EVAL-AD1871EB [ADI]

Stereo Audio, 24-Bit, 96 kHz, Multibit - ADC; 立体声音频, 24位, 96千赫,多位? - ? ADC
EVAL-AD1871EB
型号: EVAL-AD1871EB
厂家: ADI    ADI
描述:

Stereo Audio, 24-Bit, 96 kHz, Multibit - ADC
立体声音频, 24位, 96千赫,多位? - ? ADC

文件: 总28页 (文件大小:1389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Stereo Audio, 24-Bit,  
96 kHz, Multibit -ADC  
a
AD1871  
FEATURES  
PRODUCT OVERVIEW  
5.0 V Stereo Audio ADC  
The AD1871 is a stereo audio ADC intended for digital audio  
applications requiring high performance analog-to-digital  
conversion. It features two 24-bit conversion channels each  
with programmable gain amplifier (PGA), multibit sigma-delta  
modulator, and decimation filters. Each channel provides 105 db  
of dynamic range, making the AD1871 suitable for applications  
such as digital audio recorders and mixing consoles.  
with 3.3 V Tolerant Digital Interface  
Supports 96 kHz Sample Rates  
Supports 16-/20-/24-Bit Word Lengths  
Multibit Sigma-Delta Modulators with  
“Perfect Differential Linearity Restoration” for  
Reduced Idle Tones and Noise Floor  
105 dB (Typ) Dynamic Range  
Each of the AD1871’s input channels (left and right) can be  
configured as either differential or single-ended (two inputs  
muxed with internal single-ended-to-differential conversion).  
The input PGA features a gain range of 0 dB to 12 dB in steps  
of 3 dB. The Σ-modulator features a proprietary multibit  
architecture that realizes optimum performance over an audio  
bandwidth with standard audio sampling rates of 32 kHz up to  
96 kHz. The decimation filter response features very low pass-  
band ripple and excellent stop-band attenuation.  
Supports 256/512 and 768 
؋
 fS Master Clocks  
Flexible Serial Data Port  
Allows Right-Justified, Left-Justified, I2S Compatible  
and DSP Serial Port Modes  
Cascadable (up to Four Devices) from a Single DSP  
SPORT  
Device Control via SPI Compatible Serial Port or  
Optional Control Pins  
On-Chip Reference  
The AD1871’s audio data interface supports all common interface  
formats such as I2S, left-justified, right-justified as well as other  
modes that allow for convenient connection to general-purpose  
digital signal processors (DSPs). The AD1871 also features an  
SPI compatible serial control port that allows for convenient  
control of device parameters and functionality such as sample  
word-width, PGA settings, interface modes, and so on.  
28-Lead SSOP Package  
APPLICATIONS  
Professional Audio  
Mixing Consoles  
Musical Instruments  
Digital Audio Recorders, Including  
CD-R, MD, DVD-R, DAT, HDD  
Home Theater Systems  
Automotive Audio Systems  
Multimedia  
The AD1871 operates from a single 5 V power supply—with  
an optional digital interfacing capability of 3.3 V. It is housed in  
a 28-lead SSOP package and is characterized for operation  
over the temperature range –40°C to +105°C.  
FUNCTIONAL BLOCK DIAGRAM  
CAPLN CAPLP  
AVDD  
DVDD  
ODVDD  
CASC  
LRCLK  
BCLK  
DOUT  
VINLP  
VINLN  
MULTIBIT  
-⌬  
MODULATOR  
ANALOG  
INPUT  
BUFFER  
DATA  
PORT  
DECIMATOR  
DIN  
RESET  
MCLK  
FILTER  
ENGINE  
CLOCK  
DIVIDER  
AD1871  
VREF  
CLATCH/(M/S)  
CCLK/(256/512)  
CIN/(DF1)  
VINRP  
ANALOG  
INPUT  
BUFFER  
MULTIBIT  
-⌬  
MODULATOR  
SPI  
PORT  
DECIMATOR  
VINRN  
COUT/(DF0)  
XCTRL  
CAPRN CAPRP  
AGND  
DGND  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
 
AD1871  
TABLE O F CO NTENTS  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
PRODUCT OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
TEST CONDITIONS UNLESS OTHERWISE SPECIFIED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
ANALOG PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
LOW-PASS DIGITAL FILTER CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
HIGH-PASS DIGITAL FILTER CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
MASTER CLOCK (MCLK) AND RESET TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DATA INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
CONTROL INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DIGITAL I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TEMPERATURE RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TERMINOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
TYPICAL PERFORMANCE CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Filter Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Digital Decimating Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ADC Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Analog Input Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
CONTROL/STATUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Control Register I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Control Register II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Control Register III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Peak Reading Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
EXTERNAL CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Master/Slave Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MCLK Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Serial Data Format Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MODULATOR MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
INTERFACING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Analog Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LAYOUT CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
–2–  
REV. 0  
AD1871–SPECIFICATIONS  
TEST CO ND ITIO NS UNLESS O TH ERWISE NO TED  
Supply Voltages . . . . . . . . . . . . . . . . . . . . . . 5.0 V  
Ambient Temperature . . . . . . . . . . . . . . . . . 25C  
Input Clock (fCLKIN) [256 ¥ fS] . . . . . . . . . . 12.288 MHz  
Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . 991.768 Hz  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 dB Full Scale (dBFS) (Differential, PGA/MUX Enabled)  
Measurement Bandwidth . . . . . . . . . . . . . . . 23.2 Hz to 19.998 kHz  
Word Width . . . . . . . . . . . . . . . . . . . . . . . . . 24 Bits  
Load Capacitance on Digital Outputs . . . . . 100 pF  
Input Voltage High (VIH) . . . . . . . . . . . . . . . 2.4 V  
Input Voltage Low (VIL) . . . . . . . . . . . . . . . 0.8 V  
Master Mode, Data I2S Justified  
ANALO G P ERFO RMANCE  
P aram eter  
Min  
Typ  
Max  
Unit  
Conditions  
RESOLUTION  
24  
Bits  
DIFFERENTIAL INPUT  
Dynamic Range  
Unweighted  
A-Weighted  
Signal-to-Noise Ratio  
Total Harmonic Distortion + Noise  
(THD+N)  
PGA/MUX Enabled  
(20 Hz to 20 kHz, –60 dB Input)  
98  
100  
103  
105  
106  
–85  
–103  
dB  
dB  
dB  
dB  
dB  
Input = –0.5 dBFS  
Input = –20 dBFS  
Multibit Modulator Only  
Dynamic Range (A-Weighted)  
Modulator Output @ 5.6448 MHz  
102  
dB  
SINGLE-ENDED INPUT  
Dynamic Range  
PGA/MUX Enabled  
(20 Hz to 20 kHz, –60 dB Input)  
Unweighted  
A-Weighted  
Signal-to-Noise Ratio  
Total Harmonic Distortion + Noise  
(THD+N)  
103  
105  
106  
–85  
–103  
dB  
dB  
dB  
dB  
dB  
Input = –0.5 dBFS  
Input = –20 dBFS  
DIFFERENTIAL INPUT (BYPASS)  
Dynamic Range  
PGA/MUX Disabled  
(20 Hz to 20 kHz, –60 dB Input)  
Unweighted  
A-Weighted  
Signal-to-Noise Ratio  
Total Harmonic Distortion + Noise  
(THD+N)  
103  
106  
106  
–86  
–104  
dB  
dB  
dB  
dB  
dB  
Input = –0.5 dBFS  
Input = –20 dBFS  
DIFFERENTIAL INPUT (fS = 96 kHz)  
Dynamic Range  
Unweighted  
A-Weighted  
Signal-to-Noise Ratio  
Total Harmonic Distortion + Noise  
(THD+N)  
PGA/MUX Enabled; AMC = 1  
(20 Hz to 20 kHz, –60 dB Input)  
103  
106  
106  
–87  
–104  
dB  
dB  
dB  
dB  
dB  
Input = –0.5 dBFS  
Input = –20 dBFS  
Analog Inputs  
Differential Input Range (± Full Scale)  
Input Impedance (PGA/MUX)  
Input Impedance (ByPass)  
Input Impedance (PGA/MUX)  
VREF  
DC Accuracy  
Gain Error  
Interchannel Gain Mismatch  
Gain Drift  
Crosstalk (EIAJ Method)  
–2.828  
+2.828  
V
8
40  
4
kW  
kW  
kW  
V
Differential  
Differential  
Single Ended  
2.138  
–0.2  
2.25  
2.363  
+0.2  
–10  
–0.01  
100  
%
dB  
ppm/C  
dB  
–100  
–3–  
REV. 0  
 
AD1871–SPECIFICATIONS  
LO W-P ASS D IGITAL FILTER CH ARACTERISTICS ( fS = 48 kH z)  
P aram eter  
Min  
Typ  
Max  
Unit  
Decimation Factor  
Pass-Band Frequency  
Stop-Band Frequency  
Pass-Band Ripple  
Stop-Band Attenuation  
Group Delay  
128  
21.77  
26.23  
± 0.01  
120  
kHz  
kHz  
dB  
dB  
ms  
910  
LO W-P ASS D IGITAL FILTER CH ARACTERISTICS ( fS = 96 kH z)  
P aram eter  
Min  
Typ  
Max  
Unit  
Decimation Factor  
Pass-Band Frequency  
Stop-Band Frequency  
Pass-Band Ripple  
Stop-Band Attenuation  
Group Delay  
64  
43.54  
52.46  
± 0.01  
120  
kHz  
kHz  
dB  
dB  
ms  
460  
H IGH -P ASS D IGITAL FILTER CH ARACTERISTICS ( fS = 48 kH z)  
P aram eter  
Min  
Typ  
Max  
Max  
Unit  
Cutoff Frequency  
2
Hz  
H IGH -P ASS D IGITAL FILTER CH ARACTERISTICS ( fS = 96 kH z)  
P aram eter  
Min  
Typ  
Unit  
Cutoff Frequency  
4
Hz  
MASTER CLO CK (MCLK) AND RESET TIMING  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tMCH  
tMCL  
tPDR  
MCLK High Width  
MCLK Low Width  
RESET Low Pulsewidth  
20  
20  
20  
ns  
ns  
ns  
tMCH  
MCLK  
tMCL  
RESET  
tPDR  
Figure 1. MCLK/ RESET Timing  
–4–  
REV. 0  
AD1871  
D ATA INTERFACE TIMING (STAND ALO NE MO D EMASTER)  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tBDLY  
tBLDLY  
tBDDLY  
BCLK Delay  
LRCLK Delay to Low  
DOUT Delay  
20  
10  
10  
ns  
ns  
ns  
From MCLK Rising  
From BCLK Falling  
From BCLK Falling  
MCLK  
tBDLY  
BCLK  
tBLDLY  
LRCLK  
DOUT  
tBDDLY  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB–1  
DOUT  
I S-JUSTIFIED  
2
MSB  
MODE  
DOUT  
RIGHT-JUSTIFIED  
MODE  
LSB  
MSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 2. Master Data Interface Timing  
–5–  
REV. 0  
AD1871  
D ATA INTERFACE TIMING (STAND ALO NE MO D ESLAVE)  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tBCH  
tBCL  
tBDSD  
tLRS  
BCLK High Width  
BCLK Low Width  
DOUT Delay  
LRCLK Setup  
LRCLK Hold  
30  
30  
ns  
ns  
ns  
ns  
ns  
20  
10  
5
From BCLK Falling  
To BCLK Rising  
From BCLK Rising  
tLRH  
tBCH  
tDBP  
BCLK  
tBCL  
tLRS  
LRCLK  
DOUT  
tBDSD  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB–1  
DOUT  
I S-JUSTIFIED  
2
MSB  
MODE  
DOUT  
RIGHT-JUSTIFIED  
MODE  
LSB  
MSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 3. Slave Data Interface Timing  
–6–  
REV. 0  
AD1871  
D ATA INTERFACE TIMING (CASCAD E MO D EMASTER)  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tBCHDC  
tBCLDC  
tBLRDC  
tBDDC  
tBDIS  
BCLK High Delay  
BCLK Low Delay  
LRCLK Delay  
DOUT Delay  
DIN Setup  
20  
20  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
From MCLK Rising  
From MCLK Falling  
From BCLK Rising  
From BCLK Rising  
To BCLK Rising  
tBDIH  
DIN Hold  
From BCLK Rising  
MCLK  
tBCHDC  
tBCLDC  
LRCLK  
tBLRDC  
BCLK  
DOUT  
tBDDC  
Figure 4. Master Cascade Interface Timing  
D ATA INTERFACE TIMING (CASCAD E MO D ESLAVE)  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tBCHC  
tBCLC  
tBDSDC  
tLRSC  
tLRHC  
tBDIS  
BCLK High Width  
BCLK Low Width  
DOUT Delay  
LRCLK Setup  
LRCLK Hold  
DIN Setup  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
10  
5
10  
10  
From BCLK Rising  
To BCLK Rising  
From BCLK Rising  
To BCLK Rising  
From BCLK Rising  
tBDIH  
DIN Hold  
tLRHC  
LRCLK  
tBCHC  
tLRSC  
BCLK  
DOUT  
tBCLC  
tBDSDC  
Figure 5. Slave Cascade Interface Timing  
D ATA INTERFACE TIMING (MO D ULATO R MO D E)  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tMOCH  
tMOCL  
tMHDD  
tMLDD  
tMMDR  
tMMDF  
MODCLK High Width  
MODCLK Low Width  
MOD DATA High Delay  
MOD DATA Low Delay  
MODCLK Delay Rising  
MODCLK Delay Falling  
MCLK  
MCLK  
30  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
From MCLK Rising  
From MCLK Falling  
MCLK Falling to MODCLK Rising  
MCLK Falling to MODCLK Falling  
20  
tMOCH  
MODCLK  
tMOCL  
tMHDD  
D[0– 3]  
tMLDD  
Figure 6. Modulator Mode Timing  
–7–  
REV. 0  
AD1871  
CO NTRO L INTERFACE (SP I) TIMING  
Mnem onic  
D escription  
Min  
Typ  
Max  
Unit  
Com m ent  
tCCH  
tCCL  
tCCP  
tCDS  
tCDH  
tCLS  
tCLH  
tCOE  
tCOD  
tCOTS  
CCLK High Width  
CCLK Low Width  
CCLK Period  
CDATA Setup Time  
CDATA Hold Time  
CLATCH Setup Time  
CLATCH Hold Time  
COUT Enable  
40  
40  
80  
10  
10  
10  
10  
15  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
To CCLK Rising  
From CCLK Rising  
To CCLK Rising  
From CCLK Rising  
From CLATCH Falling  
From CCLK Falling  
From CLATCH Rising  
COUT Delay  
COUT Three-State  
tCCH  
CCLK  
tCCL  
tCCL  
CLATCH  
CIN  
tCSU  
tCLH  
D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00  
tCHD  
COUT  
D09 D08 D07 D06 D05 D04 D03 D02 D01 D00  
Figure 7. Control Interface Timing  
D IGITAL I/O  
P aram eter  
Min  
Typ  
Max  
Unit  
Input Voltage High (VIH)  
2.4  
V
Input Voltage Low (VIL)  
0.8  
10  
10  
V
Input Leakage (IIH @ VIH = 5 V)  
Input Leakage (IIL @ VIL = 0 V)  
Output Voltage High (VOH @ IOH = –2 mA)  
Output Voltage Low (VOL @ IOL = +2 mA)  
Input Capacitance  
mA  
mA  
V
V
pF  
ODVDD – 0.4 V  
0.4  
15  
P O WER  
P aram eter  
Min  
Typ  
Max  
Unit  
Supplies  
Voltage, AVDD, and DVDD  
Voltage, ODVDD  
Analog Current  
Analog Current—Power-Down (MCLK Running)  
Digital Current, DVDD  
Digital Current, ODVDD  
Digital Current—Power-Down (MCLK Running) DVDD*  
Digital Current—Power-Down (MCLK Running) ODVDD*  
Power Supply Rejection  
4.5  
2.7  
5
5.5  
5.5  
45  
6.0  
22  
1.0  
2.0  
15.0  
V
V
40  
4.0  
18  
0.5  
0.8  
1.0  
mA  
mA  
mA  
mA  
mA  
mA  
1 kHz 300 mV p-p Signal at Analog Supply Pins  
20 kHz 300 mV p-p Signal at Analog Supply Pins  
–86  
–77  
dB  
dB  
*RESET held low.  
TEMP ERATURE RANGE  
P aram eter  
Min  
Typ  
25  
Max  
Unit  
Specifications Guaranteed  
Functionality Guaranteed  
Storage  
C  
C  
C  
–40  
–65  
+105  
+150  
Specifications subject to change without notice.  
–8–  
REV. 0  
AD1871  
ABSO LUTE MAXIMUM RATINGS  
Min  
Typ  
Max  
Unit  
DVDD to DGND and ODVDD to DGND  
AVDD to AGND  
Digital Inputs  
Analog Inputs  
AGND to DGND  
0
0
6
6
V
V
V
V
V
DGND – 0.3  
AGND – 0.3  
–0.3  
DVDD + 0.3  
AVDD + 0.3  
+0.3  
Reference Voltage  
Soldering (10 sec)  
Indefinite Short Circuit to Ground  
300  
C  
O RD ERING GUID E  
P ackage  
P ackage  
Model  
Tem perature  
D escription  
O ption  
AD1871YRS  
AD1871YRS-REEL  
–40C to +105C  
–40C to +105C  
SSOP  
SSOP  
RS-28  
RS-28 in 13Reel (1500 pieces)  
EVAL-AD1871EB  
Evaluation Board  
P IN CO NFIGURATIO N  
1
2
28  
MCLK  
LRCLK  
27  
BCLK  
CCLK/(256/512)  
COUT/(DF0)  
CIN/(DF1)  
3
26  
DOUT  
4
25  
DIN  
5
24  
CLATCH/(M/S)  
RESET  
6
23  
DVDD  
ODVDD  
AD1871  
TOP VIEW  
(Not to Scale)  
7
22  
DGND  
XCTRL  
AVDD  
DGND  
8
21  
20  
19  
18  
17  
16  
15  
CASC  
9
AGND  
VINRN  
VINRP  
CAPRN  
CAPRP  
AGND  
10  
11  
12  
13  
14  
VINLN  
VINLP  
CAPLN  
CAPLP  
VREF  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD1871 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–9–  
AD1871  
P IN FUNCTIO N D ESCRIP TIO NS  
P in  
No.  
Input/  
O utput  
Mnem onic  
D escription  
1
2
3
I
MCLK  
Master Clock. The master clock input determines the sample rate of the device. MCLK  
can be 256, 512, or 768 times the sampling frequency.  
I
CCLK1  
Control Port Bit Clock—clock signal for control port (SPI) interface. This pin is recon-  
figured in the External Control Mode (Pin XCTRL is high), see below.  
Control Port Data Out—serial data output from the control port (SPI) interface (in read-  
back). This pin is reconfigured in the External Control Mode (Pin XCTRL is high), see  
below; or in Modulator Mode (Bit MME of Control Register II is set), see below.  
Control Port Data Input—serial data input for control port (SPI) interface. This pin is  
reconfigured in the External Control Mode (Pin XCTRL is high), see below.  
Control Port Frame Sync—frame sync (framing signal) for control port (SPI) interface.  
This pin is reconfigured in the External Control Mode (Pin XCTRL is high), see below.  
5 V Digital Core Supply  
I/O  
COUT1, 2  
4
5
I
I
CIN1  
CLATCH1  
6
7
8
I
I
I
DVDD  
DGND  
XCTRL  
Digital Ground  
External Control Enable. This pin is used to select the Control Mode for the device.  
When XCTRL is low, control is via the SPI compatible control port (Pins CCLK, CLATCH,  
CIN, and COUT). When XCTRL is enabled (high), control of several device functions  
is possible by hardware pin strapping (Pins 256/512, M/S, DF1, and DF0). In External  
Control Mode, all other functions are in default state (please refer to the Control Register  
Descriptions and External Control section).  
9
I
I
I
I/O  
I/O  
O
AVDD  
VINLN  
VINLP  
CAPLN  
CAPLP  
VREF  
5 V Analog Supply  
Left Channel, Negative Input (via MUX/PGA)  
Left Channel, Positive Input (via MUX/PGA)  
10  
11  
12  
13  
14  
Left External Filter Capacitor (Negative Input to Modulator)  
Left External Filter Capacitor (Positive Input to Modulator)  
Reference Voltage Output. It is recommended to connect a capacitor combination of 10 mF  
in parallel with 0.1 mF between VREF and AGND (Pin 15). (See Layout Recommendations.)  
Analog Ground  
Right External Filter Capacitor (Positive Input to Modulator)  
Right External Filter Capacitor (Negative Input to Modulator)  
Right Channel, Positive Input (via MUX/PGA)  
Right Channel, Negative Input (via MUX/PGA)  
Analog Ground  
Cascade Enable. This pin enables cascading of up to four AD1871 devices to a single  
DSP serial port (see Cascading section).  
15  
16  
17  
18  
19  
20  
21  
I
I/O  
I/O  
I
I
I
I
AGND  
CAPRP  
CAPRN  
VINRP  
VINRN  
AGND  
CASC  
22  
23  
24  
25  
I
I
I
I/O  
DGND  
ODVDD  
RESET  
DIN2  
Digital Ground  
Digital Interface Supply. The digital interface can operate from 3.3 V to 5.0 V (nominal).  
Reset  
Serial Data Input. Serial data input pin, only valid when the device is configured in Cas-  
cade Mode (Pin CASC is high). This pin is reconfigured in Modulator Mode (Bit MME  
of Control Register II is set), see below.  
Audio Serial Data Output. This pin is reconfigured in Modulator Mode (Bit MME of  
Control Register II is set), see below.  
Audio Serial Bit Clock. The bit clock is the audio data serial clock and determines the  
rate of audio data transfer. This pin is reconfigured in Modulator Mode (Bit MME of  
Control Register II is set), see below.  
26  
27  
O
DOUT2  
BCLK2  
I/O  
28  
I/O  
LRCLK2  
Left/Right Clock. This clock, also known as the word clock, determines the sampling rate.  
It is an output or input depending on the status of Master/Slave. This pin is reconfigured  
in Modulator Mode (Bit MME of Control Register II is set), see below.  
NOTES  
1External Control Mode (See pg 11)  
2Modulator Mode (See pg 11)  
–10–  
REV. 0  
AD1871  
P in Function Redefinition in Exter nal Contr ol Mode  
P in  
No.  
Input/  
O utput  
Mnem onic  
D escription  
2
3
4
5
I
I
I
I
256/512  
Clock Rate Select. This pin is used to select between an MCLK of 256 fS (pin low) or  
512 fS (pin high).  
Data Format Select 0. This pin is used as the low bit (DF0) of the data format selection  
(see section on External Control).  
Data Format Select 1. This pin is used as the high bit (DF1) of the data format selection  
(see section on External Control).  
Master/Slave Select. This pin is used to select between the Master (pin low) or Slave (pin  
DF0  
DF1  
M/S  
high) Modes.  
P in Function Redefinition in Modulator Mode  
P in  
No.  
Input/  
O utput  
Mnem onic  
D escription  
3
O
MODCLK  
This pin provides a clock output that allows the user to decode the left and right channel  
modulator outputs. It is similar to a left/right clock but runs (nominally) at 5.6448 MHz  
and gates a 4-bit modulator output word in each phase (see section on Modulator Mode).  
Bit 3 of the Modulator Output Word  
Bit 2 of the Modulator Output Word  
Bit 1 of the Modulator Output Word  
25  
26  
27  
28  
O
O
O
O
D3  
D2  
D1  
D0  
Bit 0 of the Modulator Output Word  
REV. 0  
–11–  
AD1871  
Cr osstalk (EIAJ Method)  
TERMINO LO GY  
Ratio of response on one channel with a grounded input to a  
full-scale 1 kHz sine-wave input on the other channel, expressed  
in decibels.  
D ynam ic Range  
The ratio of a full-scale input signal to the integrated input  
noise in the pass band (20 Hz to 20 kHz), expressed in decibels  
(dB). Dynamic range is measured with a –60 dB input signal  
and is equal to (S/[THD+N]) + 60 dB. Note that spurious  
harmonics are below the noise with a –60 dB input, so the  
noise level establishes the dynamic range. The dynamic range  
is specified with and without an A-Weight filter applied.  
P ower Supply Rejection  
With no analog input, signal present at the output when a  
300 mV p-p signal is applied to power supply pins, expressed in  
decibels of full scale.  
Gr oup D elay  
Signal to (Total H ar m onic D istor tion + Noise)  
(S/[TH D +N])  
The ratio of the root-mean-square (rms) value of the fundamen-  
tal input signal to the rms sum of all other spectral components  
in the pass band, expressed in decibels (dB).  
Intuitively, the time interval required for an input pulse to  
appear at the converter’s output, expressed in milliseconds (ms).  
More precisely, the derivative of radian phase with respect to  
radian frequency at a given frequency.  
GLO SSARY  
P ass Band  
ADC—Analog-to-Digital Converter  
The region of the frequency spectrum unaffected by the attenu-  
ation of the digital decimator’s filter.  
DSP—Digital Signal Processor  
P ass-Band Ripple  
IMCLK—Internal master clock signal, used to clock the deci-  
mating filter section. (Its frequency must be 256 ¥ fS.)  
The peak-to-peak variation in amplitude response from equal-  
amplitude input signal frequencies within the pass band, expressed  
in decibels.  
MCLK—External master clock signal applied to the AD1871.  
Its frequency can be 256, 512, or 768 ¥ fS. MCLK is divided  
internally to give an IMCLK frequency that must be 256 ¥ fS.  
Stop Band  
The region of the frequency spectrum attenuated by the digital  
decimator’s filter to the degree specified by stop-band attenuation.  
MODCLK—This is the -modulator clock that determines  
the sample rate of the modulator. Ideally, it should not exceed  
the lower of 6.144 MHz or 128 ¥ fS. The MODCLK is derived  
from the IMCLK by a divider that can be selected as /2 or /4.  
Gain Er r or  
With a near full-scale input, the ratio of the actual output to the  
expected output, expressed as a percentage.  
MUX—Multiplexer  
Inter channel Gain Mism atch  
With identical near full-scale inputs, the ratio of the outputs of  
the two stereo channels, expressed in decibels.  
PGA—Programmable Gain Amplifier  
Gain D r ift  
Change in response to a near full-scale input with a change in  
temperature, expressed as parts-per-million (ppm) per C.  
–12–  
REV. 0  
Typical Performance Characteristics–AD1871  
FILTER RESP O NSES  
0
–20  
–40  
–60  
–80  
0
–20  
–40  
–60  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
–160  
–160  
0
5
10  
15  
0
5
10  
15  
FREQUENCY – NORMALIZED TO fS  
FREQUENCY – NORMALIZED TO fS  
TPC 1. Sinc Filter Response (AMC = 0)  
TPC 4. Second Half-Band Filter Response  
0
0
–20  
–40  
–60  
–80  
–50  
–100  
–150  
–100  
–120  
–140  
–160  
0
5
10  
15  
0
5
10  
15  
FREQUENCY – NORMALIZED TO fS  
FREQUENCY – NORMALIZED TO fS  
TPC 5. Composite Filter Response (AMC = 0)  
TPC 2. First Half-Band Filter Response  
0
0
–20  
–40  
–60  
–80  
–50  
–100  
–120  
–100  
–150  
–140  
–160  
0
0.5  
1.0  
1.5  
2.0  
0
5
10  
15  
FREQUENCY – NORMALIZED TO fS  
FREQUENCY – NORMALIZED TO fS  
TPC 3. Comb Compensation Filter Response  
TPC 6. Composite Filter Response (Pass Band Section)  
(AMC = 0)  
–13–  
REV. 0  
AD1871  
D EVICE P ERFO RMANCE CURVES  
5
0
0
–20  
–40  
–5  
–60  
–10  
–80  
–100  
–120  
–140  
–160  
–180  
–15  
–20  
–25  
–30  
0
5
10  
15  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY – Hz  
kHz  
TPC 7. High-Pass Filter Response, fS = 48 kHz  
TPC 10. 1 kHz Tone at –20 dBFS, (32 k-Point FFT), fS = 48 kHz  
5
0
0
–20  
–40  
–5  
–60  
–10  
–80  
–100  
–120  
–140  
–160  
–180  
–15  
–20  
–25  
–30  
0
5
10  
15  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY – Hz  
kHz  
TPC 8. High-Pass Filter Response, fS = 96 kHz  
TPC 11. 1 kHz Tone at –60 dBFS, (32 k-Point FFT),  
fS = 48 kHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
2
4
6
8
10  
12  
14  
16  
18  
20  
dBr  
kHz  
TPC 9. 1 kHz Tone at –0.5 dBFS, (32 k-Point FFT), fS = 48 kHz  
TPC 12. THD+N vs. Input Amplitude at 1 kHz, fS = 48 kHz  
–14–  
REV. 0  
AD1871  
–60  
0
–10  
–20  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.1  
FREQUENCY–MHz  
kHz  
TPC 13. THD+N vs. Input Frequency at –0.5 dBFS, fS = 48 kHz  
TPC 15. FFT of Modulator Output at –0.5 dBFS, fS = 6.144 MHz  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
2
4
6
8
10  
12  
14  
16  
18  
20  
kHz  
TPC 14. Channel Separation vs. Frequency at –0.5 dBFS, fS  
= 48 kHz  
REV. 0  
–15–  
AD1871  
FUNCTIO NAL D ESCRIP TIO N  
Clocking Schem e  
shown in Figure 8. The divide options can be chosen from pass-  
through (/1), /2, or /3 corresponding with 256 ¥ fS, 512 ¥ fS, or  
768 ¥ fS MCLKs, respectively. The MCLK divider can be con-  
trolled using the MCD1–MCD0 Bits of Control Register III.  
(see Table XIII.)  
The MCLK pin is the input for the master clock frequency to  
the device. Nominally the MCLK frequency will be 256 ¥ fS for  
correct operation of the device. However, if the user’s MCLK is  
a multiple of 256 ¥ fS (perhaps 512 ¥ fS or 768 ¥ fS), it is possible  
to divide down the MCLK frequency to a suitable internal master  
clock frequency (IMCLK) using the MCLK divider block as  
The resulting internal MCLK (IMCLK) is used to run the  
decimating and filtering engine and must be chosen to be at a  
ratio of 256 ¥ fS.  
AMC BIT  
(CONT REG I)  
0/1  
HPE BIT  
(CONT REG I)  
HIGH-PASS  
FILTERS  
48kHz/  
96kHz  
384kHz/  
768kHz  
48kHz/  
96kHz  
ANALOG  
INPUT  
6.144MHz  
-⌬  
MODULATOR  
SINC  
FILTER  
HALF-BAND  
FILTERS  
MODCLK  
6.144MHz  
IMCLK  
DIVIDER  
/2  
/4  
IMCLK  
12.288MHz/  
24.576MHz  
MCLK  
DIVIDER  
/1  
/2  
/3  
MCLK  
Figure 8. Clocking Scheme to Modulator and Filter Engine  
Modulator  
clock (MODCLK) as a ratio from the IMCLK. The modulator  
clock divider options are /2 (default) for 48 kHz operation and  
/4 for 96 kHz operation. When operating with an IMCLK of  
12.288 MHz, the default divider setting (/2) gives a modulator clock  
of 6.144 MHz. When operating with an IMCLK of 24.576 MHz,  
the alternate divider setting (/4) gives a modulator clock of  
6.144 MHz (see Figure 8).  
The AD1871’s analog -modulator section comprises a  
second order multibit implementation using Analog Device’s  
proprietary technology for best performance. As shown in  
Figure 9, the two analog integrator blocks are followed by a  
Flash ADC section that generates the multibit samples. The  
output of the Flash ADC, which is thermometer encoded, is decoded  
to binary for output to the filter sections and is scrambled for  
feedback to the two integrator stages.  
If it is required to operate the device at a different output sample  
rate than those detailed above, perhaps 44.1 kHz or 88.2 kHz,  
the decimation filter cutoff characteristics can then be determined  
from the normalized frequency response plot shown in TPC 6.  
The modulator is optimized for operation at a sampling rate  
of 6.144 MHz (which is 128 ¥ fS at 48 kHz sampling and  
64 ¥ fS at 96 kHz sampling). The modulator clock control  
(AMC Bit in Control Register I) is used to select the modulator  
THERMO-  
METER  
TO  
BINARY  
DECODER  
FROM  
ANALOG  
INPUT  
SECTION  
DIGITAL  
OUTPUT  
(4 BITS/6.144MHz)  
FLASH  
ADC  
͐
͐
SCRAMBLER  
FEEDBACK DACs  
Figure 9. Modulator Block Diagram  
–16–  
REV. 0  
AD1871  
D igital D ecim ating Filter s  
The filtering and decimation of the AD1871’s modulator data  
stream is implemented in an embedded DSP engine. The first  
stage of filtering is the sinc filtering, which has selectable deci-  
mation (selected by the modulator clock control bit (AMC, see  
Modulator section). The default decimation in the sinc stage  
provides a sample rate reduction of 16; this corresponds with a  
MODCLK rate of 128 ¥ fS. The alternate setting of the AMC  
Bit gives a sinc decimation factor of 8 that corresponds with a  
MODCLK rate of 64 ¥ fS. The output of the sinc decimator  
stage is at a rate of 8 ¥ fS.  
CAPxN  
VINxP  
VINxN  
CAPxP  
V
CM  
V
CM  
Figure 10. Differential Analog Input  
In Single-Ended Mode, either VINxP or VINxN can be selected  
as the input. The pair of input inverting amplifiers is reconfig-  
ured as a single-ended-to-differential conversion stage. Again the  
outputs of the differential section are connected to Pins CAPxP  
and CAPxN (see Figure 11).  
The filter engine implements two half-band FIR filter sections  
and a sinc compensation stage that together give a further  
decimation factor of 8. Please refer to TPCs 1 through 4 for  
details on the responses of the sinc and FIR filter sections.  
TPC 5 gives the composite response of the sinc and FIR filters.  
H igh-P ass Filter  
The AD1871 features an optional high-pass filter section that  
provides the ability of rejecting dc from the output data stream.  
The high-pass filter is enabled by setting Bit 8 (HPE) of Control  
Register I to 1. Please refer to TPC 7 and TPC 8 for details of  
the high-pass filter characteristics.  
CAPxN  
VINxP  
CAPxP  
VINxN  
V
CM  
V
AD C Coding  
CM  
The ADC’s output data stream is in a two’s complement  
encoded format. The word width can be selected from 16 bits,  
20 bits, or 24 bits (see Table VI and Table VII). The coding  
scheme is detailed in Table I.  
Figure 11. Single-Ended Analog Input  
The analog input section is enabled (powered ON) by default  
on reset. If it is required to bypass the analog input section by  
using the modulator input pins (CAPxP and CAPxN) directly,  
then the analog input section must be powered down by setting  
Bits MER and MEL in Control Register III.  
Table I. AD C Coding  
Code  
Level  
011111.......1111  
000000........0000  
100000........0001  
+Full Scale  
0 (Ref Level)  
–Full Scale  
Ser ial D ata Inter face  
The AD1871’s serial data interface consists of three pins  
(LRCLK, BCLK, and SDATA). LRCLK is the framing sig-  
nal for left and right channel samples and its frequency is  
equal to the sampling frequency (fS). BCLK is the serial clock  
used to clock the data samples from the AD1871 and its fre-  
quency is equal to 64 ¥ fS (giving 32 BCLK periods for each  
of the left and right channels). SDATA outputs the left and right  
channel sample data coincident with the falling edge of BCLK.  
Analog Input Section  
The analog input section comprises a differential PGA stage.  
It can also be configured for single-ended inputs, allowing  
two such inputs to be selected via a multiplex switch. The  
PGA has five gain settings (see Table V) ranging from 0 dB  
to 12 dB in 3 dB steps.  
In Differential Mode, the VINxP and VINxN input pins are  
connected to a pair of inverting amplifiers whose outputs are  
connected to the CAPxN and CAPxP pins, respectively.  
(See Figure 10.)  
The serial data interface supports all the popular audio interface  
standards, such as I2S, left-justified (LJ), and right-justified (RJ), as  
well as the serial interfaces of modern DSPs. The Interface Mode is  
selected by programming the Bits DF1–DF0 of Control Register II  
(see Tables VI and VIII).  
The data sample width can be selected from 16, 20, or 24 bits by  
programming Bits WW1–WW0 of Control Register II (see  
Tables VI and VII).  
REV. 0  
–17–  
AD1871  
I2S Mode  
the beginning of the left channel data transfer, while a low-to-  
high transition on the LRCLK signifies the beginning of the  
right channel data transfer (see Figure 12).  
In I2S Mode, the data is left-justified, MSB first, with the MSB  
placed in the second BCLK period following the transition of  
the LRCLK. A high-to-low transition of the LRCLK signifies  
LRCLK  
BCLK  
DOUT  
LEFT CHANNEL  
RIGHT CHANNEL  
MSB1 MSB2  
LSB+2 LSB+1  
MSB MSB1 MSB2  
LSB+2 LSB+1 LSB  
MSB  
MSB  
LSB  
Figure 12. I2S Mode  
LJ Mode  
beginning of the right channel data transfer, while a low-to-high  
transition on the LRCLK signifies the beginning of the left  
channel data transfer (see Figure 13).  
In LJ Mode, the data is left-justified, MSB first, with the MSB  
placed in the first BCLK period following the transition of the  
LRCLK. A high-to-low transition of the LRCLK signifies the  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
MSB1 MSB2  
LSB+2 LSB+1  
MSB1 MSB2  
LSB+2 LSB+1  
MSB1  
MSB  
LSB  
MSB  
LSB  
MSB  
DOUT  
Figure 13. Left-Justified Mode  
RJ Mode  
the beginning of the right channel data transfer, while a low-to-  
high transition on the LRCLK signifies the beginning of the left  
channel data transfer (see Figure 14).  
In RJ Mode, the data is right-justified, LSB last, with the  
LSB placed in the last BCLK period preceding the transition  
of the LRCLK. A high-to-low transition of the LRCLK signifies  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
DOUT  
MSB–1  
LSB+1  
LSB+2  
MSB–2  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
LSB  
MSB  
LSB  
MSB  
Figure 14. Right-Justified Mode  
DSP Mode  
In I2S and LJ Modes, since the data is left-justified, differences in  
data word-width between the AD1871 and the controller are not  
catastrophic since the MSBs are guaranteed to be transferred.  
There may, however, be a slight reduction in performance  
depending on the scale of the mismatch. In RJ Mode, however,  
differences in word-width between the AD1871 and controller  
have a catastrophic effect on signal performance as the MSBs  
of each sample may be lost due to the mismatch.  
In DSP Mode, the LRCLK signal becomes a frame sync signal  
that pulses high for the BCLK period prior to the MSB (or in  
the BCLK period of the previous LSB–32 bits). The data is left-  
justified, MSB first, with the MSB placed in the BCLK period  
following the LRCLK pulse (see Figure 15).  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
DOUT  
MSB–1  
LSB+2 LSB+1  
MSB–1  
LSB+2 LSB+1  
MSB–1  
MSB  
LSB  
MSB  
LSB  
MSB  
Figure 15. DSP Mode  
–18–  
REV. 0  
AD1871  
Ca sca de Mode  
The DSP can be the master and supply the frame sync and  
serial clock to the AD1871s, or one of the AD1871s can be  
set as the master with the DSP and all other AD1871s set to  
slave. Each sampling period begins with a frame sync being gener-  
ated either by the DSP or one of the AD1871s, depending on  
the Master/Slave selection. The frame-sync pulse causes each  
device to load the 64-Bit Data I/O Register with the left and  
right ADC results. These results are then clocked toward the  
DSP where they are received in the following order: Device 1,  
Left; Device 1, Right; Device 2, Left; Device 2, Right; Device 3,  
Left; Device 3, Right; Device 4, Left; and Device 4, Right.  
The AD1871 supports cascading of up to four devices in a  
daisy-chain configuration to the serial port of a DSP. In Cascade  
Mode, each device loads an internal 64-Bit Shift Register with  
the results of the left and right channel conversions. The 64-  
Bit Register is split into two subframes of 32 bits each; the first  
for left channel data and the second for right channel data.  
The results are left-justified, MSB first within the subframes,  
and the word-width setting in Control Register II applies.  
Remaining bits within the subframe, beyond the conversion  
word-width, are set to zero. Please refer to Figure 16.  
Up to four devices can be connected in a daisy chain as shown  
in Figure 17. All devices must be set in Cascade Mode by tying  
the CASC pin of each device to a logic high. The first device in  
the chain (Device 4) has its DIN pin tied to logic low. Its  
DOUT pin is connected to the DIN pin of Device 3 whose  
DOUT is in turn connected to the DIN pin of Device 2. This  
daisy chaining is continued until the DOUT of Device 1 is  
connected to the DSP’s serial port RX data line (DR0). The  
DSP’s RX serial clock (RXCLK0) is connected to the BCLK  
pin of all AD1871 devices and the DSP’s RX frame sync (RFS0)  
is connected to the LRCLK pin of all AD1871 devices.  
The DSP’s serial port must be programmed to accept 32-bit  
word lengths regardless of the AD1871 word length. The number  
of sample words to be accepted per sample interval will be  
determined by the number of AD1871 devices in cascade, up  
to a maximum of eight words corresponding with the maximum  
number of four devices.  
Figure 17 also shows the connection of a separate DSP serial port  
interface to the control port (SPI) interface of the cascaded  
AD1871s. Again this cascade is implemented as a daisy chain,  
where the control words for the four devices are output in  
sequence (depending on the hookup – 1, 2, 3, and 4 in the  
example) to be latched simultaneously at each device by the  
common CLATCH. In this mode, it is necessary to send a  
control word for each device (16 bits the number of devices)  
from the SPI port of the control host. The CLATCH signal can  
be controlled from a separate programmable output line. It is  
also possible to have individual read/write of the AD1871s  
using separate CLATCH controls for each device.  
24-BIT RESULT  
24-BIT RESULT  
20-BIT RESULT  
20-BIT RESULT  
16-BIT RESULT  
16-BIT RESULT  
32-BIT LEFT SUBFRAME  
32-BIT RIGHT SUBFRAME  
64-BIT FRAME  
When using Cascade Mode, the data interface defaults to left-  
justified, MSB first data, regardless of the state of the Interface  
Mode selection (by SPI or external control).  
Figure 16. DSP Mode  
The timing relationships of the Cascade Mode are shown in  
Figure 18.  
DT1  
DR1  
TXCLK1/RXCLK1  
TFS1/RFS1  
ADSP-21xxx  
SHARC DSP  
AD1871 No.1  
AD1871 No.2  
AD1871 No.3  
AD1871 No.4  
RFS0  
RXCLK0  
DR0  
Figure 17. DSP Mode  
REV. 0  
–19–  
AD1871  
LRCLK  
BCLK  
DOUT  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
BCLK  
DOUT  
MSB MSB  
LSB  
+1  
MSB MSB  
LSB  
+1  
LSB  
24  
LSB  
24  
MSB  
1
MSB  
1
– 1  
– 2  
– 1  
– 2  
2
3
23  
2
3
23  
LEFT CHANNEL  
RIGHT CHANNEL  
Figure 18. Cascade Mode Data Interface Timing  
CLATCH  
CCLK  
CIN  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
CCLK  
CIN  
MSB  
– 1  
LSB  
+1  
LSB  
MSB  
Figure 19. Cascade Mode Control Port Timing  
CO NTRO L/STATUS REGISTERS  
The SPI compatible control port features four signals (CCLK,  
CLATCH, CDATA, and COUT). The CLATCH signal is an  
enable line that must be low to allow communication to or from  
the control port. The CCLK is the serial clock that clocks in  
serial data via the CDATA pin and clocks out serial data via the  
COUT pin. Figures 20 and 21 show details of the control port  
timing.  
The AD1871’s Operating Mode is set by programming three,  
10-bit Control Registers via an SPI compatible port. Table III  
details the format of the AD1871 control words, which are 16  
bits wide with a 4-bit address field in Positions 15 through 12,  
a Read/Write Bit in Position 11, a Reserved Bit in Position 10,  
and 10 bits of register data (corresponding to the control regis-  
ter width) in Positions 9 through 0. The three control words  
occupy Addresses 0000b through 0010b in the register map (see  
Table II).  
Table II. Register Address Map  
Address  
Control Register  
The AD1871 also features two readback (status) registers that  
can be enabled to track the peak reading on each of the chan-  
nels (left and right). These 6-bit results are read back via the  
SPI compatible port in a 16-bit frame similar to that of the  
control words.  
0000  
0001  
0010  
0011  
0100  
Control Register I  
Control Register II  
Control Register III  
Peak Reading Register I  
Peak Reading Register II  
–20–  
REV. 0  
AD1871  
Table III. Control/Status Word Form at  
15-12  
11  
10  
9
6
5
4
3
2
1
0
Address  
R/W  
Reserved  
Control/Status Data Bits (9–0)  
CCLK  
CLATCH  
CIN  
D15 D14  
D13  
D12 D11 D10 D09  
D08 D07 D06 D05  
D04  
D03 D02  
D01  
D00  
COUT  
Figure 20. Writing to Register Using Control Port  
CCLK  
CLATCH  
CIN  
D15 D14  
D13 D12  
D11 D10 D09  
D08 D07 D06 D05 D04  
D03 D02  
D01  
D00  
D00  
D09 D08  
D07 D06 D05  
D04 D03  
D02 D01  
COUT  
Figure 21. Reading from Register Using Control Port  
Table IV. Control Register I (Address 0000b, Write O nly)  
15–12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0000  
0
0
PRE  
HPE  
PD  
AMC  
AGL2  
AGL1  
AGL0  
AGR2  
AGR1  
AGR0  
9
8
7
6
5–3  
2–0  
PRE  
HPE  
PD  
AMC  
AGL2–AGL0  
AGR2–AGL0  
Peak Reading Enable (0 = Disabled (Default); 1 = Enabled)  
High-Pass Filter Enable (0 = Disabled (Default); 1 = Enabled)  
Power-Down Control (1 = Power-Down; 0 = Normal Operation (Default))  
ADC Modulator Clock (1 = 64 ¥ fS; 0 = 128 ¥ fS (Default))  
Input Gain (Left Channel, see Table V)  
Input Gain (Right Channel, see Table V)  
Table V. Analog Gain Settings  
Contr ol Register I  
Control Register I contains bit settings for control of analog  
front end gain, modulator clock selection, power-down control,  
high-pass filtering, and peak hold.  
AGx2  
AGx1 AGx0  
Gain (dB)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0 (Default)  
3
6
9
12  
0
0
Ana log Ga in Contr ol  
The AD1871 features an optional analog front end with select-  
able gain. Gain is selected using three control bits for each channel,  
giving five separate and independent gain settings on each channel.  
Bits 2 through 0 (AGR2–AGR0) set the analog gain for the right  
channel, while Bits 5 through 3 (AGL2–AGL0) set the analog  
gain for the left channel. Table V shows the analog gain corre-  
sponding to the bit settings in AGx2–ADx0.  
0
REV. 0  
–21–  
AD1871  
Modula tor Clock  
Mode, digital activity is suspended and analog sections are  
powered down, with the exception of the reference.  
The modulator clock can be chosen to be either 128 ¥ fS or  
64 ¥ fS. The AMC Bit (Bit 6) is used to select the modulator’s  
clock rate. When AMC is set to 0 (default), the modulator clock  
is 128 ¥ fS. Otherwise, if set to 1, the modulator clock is 64 ¥ fS.  
This bit is normally set depending on whether the desired sampling  
frequency is 48 kHz or 96 kHz and is also influenced by the  
selected MCLK frequency. Please refer to the Functional  
Description section for more information on MCLK selection  
and sampling rates.  
High-Pa ss Filter  
The AD1871’s digital filtering engine allows the insertion of a  
high-pass filter (HPF) to effectively block dc signals from the  
output digital waveform. Setting Bit 8 (HPE) enables the  
high-pass filter. For more details of the HPF, refer to the  
Functional Description section.  
Pea k Rea ding Ena ble  
The AD1871 has two readback registers that can be enabled to  
store the peak readings of the left and right channel ADC results.  
To enable the peak readings to be captured, the Peak Reading  
Enable Bit (PRE), Bit 9, must be set to Logic 1. When set to  
Logic 0, the peak reading capture is disabled.  
Power -Down  
Power-down of the active clock signals within the AD1871 is  
effected by writing a Logic 1 to Bit 7 (PD). In Power-Down  
Table VI. Control Register II (Address 0001b)  
15–12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0001  
0
0
MME  
DF1  
Reserved  
DF0  
WW1  
WW0  
M/S  
MUR  
MUL  
9–8  
7
MME  
Modulator Mode Enable (0 = Normal Mode (Default), 1 = Mod Mode)  
6–5  
4–3  
2
1
0
DF1–DF0  
WW1–WW0  
M/S  
MUR  
MUL  
Data Format (See Table VIII)  
Word Width (See Table VII)  
Master/Slave Select (0 = Master Mode (Default); 1 = Slave Mode)  
Mute Control, Right Channel (0 = Disabled (Default); 1 = Enabled)  
Mute Control, Left Channel (0 = Disabled (Default); 1 = Enabled)  
Contr ol Register II  
Table VII. Word-Width Settings  
Control Register II contains bit settings for control of left/right  
channel muting, data sample word width, data interface format,  
and direct modulator bitstream output.  
WW1  
WW0  
Word Width (No. of Bits)  
0
0
1
1
0
1
0
1
24 (Default)  
20  
16  
Mute Contr ol  
The left and right data channels can be muted to digital zero by  
setting the MUL and MUR Bits (Bits 0 and 1), respectively. If a  
channel is muted, its output data stream will remain at digital  
zero, regardless of the amplitude of the input signal. Setting the  
bit to 1 mutes the channel while setting the bit to 0 restores  
normal operation.  
Reserved  
Da ta For m a t  
The AD1871’s serial data interface can be configured from a  
choice of popular interface formats, including I2S, left-justified,  
right-justified, or DSP Modes. Bits DF1–DF0 are programmed to  
select the interface format (mode) as shown in Table VIII.  
Master/Sla ve Select  
The AD1871 can operate as either a slave device or a master  
device. In Slave Mode, the controller must provide the LRCLK  
and BCLK to determine the sample rate and serial bit rate. In  
Master Mode, the AD1871 provides the LRCLK and BCLK as  
outputs that are applied to the controller. The AD1871 defaults to  
Master Mode (M/S is low) on reset.  
Table VIII. D ata Interface Form at Settings*  
D F1  
D F0  
Interface Mode  
0
0
1
1
0
1
0
1
I2S (Default)  
Right-Justified  
DSP  
Wor d Width  
The AD1871 allows the output sample word width to be selected  
from 16, 20, and 24 bits wide. Compact disc (CD) compatibility  
may require 16 bits, while many modern digital audio formats  
require 24-bit sample resolution. Bits WW1–WW0 are programmed  
to select the word width. Table VII details the Control Register  
Bit settings corresponding to the various word width selections.  
Left-Justified  
*Please refer to the Serial Data Interface section in the Functional  
Description for more details on the various interface modes.  
Modula tor Mode Ena ble  
The AD1871 defaults to the conversion of the analog audio to  
linear, PCM-encoded digital outputs. Modulator Mode allows  
the user to bypass the digital decimation filter section and access  
the multibit sigma-delta modulator outputs directly. When in  
this mode, certain pins are redefined (see Modulator Mode) and  
the modulator output (at a nominal rate of 128 fS) is available  
on the modulator data pins (D[0–3]). To enable the Modu-  
lator Mode, set the MME Bit to high.  
–22–  
REV. 0  
AD1871  
Table IX. Control Register III (Address 0010b)  
15–12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0010  
0
0
MCD1 MCD0  
SEL  
SER  
MEL  
MXL  
MER  
MXR  
9–8  
7–6  
5
4
3
2
1
0
Reserved  
(Should Be Programmed to 0)  
MCD1–MCD0 Master Clock Divider (See Table XIII)  
SEL  
SER  
MEL  
MXL  
MER  
MXR  
Single-Ended Enable, Left Channel (0 = Differential (Default); 1 = Single-Ended)  
Single-Ended Enable, Right Channel (0 = Differential (Default); 1 = Single-Ended)  
Mux/PGA Disable, Left Channel (0 = Enabled (Default); 1 = Disabled)  
Mux Select, Left Channel (0 = VINLP Selected (Default); 1 = VINLN Selected)  
Mux/PGA Disable, Right Channel (0 = Enabled (Default); 1 = Disabled)  
Mux Select, Right Channel (0 = VINRP Selected (Default); 1 = VINRN Selected)  
Contr ol Register III  
Single-Ended Mode Ena ble  
Control Register III contains bit settings for configuration of the  
analog input section (both left and right channels).  
The Single-Ended Mode Enable Bits (SEL and SER for left and  
right channels, respectively), when set to 1, are used to configure  
single-ended input on VINxP and VINxN (input is selected by  
state of MXL and MXR). In this mode, single-ended inputs taken  
from either VINxP or VINxN (selected using the Mux Select  
Bits—MXL and MXR) are internally converted to a differential  
format to be applied to the modulator section (see Table XII).  
Mux Ena ble  
The Mux Enable Left (MEL) and Mux Enable Right (MER)  
are used to enable the analog buffers. When these bits are set to  
1, the analog input buffers are powered down and input signals  
must be applied directly to the modulator inputs via the CAPxP  
and CAPxN pins. (see Figure 23). When MEL and MER are set  
to 0 (default condition after reset), the analog input section is  
enabled, (see Table X).  
Table XII. D ifferential/Single-Ended Select  
SEL  
SER  
Input Setting  
0
1
X
X
X
X
0
Left Channel Input Æ Differential  
Left Channel Input Æ Single-Ended  
Right Channel Input Æ Differential  
Right Channel Input Æ Single-Ended  
Table X. Mux Control Settings  
MEL  
MER  
Input Setting  
1
0
1
X
X
X
X
0
Left Channel Analog Buffer Enabled  
Left Channel Analog Buffer Disabled  
Right Channel Analog Buffer Enabled  
Right Channel Analog Buffer Disabled  
Ma ster Clock Divider  
The master clock divider allows the division of the external  
MCLK frequency to a more suitable internal master clock  
frequency (IMCLK). IMCLK must be 256 ¥ fS; therefore, if  
the available MCLK is not at 256 ¥ fS but is a multiple of  
this, the MCD allows conversion of MCLK to a suitable IMCLK  
at 256 ¥ fS (see Table XIII).  
1
Mux Select  
The Mux Select Bits (MXL and MXR for left and right channels,  
respectively) are used to select the input from VINxP or VINxN  
when the input is configured as single-ended. When MXx is set  
to 0, the input is taken from VINxP. When MXx is set to 1, the  
input is taken from VINxN, (see Table XI).  
Table XIII. Master Clock D ivider Settings  
MCD 1  
MCD 0  
MCLK D ivision  
Table XI. Mux Select Settings*  
0
0
1
1
0
1
0
1
IMCLK = MCLK (/1)  
IMCLK = MCLK/2  
IMCLK = MCLK/3  
IMCLK = MCLK (/1)  
MXL  
MXR  
Input Setting  
0
1
X
X
X
X
0
Left Channel Input from VINLP  
Left Channel Input from VINLN  
Right Channel Input from VINRP  
Right Channel Input from VINRN  
1
*Mux select settings are only valid when single-ended operation is enabled; SEL  
and SER are set to 1.  
REV. 0  
–23–  
AD1871  
Table XIV. P eak Reading Register I (Address 0011b, Read-O nly)  
15–12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0011  
1
0
A0P5  
A0P4  
A0P3  
A0P2  
A0P1  
A0P0  
9–6  
5–0  
Reserved  
A0P5–A0P0  
(Always Set to Zero)  
Left Channel Peak Reading (Valid Only When PRE = 1)  
Table XV. P eak Reading Register II (Address 0100b, Read-O nly)  
15–12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0100  
1
0
A1P5  
A1P4  
A1P3  
A1P2  
A1P1  
A1P0  
9–6  
5–0  
Reserved  
A1P5–A1P0  
(Always Set to Zero)  
Right Channel Peak Reading (Valid Only When PRE = 1)  
P eak Reading Register s  
Master/Slave Select  
The Peak Reading Registers are read-only registers that can be  
enabled to track-and-hold the peak ADC reading from each  
channel. The peak reading feature is enabled by setting Bit PRE  
in Control Register I. The peak reading value is contained in the  
six LSBs of the 10-bit readback word. The result is binary coded  
where each LSB is equivalent to –1 dBFS with all zeros cor-  
responding to full scale (0 dBFS) and all ones corresponding  
to –63 dBFS (see Table XVI). When Bit PRE is set, the peak  
reading per channel is stored in the appropriate peak register.  
Once the register is read, the register value is set to zero and is  
updated by subsequent conversions.  
The Master/Slave hardware select (Pin 5, CLATCH/[M/S])  
is equivalent to setting the M/S Bit of Control Register II. If set  
low, the device is placed in Master Mode, whereby the LRCLK  
and BCLK signals are outputs from the AD1871.  
When M/S is set high, the device is in Slave Mode, whereby the  
LRCK and BCLK signals are inputs to the AD1871.  
MCLK Mode Select  
The MCLK Mode hardware select (Pin 2, CCLK/[256/512]) is  
a subset of the MCLK Mode selection that is determined by  
Bits CM1–CM0 of Control Register X. When the hardware pin  
is low, the device operates with an MCLK that is 256 ¥ fS; if the  
pin is set high, the device operates with an MCLK that is 512 ¥ fS.  
Table XVI. P eak Reading Result Form at  
Code  
Ser ial D ata For m at Select  
The Serial Data Format hardware select (Pins 3 and 4, DF0/  
COUT and DF1/CIN) is equivalent to setting Bits DF1–DF0 of  
Control Register II. See Table VIII.  
AxP  
5
4
3
2
1
0
Level  
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
1
1
1
0
1
0
0
1
0 dBFS  
–1 dBFS  
–2 dBFS  
–62 dBFS  
–63 dBFS  
In External Control Mode, all functions other than those  
selected by the hardware select pins (Master/Slave Mode select,  
MCLK select, and Serial Data Format select) are in their  
default (power-on) state.  
A Peak Reading Register read cycle is detailed in Figure 21.  
MO D ULATO R MO D E  
When the device is in Modulator Mode (MME Bit is set to 1),  
the D[0–3] pins are enabled as data outputs, while the COUT  
pin becomes MODCLK, a high speed sampling clock (nomi-  
nally at 128 fS). The MODCLK enables successive data from  
the left and right channel modulators with left channel modula-  
tor data being valid in the low phase of MODCLK, while right  
channel modulator data is valid under the high phase of MODCLK  
(see Modulator Mode Timing in Figure 6).  
EXTERNAL CO NTRO L  
The AD1871 can be configured for external hardware control of  
a subset of the device functionality. This functionality includes  
Master/Slave Mode select, MCLK select, and serial data  
format select. External control is enabled by tying the XCTRL  
Pin high as shown in Figure 22.  
V
DD  
The Modulator Mode is designed to be used for applications  
such as direct stream digital (DSD) where modulator data is  
stored directly to the recording media without decimation and  
filtering to a lower sample rate. DSD is specified at a rate of  
64 fS, whereas the AD1871 outputs at 128 fS,  
AD1871  
XCTRL  
requiring an intermediate remodulator that downsamples to  
64 fS and generates a single-bit output steam.  
Figure 22. External Control Configuration  
–24–  
REV. 0  
AD1871  
INTERFACING  
Left Channel  
Analog Inter facing  
Control Register I = xx0xGGGxxx, where GGG = the Input Gain  
The analog section of the AD1871 has been designed to offer  
flexibility as well as high performance. Users may choose full  
differential input directly to the ADC’s -modulator via Pins  
CAPxP and CAPxN. Alternatively, when using the on-chip PGA  
section, it is also possible to multiplex single-ended inputs on Pins  
VINxP and VINxN or to use these pins for full differential input.  
(see Table V).  
Control Register III = 00xx1x0Sxx, where S = the SE Channel  
Selection.  
Right Channel  
Control Register I = xx0xxxxGGG, where GGG = the Input Gain  
(see Table V).  
Whichever input topology is chosen (direct or via mux/PGA  
section), the modulator input pins (CAPxP and CAPxN) require  
capacitors to act as dynamic charge storage for the switched  
capacitor input section. Component selection for these capacitors  
is critical as the input audio signal appears on or across these  
capacitors. A high quality dielectric is recommended for these  
capacitors multilayer ceramic, NPO or metal film, PPS for  
surface-mounted versions, and polypropylene for through-hole  
versions. Indeed, as a general recommendation, high quality  
dielectrics should be specified where capacitors are carrying the  
input audio signal.  
Control Register III = 00xxx1xx0S, where S = the SE Channel  
Selection.  
CAPLN  
100pF  
NPO  
1nF  
NPO  
CAPLP  
100pF  
NPO  
AD1871  
FERRITE  
600Z  
10F  
VINLP  
VINLN  
Modula tor Dir ect Input  
100pF  
NPO  
Figure 23 shows the connection of a single-ended source via an  
external single-ended-to-differential converter to the modulator  
input of the AD1871. The external amplifier/buffer should have  
good slew rate characteristics to meet the dynamic characteristics  
of the modulator input that is a switched-capacitor load.  
VREF  
10F  
100nF  
Figure 24. Single-Ended Input via PGA Section  
PGA Input, Differ entia l  
The output of the external amplifier/buffer should be decoupled  
from the input capacitors via a 250 W resistor (metal film).  
Figure 25 shows the connection of a differential source to the PGA  
section of the AD1871. The PGA section is configured as a  
differential buffer. The buffered differential outputs are con-  
nected internally to the CAPxx pins via a 250 W series resistors.  
In order to configure the AD1871 for differential input via the  
CAPxP and CAPxN pins, the Mux/PGA section must be disabled  
by setting the MEL and MER Bits in Control Register III to 1.  
120pF  
NPO  
In order to configure the AD1871 for differential input via the  
Mux/PGA, the Control Registers must be configured as follows:  
100pF  
NPO  
Left Channel  
5.76k  
10F  
FERRITE  
5.76k⍀  
Control Register I = xx0xGGGxxx, where GGG = the Input Gain  
(see Table V).  
Control Register III = 00xx0x0xxx.  
237⍀  
100pF  
NPO  
CAPLN  
CAPLP  
OP275  
1nF  
NPO  
Right Channel  
237⍀  
OP275  
5.76k⍀  
750k⍀  
Control Register I = xx0xxxxGGG, where GGG = the Input Gain  
(see Table V).  
Control Register III = 00xxx0xx0x.  
100pF  
NPO  
5.76k⍀  
AD1871  
CAPLN  
100pF  
VREF  
100nF  
10F  
NPO  
1nF  
NPO  
CAPLP  
100pF  
NPO  
Figure 23. Direct Connection to Modulator  
PGA Input, Single-Ended  
AD1871  
Figure 24 shows the connection of a single-ended source to the  
PGA section of the AD1871. The PGA section is configured  
for single-ended-to-differential conversion. The differential  
outputs are connected internally to the CAPxx pins via 250 W  
series resistors.  
10F  
10F  
2
3
1
VINLP  
VINLN  
VREF  
10F  
100nF  
In order to configure the AD1871 for single-ended input, the  
Control Registers must be configured as follows:  
Figure 25. Differential Input via PGA Section  
REV. 0  
–25–  
AD1871  
LAYO UT CO NSID ERATIO NS  
the analog inputs. Traces on opposite sides of the board should  
run at right angles to each other. This will reduce the effects of  
feedthrough through the board. A microstrip technique is by far  
the best but is not always possible with a double-sided board. In  
this technique, the component side of the board is dedicated to  
the ground planes while the signals are placed on the other side.  
In order to operate the AD1871 at its specified performance level,  
careful consideration must be given to the layout of the AD1871  
and its ancillary circuits. Since the analog inputs to the AD1871  
are differential, the voltages in the analog modulator are common-  
mode voltages. The excellent common-mode rejection of the part  
will remove common-mode noise on these inputs. The analog  
and digital supplies of the AD1871 are independent and sepa-  
rately pinned out to minimize coupling between the analog and  
digital sections of the device. The digital filters will provide  
rejection of broadband noise on the power supplies, except at  
integer multiples of the modulator sampling frequency. The  
digital filters also remove noise from the analog inputs provided  
the noise source does not saturate the analog modulator.  
However, because the resolution of the AD1871’s ADC is high,  
and the noise levels from the AD1871 are so low, care must be  
taken with regard to grounding and layout.  
The printed circuit board that houses the AD1871 should be  
designed so the analog and digital sections are separated and  
confined to certain sections of the board. The AD1871 pin  
selection has been configured such that its analog and digital  
interfaces are connected on opposite ends of the package. This  
facilitates the use of ground planes that can be easily separated.  
A minimum etch technique is generally best for ground planes  
as it gives the best shielding. Figure 26 is a view of the ground  
plane separation (between analog and digital) in the area  
surrounding the AD1871, taken from the layout of the AD1871  
Evaluation Board (EVAL-AD1871EB).  
Figure 27. Connecting Analog and Digital Grounds  
Good decoupling is important when using high speed devices.  
All analog and digital supplies should be decoupled to AGND  
and DGND, respectively, with 0.1 mF ceramic capacitors in  
parallel with 10 mF tantalum capacitors. To achieve the best  
from these decoupling capacitors, they should be placed as close  
as possible to the device, ideally right up against it, as shown in  
Figure 28. In systems where a common supply voltage is used to  
drive both the AVDD and DVDD of the AD1871, it is recom-  
mended that the system’s AVDD supply be used. This supply  
should have the recommended analog supply decoupling between  
the AVDD pins of the AD1871 and AGND and the recommended  
digital supply decoupling capacitors between the DVDD pin  
and DGND.  
Figure 26. Ground Layout  
*In the above figure, the black area represents the solder side of the layout. The  
silkscreen in white is included for clarity.  
Digital and analog ground planes should be joined in only one  
place. If this connection is close to the device, it is recom-  
mended to use a short (0 W resistor) or ferrite bead inductor as  
shown in Figure 27. The pads for the ferrite are positioned on  
the solder side directly underneath the AD1871 device.  
Figure 28. AD1871 Power Supply Decoupling  
Another important consideration is the selection of components  
such as capacitors, resistors, and operational amplifiers for  
the ancillary circuits. The capacitors that are used should in the  
analog audio signal chain should be of NPO dielectric (if ceramic)  
or metal film. Figure 28 shows the placement of the CAPxx pin  
capacitors relative to the CAPxx pins. The placement is intended  
to keep the tracking between the capacitor and the pin as short as  
possible while also ensuring that the track length from CAPxP  
pin to its capacitor equals that of the CAPxN to its capacitor.  
Avoid running digital lines under the device as they may couple  
noise onto the die. The analog ground plane should be allowed  
to run under the AD1871 to avoid noise coupling. If it is not  
possible to use a power supply plane, the power supply lines to  
the AD1871 should use as large a trace as possible to provide  
low impedance paths and reduce the effects of glitches on the  
power supply lines. Fast switching signals, such as clocks, should  
be shielded with digital ground to avoid radiating noise to other  
sections of the board, and clock signals should never be run near  
–26–  
REV. 0  
AD1871  
O UTLINE D IMENSIO NS  
28-Lead Shrink Sm all O utline P ackage [SSO P ]  
(RS-28)  
Dimensions shown in millimeters  
10.50  
10.20  
9.90  
28  
15  
5.60 8.20  
5.30 7.80  
5.00 7.40  
PIN 1  
14  
1
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.25  
0.09  
8؇  
4؇  
0؇  
0.95  
0.75  
0.55  
0.65  
BSC  
0.38  
0.22  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
REV. 0  
–27–  
–28–  

相关型号:

EVAL-AD1871EBZ

Stereo Audio, 24-Bit, 96 kHz, Multibit - ADC
ADI

EVAL-AD1896EB

AD1896 7.75:1 to 1:8, 192 kHz Stereo ASRC Evaluation Board
ADI

EVAL-AD1928EB

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1928EBZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1934EB

8-Channel DAC with PLL, 192 kHz, 24 Bits
ADI

EVAL-AD1935EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1936EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EBZ

Four ADCs/Eight DACs with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938AZ

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1939AZ

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI