  
all of the switches in that sequence to be simultaneously  
updated.  
registers are cleared. Note that the ADG2188 also has a power-  
on reset block. This ensures that all switches are in the off  
condition at power-up of the device. In addition, all internal  
registers are filled with 0s and remain so until a valid write  
to the ADG2188 takes place.  
The digital section of the ADG2188 goes through an initialization  
READBACK  
RESET  
phase during the  
power up. This initialization also occurs  
Readback of the switch array conditions is also offered when in  
standard mode and fast mode. Readback enables the user to  
check the status of the switches of the ADG2188. This is very  
useful when debugging a system.  
after a hardware or software reset. After reset, ensure that a  
minimum of 200 ns from the time of power-up or reset before  
any I2Ccommand is issued.  
Rev. B | Page 18 of 28  
 
 
 
 
Data Sheet  
ADG2188  
SERIAL INTERFACE  
The ADG2188 is controlled via an I2C-compatible serial bus.  
The devices are connected to this bus as a slave device (no clock  
is generated by the switch).  
2. The peripheral whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse, known as the acknowledge bit. At this  
stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
HIGH SPEED I2C INTERFACE  
In addition to standard and full speed I2C, the ADG2188 also  
supports the high speed (3.4 MHz) I2C interface. Only the –HS  
models provide this added performance. See the Ordering  
Guide for details.  
W
its serial register. If the R/ bit is 1 (high), the master reads  
W
from the slave device. If the R/ bit is 0 (low), the master  
writes to the slave device.  
3. Data is transmitted over the serial bus in sequences of nine  
clock pulses: eight data bits followed by an acknowledge bit  
from the receiver of the data. Transitions on the SDA line must  
occur during the low period of the clock signal, SCL, and  
remain stable during the high period of SCL, because a low-  
to-high transition when the clock is high can be interpreted as  
a stop signal.  
SERIAL BUS ADDRESS  
The ADG2188 has a 7-bit slave address. The four MSBs are  
hard coded to 1110, and the three LSBs are determined by the  
state of Pin A0, Pin A1, and Pin A2. By offering the facility to  
hardware configure Pin A0, Pin A1, and Pin A2, up to eight of  
these devices can be connected to a single serial bus.  
4. When all data bits have been read or written, a stop condition  
is established by the master. A stop condition is defined as  
a low-to-high transition on the SDA line while SCL is high.  
In write mode, the master pulls the SDA line high during  
the 10th clock pulse to establish a stop condition. In read  
mode, the master issues a no acknowledge for the ninth clock  
pulse (that is, the SDA line remains high). The master then  
brings the SDA line low before the 10th clock pulse and then  
high during the 10th clock pulse to establish a stop condition.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a start  
condition, defined as when a high-to-low transition on the  
SDA line occurs while SCL is high. This indicates that an  
address/data stream follows. All slave peripherals connected to  
the serial bus respond to the start condition and shift in the  
next eight bits, consisting of a 7-bit address (MSB first) plus an  
W
R/ bit that determines the direction of the data transfer,  
that is, whether data is written to or read from the slave device.  
Refer to Figure 33 and Figure 34 for a graphical explanation of  
the serial data transfer protocol.  
Rev. B | Page 19 of 28  
 
 
 
ADG2188  
Data Sheet  
WRITING TO THE ADG2188  
INPUT SHIFT REGISTER  
The input shift register is 24 bits wide. A 3-byte write is necessary when writing to this register and is done under the control of the serial  
clock input, SCL. The contents of the three bytes of the input shift register are shown in Figure 33 and described in Table 6.  
DB16 (LSB)  
DB8 (LSB)  
DB0 (LSB)  
DB23 (MSB)  
DB15 (MSB)  
DB7 (MSB)  
1
1
1
0
A2  
A1  
A0 R/W  
DATA  
X
AX3 AX2 AX1 AX0 AY2 AY1 AY0  
X
X
X
X
X
X LDSW  
DEVICE ADDRESS  
DATA BITS  
DATA BITS  
Figure 33. Data-Words  
Table 6. Input Shift Register Bit Function Descriptions  
Bit  
Mnemonic  
Description  
DB23 to DB17  
1110xxx  
The MSBs of the ADG2188 are set to 1110. The LSBs of the address byte are set by the state of the  
three address pins, Pin A0, Pin A1, and Pin A2.  
DB16  
DB15  
R/W  
Controls whether the ADG2188 slave device is read from or written to.  
If R/W = 1, the ADG2188 is being read from.  
If R/W = 0, the ADG2188 is being written to.  
Data  
Controls whether the switch is to be open (off) or closed (on).  
If Data = 0, the switch is open/off.  
If Data = 1, the switch is closed/on.  
DB14 to DB11  
DB10 to DB8  
DB7 to DB1  
DB0  
AX3 to AX0  
AY2 to AY0  
X
Controls I/Os X0 to X7. See Table 7 for the decode truth table.  
Controls I/Os Y0 to Y7. See Table 7 for the decode truth table.  
Don’t care.  
This bit is useful when a number of switches need to be updated simultaneously.  
If LDSW = 1, the switch position changes after the new word is read in.  
If LDSW = 0, the input data is latched, but the switch position is not changed.  
LDSW  
As shown in Table 6, Bit DB11 to Bit DB14 control the X input/output lines, while Bit DB8 to Bit DB10 control the Y input/output lines.  
Table 7 shows the truth table for these bits. Note that the full coding sequence is written out for Channel Y0, and Channel Y1 to Channel Y7  
RESET  
follow a similar pattern. Note also that the  
pin must be high when writing to the device.  
Table 7. Address Decode Truth Table  
DB15  
DATA  
DB14  
AX3  
DB13  
AX2  
DB12  
AX1  
DB11  
AX0  
DB10  
AY2  
DB9  
AY1  
DB8  
AY0  
Switch Configuration  
X0 to Y0 (on)  
X0 to Y0 (off)  
X1 to Y0 (on)  
X1 to Y0 (off)  
X2 to Y0 (on)  
X2 to Y0 (off)  
X3 to Y0 (on)  
X3 to Y0 (off)  
X4 to Y0 (on)  
X4 to Y0 (off)  
X5 to Y0 (on)  
X5 to Y0 (off)  
Reserved  
1
0
1
0
1
0
1
0
1
0
1
0
X
X
1
0
1
0
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
X6 to Y0 (on)  
X6 to Y0 (off)  
X7 to Y0 (on)  
X7 to Y0 (off)  
Reserved  
1
1
0
Rev. B | Page 20 of 28  
 
 
 
 
 
Data Sheet  
ADG2188  
DB15  
DATA  
DB14  
AX3  
DB13  
AX2  
DB12  
AX1  
DB11  
AX0  
DB10  
AY2  
DB9  
AY1  
DB8  
AY0  
Switch Configuration  
Reserved  
Reserved  
Reserved  
Reserved  
X
X
X
X
X
1
0
..  
1
1
1
1
1
0
0
..  
0
1
1
1
1
0
0
..  
1
0
0
1
1
0
0
..  
1
0
1
0
1
0
0
..  
0
0
0
0
0
0
0
..  
0
0
0
0
0
0
0
..  
0
0
0
0
0
1
1
..  
Reserved  
X0 to Y1 (on)  
X0 to Y1 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
0
0
0
..  
0
1
1
..  
1
0
0
..  
X7 to Y1 (on)  
X0 to Y2 (on)  
X0 to Y2 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
0
0
0
..  
1
1
1
..  
0
1
1
..  
X7 to Y2 (on)  
X0 to Y3 (on)  
X0 to Y3 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
0
1
1
..  
1
0
0
..  
1
0
0
..  
X7 to Y3 (on)  
X0 to Y4 (on)  
X0 to Y4 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
1
1
1
..  
0
0
0
..  
0
1
1
..  
X7 to Y4 (on)  
X0 to Y5 (on)  
X0 to Y5 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
1
1
1
..  
0
1
1
..  
1
0
0
..  
X7 to Y5 (on)  
X0 to Y6 (on)  
X0 to Y6 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
1
1
1
..  
1
1
1
..  
0
1
1
..  
X7 to Y6 (on)  
X0 to Y7 (on)  
X0 to Y7 (off)  
1
1
0
0
1
1
1
1
X7 to Y7 (on)  
Rev. B | Page 21 of 28  
ADG2188  
Data Sheet  
b. Enter the readback address for the X line of interest,  
the addresses of which are shown in Table 8. Note that  
the ADG2188 is expecting a 2-byte write; therefore, be  
sure to also enter another byte of don’t cares (see  
Figure 35).  
WRITE OPERATION  
When writing to the ADG2188, the user must begin with an  
W
address byte and R/ bit, after which the switch acknowledges  
that it is prepared to receive data by pulling SDA low. This address  
byte is followed by the two 8-bit words. The write operations for  
the switch array are shown in Figure 34. Note that it is only the  
condition of the switch corresponding to the bits in the data bytes  
that changes state. All other switches retain their previous  
condition.  
c. The ADG2188 then places the status of those eight  
switches in a register than can be read back.  
2. The second step involves reading back from the register  
that holds the status of the eight switches associated with  
the X line of choice.  
READ OPERATION  
a. As before, enter the I2C address of the ADG2188. This  
Readback on the ADG2188 is designed to work as a tool for  
debug and can output the status of any of the 64 switches of the  
device. The readback function is a two-step sequence that works  
as follows:  
W
time, set the R/ to 1 to indicate a read back from the  
device.  
d. As with a write to the device, the ADG2188 outputs a  
2-byte sequence during readback. Therefore, the first  
eight bits of data out that are read back are all 0s. The  
next eight bits of data that come back are the status of  
the eight Y lines attached to that particular X line. If  
the bit is a 1, then the switch is closed (on); similarly, if  
the bit is a 0, the switch is open (off).  
1. Select the relevant X line to be read back from. Note that  
there are eight switches connecting that X line to the eight  
Y lines. The next step involves writing to the ADG2188 to  
tell the device to reveal the status of those eight switches.  
a. Enter the I2C address of the ADG2188, and set the  
W
R/ to 0 to indicate a write to the device.  
The entire read sequence is shown in Figure 35.  
SCL  
SDA  
A2  
A1  
DATA AX3 AX2  
AX1  
AX0  
AY2  
AY1  
AY0  
A0  
R/W  
x
x
x
x
x
x
x
LDSW  
STOP  
COND  
BY  
ACK  
BY  
SWITCH  
START  
COND  
BY  
ACK  
BY  
SWITCH  
ACK  
BY  
SWITCH  
ADDRESS BYTE  
DATA BYTE  
DATA BYTE  
MASTER  
MASTER  
Figure 34. Write Operation  
Table 8. Readback Addresses for Each X Line  
X Line  
RB7  
RB6  
RB5  
1
1
1
1
1
1
1
1
RB4  
1
1
1
1
1
1
1
1
RB3  
RB2  
1
1
1
1
1
1
1
1
RB1  
0
0
0
0
0
0
0
0
RB0  
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
Rev. B | Page 22 of 28  
 
 
 
 
Data Sheet  
ADG2188  
SCL  
A2  
A1  
RB7  
ACK  
BY  
SWITCH  
RB6 RB5  
RB4 RB3  
RB2  
RB1 RB0  
SDA  
A0  
R/W  
x
x
x
x
x
x
x
x
STOP  
COND  
BY  
NO ACK  
BY  
SWITCH  
START  
COND  
BY  
ACK  
BY  
SWITCH  
ADDRESS BYTE  
DATA BYTE  
DATA BYTE  
MASTER  
MASTER  
SCL  
SDA  
A2  
A1  
A0  
R/W  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
STOP  
COND  
BY  
NO ACK  
BY  
MASTER  
START  
COND  
BY  
ACK  
BY  
SWITCH  
ACK  
BY  
MASTER  
ADDRESS BYTE  
DUMMY READBACK BYTE  
READBACK BYTE  
MASTER  
MASTER  
Figure 35. Read Operation  
Rev. B | Page 23 of 28  
 
ADG2188  
Data Sheet  
EVALUATION BOARD  
The ADG2188 evaluation board allows designers to evaluate  
the high performance 8 × 8 switch array of the ADG2188 with a  
minimum of effort.  
USING THE ADG2188 EVALUATION BOARD  
The ADG2188 evaluation kit is a test system designed to  
simplify the evaluation of the ADG2188. Each input/output  
of the device comes with a socket specifically chosen for easy  
audio/video evaluation. An application note is also available  
with the evaluation board that gives full information on  
operating the evaluation board.  
The evaluation kit includes a populated, tested ADG2188  
printed circuit board. The evaluation board interfaces to the  
USB port of a PC, or it can be used as a standalone evaluation  
board. Software is available with the evaluation board that allows  
the user to easily program the ADG2188 through the USB port.  
Schematics of the evaluation board are shown in Figure 36 and  
Figure 37. The software runs on any PC that has Microsoft®  
Windows® 2000 or Windows XP installed.  
POWER SUPPLY  
The ADG2188 evaluation board can be operated with both single  
and dual supplies. VDD and VSS are supplied externally by the  
user. The VL supply can be applied externally, or the USB port  
can power the digital circuitry.  
Rev. B | Page 24 of 28  
 
 
 
Data Sheet  
ADG2188  
SCHEMATICS  
Figure 36. EVAL-ADG2188EB Schematic, USB Controller Section  
Rev. B | Page 25 of 28  
 
 
ADG2188  
Data Sheet  
Figure 37. EVAL-ADG2188EB Schematic, Chip Section  
Rev. B | Page 26 of 28  
 
Data Sheet  
ADG2188  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
32  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
1
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
8
9
16  
0.50  
0.40  
0.30  
0.25 MIN  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD  
Figure 38. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm x 5 mm Body and 0.75 mm Package Height  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model1, 2  
I2C Speed  
Package Description  
ADG2188BCPZ-REEL7  
ADG2188YCPZ-REEL7  
ADW54012Z-0REEL7  
EVAL-ADG2188EBZ  
−40°C to +85°C  
−40°C to +125°C 100 kHz, 400 kHz  
−40°C to +85°C 100 kHz, 400 kHz  
100 kHz, 400 kHz  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
8 x 8 Evaluation Board  
CP-32-7  
CP-32-7  
CP-32-7  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADW54012 model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. B | Page 27 of 28  
 
 
 
ADG2188  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2006–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05897-0-7/17(B)  
Rev. B | Page 28 of 28  

相关型号:

ADW71205WSTZ

12-Bit RDC with Reference Oscillator
ADI

ADW71205WSTZ-RL

12-Bit R/D Converter with Reference Oscillator
ADI

ADW71205YSTZ

12-Bit RDC with Reference Oscillator
ADI

ADW75001Z-0REEL7

Low Voltage Temperature Sensors
ADI

ADXL001

High Performance Wide Bandwidth Accelerometer
ADI

ADXL001-250

High Performance Wide Bandwidth Accelerometer
ADI

ADXL001-250BEZ

High Performance, Wide Bandwidth Accelerometer
ADI

ADXL001-250BEZ-R7

High Performance, Wide Bandwidth Accelerometer
ADI

ADXL001-500

High Performance Wide Bandwidth Accelerometer
ADI

ADXL001-500BEZ

High Performance, Wide Bandwidth Accelerometer
ADI

ADXL001-500BEZ-R7

High Performance, Wide Bandwidth Accelerometer
ADI

ADXL001-70

High Performance Wide Bandwidth Accelerometer
ADI