EVAL-AD7147-1EBZ [ADI]

CapTouch⑩ Programmable Controller for Single-Electrode Capacitance Sensors; CapTouch⑩可编程控制器,用于单电极电容式传感器
EVAL-AD7147-1EBZ
型号: EVAL-AD7147-1EBZ
厂家: ADI    ADI
描述:

CapTouch⑩ Programmable Controller for Single-Electrode Capacitance Sensors
CapTouch⑩可编程控制器,用于单电极电容式传感器

传感器 控制器
文件: 总68页 (文件大小:1407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CapTouchProgrammable Controller for  
Single-Electrode Capacitance Sensors  
AD7147  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AC  
V
GND  
10  
BIAS  
9
SHIELD  
CC  
Programmable capacitance-to-digital converter (CDC)  
Femtofarad resolution  
8
11  
POWER-ON  
RESET LOGIC  
13 capacitance sensor inputs  
19  
20  
21  
22  
23  
24  
1
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
CIN12  
9 ms update rate, all 13 sensor inputs  
No external RC components required  
Automatic conversion sequencer  
On-chip automatic calibration logic  
Automatic compensation for environmental changes  
Automatic adaptive threshold and sensitivity levels  
Register map is compatible with the AD7142  
On-chip RAM to store calibration data  
SPI-compatible (serial-peripheral-interface-compatible)  
serial interface (AD7147)  
I2C-compatible serial interface (AD7147-1)  
Separate VDRIVE level for serial interface  
Interrupt output and general-purpose input/output (GPIO)  
24-lead, 4 mm × 4 mm LFCSP  
EXCITATION  
SOURCE  
CALIBRATION  
AD7147  
RAM  
2
3
16-BIT  
Σ-Δ  
CDC  
CALIBRATION  
ENGINE  
4
5
6
CONTROL  
AND DATA  
REGISTERS  
7
2.6 V to 3.3 V supply voltage  
INTERRUPT  
AND GPIO  
LOGIC  
Low operating current  
Full power mode: 1 mA  
SERIAL INTERFACE  
AND CONTROL LOGIC  
12  
18  
GPIO  
V
DRIVE  
Low power mode: 21.5 μA  
13  
14  
15  
16  
17  
SDO/ SDI/ SCLK CS/  
SDA ADD0 ADD1  
INT  
APPLICATIONS  
Cell phones  
Figure 1. AD7147 Block Diagram  
Personal music and multimedia players  
Smart handheld devices  
Television, A/V, and remote controls  
Gaming consoles  
The AD7147 is designed for single-electrode capacitance  
sensors (grounded sensors). There is an active shield output to  
minimize noise pickup in the sensor.  
Digital still cameras  
The AD7147 has on-chip calibration logic to compensate for  
changes in the ambient environment. The calibration sequence  
is performed automatically and at continuous intervals as long  
as the sensors are not touched. This ensures that there are no  
false or nonregistering touches on the external sensors due to  
a changing environment.  
GENERAL DESCRIPTION  
The AD7147 is designed for use with capacitance sensors  
implementing functions such as buttons, scroll bars, and  
wheels. The sensors need only one PCB layer, enabling ultra  
thin applications.  
The AD7147 is an integrated CDC with on-chip environmental  
calibration. The CDC has 13 inputs channeled through a switch  
matrix to a 16-bit, 250 kHz sigma-delta (∑-Δ) converter. The CDC  
is capable of sensing changes in the capacitance of the external  
sensors and uses this information to register a sensor activation.  
By programming the registers, the user has full control over the  
CDC setup.  
The AD7147 has an SPI-compatible serial interface, and the  
AD7147-1 has an I2C®-compatible serial interface. Both parts have  
an interrupt output, as well as a GPIO. There is a VDRIVE pin to set  
the voltage level for the serial interface independent of VCC  
.
The AD7147 is available in a 24-lead, 4 mm × 4 mm LFCSP and  
operates from a 2.6 V to 3.6 V supply. The operating current con-  
sumption in low power mode is typically 26 μA for 13 sensors.  
High resolution sensors require minor software to run on the  
host processor.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD7147  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Capacitance Sensor Behavior Without Calibration............... 23  
Capacitance Sensor Behavior with Calibration...................... 24  
Slow FIFO.................................................................................... 24  
SLOW_FILTER_UPDATE_LVL.............................................. 24  
Adaptive Threshold and Sensitivity ............................................. 25  
Interrupt Output............................................................................. 27  
CDC Conversion-Complete Interrupt .................................... 27  
Sensor-Touch Interrupt ............................................................. 27  
Applications....................................................................................... 1  
General description.......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
SPI Timing Specifications (AD7147)......................................... 5  
I2C Timing Specifications (AD7147-1) ..................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 11  
Capacitance-Sensing Theory .................................................... 11  
BIAS Pin....................................................................................... 12  
Operating Modes........................................................................ 12  
Capacitiance-to-Digital Converter............................................... 14  
Oversampling the CDC Output ............................................... 14  
Capacitance Sensor Offset Control.......................................... 14  
Conversion Sequencer ............................................................... 14  
CDC Conversion Sequence Time ............................................ 16  
CDC Conversion Results........................................................... 16  
Capacitance Sensor Input Configuration.................................... 17  
CINx Input Multiplexer Setup.................................................. 17  
Single-Ended Connections to the CDC .................................. 17  
Noncontact Proximity Detection ................................................. 18  
Recalibration ............................................................................... 18  
Proximity Sensitivity.................................................................. 18  
FF_SKIP_CNT............................................................................ 21  
Environmental Calibration ........................................................... 23  
INT  
GPIO  
Output Control ....................................................... 29  
Outputs ............................................................................................ 31  
ACSHIELD Output .......................................................................... 31  
GPIO ............................................................................................ 31  
Using the GPIO to Turn On/Off an LED................................ 31  
Serial Interface ................................................................................ 32  
SPI Interface................................................................................ 32  
I2C-Compatible Interface .......................................................... 34  
VDRIVE Input ................................................................................. 36  
PCB Design Guidelines ................................................................. 37  
Capacitive Sensor Board Mechanical Specifications............. 37  
Chip Scale Packages ................................................................... 37  
Power-Up Sequence ....................................................................... 38  
Typical Application Circuits ......................................................... 39  
Register Map ................................................................................... 40  
Detailed Register Descriptions ..................................................... 41  
Bank 1 Registers ......................................................................... 41  
Bank 2 Registers ......................................................................... 51  
Bank 3 Registers ......................................................................... 56  
Outline Dimensions....................................................................... 68  
Ordering Guide .......................................................................... 68  
REVISION HISTORY  
09/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 68  
 
AD7147  
SPECIFICATIONS  
VCC = 2.6 V to 3.6 V, TA = −40oC to +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CAPACITANCE-TO-DIGITAL CONVERTER  
Update Rate  
8.73  
17.46  
34.9  
9
9.27  
18.54  
37.1  
ms  
ms  
ms  
Bits  
pF  
12 conversion stages, decimation = 64  
12 conversion stages, decimation = 128  
12 conversion stages, decimation = 256  
18  
36  
16  
8
Resolution  
CINx Input Range  
No Missing Codes  
16  
Bits  
Guaranteed by design, but not production  
tested  
CINx Input Leakage  
25  
nA  
Maximum Output Load  
Total Unadjusted Error  
Output Noise (Peak-to-Peak)  
20  
20  
pF  
%
Capacitance load on CINx to ground  
12  
7
3
1.1  
0.8  
0.5  
20  
0.32  
Codes  
Codes  
Codes  
Codes  
Codes  
Codes  
pF  
Decimation rate = 64  
Decimation rate = 128  
Decimation rate = 256  
Decimation rate = 64  
Decimation rate = 128  
Decimation rate = 256  
Output Noise (RMS)  
CSTRAY Offset Range  
CSTRAY Offset Resolution  
Low Power Mode Delay Accuracy  
pF  
%
4
Percentage of 200 ms, 400 ms, 600 ms,  
or 800 ms  
ACSHIELD  
Frequency  
Output Voltage  
250  
kHz  
V
0
VCC  
Oscillating  
Short-Circuit Source Current  
Short-Circuit Sink Current  
Maximum Output Load  
LOGIC INPUTS (SDI, SCLK, CS, SDA, GPI)  
VIH Input High Voltage  
VIL Input Low Voltage  
IIH Input High Current  
IIL Input Low Current  
10  
10  
mA  
mA  
pF  
150  
Capacitance load on ACSHIELD to ground  
0.7 × VDRIVE  
−1  
V
V
μA  
μA  
mV  
0.4  
1
VIN = VDRIVE  
VIN = GND  
Hysteresis  
150  
0.1  
OPEN-DRAIN OUTPUTS (SCLK, SDA, INT)  
VOL Output Low Voltage  
IOH Output High Leakage Current  
LOGIC OUTPUTS (SDO, GPO)  
VOL Output Low Voltage  
VOH Output High Voltage  
0.4  
1
V
μA  
ISINK = −1 mA  
VOUT = VDRIVE  
0.4  
1
V
V
μA  
ISINK = 1 mA, VDRIVE = 1.65 V to 3.6 V  
ISOURCE = 1 mA, VDRIVE = 1.65 V to 3.6 V  
Pin three-state, leakage measured to  
GND and VCC  
VDRIVE − 0.6  
GPO, SDO Floating State Leakage  
Current  
POWER  
VCC  
VDRIVE  
ICC  
2.6  
1.65  
3.3  
3.6  
3.6  
1
V
V
mA  
μA  
Serial interface operating voltage  
In full power mode, VCC + VDRIVE  
0.9  
15.5  
21.5  
Low power mode, converter idle, VCC + VDRIVE  
,
decimation = 256  
2.3  
7.5  
μA  
Full shutdown, VCC + VDRIVE  
Rev. 0 | Page 3 of 68  
 
AD7147  
Table 2. Typical Average Current in Low Power Mode1  
Current Values of Conversion Stages (ꢀA)  
Low Power  
Mode Delay  
Decimation  
Rate  
1
2
3
4
5
6
7
8
9
10  
11  
12  
200 ms  
400 ms  
600 ms  
800 ms  
64  
20.83 24.18 27.52 30.82 34.11 37.37 40.6  
25.3 31.92 38.45 44.87 51.21 57.45 63.6  
34.11 46.99 59.51 71.66 83.47 94.94 106.1  
18.17 19.86 21.55 23.23 24.9 26.57 28.23  
20.43 23.79 27.12 30.43 33.72 36.98 40.22  
24.9 31.53 38.06 44.5 50.83 57.08 63.23  
43.81  
69.66  
46.99  
75.63  
50.16  
81.52  
53.3  
87.33  
56.41  
93.05  
128  
256  
64  
128  
256  
64  
128  
256  
64  
128  
256  
116.96 127.52 137.81 147.82 157.58  
29.88  
43.43  
69.3  
31.53  
46.62  
75.28  
26.25  
36.49  
56.27  
23.59  
31.34  
46.43  
33.17  
49.78  
81.17  
27.36  
38.65  
60.39  
24.43  
32.98  
49.6  
34.81  
52.93  
86.98  
28.47  
40.81  
64.47  
25.26  
34.62  
52.74  
36.44  
56.05  
92.71  
29.57  
42.95  
68.51  
26.09  
36.25  
55.86  
17.28 18.41 19.54 20.67 21.79 22.91 24.03  
18.79 21.04 23.28 25.51 27.73 29.94 32.13  
21.79 26.25 30.67 35.04 39.37 43.66 47.9  
16.84 17.69 18.53 19.38 20.23 21.07 21.91  
25.14  
34.32  
52.11  
22.75  
29.69  
43.24  
17.97 19.66 21.35 23.03 24.7  
26.37 28.03  
20.23 23.59 26.93 30.24 33.53 36.79 40.03  
1 VCC = 3.3 V, T = 25°C, load = 5 pF.  
Table 3. Maximum Average Current in Low Power Mode1  
Current Values of Conversion Stages (ꢀA)  
Low Power  
Mode  
Delay  
Decimation  
Rate  
1
2
3
4
5
6
7
8
9
10  
11  
12  
200 ms  
400 ms  
600 ms  
800 ms  
64  
27.71 31.65 35.56 39.44 43.28  
32.96 40.72 48.37 55.89 63.3  
43.28 58.37 72.99 87.17 100.92 114.26 127.22 139.8  
47.1  
70.59  
50.89  
77.77  
54.64  
84.84  
58.37  
91.8  
62.07  
98.66  
65.74  
105.41 112.07  
69.38  
128  
256  
64  
128  
256  
64  
128  
256  
64  
128  
256  
152.03 163.92 175.48 186.73  
24.61 26.6  
27.26 31.21 35.12 39  
28.58 30.55 32.51  
42.85  
34.47  
46.67  
70.18  
30.18  
38.43  
54.5  
36.42  
50.46  
77.36  
31.5  
38.36  
54.22  
84.44  
32.8  
43.56  
64.38  
30  
40.29  
57.95  
91.41  
34.11  
46.11  
69.24  
30.98  
40.07  
57.74  
42.21  
61.65  
98.27  
35.41  
48.64  
74.05  
31.97  
42  
44.13  
65.33  
105.03 111.69  
46.04  
68.97  
32.51 40.29 47.94 55.47 62.88  
23.58 24.91 26.23 27.55 28.87  
25.35 27.99 30.62 33.24 35.84  
28.87 34.11 39.29 44.41 49.48  
23.06 24.06 25.05 26.05 27.04  
24.39 26.38 28.36 30.33 32.29  
36.7  
38  
41  
51.16  
78.81  
32.95  
43.91  
65.12  
53.66  
83.53  
33.92  
45.82  
68.77  
59.46  
29.02  
36.2  
28.03  
34.25  
46.46  
38.14  
54.01  
27.04 30.98 34.9  
38.78 42.64  
50.25  
61.45  
1 VCC = 3.6 V, TA = −40oC to +85°C, load = 5 pF.  
Rev. 0 | Page 4 of 68  
AD7147  
SPI TIMING SPECIFICATIONS (AD7147)  
TA = −40°C to +85°C, VDRIVE = 1.65 V to 3.6 V, and VCC = 2.6 V to 3.6 V, unless otherwise noted. Sample tested at 25°C to ensure  
compliance. All input signals are specified with tR = tF = 5 ns (10% to 90% of VCC) and timed from a voltage level of 1.6 V.  
Table 4. SPI Timing Specifications  
Parameter  
Limit  
Unit  
Description  
fSCLK  
t1  
5
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns min  
SCLK frequency  
CS falling edge to first SCLK falling edge  
SCLK high pulse width  
SCLK low pulse width  
SDI setup time  
SDI hold time  
SDO access time after SCLK falling edge  
CS rising edge to SDO high impedance  
SCLK rising edge to CS high  
t2  
t3  
t4  
t5  
t6  
t7  
20  
20  
15  
15  
20  
16  
15  
t8  
CS  
t1  
t2  
1
t8  
t3  
15  
15  
2
3
16  
1
2
16  
SCLK  
t4  
t5  
MSB  
LSB  
SDI  
t6  
t7  
SDO  
MSB  
LSB  
Figure 2. SPI Detailed Timing Diagram  
Rev. 0 | Page 5 of 68  
 
AD7147  
I2C TIMING SPECIFICATIONS (AD7147-1)  
TA = −40°C to +85°C, VDRIVE = 1.65 V to 3.6 V, and VCC = 2.6 V to 3.6 V, unless otherwise noted. Sample tested at 25°C to ensure  
compliance. All input signals timed from a voltage level of 1.6 V.  
Table 5. I2C Timing Specifications1  
Parameter  
Limit  
400  
0.6  
1.3  
0.6  
100  
300  
0.6  
0.6  
1.3  
Unit  
Description  
fSCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
kHz max  
μs min  
μs min  
μs min  
ns min  
ns min  
μs min  
μs min  
μs min  
ns max  
ns max  
Start condition hold time, tHD; STA  
Clock low period, tLOW  
Clock high period, tHIGH  
Data setup time, tSU; DAT  
Data hold time, tHD; DAT  
Stop condition setup time, tSU; STO  
Start condition setup time, tSU; STA  
Bus-free time between stop and start conditions, tBUF  
Clock/data rise time  
tR  
tF  
300  
300  
Clock/data fall time  
1 Guaranteed by design, not production tested.  
tR  
tF  
t1  
t2  
SCLK  
t3  
t7  
t1  
t6  
t5  
t4  
SDA  
t8  
STOP START  
START  
STOP  
Figure 3. I2C Detailed Timing Diagram  
Rev. 0 | Page 6 of 68  
 
AD7147  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
VCC to GND  
−0.3 V to +3.6 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3V to VDRIVE + 0.3 V  
10 mA  
Analog Input Voltage to GND  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Input Current to Any Pin Except Supplies1  
ESD Rating (Human Body Model)  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
2.5 kV  
−40°C to +105°C  
−65°C to +150°C  
150°C  
200µA  
I
OL  
TO OUTPUT  
PIN  
1.6V  
LFCSP  
Power Dissipation  
C
L
450 mW  
50pF  
θJA Thermal Impedance  
IR Reflow Peak Temperature  
Lead Temperature (Soldering 10 sec)  
135.7°C/W  
260°C ( 0.5°C)  
300°C  
200µA  
I
OH  
Figure 4. Load Circuit for Digital Output Timing Specifications  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
ESD CAUTION  
Rev. 0 | Page 7 of 68  
 
AD7147  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
1
2
3
4
5
6
18 GPIO  
17 INT  
16 CS  
15 SCLK  
14 SDI  
13 SDO  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
1
2
3
4
5
6
18 GPIO  
17 INT  
16 ADD1  
15 SCLK  
14 ADD0  
13 SDA  
AD7147  
AD7147-1  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
Figure 5. AD7147 Pin Configuration  
Figure 6. AD7147-1 Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
AD7147-1  
AD7147  
1
Mnemonic  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
CIN12  
ACSHIELD  
BIAS  
Description  
1
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
CDC Active Shield Output. Connect to external shield or plane.  
Bias Node for Internal Circuitry. Requires 10 nF capacitor to ground.  
Ground Reference Point for All Circuitry.  
Supply Voltage.  
Serial Interface Operating Voltage Supply.  
SPI Serial Data Output.  
I2C Serial Data Input/Output. SDA requires pull-up resistor.  
SPI Serial Data Input.  
I2C Address Bit 0.  
Clock Input for Serial Interface.  
SPI Chip Select Signal.  
I2C Address Bit 1.  
General-Purpose Open-Drain Interrupt Output. Programmable polarity; requires pull-up resistor.  
Programmable GPIO.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
N/A  
14  
N/A  
15  
16  
N/A  
17  
18  
19  
20  
21  
22  
23  
24  
10  
11  
12  
N/A  
13  
N/A  
14  
15  
N/A  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
VCC  
VDRIVE  
SDO  
SDA  
SDI  
ADD0  
SCLK  
CS  
ADD1  
INT  
GPIO  
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Rev. 0 | Page 8 of 68  
 
AD7147  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
60  
50  
40  
30  
20  
10  
0
935  
200ms  
400ms  
915  
895  
DECIMATION = 64  
875  
DECIMATION = 128  
600ms  
DECIMATION = 256  
855  
800ms  
835  
815  
795  
2.5  
2.7  
2.9  
3.1  
(V)  
3.3  
3.5  
3.7  
2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7  
V
CC  
V
(V)  
CC  
Figure 10. Low Power Supply Current vs. Supply Voltage,  
Decimation Rate = 64  
Figure 7. Supply Current vs. Supply Voltage  
180  
160  
140  
120  
100  
80  
2.5  
200ms  
2.0  
1.5  
1.0  
0.5  
0
400ms  
600ms  
60  
800ms  
40  
20  
0
2.5  
2.7  
2.9  
3.1  
(V)  
3.3  
3.5  
3.7  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
(V)  
3.3  
3.4  
3.5  
3.6  
V
V
CC  
CC  
Figure 8. Low Power Supply Current vs. Supply Voltage,  
Decimation Rate = 256  
Figure 11. Shutdown Supply Current vs. Supply Voltage  
1150  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1100  
1050  
1000  
950  
200ms  
400ms  
600ms  
800ms  
900  
0
100  
AC  
200  
300  
400  
500  
2.5  
2.7  
2.9  
3.1  
(V)  
3.3  
3.5  
3.7  
CAPACITIVE LOAD (pF)  
V
SHIELD  
CC  
Figure 12. Supply Current vs. Capacitive Load on ACSHIELD  
Figure 9. Low Power Supply Current vs. Supply Voltage,  
Decimation Rate = 128  
Rev. 0 | Page 9 of 68  
 
AD7147  
58000  
56000  
54000  
52000  
50000  
48000  
46000  
44000  
42000  
40000  
160  
140  
120  
100  
80  
25mV  
50mV  
75mV  
100mV  
125mV  
150mV  
175mV  
200mV  
60  
40  
20  
0
0
100  
AC  
200  
300  
400  
500  
CAPACITIVE LOAD (pF)  
SHIELD  
SINE WAVE FREQUENCY (Hz)  
Figure 13. Output Code vs. Capacitive Load on ACSHIELD  
Figure 16. Power Supply Sine Wave Rejection, VCC = 3.6 V  
960  
120  
100  
80  
60  
40  
20  
0
25mV  
50mV  
75mV  
100mV  
125mV  
150mV  
175mV  
200mV  
940  
920  
900  
880  
860  
840  
820  
800  
780  
3.6V  
3.3V  
2.6V  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
SQUARE WAVE FREQUENCY (Hz)  
Figure 14. Supply Current vs. Temperature  
Figure 17. Power Supply Square Wave Rejection, VCC = 3.6 V  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
6
3.6V  
4
3.3V  
2.6V  
115  
2
0
–45  
0
–25  
–5  
15  
35  
55  
75  
95  
135  
0
10000  
20000  
30000  
40000  
50000  
60000  
TEMPERATURE (°C)  
CDC OUTPUT CODE  
Figure 15. Shutdown Supply Current vs. Temperature  
Figure 18. CDC Linearity, VCC = 3.3 V  
Rev. 0 | Page 10 of 68  
AD7147  
THEORY OF OPERATION  
The AD7147 and AD7147-1 are CDCs with on-chip  
environmental compensation. They are intended for use in  
portable systems requiring high resolution user input. The  
internal circuitry consists of a 16-bit, ∑-Δ converter that can  
change a capacitive input signal into a digital value. There are  
13 input pins, CIN0 to CIN12, on the AD7147 or AD7147-1. A  
switch matrix routes the input signals to the CDC. The result of  
each capacitance-to-digital conversion is stored in on-chip  
registers. The host subsequently reads the results over the serial  
interface. The AD7147 has an SPI interface, and the AD7147-1  
has an I2C interface, ensuring that the parts are compatible with  
a wide range of host processors. AD7147 refers to both the  
AD7147 and AD7147-1, unless otherwise noted, from this  
point forward in this data sheet.  
require low power operation to provide the user with significant  
power savings and full functionality.  
INT  
The AD7147 has an interrupt output,  
, to indicate when  
INT  
new data has been placed into the registers.  
is used to  
interrupt the host on sensor activation. The AD7147 operates  
from a 2.6 V to 3.6 V supply and is available in a 24-lead, 4 mm ×  
4 mm LFCSP.  
CAPACITANCE-SENSING THEORY  
The AD7147 measures capacitance changes from single-electrode  
sensors. The sensor electrode on the PCB comprises one plate  
of a virtual capacitor. The other plate of the capacitor is the user’s  
finger, which is grounded with respect to the sensor input.  
The AD7147 first outputs an excitation signal to charge the  
plate of the capacitor. When the user comes close to the sensor,  
the virtual capacitor is formed, with the user acting as the second  
capacitor plate.  
The AD7147 interfaces with up to 13 external capacitance  
sensors. These sensors can be arranged as buttons, scroll bars,  
or wheels, or as a combination of sensor types. The external  
sensors consist of an electrode on a single- or multiple-layer  
PCB that interfaces directly to the AD7147.  
The AD7147 can be set up to implement any set of input  
sensors by programming the on-chip registers. The registers can  
also be programmed to control features such as averaging,  
offsets, and gains for each of the external sensors. There is an  
on-chip sequencer that controls how each of the capacitance  
inputs is polled.  
PLASTIC COVER  
SENSOR PCB  
The AD7147 has on-chip digital logic and 528 words of RAM  
that are used for environmental compensation. The effects of  
humidity, temperature, and other environmental factors can  
affect the operation of capacitance sensors. Transparent to the  
user, the AD7147 performs continuous calibration to compen-  
sate for these effects, allowing the AD7147 to consistently  
provide error-free results.  
Σ-Δ  
ADC  
16-BIT  
DATA  
EXCITATION  
SIGNAL  
250kHz  
AD7147  
The AD7147 requires a companion algorithm that runs on the  
host or another microcontroller to implement high resolution  
sensor functions, such as scroll bars or wheels. However, no  
companion algorithm is required to implement buttons. Button  
sensors are implemented on chip, entirely in digital logic.  
Figure 19. Capacitance-Sensing Method  
A square wave excitation signal is applied to CINx during  
the conversion, and the modulator continuously samples the  
charge going through CINx. The output of the modulator is  
processed via a digital filter, and the resulting digital data is  
stored in the CDC_RESULT_Sx registers for each conversion  
stage, at Address 0x00B to Address 0x016.  
The AD7147 can be programmed to operate in either full power  
mode or low power automatic wake-up mode. The automatic  
wake-up mode is particularly suited for portable devices that  
Rev. 0 | Page 11 of 68  
 
AD7147  
Registering a Sensor Activation  
Complete Solution for Capacitance Sensing  
When a user approaches a sensor, the total capacitance associated  
with that sensor changes and is measured by the AD7147. If  
the change causes a set threshold to be exceeded, the AD7147  
interprets this as a sensor activation.  
Analog Devices, Inc., provides a complete solution for  
capacitance sensing. The two main elements to the solution are  
the sensor PCB and the AD7147.  
If the application requires high resolution sensors such as scroll  
bars or wheels, software is required that runs on the host  
processor. The memory requirements for the host depend on  
the sensor and are typically 10 kB of code and 600 bytes of data  
memory, depending on the sensor type.  
On-chip threshold limits are used to determine when a sensor  
activation occurs. Figure 20 shows the change in CDC_RESULT_Sx  
when a user activates a sensor. The sensor is deemed to be active  
only when the value of CDC_RESULT_Sx is either greater than the  
value of STAGEx_HIGH_THRESHOLD or less than the value  
of STAGEx_LOW_THRESHOLD.  
SENSOR PCB  
SENSOR ACTIVE (A)  
HOST PROCESSOR  
1 MIPS  
2
SPI OR I C  
AD7147  
10kB ROM  
STAGEx_HIGH_THRESHOLD  
CDC_RESULT_Sx  
600 BYTES RAM  
AMBIENT OR  
NO-TOUCH VALUE  
Figure 21. Three-Part Capacitance-Sensing Solution  
Analog Devices supplies the sensor PCB footprint design  
libraries to the customer and supplies any necessary software on  
an open-source basis.  
STAGEx_LOW_THRESHOLD  
SENSOR ACTIVE (B)  
BIAS PIN  
Figure 20. Sensor Activation Thresholds  
This pin is connected internally to a bias node of the AD7147.  
To ensure correct operation of the AD7147 connect a 10 nF  
capacitor between the BIAS pin and ground. The voltage seen at  
the BIAS pin is VCC/2.  
In Figure 20, two sensor activations are shown. Sensor Active A  
occurs when a sensor is connected to the positive input of the  
converter. In this case, when a user activates the sensor, there is an  
increase in CDC code, and the value of CDC_RESULT_Sx exceeds  
that of STAGEx_HIGH_THRESHOLD. Sensor Active B occurs  
when the sensor is connected to the negative input of the converter.  
In this case, when a user activates the sensor, there is a decrease  
in CDC code, and the value of CDC_RESULT_Sx becomes less  
than the value of STAGEx_LOW_THRESHOLD.  
OPERATING MODES  
The AD7147 has three operating modes. Full power mode, where  
the device is always fully powered, is suited for applications where  
power is not a concern (for example, game consoles that have an  
ac power supply). Low power mode, where the part automatically  
powers down when no senosr is active, is tailored to provide  
significant power savings compared with full power mode and  
is suited for mobile applications, where power must be  
For each conversion stage, the STAGEx_HIGH_THRESHOLD  
and STAGEx_LOW_THRESHOLD registers are in Register Bank  
3. The values in these registers are updated automatically by the  
AD7147 due to its environmental calibration and adaptive  
threshold logic.  
conserved. In shutdown mode, the part shuts down completely.  
The POWER_MODE bits (Bit 0 and Bit 1) of the control  
register set the operating mode on the AD7147. The control  
register is at Address 0x000. Table 8 shows the POWER_MODE  
settings for each operating mode. To put the AD7147 into  
shutdown mode, set the POWER_MODE bits to either 01 or 11.  
At power-up, the values in the STAGEx_HIGH_THRESHOLD  
and STAGEx_LOW_THRESHOLD registers are the same as those  
in the STAGEx_OFFSET_HIGH and STAGEx_OFFSET_LOW  
registers in Bank 2. The user must program the STAGEx_OFFSET  
_HIGH and STAGEx_OFFSET_LOW registers on device power-  
up. See the Environmental Calibration section of the data sheet  
for more information.  
Table 8. POWER_MODE Settings  
POWER_MODE Bits  
Operating Mode  
Full power mode  
Shutdown mode  
Low power mode  
Shutdown mode  
00  
01  
10  
11  
The power-on default setting of the POWER_MODE bits is 00,  
full power mode.  
Rev. 0 | Page 12 of 68  
 
 
 
AD7147  
Full Power Mode  
When an external sensor is touched, the AD7147 begins a con-  
version sequence every 36 ms to read back data from the sensors.  
In full power mode, all sections of the AD7147 remain fully  
powered and converting at all times. While a sensor is being  
touched, the AD7147 processes the sensor data. If no sensor is  
touched, the AD7147 measures the ambient capacitance level  
and uses this data for the on-chip compensation routines. In full  
power mode, the AD7147 converts at a constant rate. See the  
CDC Conversion Sequence Time section for more information.  
In low power mode, the total current consumption of the AD7147  
is an average of the current used during a conversion and the  
current used while the AD7147 is waiting for the next conversion  
to begin. For example, when LP_CONV_DELAY l is 400 ms, the  
AD7147 typically uses 0.85 mA of current for 36 ms and 14 μA  
of current for 400 ms during the conversion interval. (Note that  
these conversion timings can be altered through the register  
settings. See the CDC Conversion Sequence Time section for  
more information.)  
Low Power Mode  
When AD7147 is in low power mode, the POWER_MODE bits  
are set to 10 upon device initialization. If the external sensors  
are not touched, the AD7147 reduces its conversion frequency,  
thereby greatly reducing its power consumption. The part remains  
in a reduced power state while the sensors are not touched. The  
AD7147 performs a conversion after a delay defined by the  
LP_CONV_DELAY bits, and it uses this data to update the  
compensation logic and check if the sensors are active. The  
LP_CONV_DELAY bits set the delay between conversions to  
200 ms, 400 ms, 600 ms, or 800 ms.  
The time for the AD7147 to transition from a full power state to  
a reduced power state after the user stops touching the external  
sensors is configurable. The PWR_DOWN_TIMEOUT bits (in  
the Ambient Compensation Control 0 (AMB_COMP_CTRL0)  
Register at Address 0x002) control the time delay before the  
AD7147 transitions to the reduced power state after the user  
stops touching the sensors.  
AD7147 SETUP  
AND INITIALIZATION  
POWER_MODE = 10  
ANY  
NO  
YES  
SENSOR  
TOUCHED?  
CONVERSION SEQUENCE  
EVERY LP_CONV_DELAY  
UPDATE COMPENSATION  
LOGIC DATA PATH  
CONVERSION SEQUENCE  
EVERY 36ms FOR  
SENSOR READBACK  
YES  
ANY SENSOR  
TOUCHED?  
NO  
TIMEOUT  
PROXIMITY TIMER  
COUNTDOWN  
Figure 22. Low Power Mode Operation  
Rev. 0 | Page 13 of 68  
AD7147  
CAPACITIANCE-TO-DIGITAL CONVERTER  
The capacitance-to-digital converter on the AD7147 has a Σ-ꢀ  
architecture with 16-bit resolution. There are 13 possible inputs to  
the CDC that are connected to the input of the converter through a  
switch matrix. The sampling frequency of the CDC is 250 kHz.  
The goal is to ensure that the CDC_RESULT_Sx is as close  
to midscale as possible. This process is only required once  
during the initial capacitance sensor characterization.  
6
+DAC  
POS_AFE_OFFSET  
(20pF RANGE)  
OVERSAMPLING THE CDC OUTPUT  
The decimation rate, or oversampling ratio, is determined by  
Bits [9:8] of the power control (PWR_CONTROL) register  
(Address 0x000), as listed in Table 9.  
POS_AFE_OFFSET_SWAP BIT  
+
CINx  
16  
16-BIT  
CDC  
Table 9. CDC Decimation Rate  
_
CDC Output Rate  
Decimation Rate Per Stage (ms)  
DECIMATION Bits  
NEG_AFE_OFFSET_SWAP BIT  
00  
01  
10  
11  
256  
128  
64  
3.072  
1.536  
0.768  
0.768  
6
–DAC  
(20pF RANGE)  
NEG_AFE_OFFSET  
64  
The decimation process on the AD7147 is an averaging process,  
where a number of samples are taken and the averaged result is  
output. Due to the architecture of the digital filter employed, the  
number of samples taken (per stage) is equal to 3× the decimation  
rate. So 3 × 256 or 3 × 128 samples are averaged to obtain each  
stage result.  
CINx_CONNECTION_SETUP  
Figure 23. Analog Front-End Offset Control  
CONVERSION SEQUENCER  
The AD7147 has an on-chip sequencer to implement conversion  
control for the input channels. Up to 12 conversion stages can be  
performed in one sequence. Each of the 12 conversions stages can  
measure the input from a different sensor. By using the Bank 2  
registers, each stage can be uniquely configured to support multiple  
capacitance sensor interface requirements. For example, a slider  
sensor can be assigned to STAGE1 through STAGE8, with a  
button sensor assigned to STAGE0. For each conversion stage,  
the input mux that connects the CINx inputs to the converter  
can have a unique setting.  
The decimation process reduces the amount of noise present in  
the final CDC result. However, the higher the decimation rate,  
the lower the output rate per stage; therefore, there is a trade-off  
possible between the amount of noise in the signal and the  
speed of sampling.  
CAPACITANCE SENSOR OFFSET CONTROL  
There are two programmable DACs on board the AD7147 to null  
the effect of any stray capacitances on the CDC measurement.  
These offsets are due to stray capacitance to ground.  
The AD7147 on-chip sequence controller provides conversion  
control, beginning with STAGE0. Figure 24 shows a block diagram  
of the CDC conversion stages and CINx inputs. A conversion  
sequence is defined as a sequence of CDC conversions starting  
at STAGE0 and ending at the stage determined by the value  
programmed in the SEQUENCE_STAGE_NUM bits. Depending  
on the number and type of capacitance sensors that are used, not all  
conversion stages are required. Use the SEQUENCE_STAGE_NUM  
bits to set the number of conversions in one sequence. This number  
will depend on the sensor interface requirements. For example, the  
register should be set to 5 if the CINx inputs are mapped to only six  
conversion stages. In addition, the STAGE_CAL_EN register  
should be set according to the number of stages that are used.  
A simplified block diagram in Figure 23 shows how to apply the  
STAGEx_AFE_OFFSET registers to null the offsets. The 6-bit  
POS_AFE_OFFSET and NEG_AFE_OFFSET bits program the  
offset DAC to provide 0.32 pF resolution offset adjustment over  
a range of 20 pF.  
The best practice is to ensure that the CDC output for any stage  
is approximately equal to midscale (~32,700) when all sensors  
are inactive. To correctly offset the stray capacitance to ground for  
each stage use the following procedure:  
1. Read back the CDC value from the CDC_RESULT_Sx register.  
2. If this value is not close to midscale, increase the value of  
POS_AFE_OFFSET or NEG_AFE_OFFSET (depending  
on if the CINx input is connected to the positive or negative  
input of the converter) by 1. The CINx connections are  
determined by the STAGEx_CONNECTION registers.  
The number of required conversion stages depends solely on  
the number of sensors attached to the AD7147. Figure 25 shows  
how many conversion stages are required for each sensor and  
how many inputs to the AD7147 each sensor requires.  
3. If the CDC value in CDC_RESULT_Sx is now closer  
to midscale, repeat Step 2. If the CDC value is further  
from midscale, decrease the POS_AFE_OFFSET or  
NEG_AFE_OFFSET value by 1.  
Rev. 0 | Page 14 of 68  
 
 
 
AD7147  
A button sensor generally requires one sequencer stage; this is  
shown in Figure 25 as B1. However, it is possible to configure  
two button sensors to operate differentially for one conversion  
stage. Only one button can be activated at a time; pressing both  
buttons simultaneously results in neither button being activated.  
The configuration with two button sensors operating differentially  
requires one conversion stage and is shown in Figure 25, with  
B2 and B3 representing the differentially configured button sensors.  
A wheel sensor requires eight stages, whereas a slider requires two  
stages. The result from each stage is used by the host software to  
determine the users position on the slider or wheel. The algorithms  
that perform this process are available from Analog Devices and are  
free of charge, but require signing a software license.  
STAGE11  
STAGE10  
STAGE9  
STAGE8  
STAGE7  
STAGE6  
STAGE5  
STAGE4  
STAGE3  
STAGE2  
STAGE1  
STAGE0  
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
CIN12  
Σ-Δ  
16-BIT  
ADC  
Figure 24. CDC Conversion Stages  
AD7147  
AD7147  
SEQUENCER  
SEQUENCER  
BUTTONS  
STAGE0  
STAGE8  
B1  
+
+
CDC  
CDC  
STAGE1  
STAGE9  
+
B2  
B3  
+
CDC  
CDC  
STAGE2  
+
CDC  
STAGE3  
+
CDC  
SCROLL  
WHEEL  
STAGE4  
+
AD7147  
CDC  
SEQUENCER  
STAGE10  
STAGE5  
+
+
CDC  
CDC  
SLIDER  
STAGE6  
STAGE11  
+
+
CDC  
CDC  
STAGE7  
+
CDC  
Figure 25. Sequencer Setup for Sensors  
Rev. 0 | Page 15 of 68  
 
 
AD7147  
CDC CONVERSION SEQUENCE TIME  
Table 10. CDC Conversion Times for Full Power Mode  
Conversion Time (ms)  
Decimation = 128  
SEQUENCE_STAGE_NUM  
Decimation = 64  
0.768  
Decimation = 256  
3.072  
0
1.536  
3.072  
4.608  
6.144  
7.68  
1
2
3
1.536  
2.304  
3.072  
6.144  
9.216  
12.288  
15.36  
4
3.84  
5
6
4.608  
5.376  
9.216  
10.752  
12.288  
13.824  
15.36  
16.896  
18.432  
18.432  
21.504  
24.576  
27.648  
30.72  
7
8
6.144  
6.912  
9
10  
11  
7.68  
8.448  
9.216  
33.792  
36.864  
The time required for the CDC to complete the measurement of  
all 12 stages is defined as the CDC conversion sequence time. The  
SEQUENCE_STAGE_NUM and DECIMATION bits determine  
the conversion time, as listed in Table 10.  
AD7147 automatically wakes up, performing a conversion every  
800 ms.  
Table 11. LP_CONV_DELAY Settings  
LP_CONV_DELAY Bits  
Delay Between Conversions (ms)  
For example, if the device is operated with a decimation rate  
of 128 and the SEQUENCE_STAGE_NUM bit is set to 5 for the  
conversion of six stages in a sequence, the conversion sequence  
time is 9.216 ms.  
00  
01  
10  
11  
200  
400  
600  
800  
Full Power Mode CDC Conversion Sequence Time  
The full power mode CDC conversion sequence time for all  
12 stages is set by configuring the SEQUENCE_STAGE_NUM  
and DECIMATION bits as outlined in Table 10.  
Figure 27 shows a simplified timing example of the low power  
mode CDC conversion time. As shown, the low power mode CDC  
conversion time is set by tCONV_FP and the LP_CONV_DELAY bits.  
tCONV_LP  
Figure 26 shows a simplified timing diagram of the full power  
mode CDC conversion time. The full power mode CDC con-  
version time (tCONV_FP) is set using the values shown in Table 10.  
tCONV_FP  
CDC CONVERSION  
CONVERSION  
CONVERSION  
SEQUENCE N + 1  
LP_CONV_DELAY  
SEQUENCE N  
tCONV_FP  
Figure 27. Low Power Mode CDC Conversion Sequence Time  
CDC  
CONVERSION  
CONVERSION  
CONVERSION  
CONVERSION  
SEQUENCE N SEQUENCE N + 1 SEQUENCE N + 2  
CDC CONVERSION RESULTS  
Figure 26. Full Power Mode CDC Conversion Sequence Time  
Certain high resolution sensors require the host to read back the  
CDC conversion results for processing. The registers required  
for host processing are located in the Bank 3 registers. The host  
processes the data read back from these registers using a software  
algorithm in order to determine position information.  
Low Power Mode CDC Conversion Sequence Time  
with Delay  
The frequency of each CDC conversion while operating in the  
low power automatic wake-up mode is controlled by using the  
LP_CONV_DELAY bits located at Address 0x000 [3:2] in  
addition to the registers listed in Table 10. This feature provides  
some flexibility for optimizing the tradeoff between the conversion  
time needed to meet system requirements and the power  
consumption of the AD7147.  
In addition to the results registers in the Bank 3 registers, the  
AD7147 provides the 16-bit CDC output data directly, starting  
at Address 0x00B of Bank 1. Reading back the CDC 16-bit  
conversion data register allows for customer-specific application  
data processing.  
For example, maximum power savings is achieved when the  
LP_CONV_DELAY bits are set to 11. With a setting of 11, the  
Rev. 0 | Page 16 of 68  
 
 
 
 
 
AD7147  
CAPACITANCE SENSOR INPUT CONFIGURATION  
Each input connection from the external capacitance sensors to  
the AD7147s converter can be uniquely configured by using the  
registers in Bank 2 (see Table 38). These registers are used to  
configure the input pin connection setups, sensor offsets, sensor  
sensitivities, and sensor limits for each stage. Each sensor can be  
individually optimized. For example, a button sensor connected  
to STAGE0 can have different sensitivity and offset values than a  
button with another function that is connected to a different stage.  
SINGLE-ENDED CONNECTIONS TO THE CDC  
A single-ended connection to the CDC is defined as one CINx  
input connected to either the positive or negative CDC input  
for one conversion stage. A differential connection to the CDC is  
defined as one CINx input connected to the positive CDC input  
and a second CINx input connected to the negative input of the  
CDC for one conversion stage.  
For any stage, if a single-ended connection to the CDC is made  
in that stage, the SE_CONNECTION_SETUP bits (Bits [13:12] in  
the STAGEx_CONNECTION [12:7] register) should be applied as  
follows:  
CINx INPUT MULTIPLEXER SETUP  
Table 34 and Table 35 list the available options for the  
CINx_CONNECTION_SETUP bits when the sensor input  
pins are connected to the CDC.  
SE_CONNECTION_SETUP = 00: do not use.  
SE_CONNECTION_SETUP = 01: single-ended connection.  
For this stage, there is one CINx connected to the negative  
CDC input.  
The AD7147 has an on-chip multiplexer that routes the input  
signals from each CINx pin to the input of the converter. Each  
input pin can be tied to either the negative or positive input of  
the CDC, or it can be left floating. Each input can also be  
internally connected to the BIAS signal to help prevent cross  
coupling. If an input is not used, always connect it to the BIAS.  
SE_CONNECTION_SETUP = 10: single-ended connection.  
For this stage, there is one CINx connected to the positive  
CDC input.  
SE_CONNECTION_SETUP = 11: differential connection.  
For this stage, there is one CINx connected to the nega  
tive CDC input and one CINx connected to the positive  
CDC input.  
Connecting a CINx input pin to the positive CDC input results  
in an increase in CDC output code when the corresponding  
sensor is activated. Connecting a CINx input pin to the negative  
CDC input results in a decrease in CDC output code when the  
corresponding sensor is activated.  
These bits ensure that during a single-ended connection to the  
CDC, the input paths to both CDC terminals are matched,  
which in turn improves the power-supply rejection of the  
converter measurement.  
The AD7147 performs a sequence of 12 conversions. The multi-  
plexer can have different settings for each of the 12 conversions.  
For example, CIN0 is connected to the negative CDC input for  
conversion STAGE1, left floating for conversion STAGE1, and  
so on, for all 12 conversion stages.  
These bits should be applied in addition to setting the other bits  
in the STAGEx_CONNECTION registers, as outlined in the  
CINX Input Multiplexer Setup section.  
For each CINx input for each conversion stage, two bits control  
how the input is connected to the converter, as shown in Figure 28.  
If more than one CINx input is connected to either the positive  
or negative input of the converter for the same conversion, set  
SE_CONNECTION_SETUP to 11. For example, if CIN0 and  
CIN3 are connected to the positive input of the CDC, set  
SE_CONNECTION_SETUP to 11.  
Examples  
To connect CIN3 to the positive CDC input on Stage 0 use the  
following setting:  
STAGE0_CONNECTION [6:0] = 0xFFBF  
STAGE0_CONNECTION [12:7] = 0x2FFF  
To connect CIN0 to the positive CDC input and CIN12 to the  
negative CIN input on Stage 5 use the following settings:  
STAGE5_CONNECTION [6:0] = 0xFFFE  
STAGE5_CONNECTION [12:7] = 0x37FF  
CIN CONNECTION SETUP BITS  
CIN SETTING  
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
CIN12  
00  
01  
10  
11  
CINx FLOATING  
CINx CONNECTED TO  
NEGATIVE CDC INPUT  
+
CDC  
CINx CONNECTED TO  
POSITIVE CDC INPUT  
CINx CONNECTED TO  
BIAS  
Figure 28. Input Mux Configuration Options  
Rev. 0 | Page 17 of 68  
 
 
 
AD7147  
NONCONTACT PROXIMITY DETECTION  
The AD7147 internal signal processing continuously monitors  
all capacitance sensors for noncontact proximity detection. This  
feature provides the ability to detect when a user is approaching  
a sensor, at which time all internal calibration is immediately  
disabled while the AD7147 is automatically configured to detect  
a valid contact.  
by the PROXIMITY_RECAL_LVL bits for a set period of time  
known as the recalibration timeout. In full power mode, the  
recalibration timeout is controlled by FP_PROXIMITY_RECAL;  
in low power mode, by LP_PROXMTY_RECAL.  
The recalibration timeout in full power mode is the value of the  
FP_PROXIMITY_RECAL multiplied by the time for one con-  
version sequence in full power mode. The recalibration timeout in  
low power mode is the value of the LP_PROXIMITY_RECAL  
multiplied by the time for one conversion sequence in low  
power mode.  
The proximity control register bits are described in Table 12. The  
FP_PROXIMITY_CNT and LP_PROXIMITY_CNT register bits  
control the length of the calibration disable period after the user  
stops touching the sensor and is not in close proximity to the  
sensor during full or low power mode. The calibration is disabled  
during this period and then enabled again. Figure 29 and Figure  
30 show examples of how these registers are used to set the  
calibration disable periods for the full and low power modes.  
Figure 31 and Figure 32 show examples of how the  
FP_PROXIMITY_RECAL and LP_PROXIMITY_RECAL  
register bits control the timeout period before a recalibration  
while operating in the full and low power modes. In these  
examples, a user approaches a sensor and then leaves, but the  
proximity detection remains active. The measured CDC value  
exceeds the stored ambient value by the amount set in the  
PROXIMITY_RECAL_LVL bits for the entire timeout period.  
The sensor is automatically recalibrated at the end of the  
timeout period.  
The calibration disable period in full power mode is the value  
of the FP_PROXIMITY_CNT multiplied by 16 multiplied by  
the time for one conversion sequence in full power mode. The  
calibration disable period in low power mode is the value of the  
LP_PROXIMITY_CNT multiplied by 4 multiplied by the time  
for one conversion sequence in low power mode.  
RECALIBRATION  
PROXIMITY SENSITIVITY  
In certain situations, for example, when a user hovers over a  
sensor for a long time, the proximity flag can be set for a long  
period. The environmental calibration on the AD7147 is  
suspended while proximity is detected, but changes may occur  
to the ambient capacitance level during the proximity event.  
This means that the ambient value stored on the AD7147 no  
longer represents the actual ambient value. In this case, even  
when the user is not in close proximity to the sensor, the  
proximity flag may still be set. This situation can occur if the  
user interaction creates some moisture on the sensor, causing  
the new sensor ambient value to be different from the expected  
value. In this situation, the AD7147 automatically forces a  
recalibration internally. This ensures that the ambient values are  
recalibrated, regardless of how long the user hovers over the  
sensor. A recalibration ensures maximum AD7147 sensor  
performance.  
The fast filter in Figure 33 is used to detect when someone is  
close to the sensor (proximity). Two conditions, detected by  
Comparator 1 and Comparator 2, set the internal proximity  
detection signal: Comparator 1 detects when a user is  
approaching or leaving a sensor, and Comparator 2 detects  
when a user hovers over a sensor or approaches a sensor very  
slowly.  
The sensitivity of Comparator 1 is controlled by the  
PROXIMITY_DETECTION_RATE bits. For example, if  
PROXIMITY_DETECTION_RATE is set to 4, the Proximity 1  
signal is set when the absolute difference between WORD1 and  
WORD3 exceeds (4 × 16) LSB codes.  
The sensitivity of Comparator 2 is controlled by the  
PROXIMITY_RECAL_LVL bits (Address 0x003). For example,  
if PROXIMITY_RECAL_LVL is set to 75, the Proximity 2 signal is  
set when the absolute difference between the fast filter average  
value and the ambient value exceeds (75 × 16) LSB codes.  
The AD7147 recalibrates automatically when the measured CDC  
value exceeds the stored ambient value by an amount determined  
Rev. 0 | Page 18 of 68  
 
AD7147  
Table 12. Proximity Control Registers (See Figure 33)  
Length  
(Bits)  
Bit Name  
Register Address  
0x002 [7:4]  
0x002 [11:8]  
0x004 [9:0]  
0x004 [15:10]  
0x003 [7:0]  
Description  
FP_PROXIMITY_CNT  
LP_PROXIMITY_CNT  
FP_PROXIMITY_RECAL  
LP_PROXIMITY_RECAL  
PROXIMITY_RECAL_LVL  
4
4
8
6
8
Calibration disable time in full power mode.  
Calibration disable time in low power mode.  
Full power mode proximity recalibration time.  
Low power mode proximity recalibration time.  
Proximity recalibration level. This value multiplied by 16 controls the  
sensitivity of Comparator 2 (see Figure 33).  
PROXIMITY_DETECTION_RATE  
6
0x003 [13:8]  
Proximity detection rate. This value multiplied by 16 controls the  
sensitivity of Comparator 1 (see Figure 33).  
USER APPROACHES  
SENSOR  
USER LEAVES  
SENSOR AREA  
tCONV_FP  
CDC CONVERSION  
SEQUENCE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
tCALDIS  
(INTERNAL)  
PROXIMITY  
DETECTION  
(INTERNAL)  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
CALIBRATION ENABLED  
Figure 29. Example of Full Power Mode Proximity Detection (FP_PROXIMITY_CNT = 1)  
USER APPROACHES  
SENSOR  
USER LEAVES  
SENSOR AREA  
tCONV_LP  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
CDC CONVERSION  
SEQUENCE  
(INTERNAL)  
tCALDIS  
PROXIMITY  
DETECTION  
(INTERNAL)  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
CALIBRATION ENABLED  
NOTES  
1. SEQUENCE CONVERSION TIME tCONV_LP  
=
tCONV_FP + LP_CONV_DELAY.  
2. PROXIMITY IS SET WHEN USER APPROACHES THE SENSOR, AT WHICH TIME THE INTERNAL CALIBRATION IS DISABLED.  
3. tCALDIS = (tCONV_LP × LP_PROXIMITY_CNT × 4).  
Figure 30. Example of Low Power Mode Proximity Detection (LP_PROXIMITY_CNT = 4)  
Rev. 0 | Page 19 of 68  
 
 
 
AD7147  
USER APPROACHES  
SENSOR  
tRECAL  
MEASURED CDC VALUE > STORED AMBIENT  
BY PROXIMITY_RECAL _LVL  
USER LEAVES  
SENSOR AREA  
tCONV_FP  
16  
30  
70  
CDC CONVERSION  
SEQUENCE  
(INTERNAL)  
tCALDIS  
PROXIMITY  
DETECTION  
(INTERNAL)  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
RECALIBRATION TIMEOUT  
tRECAL_TIMEOUT  
CALIBRATION ENABLED  
RECALIBRATION  
COUNTER  
(INTERNAL)  
NOTES  
1. SEQUENCE CONVERSION TIME tCONV_FP (SEE TABLE 10).  
2. tCALDIS tCONV_FP × FP_PROXIMITY_CNT × 16.  
3. tRECAL_TIMEOUT tCONV_FP × FP_PROXIMITY_RECAL.  
4. tRECAL = 2 × tCONV_FP  
=
=
.
Figure 31. Example of Full Power Mode Proximity Detection with Forced Recalibration (FP_PROXIMITY_CNT = 1 and FP_PROXIMITY_RECAL = 40)  
USER APPROACHES  
SENSOR  
tRECAL  
MEASURED CDC VALUE > STORED AMBIENT  
USER LEAVES  
SENSOR AREA  
BY PROXIMITY_RECAL _LVL  
tCONV_LP  
16  
30  
70  
CDC CONVERSION  
SEQUENCE  
(INTERNAL)  
PROXIMITY  
DETECTION  
(INTERNAL)  
tCALDIS  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
RECALIBRATION TIMEOUT  
tRECAL_TIMEOUT  
CALIBRATION ENABLED  
RECALIBRATION  
(INTERNAL)  
NOTES  
1. SEQUENCE CONVERSION TIME tCONV_LP  
2. tCALDIS tCONV_LP × LP_PROXIMITY_CNT × 4.  
3. tRECAL_TIMEOUT tCONV_LP × LP_PROXIMITY_RECAL.  
4. tRECAL = 2 × tCONV_LP  
=
tCONV_FP + LP_CONV_DELAY.  
=
=
.
Figure 32. Example of Low Power Mode Proximity Detection with Forced Recalibration (LP_PROXIMITY_CNT = 4 and LP_PROXIMITY_RECAL = 40)  
Rev. 0 | Page 20 of 68  
 
 
AD7147  
Determining the FF_SKIP_CNT value is required only once  
FF_SKIP_CNT  
during the initial setup of the capacitance sensor interface.  
Table 13 shows how FF_SKIP_CNT controls the update rate of  
the fast FIFO. The recommended value for the setting when  
using all 12 conversion stages on the AD7147 is 0000, or no  
samples skipped.  
The proximity detection fast FIFO is used by the on-chip logic  
to determine if proximity is detected. The fast FIFO expects to  
receive samples from the converter at a set rate. FF_SKIP_CNT  
is used to normalize the frequency of the samples going into the  
FIFO, regardless of how many conversion stages are in a sequence.  
In Register 0x002, Bits [3:0] are the fast filter skip control,  
FF_SKIP_CNT. This value determines which CDC samples  
are not used (skipped) by the proximity detection fast FIFO.  
Table 13. FF_SKIP_CNT Settings  
FAST FIFO Update Rate  
Decimation = 128  
FF_SKIP  
_CNT  
Decimation = 64  
Decimation = 256  
0
1
2
3
4
5
0.768 × (SEQUENCE_STAGE_NUM + 1) ms 1.536 × (SEQUENCE_STAGE_NUM + 1) ms  
1.536 × (SEQUENCE_STAGE_NUM + 1) ms 3.072 × (SEQUENCE_STAGE_NUM + 1) ms  
3.072 × (SEQUENCE_STAGE_NUM + 1) ms  
6.144 × (SEQUENCE_STAGE_NUM + 1) ms  
9.216 × (SEQUENCE_STAGE_NUM + 1) ms  
12.288 × (SEQUENCE_STAGE_NUM + 1) ms  
15.36 × (SEQUENCE_STAGE_NUM + 1) ms  
18.432 × (SEQUENCE_STAGE_NUM + 1) ms  
2.3 × (SEQUENCE_STAGE_NUM + 1) ms  
4.608 × (SEQUENCE_STAGE_NUM + 1) ms  
3.072 × (SEQUENCE_STAGE_NUM + 1) ms 6.144 × (SEQUENCE_STAGE_NUM + 1) ms  
3.84 × (SEQUENCE_STAGE_NUM + 1) ms  
4.6 × (SEQUENCE_STAGE_NUM + 1) ms  
7.68 × (SEQUENCE_STAGE_NUM + 1) ms  
9.216 × (SEQUENCE_STAGE_NUM + 1) ms  
6
7
8
5.376 × (SEQUENCE_STAGE_NUM + 1) ms 10.752 × (SEQUENCE_STAGE_NUM + 1) ms 21.504 × (SEQUENCE_STAGE_NUM + 1) ms  
6.144 × (SEQUENCE_STAGE_NUM + 1) ms 12.288 × (SEQUENCE_STAGE_NUM + 1) ms 24.576 × (SEQUENCE_STAGE_NUM + 1) ms  
6.912 × (SEQUENCE_STAGE_NUM + 1) ms 13.824 × (SEQUENCE_STAGE_NUM + 1) ms 27.648 × (SEQUENCE_STAGE_NUM + 1) ms  
9
7.68 × (SEQUENCE_STAGE_NUM + 1) ms  
15.36 × (SEQUENCE_STAGE_NUM + 1) ms  
30.72 × (SEQUENCE_STAGE_NUM + 1) ms  
10  
11  
12  
13  
14  
15  
8.448 × (SEQUENCE_STAGE_NUM + 1) ms 16.896 × (SEQUENCE_STAGE_NUM + 1) ms 33.792 × (SEQUENCE_STAGE_NUM + 1) ms  
9.216 × (SEQUENCE_STAGE_NUM + 1) ms 18.432 × (SEQUENCE_STAGE_NUM + 1) ms 36.864 × (SEQUENCE_STAGE_NUM + 1) ms  
9.984 × (SEQUENCE_STAGE_NUM + 1) ms 19.968 × (SEQUENCE_STAGE_NUM + 1) ms 39.936 × (SEQUENCE_STAGE_NUM + 1) ms  
10.752 × (SEQUENCE_STAGE_NUM + 1) ms 21.504 × (SEQUENCE_STAGE_NUM + 1) ms 43.008 × (SEQUENCE_STAGE_NUM + 1) ms  
11.52 × (SEQUENCE_STAGE_NUM + 1) ms 23.04 × (SEQUENCE_STAGE_NUM + 1) ms  
46.08 × (SEQUENCE_STAGE_NUM + 1) ms  
12.288 × (SEQUENCE_STAGE_NUM + 1) ms 24.576 × (SEQUENCE_STAGE_NUM + 1) ms 49.152 × (SEQUENCE_STAGE_NUM + 1) ms  
Rev. 0 | Page 21 of 68  
 
AD7147  
FP_PROXIMITY_CNT  
REGISTER 0x002  
LP_PROXIMITY_CNT  
REGISTER 0x002  
16  
CDC  
STAGEx_FF_WORD0  
STAGEx_FF_WORD1  
STAGEx_FF_WORD2  
STAGEx_FF_WORD3  
STAGEx_FF_WORD4  
STAGEx_FF_WORD5  
STAGEx_FF_WORD6  
STAGEx_FF_WORD7  
PROXIMITY 1  
PROXIMITY  
COMPARATOR 1  
PROXIMITY TIMING  
CONTROL LOGIC  
|WORD0 – WORD3|  
PROXIMITY_DETECTION_RATE  
REGISTER 0x003  
FP_PROXIMITY_RECAL  
REGISTER 0x004  
LP_PROXIMITY_RECAL  
REGISTER 0x004  
BANK 3 REGISTERS  
7
WORD(N)  
STAGEx_FF_AVG  
BANK 3 REGISTERS  
Σ
N = 0  
8
COMPARATOR 2  
|AVERAGE – AMBIENT|  
STAGEx_FF_WORDx  
PROXIMITY  
SW1  
SLOW_FILTER_EN  
PROXIMITY_RECAL_LVL  
REGISTER 0x003  
COMPARATOR 3  
STAGEx_SF_WORD0  
STAGEx_SF_WORD1  
STAGEx_SF_WORD2  
STAGEx_SF_WORD3  
STAGEx_SF_WORD4  
STAGEx_SF_WORD5  
STAGEx_SF_WORD6  
STAGEx_SF_WORD7  
WORD0 – CDC VALUE  
AMBIENT  
VALUE  
STAGEx_SF_AMBIENT  
BANK 3 REGISTERS  
STAGEx_SF_WORDx  
SLOW_FILTER_UPDATE_LVL  
REGISTER 0x003  
SENSOR  
CONTACT  
t
BANK 3 REGISTERS  
NOTES  
|STAGEx_SF_  
|
1. SLOW_FILTER_EN, WHICH IS THE NAME OF THE OUTPUT OF COMPARATOR 3, IS SET AND SW1 IS CLOSED WHEN  
EXCEEDS THE VALUE PROGRAMMED IN THE SLOW_FILTER_UPDATE_LVL REGISTER PROVIDING PROXIMITY IS NOT SET.  
|STAGEx_FF_  
WORD0 – CDC VALUE  
|
2. PROXIMITY 1 IS SET WHEN  
WORD0 – STAGEx_FF_WORD3 EXCEEDS THE VALUE PROGRAMMED IN THE  
PROXIMITY_DETECTION_RATE REGISTER.  
|
|
3. PROXIMITY 2 IS SET WHEN AVERAGE – AMBIENT EXCEEDS THE VALUE PROGRAMMED IN THE PROXIMITY_RECAL_LVL REGISTER.  
4. DESCRIPTION OF COMPARATOR FUNCTIONS:  
COMPARATOR 1: USED TO DETECT WHEN A USER IS APPROACHING OR LEAVING A SENSOR.  
COMPARATOR 2: USED TO DETECT WHEN A USER IS HOVERING OVER A SENSOR OR APPROACHING A SENSOR VERY SLOWLY.  
ALSO USED TO DETECT IF THE SENSOR AMBIENT LEVEL HAS CHANGED AS A RESULT OF THE USER INTERACTION.  
FOR EXAMPLE, HUMIDITY OR DIRT LEFT BEHIND ON SENSOR.  
COMPARATOR 3: USED TO ENABLE THE SLOW FILTER UPDATE RATE. THE SLOW FILTER IS UPDATED WHEN SLOW_FILTER_EN IS SET AND  
PROXIMITY IS NOT SET.  
Figure 33. AD7147 Proximity-Detection Logic  
Rev. 0 | Page 22 of 68  
 
AD7147  
ENVIRONMENTAL CALIBRATION  
SENSOR 1 INT  
ASSERTED  
The AD7147 provides on-chip capacitance sensor calibration to  
automatically adjust for environmental conditions that have an  
effect on the ambient levels of the capacitance sensor. The output  
levels of the capacitance sensor are sensitive to temperature,  
humidity, and, in some cases, dirt.  
STAGEx_HIGH_THRESHOLD  
CDC AMBIENT VALUE  
The AD7147 achieves optimal and reliable sensor  
performance by continuously monitoring the CDC ambient  
levels and compensating for any environmental changes by  
adjusting the values of the STAGEx_HIGH_THRESHOLD  
and STAGEx_LOW_THRESHOLD registers as described in  
Equation 1 and Equation 2. The CDC ambient level is defined  
as the output level of the capacitance sensor during periods  
when the user is not approaching or in contact with the sensor.  
STAGEx_LOW_THRESHOLD  
SENSOR 2 INT  
ASSERTED  
t
CHANGING ENVIRONMENTAL CONDITIONS  
Figure 34. Ideal Sensor Behavior with a Constant Ambient Level  
CAPACITANCE SENSOR BEHAVIOR WITHOUT  
CALIBRATION  
After the AD7147 is configured, the compensation logic runs  
automatically with each conversion when the AD7147 is not  
being touched. This allows the AD7147 to compensate for  
rapidly changing environmental conditions.  
Figure 35 shows the typical behavior of a capacitance sensor  
when calibration is not applied. This figure shows ambient  
levels drifting over time as environmental conditions change. As  
a result of the initial threshold levels remaining constant while  
the ambient levels drift upward, Sensor 2 fails to detect a user  
contact in this example.  
The ambient compensation control registers provide the host  
with access to general setup and controls for the compensation  
algorithm. On-chip RAM stores the compensation data for each  
conversion stage, as well as setup information specific for each stage.  
The Capacitance Sensor Behavior with Calibration section  
describes how the AD7147 adaptive calibration algorithm  
prevents such errors from occurring.  
Figure 34 shows an example of the ideal behavior of a  
capacitance sensor, where the CDC ambient level remains  
constant regardless of the environmental conditions. The CDC  
output shown is for a pair of differential button sensors, where  
one sensor caused an increase and the other caused a decrease  
in measured capacitance when activated. The positive and  
negative sensor threshold levels are calculated as a percentage of  
the STAGEx_OFFSET_HIGH and STAGEx_OFFSET_LOW  
values and are based on the threshold sensitivity settings and  
the ambient value. These values are sufficient to detect a sensor  
SENSOR 1 INT  
ASSERTED  
STAGEx_HIGH_THRESHOLD  
CDC AMBIENT  
VALUE DRIFTING  
INT  
contact and result in the AD7147 asserting the  
when the threshold levels are exceeded.  
output  
STAGEx_LOW_THRESHOLD  
SENSOR 2 INT  
NOT ASSERTED  
t
CHANGING ENVIRONMENTAL CONDITIONS  
Figure 35. Typical Sensor Behavior Without Calibration  
STAGEx _ OFFSET _ HIGH  
STAGEx _ OFFSET _ HIGH −  
⎜ ⎜  
⎟ ⎟  
STAGEx _ OFFSET _ HIGH  
4
STAGEx _ HIGH _ THRESHOLD = STAGEx _ SF _ AMBIENT +  
+
× POS _ THRESHOLD _ SENSITIVITY  
4
16  
Equation 1. On-Chip Logic Stage High Threshold Calculation  
STAGEx _ OFFSET _ LOW  
STAGEx _ OFFSET _ LOW −  
⎜ ⎜  
⎟ ⎟  
STAGEx _ OFFSET _ LOW  
4
STAGEx _ LOW _THRESHOLD = STAGEx _ SF _ AMBIENT +  
+
× NEG _THRESHOLD _ SENSITIVITY  
4
16  
Equation 2. On-Chip Logic Stage Low Threshold Calculation  
Rev. 0 | Page 23 of 68  
 
 
 
 
AD7147  
AVG_FP_SKIP and AVG_LP_SKIP  
CAPACITANCE SENSOR BEHAVIOR WITH  
CALIBRATION  
In Register 0x001, Bits [13:12] are the slow FIFO skip control  
for full power mode, AVG_FP_SKIP. Bits [15:14] in the same  
register are the slow FIFO skip control for low power mode,  
AVG_LP_SKIP, and determine which CDC samples are not  
used (skipped) in the slow FIFO. Changing the values of the  
AVG_FP_SKIP and AVG_LP_SKIP bits slows down or speeds  
up the rate at which the ambient capacitance value tracks the  
measured capacitance value read by the converter:  
The AD7147 on-chip adaptive calibration algorithm prevents  
sensor detection errors such as the one shown in Figure 35.  
This is achieved by monitoring the CDC ambient levels  
and readjusting the initial STAGEx_OFFSET_HIGH and  
STAGEx_OFFSET_LOW values according to the amount of  
ambient drift measured on each sensor. Based on the new  
stage offset values, the internal STAGEx_HIGH_THRESHOLD  
and STAGEx_LOW_THRESHOLD values described in  
Equation 1 and Equation 2 are automatically updated.  
Slow FIFO update rate in full power mode = AVG_FP_SKIP ×  
[(3 × Decimation Rate) × (SEQUENCE_STAGE_NUM + 1) ×  
(FF_SKIP_CNT + 1) × 4 × 10−7].  
This closed-loop routine ensures the reliability and repeatable  
operation of every sensor connected to the AD7147 when they  
are subjected to dynamic environmental conditions. Figure 36  
shows a simplified example of how the AD7147 applies the  
adaptive calibration process, resulting in no interrupt errors  
even with changing CDC ambient levels due to dynamic  
environmental conditions.  
Slow FIFO update rate in low power mode = (AVG_LP_SKIP  
+ 1) × [(3 × Decimation Rate) × (SEQUENCE_STAGE_NUM  
+ 1) × (FF_SKIP_CNT + 1) × 4 x 10−7]/[(FF_SKIP_CNT + 1)  
+ LP_CONV_DELAY].  
The slow FIFO is used by the on-chip logic to track the ambient  
capacitance value. The slow FIFO expects to receive samples from  
the converter at a rate between 33 ms and 40 ms. AVG_FP_SKIP  
and AVG_LP_SKIP are used to normalize the frequency of the  
samples going into the FIFO, regardless of how many conversion  
stages are in a sequence.  
SENSOR 1 INT  
ASSERTED  
3
STAGEx_HIGH_THRESHOLD  
(POSTCALIBRATED  
2
REGISTER VALUE)  
1
CDC AMBIENT  
Determining the AVG_FP_SKIP and AVG_LP_SKIP values is  
required only once during the initial setup of the capacitance  
sensor interface. The recommended values for these settings  
when using all 12 conversion stages on the AD7147 are as follows:  
VALUE DRIFTING  
6
5
STAGEx_LOW_THRESHOLD  
(POSTCALIBRATED  
REGISTER VALUE)  
4
AVG_FP_SKIP = 00 = skip three samples  
AVG_LP_SKIP = 00 = skip zero samples  
SENSOR 2 INT  
ASSERTED  
t
CHANGING ENVIRONMENTAL CONDITIONS  
SLOW_FILTER_UPDATE_LVL  
1
2
3
4
5
6
INITIAL STAGEx_OFFSET_HIGH REGISTER VALUE.  
The SLOW_FILTER_UPDATE_LVL controls whether the most  
recent CDC measurement goes into the slow FIFO (slow filter).  
The slow filter is updated when the difference between the  
current CDC value and the last value of the slow FIFO is greater  
than the value of SLOW_FILTER_UPDATE_LVL. This variable  
is in Ambient Control Register 1 (AMB_COMP_CTRL1)  
(Address 0x003).  
POSTCALIBRATED REGISTER STAGEx_HIGH_THRESHOLD.  
POSTCALIBRATED REGISTER STAGEx_HIGH_THRESHOLD.  
INITIAL STAGEx_LOW_THRESHOLD.  
POSTCALIBRATED REGISTER STAGEx_LOW_THRESHOLD.  
POSTCALIBRATED REGISTER STAGEx_LOW_THRESHOLD.  
Figure 36. Typical Sensor Behavior with Calibration Applied on the Data Path  
SLOW FIFO  
As shown in Figure 33, there are a number of FIFOs  
implemented on the AD7147. These FIFOs are located in  
Bank 3 of the on-chip memory. The slow FIFOs are used by the  
on-chip logic to monitor the ambient capacitance level from  
each sensor.  
Rev. 0 | Page 24 of 68  
 
 
 
AD7147  
ADAPTIVE THRESHOLD AND SENSITIVITY  
The AD7147 provides an on-chip, self-adjusting adaptive  
threshold and sensitivity algorithm. This algorithm continu-  
ously monitors the output levels of each sensor and automatically  
rescales the threshold levels in proportion to the sensor area  
covered by the user. As a result, the AD7147 maintains optimal  
threshold and sensitivity levels for all users regardless of their  
finger sizes.  
result in a large average maximum or minimum value, whereas  
a small finger will result in smaller values. When the average  
maximum or minimum value changes, the threshold levels are  
rescaled to ensure that the threshold levels are appropriate for  
the current user. Figure 38 shows how the minimum and  
maximum sensor responses are tracked by the on-chip logic.  
Reference A in Figure 37 shows a less sensitive threshold level  
for a user with small fingers and demonstrates the disadvantages  
of a fixed threshold level.  
The threshold level is always referenced from the ambient level  
and is defined as the CDC converter output level that must be  
exceeded before a valid sensor contact can occur. The sensitivity  
level is defined as how sensitive the sensor must be before a  
valid contact can be registered.  
By enabling the adaptive threshold and sensitivity algorithm,  
the positive and negative threshold levels are determined by the  
POS_THRESHOLD_SENSITIVITY and NEG_THRESHOLD_  
SENSITIVITY bit values and by the most recent average  
maximum sensor output value. These bits can be used to select  
16 different positive and negative sensitivity levels ranging between  
25% and 95.32% of the most recent average maximum output  
level referenced from the ambient value. The smaller the  
sensitivity percentage setting, the easier it is to trigger a sensor  
activation. Reference B shows that the positive adaptive threshold  
level is set at almost mid-sensitivity with a 62.51% threshold  
level by setting POS_THRESHOLD_ SENSITIVITY = 1000.  
Figure 37 also provides a similar example for the negative  
threshold level, with NEG_THRESHOLD_SENSITIVITY =  
0011.  
Figure 37 provides an example of how the adaptive threshold  
and sensitivity algorithm works. The positive and negative  
sensor threshold levels are calculated as a percentage of the  
STAGEx_OFFSET_HIGH and STAGEx_OFFSET_LOW  
values and are based on the threshold sensitivity settings and  
the ambient value. After the AD7147 is configured, initial  
estimates are supplied for both STAGEx_OFFSET_HIGH  
and STAGEx_OFFSET_LOW, and then the calibration engine  
automatically adjusts the STAGEx_HIGH_THRESHOLD and  
STAGEx_LOW_THRESHOLD values for sensor response.  
The AD7147 tracks the average maximum and minimum values  
measured from each sensor. These values provide an indication  
of how the user is interacting with the sensor. A large finger will  
AVERAGE MAXIMUM VALUE  
95.32%  
STAGEx_OFFSET_HIGH  
IS UPDATED  
AVERAGE MAXIMUM VALUE  
62.51% =  
A
POS_THRESHOLD  
STAGEx_OFFSET_HIGH  
_SENSITIVITY  
95.32%  
STAGEx_OFFSET_HIGH  
IS UPDATED  
62.51% =  
POS_THRESHOLD  
_SENSITIVITY  
25%  
B
25%  
AMBIENT LEVEL  
25%  
NEG_THRESHOLD_SENSITIVITY = 39.08%  
STAGEx_OFFSET_LOW  
IS UPDATED  
25%  
STAGEx_OFFSET_LOW  
NEG_THRESHOLD_SENSITIVITY = 39.08%  
95.32%  
STAGEx_OFFSET_LOW  
IS UPDATED  
95.32%  
SENSOR CONTACTED  
BY LARGE FINGER  
SENSOR CONTACTED  
BY SMALL FINGER  
Figure 37. Example of Threshold Sensitivity (POS_THRESHOLD_SENSITIVITY = 1000, NEG_THRESHOLD_SENSITIVITY = 0011)  
Rev. 0 | Page 25 of 68  
 
 
AD7147  
STAGEx_MAX_WORD0  
STAGEx_MAX_WORD1  
STAGEx_MAX_WORD2  
STAGEx_MAX_WORD3  
BANK 3 REGISTERS  
MAXIMUM  
LEVEL  
DETECTION  
LOGIC  
STAGEx_MAX_AVG  
BANK 3 REGISTERS  
Σ-Δ  
16-BIT  
CDC  
16  
STAGEx_MAX_TEMP  
BANK 3 REGISTERS  
STAGEx_HIGH_THRESHOLD  
BANK 3 REGISTERS  
STAGEx_MIN_WORD0  
STAGEx_MIN_WORD1  
STAGEx_MIN_WORD2  
STAGEx_MIN_WORD3  
BANK 3 REGISTERS  
MINIMUM  
LEVEL  
DETECTION  
LOGIC  
STAGEx_MIN_AVG  
BANK 3 REGISTERS  
STAGEx_MIN_TEMP  
BANK 3 REGISTERS  
STAGEx_LOW_THRESHOLD  
BANK 3 REGISTERS  
Figure 38. Tracking the Minimum and Maximum Average Sensor Values  
Table 14. Additional Information About Environmental Calibration and Adaptive Threshold Registers  
Register  
Location Description  
Register/Bit  
NEG_THRESHOLD_SENSITIVITY  
NEG_PEAK_DETECT  
Bank 2  
Bank 2  
Used in Equation 2. This value is programmed once at startup.  
Used by internal adaptive threshold logic only.  
The NEG_PEAK_DETECT is set to a percentage of the difference between the ambient  
CDC value and the minimum average CDC value. If the output of the CDC approaches the  
NEG_PEAK_DETECT percentage of the minimum average, the minimum average value is updated.  
POS_THRESHOLD_SENSITIVITY  
POS_PEAK_DETECT  
Bank 2  
Bank 2  
Used in Equation 1. This value is programmed once at startup.  
Used by internal adaptive threshold logic only.  
The POS_PEAK_DETECT is set to a percentage of the difference between the ambient  
CDC value and the maximum average CDC value. If the output of the CDC approaches the  
POS_PEAK_DETECT percentage of the maximum average, the maximum average value is updated.  
STAGEx_OFFSET_LOW  
Bank 2  
Bank 2  
Bank 2  
Used in Equation 2. An initial value (based on sensor characterization) is programmed into  
this register at startup. The AD7147 on-chip calibration algorithm automatically updates this  
register based on the amount of sensor drift due to changing ambient conditions. Set this  
register to 80% of the STAGEx_OFFSET_LOW_CLAMP value.  
STAGEx_OFFSET_HIGH  
Used in Equation 1. An initial value (based on sensor characterization) is programmed into  
this register at startup. The AD7147 on-chip calibration algorithm automatically updates this  
register based on the amount of sensor drift due to changing ambient conditions. Set this  
register to 80% of the STAGEx_OFFSET_HIGH_CLAMP value.  
STAGEx_OFFSET_HIGH_CLAMP  
Used by internal environmental calibration and adaptive threshold algorithms only.  
An initial value (based on sensor characterization) is programmed into this register at startup.  
The value in this register prevents a user from causing a sensor’s output value to exceed the  
expected nominal value.  
Set this register to the maximum expected sensor response or the maximum change in CDC  
output code.  
STAGEx_OFFSET_LOW_CLAMP  
STAGEx_SF_AMBIENT  
Bank 2  
Bank 3  
Used by internal environmental calibration and adaptive threshold algorithms only.  
An initial value (based on sensor characterization) is programmed into this register at startup.  
The value in this register prevents a user from causing a sensor’s output value to exceed the  
expected nominal value.  
Set this register to the minimum expected sensor response or the minimum change in CDC  
output code.  
Used in Equation 1 and Equation 2. This is the ambient sensor output when the sensor is not  
touched, as calculated using the slow FIFO.  
STAGEx_HIGH_THRESHOLD  
STAGEx_LOW_THRESHOLD  
Bank 3  
Bank 3  
Equation 1 value.  
Equation 2 value.  
Rev. 0 | Page 26 of 68  
 
AD7147  
INTERRUPT OUTPUT  
The AD7147 has an interrupt output that triggers an interrupt  
INT  
Configuring the AD7147 into this mode results in the interrupt  
being asserted when the user makes contact with the sensor and  
again when the user stops touching the sensor. The second  
interrupt is required to alert the host processor that the user is  
no longer contacting the sensor.  
service routine on the host processor. The  
signal is on  
Pin 17 and is an open-drain output. There are three types of  
interrupt events on the AD7147: a CDC conversion-complete  
interrupt, a sensor touch interrupt, and a GPIO interrupt. Each  
interrupt has enable and status registers. The conversion-  
complete and sensor-touch (sensor-activation) interrupts can be  
enabled on a per-conversion-stage basis. The status registers  
The registers located at Address 0x005 and Address 0x006 are  
used to enable the interrupt output for each stage. The registers  
located at Address 0x008 and Address 0x009 are used to read  
back the interrupt status for each stage.  
INT  
indicate what type of interrupt triggered the  
pin. Status  
INT  
registers are cleared, and the  
signal is reset high during a  
Figure 39 shows the interrupt output timing during contact with  
one of the sensors connected to STAGE0 while operating in the  
sensor-touch interrupt mode. For a low limit configuration, the  
interrupt output is asserted as soon as the sensor is contacted and  
again after the user has stopped contacting the sensor. (Note that  
the interrupt output remains low until the host processor reads  
back the interrupt status registers located at Address 0x008 and  
Address 0x009.)  
read operation. The signal returns high as soon as the read  
address has been set up.  
CDC CONVERSION-COMPLETE INTERRUPT  
The AD7147 interrupt signal asserts low to indicate the completion  
of a conversion stage and that new conversion result data is  
available in the registers.  
The interrupt can be independently enabled for each conversion  
stage. Each conversion-stage-complete interrupt can be enabled via  
the STAGE_COMPLETE_INT_ENABLE register (Address 0x007).  
This register has a bit that corresponds to each conversion stage.  
Setting this bit to 1 enables the interrupt for that stage. Clearing this  
bit to 0 disables the conversion-complete interrupt for that stage.  
The interrupt output is asserted when there is a change in the  
interrupt status bits. This can indicate that a user is touching the  
sensor(s) for the first time, the number of sensors being  
touched has changed, or the user is no longer touching the  
sensor(s). Reading the status bits in the interrupt status register  
shows the current sensor activations.  
The AD7147 interrupt should be enabled only for the last stage  
in a conversion sequence. For example, if there are five  
conversion stages, only the conversion-complete interrupt for  
FINGER ON SENSOR  
1
3
FINGER OFF SENSOR  
INT  
STAGE4 is enabled. Therefore,  
only asserts when all five  
CONVERSION  
STAGE  
conversion stages are complete and the host can read new data  
from all five result registers. The interrupt is cleared by reading  
the STAGE_COMPLETE_INT_STATUS register located at  
Address 0x00A.  
STAGE0  
STAGE1  
2
4
SERIAL  
READBACK  
Register 0x00A is the conversion-complete interrupt status  
register. Each bit in this register corresponds to a conversion  
stage. If a bit is set, it means that the conversion-complete  
interrupt for the corresponding stage was triggered. This  
register is cleared upon a read if the underlying condition that  
triggered the interrupt is not present.  
INT OUTPUT  
1
2
3
4
USER TOUCHING SENSOR.  
ADDRESS 0x008 IS READ BACK TO CLEAR INTERRUPT.  
USER STOPS TOUCHING SENSOR.  
ADDRESS 0x008 IS READ BACK TO CLEAR INTERRUPT.  
Figure 39. Example of Sensor-Touch Interrupt  
SENSOR-TOUCH INTERRUPT  
The sensor-touch interrupt mode is implemented when the host  
processor requires an interrupt only when a sensor is contacted.  
Rev. 0 | Page 27 of 68  
 
 
 
AD7147  
STAGE0  
STAGE1  
STAGE2  
STAGE3  
STAGE4  
STAGE5  
STAGE6  
STAGE7  
STAGE8  
STAGE9  
STAGE10  
STAGE11  
CONVERSIONS  
INT  
1
2
3
SERIAL  
READS  
NOTES  
THIS IS AN EXAMPLE OF A CDC CONVERSION-COMPLETE INTERRUPT.  
THIS TIMING EXAMPLE SHOWS THAT THE INTERRUPT OUTPUT HAS BEEN ENABLED TO BE ASSERTED AT THE END OF A CONVERSION CYCLE FOR  
STAGE0, STAGE5, AND STAGE9. THE INTERRUPTS FOR ALL OTHER STAGES HAVE BEEN DISABLED.  
STAGEx CONFIGURATION PROGRAMMING NOTES FOR STAGE0, STAGE5, AND STAGE9 (x = 0, 5, 9):  
STAGEx_LOW_INT_ENABLE (ADDRESS 0x005) = 0  
STAGEx_HIGH_INT_ENABLE (ADDRESS 0x006) = 0  
STAGEx_COMPLETE_INT_ENABLE (ADDRESS 0x007) = 1  
STAGEx CONFIGURATION PROGRAMMING NOTES FOR STAGE1 THROUGH STAGE8, STAGE10, AND STAGE11 (x = 1, 2, 3, 4, 5, 6, 7, 8, 10, 11):  
STAGEx_LOW_INT_ENABLE (ADDRESS 0x005) = 0  
STAGEx_HIGH_INT_ENABLE (ADDRESS 0x006) = 0  
STAGEx_COMPLETE_INT_ENABLE (ADDRESS 0x007) = 0  
SERIAL READBACK REQUIREMENTS FOR STAGE0, STAGE5, AND STAGE9 (THIS READBACK OPERATION IS REQUIRED TO CLEAR THE INTERRUPT OUTPUT.):  
1
READ THE STAGE0_COMPLETE_INT_STATUS (ADDRESS 0x00A) BIT  
READ THE STAGE5_COMPLETE_INT_STATUS (ADDRESS 0x00A) BIT  
READ THE STAGE9_COMPLETE_INT_STATUS (ADDRESS 0x00A) BIT  
2
3
Figure 40. Example of Configuring the Registers for Conversion-Complete Interrupt Setup  
CONVERSIONS  
STAGE0  
STAGE1  
STAGE2  
STAGE3  
STAGE4  
STAGE5  
STAGE6  
STAGE7  
STAGE8  
STAGE9  
STAGE10  
STAGE11  
INT  
1
4
2
SERIAL  
READS  
NOTES  
THIS IS AN EXAMPLE OF A SENSOR-TOUCH INTERRUPT FOR A CASE WHERE THE LOW THRESHOLD LEVELS WERE EXCEEDED.  
FOR EXAMPLE, THE SENSOR CONNECTED TO STAGE0 AND STAGE9 WERE CONTACTED, AND THE LOW THRESHOLD LEVELS WERE EXCEEDED, RESULTING  
IN THE INTERRUPT BEING ASSERTED. THE STAGE6 INTERRUPT WAS NOT ASSERTED BECAUSE THE USER DID NOT CONTACT THE SENSOR CONNECTED TO  
STAGE6.  
STAGEx CONFIGURATION PROGRAMMING NOTES FOR STAGE0, STAGE6, AND STAGE9 (x = 0, 6, 9):  
STAGEx_LOW_INT_ENABLE (ADDRESS 0x005) = 1  
STAGEx_HIGH_INT_ENABLE (ADDRESS 0x006) = 0  
STAGEx_COMPLETE_INT_ENABLE (ADDRESS 0x007) = 0  
STAGEx CONFIGURATION PROGRAMMING NOTES FOR STAGE1 THROUGH STAGE7, STAGE8, STAGE10, AND STAGE11 (x = 1, 2, 3, 4, 5, 6, 7, 8, 10, 11):  
STAGEx_LOW_INT_ENABLE (ADDRESS 0x005) = 0  
STAGEx_HIGH_INT_ENABLE (ADDRESS 0x006) = 0  
STAGEx_COMPLETE_INT_ENABLE (ADDRESS 0x007) = 0  
SERIAL READBACK REQUIREMENTS FOR STAGE0 AND STAGE9 (THIS READBACK OPERATION IS REQUIRED TO CLEAR THE INTERRUPT OUTPUT.):  
1
READ THE STAGE0_LOW_INT_STATUS (ADDRESS 0x008) BIT  
READ THE STAGE5_LOW_INT_STATUS (ADDRESS 0x008) BIT  
2
Figure 41. Example of Configuring the Registers for Sensor-Touch Interrupt Setup  
Rev. 0 | Page 28 of 68  
AD7147  
INT  
interrupt. This bit is set to 1 when the GPIO has triggered  
.
GPIO INT OUTPUT CONTROL  
The bit is cleared upon reading the GPIO_INT_STATUS bit if the  
condition that caused the interrupt is no longer present.  
INT  
The  
output signal can be controlled by the GPIO pin when  
the GPIO is configured as an input. The GPIO is configured as  
an input by setting the GPIO_SETUP bits in the interrupt  
configuration register to 01. See the GPIO section for more  
information on how to configure the GPIO.  
The GPIO interrupt can be set to trigger on a rising edge,  
falling edge, high level, or low level at the GPIO input pin. Table 15  
shows how the settings of the GPIO_INPUT_CONFIG bits in  
the interrupt enable (STAGE_LOW_INT_ENABLE) register  
Enable the GPIO interrupt by setting the GPIO_INT_ENABLE  
bit in Register 0x007 to 1, or disable the GPIO interrupt by  
clearing this bit to 0. The GPIO status bit in the conversion-  
complete interrupt status register reflects the status of the GPIO  
INT  
affect the behavior of  
.
Figure 42 to Figure 45 show how the interrupt output is cleared  
upon a read from the GPIO_INT_STATUS bit.  
1
1
SERIAL  
READBACK  
SERIAL  
READBACK  
GPIO INPUT HIGH WHEN REGISTER IS READ BACK  
GPIO INPUT HIGH WHEN REGISTER IS READ BACK  
GPIO  
INPUT  
GPIO  
INPUT  
INT  
OUTPUT  
INT  
OUTPUT  
GPIO INPUT LOW WHEN REGISTER IS READ BACK  
GPIO INPUT LOW WHEN REGISTER IS READ BACK  
GPIO  
INPUT  
GPIO  
INPUT  
INT  
OUTPUT  
INT  
OUTPUT  
1
1
READ GPIO_INT_STATUS BIT TO RESET INT OUTPUT.  
READ GPIO_INT_STATUS BIT TO RESET INT OUTPUT.  
INT  
INT  
Figure 43. Example of Output Controlled by the GPIO Input  
(GPIO_SETUP = 01, GPIO_INPUT_CONFIG = 01)  
Figure 42. Example of  
Output Controlled by the GPIO Input  
(GP IO_SETUP = 01, GPIO_INPUT_CONFIG = 00)  
Rev. 0 | Page 29 of 68  
 
 
AD7147  
1
1
SERIAL  
READBACK  
SERIAL  
READBACK  
GPIO INPUT LOW WHEN REGISTER IS READ BACK  
GPIO INPUT LOW WHEN REGISTER IS READ BACK  
GPIO  
INPUT  
GPIO  
INPUT  
INT  
OUTPUT  
INT  
OUTPUT  
GPIO INPUT HIGH WHEN REGISTER IS READ BACK  
GPIO INPUT HIGH WHEN REGISTER IS READ BACK  
GPIO  
INPUT  
GPIO  
INPUT  
INT  
OUTPUT  
INT  
OUTPUT  
NOTES  
1
1
READ GPIO_INT_STATUS BIT TO RESET INT OUTPUT.  
READ GPIO_INT_STATUS BIT TO RESET INT OUTPUT.  
INT  
Output Controlled by the GPIO Input  
INT  
Figure 45. Example of  
Figure 44. Example of  
Output Controlled by the GPIO Input  
(GPIO_SETUP = 01, GPIO_INPUT_CONFIG = 11)  
(GPIO_SETUP = 01, GPIO_INPUT_CONFIG = 10)  
Table 15. GPIO Interrupt Behavior  
INT  
INT Behavior  
GPIO_INPUT_CONFIG  
GPIO Pin  
GPIO_INT_STATUS  
00 = Negative Level Triggered  
00 = Negative Level Triggered  
01 = Positive Edge Triggered  
01 = Positive Edge Triggered  
10 = Negative Edge Triggered  
10 = Negative Edge Triggered  
11 = Positive Level Triggered  
11 = Positive Level Triggered  
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
Not triggered  
Asserted while signal on GPIO pin is low  
Pulses low at low-to-high GPIO transition  
Not triggered  
Pulses low at high-to-low GPIO transition  
Not triggered  
Asserted while signal on GPIO pin is high  
Not triggered  
Rev. 0 | Page 30 of 68  
 
 
AD7147  
OUTPUTS  
When the GPIO is configured as an output, the voltage level on  
the pin is set to either a low level or a high level, as defined by  
the GPIO_SETUP bits (see Table 16).  
ACSHIELD OUTPUT  
The AD7147 measures capacitance between CINx and ground.  
Any capacitance to ground on the signal path between the CINx  
pins and the sensor is included in the AD7147 conversion result.  
The GPIO_INPUT_CONFIG bits in the interrupt enable  
register determine the response of the AD7147 to a signal on  
the GPIO pin when the GPIO is configured as an input. The  
GPIO can be configured as either active high or active low, as  
well as either edge triggered or level triggered (see Table 17).  
To eliminate stray capacitance to ground, the ACSHIELD signal should  
be used to shield the connection between the sensor and CINx,  
as shown in Figure 46. The plane around the sensors should also  
be connected to ACSHIELD  
.
Table 17. GPIO_INPUT_CONFIG Bits  
GPIO_INPUT_CONFIG GPIO Configuration  
AD7147  
CIN0  
CIN1  
CIN2  
CIN3  
00  
01  
10  
11  
Triggered on negative level (active low)  
Triggered on positive edge (active high)  
Triggered on negative edge (active low)  
Triggered on positive level (active high)  
AC  
SHIELD  
Figure 46. ACSHIELD  
When GPIO is configured as an input, it triggers the interrupt  
output on the AD7147. Table 15 lists the interrupt output  
behavior for each of the GPIO configuration setups.  
The ACSHIELD output is the same signal waveform as the  
excitation signal on CINx. Therefore, there is no ac current  
between CINx and ACSHIELD, and any capacitance between these  
pins does not affect the CINx charge transfer.  
USING THE GPIO TO TURN ON/OFF AN LED  
The GPIO on the AD7147 can be used to turn on and off an  
LED by setting the GPIO as either output high or low. Setting  
the GPIO output high turns on the LED; setting the GPIO  
output low turns off the LED. The GPIO pin connects to a  
transistor that provides the drive current for the LED. Suitable  
transistors include the KTC3875 from Korea Electronics Co.,  
Ltd. (KEC).  
Using ACSHIELD eliminates capacitance-to-ground pickup, which  
means that the AD7147 can be placed up to 60 cm away from  
the sensors. This allows the AD7147 to be placed on a separate  
PCB than that of the sensors if the connections between the  
sensors and the CINx inputs are correctly shielded using  
ACSHIELD  
.
GPIO  
V
CC  
KTC3875  
OR SIMILAR  
The AD7147 has one GPIO pin. It can be configured as an input or  
an output. The GPIO_SETUP Bits [13:12] in the interrupt enable  
register determine how the GPIO pin is configured.  
AD7147  
GPIO  
Table 16. GPIO_SETUP Bits  
GPIO_SETUP  
GPIO Configuration  
GPIO disabled  
Input  
Output low  
Output high  
Figure 47. Controlling an LED Using the GPIO  
00  
01  
10  
11  
Rev. 0 | Page 31 of 68  
 
 
 
 
 
AD7147  
SERIAL INTERFACE  
The AD7147 is available with an SPI-compatible interface. The  
AD7147-1 is available with an I2C-compatible interface. Both  
parts are the same, with the exception of the serial interface.  
Bits [15:11] of the command word must be set to 11100 to  
successfully begin a bus transaction.  
Bit 10 is the read/write bit; 1 indicates a read, and 0 indicates a  
write.  
SPI INTERFACE  
Bits [9:0] contain the target register address. When reading or  
writing to more than one register, this address indicates the  
address of the first register to be written to or read from.  
The AD7147 has a 4-wire serial peripheral interface (SPI). The  
SPI has a data input pin (SDI) for inputting data to the device, a  
data output pin (SDO) for reading data back from the device,  
and a data clock pin (SCLK) for clocking data into and out of  
Writing Data  
CS  
the device. A chip select pin ( ) enables or disables the serial  
Data is written to the AD7147 in 16-bit words. The first word  
written to the device is the command word, with the read/write  
bit set to 0. The master then supplies the 16-bit input data-word  
on the SDI line. The AD7147 clocks the data into the register  
addressed in the command word. If there is more than one  
word of data to be clocked in, the AD7147 automatically incre-  
ments the address pointer and clocks the subsequent data-word  
into the next register.  
CS  
interface.  
is required for correct operation of the SPI. Data is  
clocked out of the AD7147 on the negative edge of SCLK, and  
data is clocked into the device on the positive edge of SCLK.  
SPI Command Word  
All data transactions on the SPI bus begin with the master  
CS  
taking  
from high to low and sending out the command  
word. This indicates to the AD7147 whether the transaction is a  
read or a write and provides the address of the register from  
which to begin the data transfer. The following bit map shows  
the SPI command word.  
The AD7147 continues to clock in data on the SDI line until  
CS  
either the master finishes the write transition by pulling  
high  
or the address pointer reaches its maximum value. The AD7147  
address pointer does not wrap around. When it reaches its  
maximum value, any data provided by the master on the SDI  
line is ignored by the AD7147.  
MSB  
15  
1
LSB  
14  
13  
12  
11  
10  
9:0  
Register address  
1
1
0
0
R/W  
16-BIT COMMAND WORD  
REGISTER ADDRESS  
ENABLE WORD  
R/W  
16-BIT DATA  
CW  
15  
CW  
14  
CW  
13  
CW  
12  
CW  
11  
CW  
10  
CW  
9
CW  
8
CW  
7
CW  
6
CW  
5
CW  
4
CW  
3
CW  
2
CW  
1
CW  
0
SDI  
D15 D14 D13  
D2  
D1  
D0  
t2  
t4  
t5  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
30  
31  
t8  
32  
t1  
t
3
CS  
NOTES  
1. SDI BITS ARE LATCHED ON SCLK RISING EDGES. SCLK CAN IDLE HIGH OR LOW BETWEEN WRITE OPERATIONS.  
2. ALL 32 BITS MUST BE WRITTEN: 16 BITS FOR THE CONTROL WORD AND 16 BITS FOR THE DATA.  
3. 16-BIT COMMAND WORD SETTINGS FOR SERIAL WRITE OPERATION:  
CW [15:11] = 11100 (ENABLE WORD)  
CW [10] = 0 (R/W)  
CW [9:0] = [AD9, AD8, AD7, AD6, AD5, AD4, AD3, AD2, AD1, AD0] (10-BIT MSB-JUSTIFIED REGISTER ADDRESS)  
Figure 48. Single Register Write SPI Timing  
Rev. 0 | Page 32 of 68  
 
AD7147  
16-BIT COMMAND WORD  
STARTING REGISTER ADDRESS  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
ENABLE WORD  
R/W  
CW  
15  
CW  
14  
CW  
13  
CW CW CW  
12 11 10  
CW  
9
CW  
8
CW  
7
CW  
6
CW  
5
CW  
4
CW  
3
CW  
2
CW  
1
CW  
0
SDI  
D15 D14  
D1 D0 D15 D14  
D1 D0 D15  
SCLK  
CS  
1
2
3
4
11  
12  
13  
14  
5
6
7
8
9
10  
15  
16  
17  
18  
31  
32  
33  
34  
47  
48  
49  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS CAN BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 16-BIT DATA-WORDS.  
3. THE ADDRESS AUTOMATICALLY INCREMENTS WITH EACH 16-BIT DATA-WORD (ALL 16 BITS MUST BE WRITTEN).  
4. CS IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
5. 16-BIT COMMAND WORD SETTINGS FOR SEQUENTIAL WRITE OPERATION:  
CW [15:11] = 11100 (ENABLE WORD)  
CW [10] = 0 (R/W)  
CW [9:0] = [AD9, AD8, AD7, AD6, AD5, AD4, AD3, AD2, AD1, AD0] (STARTING MSB-JUSTIFIED REGISTER ADDRESS)  
Figure 49. Sequential Register Write SPI Timing  
16-BIT COMMAND WORD  
ENABLE WORD  
R/W  
REGISTER ADDRESS  
CW  
15  
CW  
14  
CW  
13  
CW  
12  
CW  
11  
CW  
10  
CW  
9
CW  
8
CW  
7
CW  
6
CW  
5
CW  
4
CW  
3
CW  
2
CW  
1
CW  
0
SDI  
X
X
X
X
X
X
t2  
t4  
t5  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
30  
31  
t8  
32  
t1  
t3  
CS  
t6  
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX D15 D14 D13  
16-BIT READBACK DATA  
t7  
SDO  
D2  
D1  
D0  
XXX  
NOTES  
1. SDI BITS ARE LATCHED ON SCLK RISING EDGES. SCLK CAN IDLE HIGH OR LOW BETWEEN WRITE OPERATIONS.  
2. THE 16-BIT CONTROL WORD MUST BE WRITTEN ON SDI: 5 BITS FOR ENABLE WORD, 1 BIT FOR R/W, AND 10 BITS FOR REGISTER ADDRESS.  
3. THE REGISTER DATA IS READ BACK ON THE SDO PIN.  
4. X DENOTES DON’T CARE.  
5. XXX DENOTES HIGH IMPEDANCE THREE-STATE OUTPUT.  
6. CS IS HELD LOW UNTIL ALL REGISTER BITS HAVE BEEN READ BACK.  
7. 16-BIT COMMAND WORD SETTINGS FOR SINGLE READBACK OPERATION:  
CW [15:11] = 11100 (ENABLE WORD)  
CW [10] = 1 (R/W)  
CW [9:0] = [AD9, AD8, AD7, AD6, AD5, AD4, AD3, AD2, AD1, AD0] (10-BIT MSB-JUSTIFIED REGISTER ADDRESS)  
Figure 50. Single Register Readback SPI Timing  
The AD7147 continues to clock out data on the SDO line if the  
master continues to supply the clock signal on SCLK. The read  
Reading Data  
A read transaction begins when the master writes the command  
word to the AD7147 with the read/write bit set to 1. The master  
then supplies 16 clock pulses per data-word to be read, and the  
AD7147 clocks out data from the addressed register on the SDO  
line. The first data-word is clocked out on the first falling edge  
of SCLK following the command word, as shown in Figure 50.  
CS  
transaction finishes when the master takes high. If the AD7147  
address pointer reaches its maximum value, the AD7147 repeatedly  
clocks out data from the addressed register. The address pointer  
does not wrap around.  
Rev. 0 | Page 33 of 68  
 
 
AD7147  
16-BIT COMMAND WORD  
R/W REGISTER ADDRESS  
ENABLE WORD  
CW CW CW CW CW CW CW CW CW CW CW CW CW CW CW CW  
15 14 13 12 11 10  
SDI  
X
X
X
X
X
X
X
X
X
9
8
7
6
5
4
3
2
1
0
SCLK  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
31  
32  
33  
34  
47  
48  
49  
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX D15 D14  
D1  
D0 D15 D14  
D1  
D0  
D15  
SDO  
READBACK DATA FOR  
STARTING REGISTER ADDRESS  
READBACK DATA FOR  
NEXT REGISTER ADDRESS  
NOTES  
1. MULTIPLE REGISTERS CAN BE READ BACK CONTINUOUSLY.  
2. THE 16-BIT CONTROL WORD MUST BE WRITTEN ON SDI: 5 BITS FOR ENABLE WORD, 1 BIT FOR R/W, AND 10 BITS FOR REGISTER ADDRESS.  
3. THE ADDRESS AUTOMATICALLY INCREMENTS WITH EACH 16-BIT DATA-WORD BEING READ BACK ON THE SDO PIN.  
4. CS IS HELD LOW UNTIL ALL REGISTER BITS HAVE BEEN READ BACK.  
5. X DENOTES DON’T CARE.  
6. XXX DENOTES HIGH IMPEDANCE THREE-STATE OUTPUT.  
7. 16-BIT COMMAND WORD SETTINGS FOR SEQUENTIAL READBACK OPERATION:  
CW [15:11] = 11100 (ENABLE WORD)  
CW [10] = 1 (R/W)  
CW [9:0] = [AD9, AD8, AD7, AD6, AD5, AD4, AD3, AD2, AD1, AD0] (STARTING MSB-JUSTIFIED REGISTER ADDRESS)  
Figure 51. Sequential Register Readback SPI Timing  
All slave peripherals connected to the serial bus respond to the  
start condition and shift in the next eight bits, consisting of a  
I2C-COMPATIBLE INTERFACE  
The AD7147-1 supports the industry standard 2-wire I2C serial  
interface protocol. The two wires associated with the I2C timing  
are the SCLK and SDA inputs. The SDA is an I/O pin that allows  
both register write and register readback operations. The AD7147-1  
is always a slave device on the I2C serial interface bus.  
W
7-bit address (MSB first) plus an R/ bit that determines the  
direction of the data transfer. The peripheral whose address  
corresponds to the transmitted address responds by pulling the  
data line low during the ninth clock pulse. This is known as the  
acknowledge bit. All other devices on the bus then remain idle  
while the selected device waits for data to be read from or written  
It has a 7-bit device address, Address 0101 1XX. The lower two  
bits are set by tying the ADD0 and ADD1 pins high or low. The  
AD7147-1 responds when the master device sends its device  
address over the bus. The AD7147-1 cannot initiate data  
transfers on the bus.  
W
to it. If the R/ bit is 0, the master writes to the slave device. If  
W
the R/ bit is 1, the master reads from the slave device.  
Data is sent over the serial bus in a sequence of nine clock  
pulses—eight bits of data followed by an acknowledge bit from  
the slave device. Transitions on the data line must occur during  
the low period of the clock signal and remain stable during the  
high period, because a low-to-high transition when the clock is  
high can be interpreted as a stop signal. The number of data  
bytes transmitted over the serial bus in a single read or write  
operation is limited only by what the master and slave devices  
can handle.  
Table 18. AD7147-1 I2C Device Address  
ADD1  
ADD0  
I2C Address  
0101 100  
0101 101  
0101 110  
0101 111  
0
0
1
1
0
1
0
1
When all data bytes are read or written, a stop condition is  
established. A stop condition is defined by a low-to-high  
transition on SDA while SCLK remains high. If the AD7147  
encounters a stop condition, it returns to its idle condition, and  
the address pointer register resets to Address 0x00.  
Data Transfer  
Data is transferred over the I2C serial interface in 8-bit bytes.  
The master initiates a data transfer by establishing a start con-  
dition, defined as a high-to-low transition on the serial data  
line, SDA, while the serial clock line, SCLK, remains high. This  
indicates that an address/data stream follows.  
Rev. 0 | Page 34 of 68  
 
AD7147  
START  
AD7147-1 DEVICE ADDRESS  
REGISTER ADDRESS [A15:A8]  
REGISTER ADDRESS [A7:A0]  
SDA  
DEV DEV DEV DEV DEV DEV DEV  
R/W ACK A15 A14  
A9  
A8 ACK A7  
A6  
A1  
A0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
t1  
t3  
SCLK  
1
2
3
4
11  
5
6
7
8
9
10  
16  
17  
18  
19  
20  
25  
26  
t2  
STOP  
START  
REGISTER DATA [D15:D8]  
ACK D15 D14  
REGISTER DATA [D7:D0]  
D6 D1  
t5  
38  
AD7147-1 DEVICE ADDRESS  
DEV DEV DEV  
t8  
ACK  
ACK  
45  
D9  
D8  
t4  
D7  
D0  
A6  
A5  
A4  
t6  
t7  
1
2
3
27  
28  
29  
34  
35  
36  
37  
43  
44  
46  
NOTES  
1. A START CONDITION AT THE BEGINNING IS DEFINED AS A HIGH-TO-LOW TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
2. A STOP CONDITION AT THE END IS DEFINED AS A LOW-TO-HIGH TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
3. 7-BIT DEVICE ADDRESS [DEV A6:DEV A0] = [0 1 0 1 1 X X], WHERE X IS A DON’T CARE BIT.  
4. 16-BIT REGISTER ADDRESS [A15:A0] = [X, X, X, X, X, X, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0], WHERE X IS A DON’T CARE BIT.  
5. REGISTER ADDRESS [A15:A8] AND REGISTER ADDRESS [A7:A0] ARE ALWAYS SEPARATED BY A LOW ACK BIT.  
6. REGISTER DATA [D15:D8] AND REGISTER DATA [D7:D0] ARE ALWAYS SEPARATED BY A LOW ACK BIT.  
Figure 52. Example of I2C Timing for Single Register Write Operation  
Writing Data over the I2C Bus  
The process for writing to the AD7147-1 over the I2C bus is  
shown in Figure 52 and Figure 54. The device address is sent  
address. Therefore, any data written to the AD7147-1 after the  
address pointer has reached its maximum value is discarded.  
All registers on the AD7147-1 are 16 bits. Two consecutive 8-bit  
data bytes are combined and written to the 16-bit registers. To  
avoid errors, all writes to the device must contain an even  
number of data bytes.  
W
over the bus, followed by the R/ bit being set to 0 and then  
two bytes of data that contain the 10-bit address of the internal  
data register to be written. The following bit map shows the  
upper register address bytes. Note that Bit 7 to Bit 2 in the upper  
address byte are don’t care bits. The address is contained in the  
10 LSBs of the register address bytes.  
To finish the transaction, the master generates a stop condition  
on SDO, or generates a repeat start condition if the master is to  
maintain control of the bus.  
Reading Data over the I2C Bus  
MSB  
7
LSB  
6
5
4
3
2
1
0
To read from the AD7147-1, the address pointer register must  
first be set to the address of the required internal register. The  
master performs a write transaction, and then writes to the  
AD7147-1 to set the address pointer. Next, the master outputs a  
repeat start condition to keep control of the bus, or if this is not  
possible, ends the write transaction with a stop condition. A read  
X
X
X
X
X
X
Register Register  
Address Address  
Bit 9  
Bit 8  
The following bit map shows the lower register address bytes.  
MSB  
7
LSB  
W
transaction is initiated, with the R/ bit set to 1.  
6
5
4
3
2
1
0
Reg  
Add  
Bit 7  
Reg  
Add  
Bit 6  
Reg  
Add  
Bit 5  
Reg  
Add  
Bit 4  
Reg  
Add  
Bit 3  
Reg  
Add  
Bit 2  
Reg  
Add  
Bit 1  
Reg  
Add  
Bit 0  
The AD7147-1 supplies the upper eight bits of data from the  
addressed register in the first readback byte, followed by the  
lower eight bits in the next byte. This is shown in Figure 53 and  
Figure 54.  
The third data byte contains the eight MSBs of the data to be  
written to the internal register. The fourth data byte contains  
the eight LSBs of data to be written to the internal register.  
Because the address pointer automatically increments after each  
read, the AD7147-1 continues to output readback data until the  
master sends a no acknowledge and stop condition to the bus. If  
the address pointer reaches its maximum value and the master  
continues to read from the part, the AD7147-1 repeatedly sends  
data from the last register that was addressed.  
The AD7147-1 address pointer register automatically increments  
after each write. This allows the master to sequentially write to all  
registers on the AD7147-1 in the same write transaction. However,  
the address pointer register does not wrap around after the last  
Rev. 0 | Page 35 of 68  
 
AD7147  
START  
AD7147-1 DEVICE ADDRESS  
REGISTER ADDRESS [A15:A8]  
REGISTER ADDRESS [A7:A0]  
SDA  
DEV DEV DEV DEV DEV DEV DEV  
R/W ACK A15 A14  
A9  
A8 ACK A7  
A6  
A1  
A0  
ACK  
27  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
t1  
t3  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
16  
17  
18  
19  
20  
25  
26  
t2  
P
AD7147-1 DEVICE ADDRESS  
REGISTER DATA [D7:D0]  
D6 D1  
t5  
39  
SR  
t8  
AD7147-1 DEVICE ADDRESS  
DEV DEV DEV  
DEV DEV  
A6 A5  
DEV DEV  
D7  
D0  
ACK  
ACK  
46  
R/W  
A6  
A5  
A4  
A1  
A0  
USING  
REPEATED START  
t4  
t6  
t7  
34  
35  
36  
37  
38  
44  
45  
1
2
3
28  
29  
30  
AD7147-1 DEVICE ADDRESS  
REGISTER DATA [D7:D0]  
D6 D1  
t5  
39  
P
P
S
DEV DEV  
A6 A5  
DEV DEV  
D7  
D0 ACK  
ACK  
R/W  
A1  
A0  
t4  
SEPARATE READ AND  
WRITE TRANSACTIONS  
34  
35  
36  
37  
38  
44  
45  
46  
28  
29  
30  
NOTES  
1. A START CONDITION AT THE BEGINNING IS DEFINED AS A HIGH-TO-LOW TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
2. A STOP CONDITION AT THE END IS DEFINED AS A LOW-TO-HIGH TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
3. THE MASTER GENERATES THE ACK AT THE END OF THE READBACK TO SIGNAL THAT IT DOES NOT WANT ADDITIONAL DATA.  
4. 7-BIT DEVICE ADDRESS [DEV A6:DEV A0] = [0 1 0 1 1 X X], WHERE THE TWO LSB Xs ARE DON'T CARE BITS.  
5. 16-BIT REGISTER ADDRESS [A15:A0] = [X, X, X, X, X, X, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0], WHERE THE UPPER LSB Xs ARE DON’T CARE BITS.  
6. REGISTER ADDRESS [A15:A8] AND REGISTER ADDRESS [A7:A0] ARE ALWAYS SEPARATED BY LOW ACK BITS.  
7. REGISTER DATA [D15:D8] AND REGISTER DATA [D7:D0] ARE ALWAYS SEPARATED BY A LOW ACK BIT.  
8. THE R/W BIT IS SET TO A1 TO INDICATE A READBACK OPERATION.  
Figure 53. Example of I2C Timing for Single Register Readback Operation  
WRITE  
6-BIT DEVICE  
REGISTER ADDR  
[15:8]  
REGISTER ADDR  
[7:0]  
WRITE DATA  
HIGH BYTE [15:8]  
WRITE DATA  
LOW BYTE [7:0]  
WRITE DATA  
HIGH BYTE [15:8]  
WRITE DATA  
LOW BYTE [7:0]  
S
P
W
ADDRESS  
READ (USING REPEATED START)  
6-BIT DEVICE  
ADDRESS  
REGISTER ADDR  
HIGH BYTE  
REGISTER ADDR  
LOW BYTE  
6-BIT DEVICE  
ADDRESS  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
P
ACK  
S
W
READ (WRITE TRANSACTION SETS UP REGISTER ADDRESS)  
6-BIT DEVICE  
ADDRESS  
REGISTER ADDR  
HIGH BYTE  
REGISTER ADDR  
LOW BYTE  
6-BIT DEVICE  
ADDRESS  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
P
P
ACK  
S
S
W
OUTPUT FROM MASTER  
OUTPUT FROM AD7147-1  
S = START BIT  
P = STOP BIT  
SR = REPEATED START BIT  
ACK = ACKNOWLEDGE BIT  
ACK = NO ACKNOWLEDGE BIT  
Figure 54. Example of Sequential I2C Write and Readback Operations  
This allows the AD7147 to be connected directly to processors  
whose supply voltage is less than the minimum operating  
voltage of the AD7147 without the need for external level-  
shifters. The VDRIVE pin can be connected to voltage supplies as  
VDRIVE INPUT  
CS  
The supply voltage for the pins (SDO, SDI, SCLK, SDA,  
,
2
INT  
, and GPIO) associated with both the I C and SPI serial  
interfaces is supplied from the VDRIVE pin and is separate from the  
main VCC supply.  
low as 1.65 V and as high as VCC  
.
Rev. 0 | Page 36 of 68  
 
 
 
AD7147  
PCB DESIGN GUIDELINES  
CAPACITIVE SENSOR BOARD MECHANICAL SPECIFICATIONS  
Table 19.  
Parameter  
Symbol  
Min  
0.1  
0
Typ  
Max  
Unit  
mm  
mm  
mm  
Distance from Edge of Any Sensor to Edge of Grounded Metal Object  
Distance Between Sensor Edges1  
Distance Between Bottom of Sensor Board and Controller Board or Grounded  
Metal Casing2  
D1  
D2 = D3 = D4  
D5  
1.0  
1 The distance is dependent on the application and the position of the switches relative to each other and with respect to the user’s finger position and handling.  
Adjacent sensors with no space between them are implemented differentially.  
2 The 1.0 mm specification is intended to prevent direct sensor board contact with any conductive material. This specification, however, does not guarantee an absence  
of EMI coupling from the controller board to the sensors. To avoid potential EMI-coupling issues place a grounded metal shield between the capacitive sensor board  
and the main controller board, as shown in Figure 57.  
CAPACITIVE SENSOR BOARD  
METAL OBJECT  
D
5
GROUNDED METAL SHIELD  
CAPACITIVE SENSOR  
PRINTED CIRCUIT  
8-WAY  
SWITCH  
CONTROLLER PRINTED CIRCUIT BOARD OR METAL CASING  
Figure 57. Capacitive Sensor Board with Grounded Shield  
D
4
CHIP SCALE PACKAGES  
SLIDER  
The lands on the chip scale package (CP-24-3) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. Center the land on the pad to maximize  
the solder joint size.  
BUTTONS  
D
3
D
2
The bottom of the chip scale package has a central thermal pad.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. To avoid shorting, provide a  
clearance of at least 0.25 mm between the thermal pad and the  
inner edges of the land pattern on the printed circuit board.  
D
1
Figure 55. Capacitive Sensor Board, Top View  
Thermal vias can be used on the printed circuit board thermal  
pad to improve the thermal performance of the package. If vias  
are used, they should be incorporated in the thermal pad at a  
1.2 mm pitch grid. The via diameter should be between 0.3 mm  
and 0.33 mm, and the via barrel should be plated with 1 oz  
copper to plug the via.  
CAPACITIVE SENSOR BOARD  
D
5
CONTROLLER PRINTED CIRCUIT BOARD OR METAL CASING  
Connect the printed circuit board thermal pad to GND.  
Figure 56. Capacitive Sensor Board, Side View  
Rev. 0 | Page 37 of 68  
 
AD7147  
POWER-UP SEQUENCE  
To power up the AD7147, use the following sequence when  
initially developing the AD7147 and μP serial interface:  
Address 0x004 = 832  
Address 0x005 = interrupt enable register (depends on  
required interrupt behavior)  
1. Turn on the power supplies to the AD7147.  
2. Write to the Bank 2 registers at Address 0x080 through  
Address 0x0DF. These registers are contiguous; therefore, a  
sequential register write sequence can be applied.  
Address 0x006 = interrupt enable register (depends on  
required interrupt behavior)  
Address 0x007 = interrupt enable register (depends on  
required interrupt behavior)  
Note that the Bank 2 register values are unique for each  
application. Register values come from characterization of  
the sensor in the application. The characterization process  
is outlined in the AN-929 Application Note, available from  
Analog Devices.  
4. Write to the Bank 1 register, Address 0x001 = 0x0FFF  
(depends on number of conversion stages used).  
5. Read back the corresponding interrupt status register at  
Address 0x008, Address 0x009, or Address 0x00A. This is  
determined by the interrupt output configuration, as  
explained in the Interrupt Output section.  
3. Write to the Bank 1 registers at Address 0x000 through  
Address 0x007 as outlined below. These registers are  
contiguous; therefore, a sequential register write sequence  
can be applied (see Figure 49 and Figure 54).  
Note that the specific registers required to be read back  
depend on each application. For buttons, the interrupt  
status registers are read back while other sensors read data  
back from the AD7147 according to the slider or wheel  
algorithm’s requirements. Analog Devices can provide this  
information after the user develops the sensor board.  
Caution: At this time, Address 0x001 must remain set to  
default value 0x0000 during this contiguous write operation.  
Register values:  
Address 0x000 = 0x82B2  
Address 0x001 = 0x000  
INT  
6. Repeat Step 5 every time  
is asserted.  
Address 0x002 = 0x3230 (depends on number of  
conversion stages used)  
Address 0x003 = 0x419  
POWER  
HOST  
SERIAL  
INTERFACE  
CONVERSION  
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
9
10 11  
0
1
2
9
10 11  
0
1
CONVERSION STAGES DISABLED  
0
STAGE  
AD7147 INT  
SECOND CONVERSION  
SEQUENCE  
THIRD CONVERSION  
SEQUENCE  
FIRST CONVERSION SEQUENCE  
Figure 58. Recommended Start-Up Sequence  
Rev. 0 | Page 38 of 68  
 
AD7147  
TYPICAL APPLICATION CIRCUITS  
V
DRIVE  
HOST WITH SPI  
INTERFACE  
1
2
3
4
5
6
2.2k  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
GPIO 18  
BUTTON  
BUTTON  
BUTTON  
17  
INT  
INT  
16  
SCROLL  
WHEEL  
CS  
SS  
AD7147  
15  
SCLK  
SCK  
MOSI  
MISO  
14  
SDI  
13  
SDO  
BUTTON  
V
HOST  
SENSOR PCB  
10nF  
V
2.7V TO 3.6V  
CC  
1.8V  
PLANE AROUND SENSORS CONNECTED TO AC  
0.1μF  
1μF TO 10μF  
(OPTIONAL)  
SHIELD  
Figure 59. Typical Application Circuit with SPI Interface  
V
DRIVE  
V
DRIVE  
V
2.2k  
DRIVE  
2.2kꢀ  
2
HOST WITH I C  
INTERFACE  
1
2
3
4
5
6
BUTTON  
BUTTON  
BUTTON  
18  
17  
CIN6  
CIN7  
CIN8  
CIN9  
CIN10  
CIN11  
GPIO  
INT  
2.2kꢀ  
INT  
16  
15  
ADD1  
SCLK  
ADD0  
SDA  
AD7147-1  
SCK  
SDO  
14  
13  
2-WAY  
SWITCH  
10nF  
V
2.7V TO 3.6V  
CC  
0.1μF  
1μF TO 10μF  
(OPTIONAL)  
Figure 60. Typical Application Circuit with I2C Interface  
Rev. 0 | Page 39 of 68  
 
AD7147  
REGISTER MAP  
The AD7147 address space is divided into three register banks,  
referred to as Bank 1, Bank 2, and Bank 3. Figure 61 illustrates  
the division of these banks.  
Bank 3 registers contain the results of each conversion stage.  
These registers automatically update at the end of each conversion  
sequence. Although these registers are primarily used by the  
AD7147 internal data processing, they are accessible by the host  
processor for additional external data processing, if desired.  
Bank 1 registers contain control registers, CDC conversion  
control registers, interrupt enable registers, interrupt status  
registers, CDC 16-bit conversion data registers, device ID  
registers, and proximity status registers.  
Default values are undefined for Bank 2 registers and Bank 3  
registers until after power-up and configuration of the Bank 2  
registers.  
Bank 2 registers contain the configuration registers used to  
configure the individual CINx inputs for each conversion stage.  
Initialize the Bank 2 configuration registers immediately after  
power-up to obtain valid CDC conversion result data.  
REGISTER BANK 1  
REGISTER BANK 2  
REGISTER BANK 3  
ADDR 0x000  
ADDR 0x001  
ADDR 0x080  
ADDR 0x088  
ADDR 0x0E0  
ADDR 0x088  
STAGE0 CONFIGURATION  
(8 REGISTERS)  
STAGE0 RESULTS  
(36 REGISTERS)  
SETUP CONTROL  
(1 REGISTER)  
STAGE1 CONFIGURATION  
(8 REGISTERS)  
STAGE1 RESULTS  
(36 REGISTERS)  
CALIBRATION AND SETUP  
(4 REGISTERS)  
ADDR 0x090  
ADDR 0x098  
ADDR 0x0A0  
ADDR 0x0A8  
ADDR 0x090  
ADDR 0x098  
STAGE2 RESULTS  
(36 REGISTERS)  
STAGE2 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x005  
STAGE3 CONFIGURATION  
(8 REGISTERS)  
STAGE3 RESULTS  
(36 REGISTERS)  
INTERRUPT ENABLE  
(3 REGISTERS)  
ADDR 0x0A0  
ADDR 0x0A8  
STAGE4 RESULTS  
(36 REGISTERS)  
STAGE4 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x008  
ADDR 0x00B  
ADDR 0x017  
INTERRUPT STATUS  
(3 REGISTERS)  
STAGE5 RESULTS  
(36 REGISTERS)  
STAGE5 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x0B0  
ADDR 0x0B8  
ADDR 0x0C0  
ADDR 0x0C8  
ADDR 0x0D0  
ADDR 0x0D8  
ADDR 0x0B0  
ADDR 0x0B8  
ADDR 0x0C0  
ADDR 0x0C8  
ADDR 0x0D0  
ADDR 0x28F  
CDC 16-BIT CONVERSION DATA  
(12 REGISTERS)  
STAGE6 RESULTS  
(36 REGISTERS)  
STAGE6 CONFIGURATION  
(8 REGISTERS)  
STAGE7 RESULTS  
(36 REGISTERS)  
STAGE7 CONFIGURATION  
(8 REGISTERS)  
DEVICE ID REGISTER  
(1 REGISTER)  
ADDR 0x018  
ADDR 0x042  
STAGE8 RESULTS  
(36 REGISTERS)  
STAGE8 CONFIGURATION  
(8 REGISTERS)  
INVALID DO NOT ACCESS  
PROXIMITY STATUS REGISTER  
(1 REGISTER)  
STAGE9 RESULTS  
(36 REGISTERS)  
STAGE9 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x043  
STAGE10 RESULTS  
(36 REGISTERS)  
STAGE10 CONFIGURATION  
(8 REGISTERS)  
INVALID DO NOT ACCESS  
STAGE11 RESULTS  
(36 REGISTERS)  
STAGE11 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x7F0  
Figure 61. Layout of Bank 1, Bank 2, and Bank 3 Registers  
Rev. 0 | Page 40 of 68  
 
 
AD7147  
DETAILED REGISTER DESCRIPTIONS  
BANK 1 REGISTERS  
All addresses and default values are expressed in hexadecimal.  
Table 20. PWR_CONTROL Register  
Default  
Value  
Address Data Bit  
Type Name  
Description  
0x000  
[1:0]  
0
R/W  
POWER_MODE  
Operating modes  
00 = full power mode (normal operation, CDC  
conversions approximately every 36 ms)  
01 = full shutdown mode (no CDC conversions)  
10 = low power mode (automatic wake-up operation)  
11 = full shutdown mode (no CDC conversions)  
Low power mode conversion delay  
00 = 200 ms  
01 = 400 ms  
10 = 600 ms  
11 = 800 ms  
[3:2]  
[7:4]  
0
0
R/W  
R/W  
LP_CONV_DELAY  
SEQUENCE_STAGE_NUM Number of stages in sequence (N + 1)  
0000 = 1 conversion stage in sequence  
0001 = 2 conversion stages in sequence  
……  
Maximum value = 1011 = 12 conversion stages per  
sequence  
[9:8]  
0
R/W  
DECIMATION  
ADC decimation factor  
00 = decimate by 256  
01 = decimate by 128  
10 = decimate by 64  
11 = decimate by 64  
[10]  
[11]  
0
0
R/W  
R/W  
SW_RESET  
INT_POL  
Software reset control (self-clearing)  
1 = resets all registers to default values  
Interrupt polarity control  
0 = active low  
1 = active high  
[12]  
0
R/W  
R/W  
EXT_SOURCE  
Excitation source control  
0 = enable excitation source to CINx pins  
1 = disable excitation source to CINx pins  
Set to 0  
CDC bias current control  
00 = normal operation  
[13]  
[15:14]  
0
0
Unused  
CDC_BIAS  
01 = normal operation + 20%  
10 = normal operation + 35%  
11 = normal operation + 50%  
Rev. 0 | Page 41 of 68  
 
AD7147  
Table 21. STAGE_CAL_EN Register  
Default  
Data Bit Value  
Address  
Type  
Name  
Description  
0x001  
[0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W  
STAGE0_CAL_EN  
STAGE0 calibration enable  
0 = disable  
1 = enable  
STAGE1 calibration enable  
0 = disable  
1 = enable  
STAGE2 calibration enable  
0 = disable  
1 = enable  
STAGE3 calibration enable  
0 = disable  
1 = enable  
STAGE4 calibration enable  
0 = disable  
1 = enable  
STAGE5 calibration enable  
0 = disable  
1 = enable  
STAGE6 calibration enable  
0 = disable  
1 = enable  
STAGE7 calibration enable  
0 = disable  
1 = enable  
STAGE8 calibration enable  
0 = disable  
1 = enable  
STAGE9 calibration enable  
0 = disable  
1 = enable  
STAGE10 calibration enable  
0 = disable  
1 = enable  
STAGE11 calibration enable  
0 = disable  
1 = enable  
Full power mode skip control  
00 = skip 3 samples  
01 = skip 7 samples  
10 = skip 15 samples  
11 = skip 31 samples  
Low power mode skip control  
00 = use all samples  
01 = skip one sample  
10 = skip two samples  
11 = skip three samples  
[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE1_CAL_EN  
STAGE2_CAL_EN  
STAGE3_CAL_EN  
STAGE4_CAL_EN  
STAGE5_CAL_EN  
STAGE6_CAL_EN  
STAGE7_CAL_EN  
STAGE8_CAL_EN  
STAGE9_CAL_EN  
STAGE10_CAL_EN  
STAGE11_CAL_EN  
AVG_FP_SKIP  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
[10]  
[11]  
[13:12]  
[15:14]  
0
R/W  
AVG_LP_SKIP  
Rev. 0 | Page 42 of 68  
AD7147  
Table 22. AMB_COMP_CTRL0 Register  
Default  
Data Bit Value  
Address  
Type  
Name  
Description  
0x002  
[3:0]  
0
R/W  
FF_SKIP_CNT  
Fast filter skip control (N + 1)  
0000 = no sequence of results is skipped  
0001 = one sequence of results is skipped for every one  
allowed into fast FIFO  
0010 = two sequences of results are skipped for every  
one allowed into fast FIFO  
1011 = maximum value = 12 sequences of results are  
skipped for every one allowed into fast FIFO  
[7:4]  
F
F
0
R/W  
R/W  
R/W  
FP_PROXIMITY_CNT  
LP_PROXIMITY_CNT  
PWR_DOWN_TIMEOUT  
Calibration disable period in full power mode =  
FP_PROXIMITY_CNT × 16 × time for one conversion  
sequence in full power mode  
Calibration disable period in low power mode =  
LP_PROXIMITY_CNT × 4 × time for one conversion  
sequence in low power mode  
Full power to low power mode timeout control  
00 = 1.25 × (FP_PROXIMITY_CNT)  
01 = 1.50 × (FP_PROXIMITY_CNT)  
10 = 1.75 × (FP_PROXIMITY_CNT)  
11 = 2.00 × (FP_PROXIMITY_CNT)  
Forced calibration control  
[11:8]  
[13:12]  
[14]  
[15]  
0
0
R/W  
R/W  
FORCED_CAL  
CONV_RESET  
0 = normal operation  
1 = forces all conversion stages to recalibrate  
Conversion reset control (self-clearing)  
0 = normal operation  
1 = resets the conversion sequence to STAGE0  
Table 23. AMB_COMP_CTRL1 Register  
Default  
Data Bit Value  
Address  
Type  
Name  
Description  
0x003  
[7:0]  
64  
R/W  
PROXIMITY_RECAL_LVL  
Proximity recalibration level. Value is multiplied by 16 to  
determine actual recalibration level.  
[13:8]  
[15:14]  
1
R/W  
R/W  
PROXIMITY_DETECTION_RATE  
SLOW_FILTER_UPDATE_LVL  
Proximity detection rate. Value is multiplied by 16 to  
determine actual detection rate.  
Slow filter update level.  
0
Table 24. AMB_COMP_CTRL2 Register  
Default  
Data Bit Value  
Address  
Type  
R/W  
R/W  
Name  
Description  
0x004  
[9:0]  
[15:10]  
3FF  
3F  
FP_PROXIMITY_RECAL  
LP_PROXIMITY_RECAL  
Full power mode proximity recalibration time control  
Low power mode proximity recalibration time control  
Rev. 0 | Page 43 of 68  
AD7147  
Table 25. STAGE_LOW_INT_ENABLE Register  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x005  
[0]  
0
R/W  
STAGE0_LOW_INT_ENABLE  
STAGE0 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
STAGE1 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE1 low threshold is exceeded  
STAGE2 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE2 low threshold is exceeded  
STAGE3 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE3 low threshold is exceeded  
STAGE4 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE4 low threshold is exceeded  
STAGE5 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE5 low threshold is exceeded  
STAGE6 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE6 low threshold is exceeded  
STAGE7 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE7 low threshold is exceeded  
STAGE8 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE8 low threshold is exceeded  
STAGE9 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE9 low threshold is exceeded  
STAGE10 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE10 low threshold is exceeded  
STAGE11 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE11 low threshold is exceeded  
GPIO setup  
[1]  
0
0
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE1_LOW_INT_ENABLE  
STAGE2_LOW_INT_ENABLE  
STAGE3_LOW_INT_ENABLE  
STAGE4_LOW_INT_ENABLE  
STAGE5_LOW_INT_ENABLE  
STAGE6_LOW_INT_ENABLE  
STAGE7_LOW_INT_ENABLE  
STAGE8_LOW_INT_ENABLE  
STAGE9_LOW_INT_ENABLE  
STAGE10_LOW_INT_ENABLE  
STAGE11_LOW_INT_ENABLE  
GPIO_SETUP  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
[10]  
[11]  
[13:12]  
00 = disable GPIO pin  
01 = configure GPIO as an input  
10 = configure GPIO as an active low output  
11 = configure GPIO as an active high output  
GPIO input configuration  
[15:14]  
0
R/W  
GPIO_INPUT_CONFIG  
00 = triggered on negative level  
01 = triggered on positive edge  
10 = triggered on negative edge  
11 = triggered on positive level  
Rev. 0 | Page 44 of 68  
AD7147  
Table 26. STAGE_HIGH_INT_ENABLE Register  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x006  
[0]  
0
R/W  
STAGE0_HIGH_INT_ENABLE  
STAGE0 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
STAGE1 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE1 high threshold is exceeded  
STAGE2 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE2 high threshold is exceeded  
STAGE3 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE3 high threshold is exceeded  
STAGE4 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE4 high threshold is exceeded  
STAGE5 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE5 high threshold is exceeded  
STAGE6 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE6 high threshold is exceeded  
STAGE7 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE7 high threshold is exceeded  
STAGE8 high interrupt enable  
0 = interrupt source disabled  
[1]  
0
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE1_HIGH_INT_ENABLE  
STAGE2_HIGH_INT_ENABLE  
STAGE3_HIGH_INT_ENABLE  
STAGE4_HIGH_INT_ENABLE  
STAGE5_HIGH_INT_ENABLE  
STAGE6_HIGH_INT_ENABLE  
STAGE7_HIGH_INT_ENABLE  
STAGE8_HIGH_INT_ENABLE  
STAGE9_HIGH_INT_ENABLE  
STAGE10_HIGH_INT_ENABLE  
STAGE11_HIGH_INT_ENABLE  
Unused  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
1 = INT asserted if STAGE8 high threshold is exceeded  
STAGE9 sensor high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE9 high threshold is exceeded  
STAGE10 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE10 high threshold is exceeded  
STAGE11 high interrupt enable  
[9]  
[10]  
[11]  
[15:12]  
0 = interrupt source disabled  
1 = INT asserted if STAGE11 high threshold is exceeded  
Set to 0  
Rev. 0 | Page 45 of 68  
AD7147  
Table 27. STAGE_COMPLETE_INT_ENABLE Register  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x007  
[0]  
0
R/W  
STAGE0_COMPLETE_INT_ENABLE  
STAGE0 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE0 conversion  
STAGE1 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE1 conversion  
STAGE2 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE2 conversion  
STAGE3 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE3 conversion  
STAGE4 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE4 conversion  
STAGE5 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE5 conversion  
STAGE6 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE6 conversion  
STAGE7 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE7 conversion  
STAGE8 conversion complete interrupt control  
0 = interrupt source disabled  
[1]  
0
0
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE1_COMPLETE_INT_ENABLE  
STAGE2_COMPLETE_INT_ENABLE  
STAGE3_COMPLETE_INT_ENABLE  
STAGE4_COMPLETE_INT_ENABLE  
STAGE5_COMPLETE_INT_ENABLE  
STAGE6_COMPLETE_INT_ENABLE  
STAGE7_COMPLETE_INT_ENABLE  
STAGE8_COMPLETE_INT_ENABLE  
STAGE9_COMPLETE_INT_ENABLE  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
1 = INT asserted at completion of STAGE8 conversion  
STAGE9 conversion interrupt control  
0 = interrupt source disabled  
[9]  
1 = INT asserted at completion of STAGE9 conversion  
[10]  
[11]  
[12]  
[15:13]  
STAGE10_COMPLETE_INT_ENABLE STAGE10 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE10 conversion  
STAGE11_COMPLETE_INT_ENABLE STAGE11 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE11 conversion  
GPIO_INT_ENABLE  
Unused  
Interrupt control when GPIO input pin changes level  
0 = disabled  
1 = enabled  
Set to 0  
Rev. 0 | Page 46 of 68  
AD7147  
Table 28. STAGE_LOW_INT_STATUS Register1  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x008  
[0]  
0
R
STAGE0_LOW_INT_STATUS  
STAGE0 CDC conversion low limit interrupt result  
1 = indicates STAGE0_LOW_THRESHOLD value was  
exceeded  
[1]  
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
STAGE1_LOW_INT_STATUS  
STAGE2_LOW_INT_STATUS  
STAGE3_LOW_INT_STATUS  
STAGE4_LOW_INT_STATUS  
STAGE5_LOW_INT_STATUS  
STAGE6_LOW_INT_STATUS  
STAGE7_LOW_INT_STATUS  
STAGE8_LOW_INT_STATUS  
STAGE9_LOW_INT_STATUS  
STAGE10_LOW_INT_STATUS  
STAGE11_LOW_INT_STATUS  
Unused  
STAGE1 CDC conversion low limit interrupt result  
1 = indicates STAGE1_LOW_THRESHOLD value was  
exceeded  
STAGE2 CDC conversion low limit interrupt result  
1 = indicates STAGE2_LOW_THRESHOLD value was  
exceeded  
STAGE3 CDC conversion low limit interrupt result  
1 = indicates STAGE3_LOW_THRESHOLD value was  
exceeded  
STAGE4 CDC conversion low limit interrupt result  
1 = indicates STAGE4_LOW_THRESHOLD value was  
exceeded  
STAGE5 CDC conversion low limit interrupt result  
1 = indicates STAGE5_LOW_THRESHOLD value was  
exceeded  
STAGE6 CDC conversion low limit interrupt result  
1 = indicates STAGE6_LOW_THRESHOLD value was  
exceeded  
STAGE7 CDC conversion low limit interrupt result  
1 = indicates STAGE7_LOW_THRESHOLD value was  
exceeded  
STAGE8 CDC conversion low limit interrupt result  
1 = indicates STAGE8_LOW_THRESHOLD value was  
exceeded  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
STAGE9 CDC conversion low limit interrupt result  
1 = indicates STAGE9_LOW_THRESHOLD value was  
exceeded  
STAGE10 CDC Conversion Low Limit Interrupt result  
1 = indicates STAGE10_LOW_THRESHOLD value was  
exceeded  
STAGE11 CDC conversion low limit interrupt result  
1 = indicates STAGE11_LOW_THRESHOLD value was  
exceeded  
[10]  
[11]  
[15:12]  
Set to 0  
1 Registers self-clear to 0 after readback if the limits are not exceeded.  
Rev. 0 | Page 47 of 68  
AD7147  
Table 29. STAGE_HIGH_INT_STATUS Register1  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x009  
[0]  
0
R
STAGE0_HIGH_INT_STATUS  
STAGE0 CDC conversion high limit interrupt result  
1 = indicates STAGE0_HIGH_THRESHOLD value was  
exceeded  
[1]  
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
STAGE1_HIGH_INT_STATUS  
STAGE2_HIGH_INT_STATUS  
STAGE3_HIGH_INT_STATUS  
STAGE4_HIGH_INT_STATUS  
STAGE5_HIGH_INT_STATUS  
STAGE6_HIGH_INT_STATUS  
STAGE7_HIGH_INT_STATUS  
STAGE8_HIGH_INT_STATUS  
STAGE9_HIGH_INT_STATUS  
STAGE10_HIGH_INT_STATUS  
STAGE11_HIGH_INT_STATUS  
Unused  
STAGE1 CDC conversion high limit interrupt result  
1 = indicates STAGE1_HIGH_THRESHOLD value was  
exceeded  
Stage2 CDC conversion high limit interrupt result  
1 = indicates STAGE2_HIGH_THRESHOLD value was  
exceeded  
STAGE3 CDC conversion high limit interrupt result  
1 = indicates STAGE3_HIGH_THRESHOLD value was  
exceeded  
STAGE4 CDC conversion high limit interrupt result  
1 = indicates STAGE4_HIGH_THRESHOLD value was  
exceeded  
STAGE5 CDC conversion high limit interrupt result  
1 = indicates STAGE5_HIGH_THRESHOLD value was  
exceeded  
STAGE6 CDC conversion high limit interrupt result  
1 = indicates STAGE6_HIGH_THRESHOLD value was  
exceeded  
STAGE7 CDC conversion high limit interrupt result  
1 = indicates STAGE7_HIGH_THRESHOLD value was  
exceeded  
STAGE8 CDC conversion high limit interrupt result  
1 = indicates STAGE8_HIGH_THRESHOLD value was  
exceeded  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
STAGE9 CDC conversion high limit interrupt result  
1 = indicates STAGE9_HIGH_THRESHOLD value was  
exceeded  
STAGE10 CDC conversion high limit interrupt result  
1 = indicates STAGE10_HIGH_THRESHOLD value was  
exceeded  
STAGE11 CDC conversion high limit interrupt result  
1 = indicates STAGE11_HIGH_THRESHOLD value was  
exceeded  
[10]  
[11]  
[15:12]  
Set to 0  
1 Registers self-clear to 0 after readback if the limits are not exceeded.  
Rev. 0 | Page 48 of 68  
AD7147  
Table 30. STAGE_COMPLETE_INT_STATUS Register1  
Default  
Value  
Address Data Bit  
Type Name  
STAGE0_COMPLETE_INT_STATUS  
Description  
0x00A  
[0]  
0
R
R
R
R
R
R
R
R
R
R
R
R
R
STAGE0 conversion complete register interrupt status  
1 = indicates STAGE0 conversion completed  
STAGE1 conversion complete register interrupt status  
1 = indicates STAGE1 conversion completed  
STAGE2 conversion complete register interrupt status  
1 = indicates STAGE2 conversion completed  
STAGE3 conversion complete register interrupt status  
1 = indicates STAGE3 conversion completed  
STAGE4 conversion complete register interrupt status  
1 = indicates STAGE4 conversion completed  
STAGE5 conversion complete register interrupt status  
1 = indicates STAGE5 conversion completed  
STAGE6 conversion complete register interrupt status  
1 = indicates STAGE6 conversion completed  
STAGE7 conversion complete register interrupt status  
1 = indicates STAGE7 conversion completed  
STAGE8 conversion complete register interrupt status  
1 = indicates STAGE8 conversion completed  
STAGE9 conversion complete register interrupt status  
1 = indicates STAGE9 conversion completed  
STAGE10 conversion complete register interrupt status  
1 = indicates STAGE10 conversion completed  
STAGE11 conversion complete register interrupt status  
1 = indicates STAGE11 conversion completed  
GPIO input pin status  
[1]  
0
0
0
0
0
0
0
0
0
0
0
0
STAGE1_COMPLETE_INT_STATUS  
STAGE2_COMPLETE_INT_STATUS  
STAGE3_COMPLETE_INT_STATUS  
STAGE4_COMPLETE_INT_STATUS  
STAGE5_COMPLETE_INT_STATUS  
STAGE6_COMPLETE_INT_STATUS  
STAGE7_COMPLETE_INT_STATUS  
STAGE8_COMPLETE_INT_STATUS  
STAGE9_COMPLETE_INT_STATUS  
STAGE10_COMPLETE_INT_STATUS  
STAGE11_COMPLETE_INT_STATUS  
GPIO_INT_STATUS  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
[10]  
[11]  
[12]  
[15:13]  
1 = indicates level on GPIO pin has changed  
Set to 0  
Unused  
1 Registers self-clear to 0 after readback if the limits are not exceeded.  
Table 31. CDC 16-Bit Conversion Data Registers  
Default  
Value  
Address Data Bit  
Type  
R
R
R
R
R
R
R
R
R
R
R
R
Name  
Description  
0x00B  
0x00C  
0x00D  
0x00E  
0x00F  
0x010  
0x011  
0x012  
0x013  
0x014  
0x015  
0x016  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
0
0
0
0
0
0
0
0
0
0
0
0
CDC_RESULT_S0  
CDC_RESULT_S1  
CDC_RESULT_S2  
CDC_RESULT_S3  
CDC_RESULT_S4  
CDC_RESULT_S5  
CDC_RESULT_S6  
CDC_RESULT_S7  
CDC_RESULT_S8  
CDC_RESULT_S9  
CDC_RESULT_S10  
CDC_RESULT_S11  
STAGE0 CDC 16-bit conversion data  
STAGE1 CDC 16-bit conversion data  
STAGE2 CDC 16-bit conversion data  
STAGE3 CDC 16-bit conversion data  
STAGE4 CDC 16-bit conversion data  
STAGE5 CDC 16-bit conversion data  
STAGE6 CDC 16-bit conversion data  
STAGE7 CDC 16-bit conversion data  
STAGE8 CDC 16-bit conversion data  
STAGE9 CDC 16-bit conversion data  
STAGE10 CDC 16-bit conversion data  
STAGE11 CDC 16-bit conversion data  
Rev. 0 | Page 49 of 68  
AD7147  
Table 32. Device ID Register  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x017  
[3:0]  
[15:4]  
0
147  
R
R
REVISION_CODE  
DEVID  
Revision code  
Device ID = 0001 0100 0111  
Table 33. Proximity Status Register  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x042  
[0]  
0
R
STAGE0_PROXIMITY_STATUS  
STAGE0 proximity status register  
1 = indicates proximity has been detected on STAGE0  
STAGE1 proximity status register  
1 = indicates proximity has been detected on STAGE1  
STAGE2 proximity status register  
1 = indicates proximity has been detected on STAGE2  
STAGE3 proximity status register  
1 = indicates proximity has been detected on STAGE3  
STAGE4 proximity status register  
1 = indicates proximity has been detected on STAGE4  
STAGE5 proximity status register  
1 = indicates proximity has been detected on STAGE5  
STAGE6 proximity status register  
1 = indicates proximity has been detected on STAGE6  
STAGE7 proximity status register  
1 = indicates proximity has been detected on STAGE7  
STAGE8 proximity status register  
1 = indicates proximity has been detected on STAGE8  
STAGE9 proximity status register  
1 = indicates proximity has been detected on STAGE9  
STAGE10 proximity status register  
1 = indicates proximity has been detected on STAGE10  
STAGE11 proximity status register  
1 = indicates proximity has been detected on STAGE11  
Set to 0  
[1]  
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
STAGE1_PROXIMITY_STATUS  
STAGE2_PROXIMITY_STATUS  
STAGE3_PROXIMITY_STATUS  
STAGE4_PROXIMITY_STATUS  
STAGE5_PROXIMITY_STATUS  
STAGE6_PROXIMITY_STATUS  
STAGE7_PROXIMITY_STATUS  
STAGE8_PROXIMITY_STATUS  
STAGE9_PROXIMITY_STATUS  
STAGE10_PROXIMITY_STATUS  
STAGE11_PROXIMITY_STATUS  
Unused  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
[10]  
[11]  
[15:12]  
Rev. 0 | Page 50 of 68  
AD7147  
BANK 2 REGISTERS  
All address values are expressed in hexadecimal.  
Table 34. STAGEx_CONNECTION [6:0] Register Description (x = 0 to 11)  
Default  
Value  
Data Bit  
Type  
Name  
Description  
[1:0]  
X
R/W  
CIN0_CONNECTION_SETUP  
CIN0 connection setup  
00 = CIN0 not connected to CDC inputs  
01 = CIN0 connected to CDC negative input  
10 = CIN0 connected to CDC positive input  
11 = CIN0 connected to BIAS (connect unused CINx inputs)  
CIN1 connection setup  
[3:2]  
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CIN1_CONNECTION_SETUP  
CIN2_CONNECTION_SETUP  
CIN3_CONNECTION_SETUP  
CIN4_CONNECTION_SETUP  
CIN5_CONNECTION_SETUP  
CIN6_CONNECTION_SETUP  
Unused  
00 = CIN1 not connected to CDC inputs  
01 = CIN1 connected to CDC negative input  
10 = CIN1 connected to CDC positive input  
11 = CIN1 connected to BIAS (connect unused CINx inputs)  
CIN2 connection setup  
00 = CIN2 not connected to CDC inputs  
01 = CIN2 connected to CDC negative input  
10 = CIN2 connected to CDC positive input  
11 = CIN2 connected to BIAS (connect unused CINx inputs)  
CIN3 connection setup  
00 = CIN3 not connected to CDC inputs  
01 = CIN3 connected to CDC negative input  
10 = CIN3 connected to CDC positive input  
11 = CIN3 connected to BIAS (connect unused CINx inputs)  
CIN4 connection setup  
00 = CIN4 not connected to CDC inputs  
01 = CIN4 connected to CDC negative input  
10 = CIN4 connected to CDC positive input  
11 = CIN4 connected to BIAS (connect unused CINx inputs)  
CIN5 connection setup  
00 = CIN5 not connected to CDC inputs  
01 = CIN5 connected to CDC negative input  
10 = CIN5 connected to CDC positive input  
11 = CIN5 connected to BIAS (connect unused CINx inputs)  
CIN6 connection setup  
00 = CIN6 not connected to CDC inputs  
01 = CIN6 connected to CDC negative input  
10 = CIN6 connected to CDC positive input  
11 = CIN6 connected to BIAS (connect unused CINx inputs)  
Set to 0  
[5:4]  
[7:6]  
[9:8]  
[11:10]  
[13:12]  
[15:14]  
Rev. 0 | Page 51 of 68  
 
 
AD7147  
Table 35. STAGEx_CONNECTION [12:7] Register Description (x = 0 to 11)  
Default  
Value  
Data Bit  
Type  
Name  
Description  
[1:0]  
X
R/W  
CIN7_CONNECTION_SETUP  
CIN7 connection setup  
00 = CIN7 not connected to CDC inputs  
01 = CIN7 connected to CDC negative input  
10 = CIN7 connected to CDC positive input  
11 = CIN7 connected to BIAS (connect unused CINx inputs)  
CIN8 connection setup  
00 = CIN8 not connected to CDC inputs  
01 = CIN8 connected to CDC negative input  
10 = CIN8 connected to CDC positive input  
11 = CIN8 connected to BIAS (connect unused CINx inputs)  
CIN9 connection setup  
00 = CIN9 not connected to CDC inputs  
01 = CIN9 connected to CDC negative input  
10 = CIN9 connected to CDC positive input  
11 = CIN9 connected to BIAS (connect unused CINx inputs)  
CIN10 connection setup  
00 = CIN10 not connected to CDC inputs  
01 = CIN10 connected to CDC negative input  
10 = CIN10 connected to CDC positive input  
11 = CIN10 connected to BIAS (connect unused CINx inputs)  
CIN11 connection setup  
00 = CIN11 not connected to CDC inputs  
01 = CIN11 connected to CDC negative input  
10 = CIN11 connected to CDC positive input  
11 = CIN11 connected to BIAS (connect unused CINx inputs)  
CIN12 connection setup  
00 = CIN12 not connected to CDC inputs  
01 = CIN12 connected to CDC negative input  
10 = CIN12 connected to CDC positive input  
11 = CIN12 connected to BIAS (connect unused CINx inputs)  
Single-ended measurement connection setup.  
00 =Do not use  
[3:2]  
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CIN8_CONNECTION_SETUP  
CIN9_CONNECTION_SETUP  
CIN10_CONNECTION_SETUP  
CIN11_CONNECTION_SETUP  
CIN12_CONNECTION_SETUP  
SE_CONNECTION_SETUP  
[5:4]  
[7:6]  
[9:8]  
[11:10]  
[13:12]  
01 = Use when one CINx connected to CDC positive input,  
single-ended measurements only  
10 = Use when one CINx connected to CDC negative input,  
single-ended measurements only  
11 = Differential connection to CDC  
Negative AFE offset enable control  
0 = enable  
[14]  
[15]  
X
X
R/W  
R/W  
NEG_AFE_OFFSET_DISABLE  
POS_AFE_OFFSET_DISABLE  
1 = disable  
Positive AFE offset enable control  
0 = enable  
1 = disable  
Rev. 0 | Page 52 of 68  
 
AD7147  
Table 36. STAGEx_AFE_OFFSET Register Description (x = 0 to 11)  
Default  
Value  
Data Bit  
Type  
Name  
Description  
[5:0]  
X
R/W  
NEG_AFE_OFFSET  
Negative AFE offset setting (20 pF range)  
1 LSB value = 0.32 pF of offset  
[6]  
[7]  
X
X
Unused  
Set to 0  
R/W  
R/W  
R/W  
NEG_AFE_OFFSET_SWAP  
Negative AFE offset swap control  
0 = NEG_AFE_OFFSET applied to CDC negative input  
1 = NEG_AFE_OFFSET applied to CDC positive input  
Positive AFE offset setting (20 pF range)  
1 LSB value = 0.32 pF of offset  
[13:8]  
X
POS_AFE_OFFSET  
[14]  
[15]  
X
X
Unused  
Set to 0  
POS_AFE_OFFSET_SWAP  
Positive AFE offset swap control  
0 = POS_AFE_OFFSET applied to CDC positive input  
1 = POS_AFE_OFFSET applied to CDC negative input  
Table 37. STAGEx_SENSITIVITY Register Description (x = 0 to 11)  
Default  
Value  
Data Bit  
Type  
Name  
Description  
[3:0]  
X
R/W  
NEG_THRESHOLD_SENSITIVITY  
Negative threshold sensitivity control  
0000 = 25%, 0001 = 29.73%, 0010 = 34.40%, 0011 = 39.08%  
0100 = 43.79%, 0101 = 48.47%, 0110 = 53.15%  
0111 = 57.83%, 1000 = 62.51%, 1001 = 67.22%  
1010 = 71.90%, 1011 = 76.58%, 1100 = 81.28%  
1101 = 85.96%, 1110 = 90.64%, 1111 = 95.32%  
Negative peak detect setting  
[6:4]  
X
R/W  
NEG_PEAK_DETECT  
000 = 40% level, 001 = 50% level, 010 = 60% level  
011 = 70% level, 100 = 80% level, 101 = 90% level  
Set to 0  
[7]  
X
X
R/W  
R/W  
Unused  
[11:8]  
POS_THRESHOLD_SENSITIVITY  
Positive threshold sensitivity control  
0000 = 25%, 0001 = 29.73%, 0010 = 34.40%, 0011 = 39.08%  
0100 = 43.79%, 0101 = 48.47%, 0110 = 53.15%  
0111 = 57.83%, 1000 = 62.51%, 1001 = 67.22%  
1010 = 71.90%, 1011 = 76.58%, 1100 = 81.28%  
1101 = 85.96%, 1110 = 90.64%, 1111 = 95.32%  
Positive peak detect setting  
000 = 40% level, 001 = 50% level, 010 = 60% level  
011 = 70% level, 100 = 80% level, 101 = 90% level  
Set to 0  
[14:12]  
[15]  
X
X
R/W  
R/W  
POS_PEAK_DETECT  
Unused  
Rev. 0 | Page 53 of 68  
 
 
AD7147  
Table 38. STAGE0 to Stage12 Configuration Registers  
Address  
0x080  
0x081  
0x082  
0x083  
0x084  
0x085  
0x086  
0x087  
0x088  
0x089  
0x08A  
0x08B  
0x08C  
0x08D  
0x08E  
0x08F  
0x090  
0x091  
0x092  
0x093  
0x094  
0x095  
0x096  
0x097  
0x098  
0x099  
0x09A  
0x09B  
0x09C  
0x09D  
0x09E  
0x09F  
0x0A0  
0x0A1  
0x0A2  
0x0A3  
0x0A4  
0x0A5  
0x0A6  
0x0A7  
0x0A8  
0x0A9  
0x0AA  
0x0AB  
0x0AC  
0x0AD  
0x0AE  
0x0AF  
Data Bit  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Type Name  
Description  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE0_CONNECTION [6:0]  
STAGE0_CONNECTION [12:7]  
STAGE0_AFE_OFFSET  
STAGE0_SENSITIVITY  
STAGE0_OFFSET_LOW  
STAGE0 CIN [6:0] connection setup (see Table 34)  
STAGE0 CIN [12:7] connection setup (see Table 35)  
STAGE0 AFE offset control (see Table 36)  
STAGE0 sensitivity control (see Table 37)  
STAGE0 initial offset low value  
STAGE0 initial offset high value  
STAGE0 offset high clamp value  
STAGE0 offset low clamp value  
STAGE0_OFFSET_HIGH  
STAGE0_OFFSET_HIGH_CLAMP  
STAGE0_ OFFSET_LOW_CLAMP  
STAGE1_CONNECTION [6:0]  
STAGE1_CONNECTION [12:7]  
STAGE1_AFE_OFFSET  
STAGE1_SENSITIVITY  
STAGE1_OFFSET_LOW  
STAGE1_OFFSET_HIGH  
STAGE1_OFFSET_HIGH_CLAMP  
STAGE1_OFFSET_LOW_CLAMP  
STAGE2_CONNECTION [6:0]  
STAGE2_CONNECTION [12:7]  
STAGE2_AFE_OFFSET  
STAGE2_SENSITIVITY  
STAGE2_OFFSET_LOW  
STAGE2_OFFSET_HIGH  
STAGE2_OFFSET_HIGH_CLAMP  
STAGE2_OFFSET_LOW_CLAMP  
STAGE3_CONNECTION [6:0]  
STAGE3_CONNECTION [12:7]  
STAGE3_AFE_OFFSET  
STAGE3_SENSITIVITY  
STAGE3_OFFSET_LOW  
STAGE3_OFFSET_HIGH  
STAGE3_OFFSET_HIGH_CLAMP  
STAGE3_OFFSET_LOW_CLAMP  
STAGE4_CONNECTION [6:0]  
STAGE4_CONNECTION [12:7]  
STAGE4_AFE_OFFSET  
STAGE4_SENSITIVITY  
STAGE4_OFFSET_LOW  
STAGE4_OFFSET_HIGH  
STAGE1 CIN [6:0] connection setup (see Table 34)  
STAGE1 CIN [12:7] connection setup (see Table 35)  
STAGE1 AFE offset control (see Table 36)  
STAGE1 sensitivity control (see Table 37)  
STAGE1 initial offset low value  
STAGE1 initial offset high value  
STAGE1 offset high clamp value  
STAGE1 offset low clamp value  
STAGE2 CIN [6:0] connection setup (see Table 34)  
STAGE2 CIN [12:7] connection setup (see Table 35)  
STAGE2 AFE offset control (see Table 36)  
STAGE2 sensitivity control (see Table 37)  
STAGE2 initial offset low value  
STAGE2 initial offset high value  
STAGE2 offset high clamp value  
STAGE2 offset low clamp value  
STAGE3 CIN [6:0] connection setup (see Table 34  
STAGE3 CIN [12:7] connection setup (see Table 35)  
STAGE3 AFE offset control (see Table 36)  
STAGE3 sensitivity control (see Table 37)  
STAGE3 initial offset low value  
STAGE3 initial offset high value  
STAGE3 offset high clamp value  
STAGE3 offset low clamp value  
STAGE4 CIN [6:0] connection setup (see Table 34)  
STAGE4 CIN [12:7] connection setup (see Table 35)  
STAGE4 AFE offset control (see Table 36)  
STAGE4 sensitivity control (see Table 37)  
STAGE4 initial offset low value  
STAGE4 initial offset high value  
STAGE4 offset high clamp value  
STAGE4 offset low clamp value  
STAGE4_OFFSET_HIGH_CLAMP  
STAGE4_OFFSET_LOW_CLAMP  
STAGE5_CONNECTION [6:0]  
STAGE5_CONNECTION [12:7]  
STAGE5_AFE_OFFSET  
STAGE5_SENSITIVITY  
STAGE5_OFFSET_LOW  
STAGE5_OFFSET_HIGH  
STAGE5_OFFSET_HIGH_CLAMP  
STAGE5_OFFSET_LOW_CLAMP  
STAGE5 CIN [6:0] connection setup (see Table 34)  
STAGE5 CIN [12:7] connection setup (see Table 35)  
STAGE5 AFE offset control (see Table 36)  
STAGE5 sensitivity control (see Table 37)  
STAGE5 initial offset low value  
STAGE5 initial offset high value  
STAGE5 offset high clamp value  
STAGE5 offset low clamp value  
Rev. 0 | Page 54 of 68  
 
AD7147  
Address  
0x0B0  
0x0B1  
0x0B2  
0x0B3  
0x0B4  
0x0B5  
0x0B6  
0x0B7  
0x0B8  
0x0B9  
0x0BA  
0x0BB  
0x0BC  
0x0BD  
0x0BE  
0x0BF  
0x0C0  
0x0C1  
0x0C2  
0x0C3  
0x0C4  
0x0C5  
0x0C6  
0x0C7  
0x0C8  
0x0C9  
0x0CA  
0x0CB  
0x0CC  
0x0CD  
0x0CE  
0x0CF  
0x0D0  
0x0D1  
0x0D2  
0x0D3  
0x0D4  
0x0D5  
0x0D6  
0x0D7  
0x0D8  
0x0D9  
0x0DA  
0x0DB  
0x0DC  
0x0DD  
0x0DE  
0x0DF  
Data Bit  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
Default  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Type Name  
STAGE6_CONNECTION [6:0]  
Description  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE6 CIN [6:0] connection setup (see Table 34)  
STAGE6 CIN [12:7]connection setup (see Table 35)  
STAGE6 AFE offset control (see Table 36)  
STAGE6 sensitivity control (see Table 37)  
STAGE6 initial offset low value  
STAGE6 initial offset high value  
STAGE6 offset high clamp value  
STAGE6 offset low clamp value  
STAGE6_CONNECTION [12:7]  
STAGE6_AFE_OFFSET  
STAGE6_SENSITIVITY  
STAGE6_OFFSET_LOW  
STAGE6_OFFSET_HIGH  
STAGE6_OFFSET_HIGH_CLAMP  
STAGE6_OFFSET_LOW_CLAMP  
STAGE7_CONNECTION [6:0]  
STAGE7_CONNECTION[12:7]  
STAGE7_AFE_OFFSET  
STAGE7_SENSITIVITY  
STAGE7_OFFSET_LOW  
STAGE7_OFFSET_HIGH  
STAGE7_OFFSET_HIGH_CLAMP  
STAGE7_OFFSET_LOW_CLAMP  
STAGE8_CONNECTION [6:0]  
STAGE8_CONNECTION [12:7]  
STAGE8_AFE_OFFSET  
STAGE8_SENSITIVITY  
STAGE8_OFFSET_LOW  
STAGE8_OFFSET_HIGH  
STAGE8_OFFSET_HIGH_CLAMP  
STAGE8_OFFSET_LOW_CLAMP  
STAGE9_CONNECTION [6:0]  
STAGE9_CONNECTION [12:7]  
STAGE9_AFE_OFFSET  
STAGE9_SENSITIVITY  
STAGE9_OFFSET_LOW  
STAGE9_OFFSET_HIGH  
STAGE9_OFFSET_HIGH_CLAMP  
STAGE9_OFFSET_LOW_CLAMP  
STAGE10_CONNECTION [6:0]  
STAGE10_CONNECTION [12:7]  
STAGE10_AFE_OFFSET  
STAGE7 CIN [6:0] connection setup (see Table 34)  
STAGE7 CIN [12:7] connection setup (see Table 35)  
STAGE7 AFE offset control (see Table 36)  
STAGE7 sensitivity control (see Table 37)  
STAGE7 initial offset low value  
STAGE7 initial offset high value  
STAGE7 offset high clamp value  
STAGE7 offset low clamp value  
STAGE8 CIN [6:0] connection setup (see Table 34)  
STAGE8 CIN [12:7]connection setup (see Table 35)  
STAGE8 AFE offset control (see Table 36)  
STAGE8 sensitivity control (see Table 37)  
STAGE8 initial offset low value  
STAGE8 initial offset high value  
STAGE8 offset high clamp value  
STAGE8 offset low clamp value  
STAGE9 CIN [6:0] connection setup (see Table 34)  
STAGE9 CIN [12:7]connection setup (see Table 35)  
STAGE9 AFE offset control (see Table 36)  
STAGE9 sensitivity control (see Table 37)  
STAGE9 initial offset low value  
STAGE9 initial offset high value  
STAGE9 offset high clamp value  
STAGE9 offset low clamp value  
STAGE10 CIN [6:0] connection setup (see Table 34)  
STAGE10 CIN [12:7]connection setup (see Table 35)  
STAGE10 AFE offset control (see Table 36)  
STAGE10 sensitivity control (see Table 37)  
STAGE10 initial offset low value  
STAGE10 initial offset high value  
STAGE10 offset high clamp value  
STAGE10 offset low clamp value  
STAGE10_SENSITIVITY  
STAGE10_OFFSET_LOW  
STAGE10_OFFSET_HIGH  
STAGE10_OFFSET_HIGH_CLAMP  
STAGE10_OFFSET_LOW_CLAMP  
STAGE11_CONNECTION [6:0]  
STAGE11_CONNECTION[12:7]  
STAGE11_AFE_OFFSET  
STAGE11 CIN [6:0] connection setup (see Table 34)  
STAGE11 CIN [12:7] connection setup (see Table 35)  
STAGE11 AFE offset control (see Table 36)  
STAGE11 sensitivity control (see Table 37)  
STAGE11 initial offset low value  
STAGE11 initial offset high value  
STAGE11 offset high clamp value  
STAGE11 offset low clamp value  
STAGE11_SENSITIVITY  
STAGE11_OFFSET_LOW  
STAGE11_OFFSET_HIGH  
STAGE11_OFFSET_HIGH_CLAMP  
STAGE11_OFFSET_LOW_CLAMP  
Rev. 0 | Page 55 of 68  
AD7147  
BANK 3 REGISTERS  
All address values are expressed in hexadecimal.  
Table 39. STAGE0 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x0E0  
[15:0]  
X
R/W  
STAGE0_CONV_DATA  
STAGE0 CDC 16-bit conversion data  
(copy of CDC_RESULT_S0 register)  
STAGE0 fast FIFO WORD0  
0x0E1  
0x0E2  
0x0E3  
0x0E4  
0x0E5  
0x0E6  
0x0E7  
0x0E8  
0x0E9  
0x0EA  
0x0EB  
0x0EC  
0x0ED  
0x0EE  
0x0EF  
0x0F0  
0x0F1  
0x0F2  
0x0F3  
0x0F4  
0x0F5  
0x0F6  
0x0F7  
0x0F8  
0x0F9  
0x0FA  
0x0FB  
0x0FC  
0x0FD  
0x0FE  
0x0FF  
0x100  
0x101  
0x102  
0x103  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE0_FF_WORD0  
STAGE0_FF_WORD1  
STAGE0_FF_WORD2  
STAGE0_FF_WORD3  
STAGE0_FF_WORD4  
STAGE0_FF_WORD5  
STAGE0_FF_WORD6  
STAGE0_FF_WORD7  
STAGE0_SF_WORD0  
STAGE0_SF_WORD1  
STAGE0_SF_WORD2  
STAGE0_SF_WORD3  
STAGE0_SF_WORD4  
STAGE0_SF_WORD5  
STAGE0_SF_WORD6  
STAGE0_SF_WORD7  
STAGE0_SF_AMBIENT  
STAGE0_FF_AVG  
STAGE0_PEAK_DETECT_WORD0  
STAGE0_PEAK_DETECT_WORD1  
STAGE0_MAX_WORD0  
STAGE0_MAX_WORD1  
STAGE0_MAX_WORD2  
STAGE0_MAX_WORD3  
STAGE0_MAX_AVG  
STAGE0_HIGH_THRESHOLD  
STAGE0_MAX_TEMP  
STAGE0_MIN_WORD0  
STAGE0_MIN_WORD1  
STAGE0_MIN_WORD2  
STAGE0_MIN_WORD3  
STAGE0_MIN_AVG  
STAGE0 fast FIFO WORD1  
STAGE0 fast FIFO WORD2  
STAGE0 fast FIFO WORD3  
STAGE0 fast FIFO WORD4  
STAGE0 fast FIFO WORD5  
STAGE0 fast FIFO WORD6  
STAGE0 fast FIFO WORD7  
STAGE0 slow FIFO WORD0  
STAGE0 slow FIFO WORD1  
STAGE0 slow FIFO WORD2  
STAGE0 slow FIFO WORD3  
STAGE0 slow FIFO WORD4  
STAGE0 slow FIFO WORD5  
STAGE0 slow FIFO WORD6  
STAGE0 slow FIFO WORD7  
STAGE0 slow FIFO ambient value  
STAGE0 fast FIFO average value  
STAGE0 peak FIFO WORD0 value  
STAGE0 peak FIFO WORD1 value  
STAGE0 maximum value FIFO WORD0  
STAGE0 maximum value FIFO WORD1  
STAGE0 maximum value FIFO WORD2  
STAGE0 maximum value FIFO WORD3  
STAGE0 average maximum FIFO value  
STAGE0 high threshold value  
STAGE0 temporary maximum value  
STAGE0 minimum value FIFO WORD0  
STAGE0 minimum value FIFO WORD1  
STAGE0 minimum value FIFO WORD2  
STAGE0 minimum value FIFO WORD3  
STAGE0 average minimum FIFO value  
STAGE0 low threshold value  
STAGE0 temporary minimum value  
Set to 0  
STAGE0_LOW_THRESHOLD  
STAGE0_MIN_TEMP  
Unused  
Rev. 0 | Page 56 of 68  
 
AD7147  
Table 40. STAGE1 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x104  
[15:0]  
X
R/W  
STAGE1_CONV_DATA  
STAGE1 CDC 16-bit conversion data  
(copy of CDC_RESULT_S1 register  
0x105  
0x106  
0x107  
0x108  
0x109  
0x10A  
0x10B  
0x10C  
0x10D  
0x10E  
0x10F  
0x110  
0x111  
0x112  
0x113  
0x114  
0x115  
0x116  
0x117  
0x118  
0x119  
0x11A  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
0x120  
0x121  
0x122  
0x123  
0x124  
0x125  
0x126  
0x127  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE1_FF_WORD0  
STAGE1_FF_WORD1  
STAGE1_FF_WORD2  
STAGE1_FF_WORD3  
STAGE1_FF_WORD4  
STAGE1_FF_WORD5  
STAGE1_FF_WORD6  
STAGE1_FF_WORD7  
STAGE1_SF_WORD0  
STAGE1_SF_WORD1  
STAGE1_SF_WORD2  
STAGE1_SF_WORD3  
STAGE1_SF_WORD4  
STAGE1_SF_WORD5  
STAGE1_SF_WORD6  
STAGE1_SF_WORD7  
STAGE1_SF_AMBIENT  
STAGE1_FF_AVG  
STAGE1_PEAK_DETECT_WORD0  
STAGE1_PEAK_DETECT_WORD1  
STAGE1_MAX_WORD0  
STAGE1_MAX_WORD1  
STAGE1_MAX_WORD2  
STAGE1_MAX_WORD3  
STAGE1_MAX_AVG  
STAGE1_HIGH_THRESHOLD  
STAGE1_MAX_TEMP  
STAGE1_MIN_WORD0  
STAGE1_MIN_WORD1  
STAGE1_MIN_WORD2  
STAGE1_MIN_WORD3  
STAGE1_MIN_AVG  
STAGE1 fast FIFO WORD0  
STAGE1 fast FIFO WORD1  
STAGE1 fast FIFO WORD2  
STAGE1 fast FIFO WORD3  
STAGE1 fast FIFO WORD4  
STAGE1 fast FIFO WORD5  
STAGE1 fast FIFO WORD6  
STAGE1 fast FIFO WORD7  
STAGE1 slow FIFO WORD0  
STAGE1 slow FIFO WORD1  
STAGE1 slow FIFO WORD2  
STAGE1 slow FIFO WORD3  
STAGE1 slow FIFO WORD4  
STAGE1 slow FIFO WORD5  
STAGE1 slow FIFO WORD6  
STAGE1 slow FIFO WORD7  
STAGE1 slow FIFO ambient value  
STAGE1 fast FIFO average value  
STAGE1 peak FIFO WORD0 value  
STAGE1 peak FIFO WORD1 value  
STAGE1 maximum value FIFO WORD0  
STAGE1 maximum value FIFO WORD1  
STAGE1 maximum value FIFO WORD2  
STAGE1 maximum value FIFO WORD3  
STAGE1 average maximum FIFO value  
STAGE1 high threshold value  
STAGE1 temporary maximum value  
STAGE1 minimum value FIFO WORD0  
STAGE1 minimum value FIFO WORD1  
STAGE1 minimum value FIFO WORD2  
STAGE1 minimum value FIFO WORD3  
STAGE1 average minimum FIFO value  
STAGE1 low threshold value  
STAGE1 temporary minimum value  
Set to 0  
STAGE1_LOW_THRESHOLD  
STAGE1_MIN_TEMP  
Unused  
Rev. 0 | Page 57 of 68  
AD7147  
Table 41. STAGE2 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x128  
[15:0]  
X
R/W  
STAGE2_CONV_DATA  
STAGE2 CDC 16-bit conversion data  
(copy of CDC_RESULT_S2 register)  
0x129  
0x12A  
0x12B  
0x12C  
0x12D  
0x12E  
0x12F  
0x130  
0x131  
0x132  
0x133  
0x134  
0x135  
0x136  
0x137  
0x138  
0x139  
0x13A  
0x13B  
0x13C  
0x13D  
0x13E  
0x13F  
0x140  
0x141  
0x142  
0x143  
0x144  
0x145  
0x146  
0x147  
0x148  
0x149  
0x14A  
0x14B  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE2_FF_WORD0  
STAGE2_FF_WORD1  
STAGE2_FF_WORD2  
STAGE2_FF_WORD3  
STAGE2_FF_WORD4  
STAGE2_FF_WORD5  
STAGE2_FF_WORD6  
STAGE2_FF_WORD7  
STAGE2_SF_WORD0  
STAGE2_SF_WORD1  
STAGE2_SF_WORD2  
STAGE2_SF_WORD3  
STAGE2_SF_WORD4  
STAGE2_SF_WORD5  
STAGE2_SF_WORD6  
STAGE2_SF_WORD7  
STAGE2_SF_AMBIENT  
STAGE2_FF_AVG  
STAGE2_PEAK_DETECT_WORD0  
STAGE2_PEAK_DETECT_WORD1  
STAGE2_MAX_WORD0  
STAGE2_MAX_WORD1  
STAGE2_MAX_WORD2  
STAGE2_MAX_WORD3  
STAGE2_MAX_AVG  
STAGE2_HIGH_THRESHOLD  
STAGE2_MAX_TEMP  
STAGE2_MIN_WORD0  
STAGE2_MIN_WORD1  
STAGE2_MIN_WORD2  
STAGE2_MIN_WORD3  
STAGE2_MIN_AVG  
STAGE2 fast FIFO WORD0  
STAGE2 fast FIFO WORD1  
STAGE2 fast FIFO WORD2  
STAGE2 fast FIFO WORD3  
STAGE2 fast FIFO WORD4  
STAGE2 fast FIFO WORD5  
STAGE2 fast FIFO WORD6  
STAGE2 fast FIFO WORD7  
STAGE2 slow FIFO WORD0  
STAGE2 slow FIFO WORD1  
STAGE2 slow FIFO WORD2  
STAGE2 slow FIFO WORD3  
STAGE2 slow FIFO WORD4  
STAGE2 slow FIFO WORD5  
STAGE2 slow FIFO WORD6  
STAGE2 slow FIFO WORD7  
STAGE2 slow FIFO ambient value  
STAGE2 fast FIFO average value  
STAGE2 peak FIFO WORD0 value  
STAGE2 peak FIFO WORD1 value  
STAGE2 maximum value FIFO WORD0  
STAGE2 maximum value FIFO WORD1  
STAGE2 maximum value FIFO WORD2  
STAGE2 maximum value FIFO WORD3  
STAGE2 average maximum FIFO value  
STAGE2 high threshold value  
STAGE2 temporary maximum value  
STAGE2 minimum value FIFO WORD0  
STAGE2 minimum value FIFO WORD1  
STAGE2 minimum value FIFO WORD2  
STAGE2 minimum value FIFO WORD3  
STAGE2 average minimum FIFO value  
STAGE2 low threshold value  
STAGE2 temporary minimum value  
Set to 0  
STAGE2_LOW_THRESHOLD  
STAGE2_MIN_TEMP  
Unused  
Rev. 0 | Page 58 of 68  
AD7147  
Table 42. STAGE3 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x14C  
[15:0]  
X
R/W  
STAGE3_CONV_DATA  
STAGE3 CDC 16-bit conversion data  
(copy of CDC_RESULT_S3 register)  
0x14D  
0x14E  
0x14F  
0x150  
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0x15B  
0x15C  
0x15D  
0x15E  
0x15F  
0x160  
0x161  
0x162  
0x163  
0x164  
0x165  
0x166  
0x167  
0x168  
0x169  
0x16A  
0x16B  
0x16C  
0x16D  
0x16E  
0x16F  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE3_FF_WORD0  
STAGE3_FF_WORD1  
STAGE3_FF_WORD2  
STAGE3_FF_WORD3  
STAGE3_FF_WORD4  
STAGE3_FF_WORD5  
STAGE3_FF_WORD6  
STAGE3_FF_WORD7  
STAGE3_SF_WORD0  
STAGE3_SF_WORD1  
STAGE3_SF_WORD2  
STAGE3_SF_WORD3  
STAGE3_SF_WORD4  
STAGE3_SF_WORD5  
STAGE3_SF_WORD6  
STAGE3_SF_WORD7  
STAGE3_SF_AMBIENT  
STAGE3_FF_AVG  
STAGE3_PEAK_DETECT_WORD0  
STAGE3_PEAK_DETECT_WORD1  
STAGE3_MAX_WORD0  
STAGE3_MAX_WORD1  
STAGE3_MAX_WORD2  
STAGE3_MAX_WORD3  
STAGE3_MAX_AVG  
STAGE3_HIGH_THRESHOLD  
STAGE3_MAX_TEMP  
STAGE3_MIN_WORD0  
STAGE3_MIN_WORD1  
STAGE3_MIN_WORD2  
STAGE3_MIN_WORD3  
STAGE3_MIN_AVG  
STAGE3 fast FIFO WORD0  
STAGE3 fast FIFO WORD1  
STAGE3 fast FIFO WORD2  
STAGE3 fast FIFO WORD3  
STAGE3 fast FIFO WORD4  
STAGE3 fast FIFO WORD5  
STAGE3 fast FIFO WORD6  
STAGE3 fast FIFO WORD7  
STAGE3 slow FIFO WORD0  
STAGE3 slow FIFO WORD1  
STAGE3 slow FIFO WORD2  
STAGE3 slow FIFO WORD3  
STAGE3 slow FIFO WORD4  
STAGE3 slow FIFO WORD5  
STAGE3 slow FIFO WORD6  
STAGE3 slow FIFO WORD7  
STAGE3 slow FIFO ambient value  
STAGE3 fast FIFO average value  
STAGE3 peak FIFO WORD0 value  
STAGE3 peak FIFO WORD1 value  
STAGE3 maximum value FIFO WORD0  
STAGE3 maximum value FIFO WORD1  
STAGE3 maximum value FIFO WORD2  
STAGE3 maximum value FIFO WORD3  
STAGE3 average maximum FIFO value  
STAGE3 high threshold value  
STAGE3 temporary maximum value  
STAGE3 minimum value FIFO WORD0  
STAGE3 minimum value FIFO WORD1  
STAGE3 minimum value FIFO WORD2  
STAGE3 minimum value FIFO WORD3  
STAGE3 average minimum FIFO value  
STAGE3 low threshold value  
STAGE3 temporary minimum value  
Set to 0  
STAGE3_LOW_THRESHOLD  
STAGE3_MIN_TEMP  
Unused  
Rev. 0 | Page 59 of 68  
AD7147  
Table 43. STAGE4 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x170  
[15:0]  
X
R/W  
STAGE4_CONV_DATA  
STAGE4 CDC 16-bit conversion data  
(copy of CDC_RESULT_S4 register)  
0x171  
0x172  
0x173  
0x174  
0x175  
0x176  
0x177  
0x178  
0x179  
0x17A  
0x17B  
0x17C  
0x17D  
0x17E  
0x17F  
0x180  
0x181  
0x182  
0x183  
0x184  
0x185  
0x186  
0x187  
0x188  
0x189  
0x18A  
0x18B  
0x18C  
0x18D  
0x18E  
0x18F  
0x190  
0x191  
0x192  
0x193  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE4_FF_WORD0  
STAGE4_FF_WORD1  
STAGE4_FF_WORD2  
STAGE4_FF_WORD3  
STAGE4_FF_WORD4  
STAGE4_FF_WORD5  
STAGE4_FF_WORD6  
STAGE4_FF_WORD7  
STAGE4_SF_WORD0  
STAGE4_SF_WORD1  
STAGE4_SF_WORD2  
STAGE4_SF_WORD3  
STAGE4_SF_WORD4  
STAGE4_SF_WORD5  
STAGE4_SF_WORD6  
STAGE4_SF_WORD7  
STAGE4_SF_AMBIENT  
STAGE4_FF_AVG  
STAGE4_PEAK_DETECT_WORD0  
STAGE4_PEAK_DETECT_WORD1  
STAGE4_MAX_WORD0  
STAGE4_MAX_WORD1  
STAGE4_MAX_WORD2  
STAGE4_MAX_WORD3  
STAGE4_MAX_AVG  
STAGE4_HIGH_THRESHOLD  
STAGE4_MAX_TEMP  
STAGE4_MIN_WORD0  
STAGE4_MIN_WORD1  
STAGE4_MIN_WORD2  
STAGE4_MIN_WORD3  
STAGE4_MIN_AVG  
STAGE4 fast FIFO WORD0  
STAGE4 fast FIFO WORD1  
STAGE4 fast FIFO WORD2  
STAGE4 fast FIFO WORD3  
STAGE4 fast FIFO WORD4  
STAGE4 fast FIFO WORD5  
STAGE4 fast FIFO WORD6  
STAGE4 fast FIFO WORD7  
STAGE4 slow FIFO WORD0  
STAGE4 slow FIFO WORD1  
STAGE4 slow FIFO WORD2  
STAGE4 slow FIFO WORD3  
STAGE4 slow FIFO WORD4  
STAGE4 slow FIFO WORD5  
STAGE4 slow FIFO WORD6  
STAGE4 slow FIFO WORD7  
STAGE4 slow FIFO ambient value  
STAGE4 fast FIFO average value  
STAGE4 peak FIFO WORD0 value  
STAGE4 peak FIFO WORD1 value  
STAGE4 maximum value FIFO WORD0  
STAGE4 maximum value FIFO WORD1  
STAGE4 maximum value FIFO WORD2  
STAGE4 maximum value FIFO WORD3  
STAGE4 average maximum FIFO value  
STAGE4 high threshold value  
STAGE4 temporary maximum value  
STAGE4 minimum value FIFO WORD0  
STAGE4 minimum value FIFO WORD1  
STAGE4 minimum value FIFO WORD2  
STAGE4 minimum value FIFO WORD3  
STAGE4 average minimum FIFO value  
STAGE4 low threshold value  
STAGE4 temporary minimum value  
Set to 0  
STAGE4_LOW_THRESHOLD  
STAGE4_MIN_TEMP  
Unused  
Rev. 0 | Page 60 of 68  
AD7147  
Table 44. STAGE5 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x194  
[15:0]  
X
R/W  
STAGE5_CONV_DATA  
STAGE5 CDC 16-bit conversion data  
(copy of CDC_RESULT_S5 register)  
0x195  
0x196  
0x197  
0x198  
0x199  
0x19A  
0x19B  
0x19C  
0x19D  
0x19E  
0x19F  
0x1A0  
0x1A1  
0x1A2  
0x1A3  
0x1A4  
0x1A5  
0x1A6  
0x1A7  
0x1A8  
0x1A9  
0x1AA  
0x1AB  
0x1AC  
0x1AD  
0x1AE  
0x1AF  
0x1B0  
0x1B1  
0x1B2  
0x1B3  
0x1B4  
0x1B5  
0x1B6  
0x1B7  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE5_FF_WORD0  
STAGE5_FF_WORD1  
STAGE5_FF_WORD2  
STAGE5_FF_WORD3  
STAGE5_FF_WORD4  
STAGE5_FF_WORD5  
STAGE5_FF_WORD6  
STAGE5_FF_WORD7  
STAGE5_SF_WORD0  
STAGE5_SF_WORD1  
STAGE5_SF_WORD2  
STAGE5_SF_WORD3  
STAGE5_SF_WORD4  
STAGE5_SF_WORD5  
STAGE5_SF_WORD6  
STAGE5_SF_WORD7  
STAGE5_SF_AMBIENT  
STAGE5_FF_AVG  
STAGE5_PEAK_DETECT_WORD0  
STAGE5_PEAK_DETECT_WORD1  
STAGE5_MAX_WORD0  
STAGE5_MAX_WORD1  
STAGE5_MAX_WORD2  
STAGE5_MAX_WORD3  
STAGE5_MAX_AVG  
STAGE5_HIGH_THRESHOLD  
STAGE5_MAX_TEMP  
STAGE5_MIN_WORD0  
STAGE5_MIN_WORD1  
STAGE5_MIN_WORD2  
STAGE5_MIN_WORD3  
STAGE5_MIN_AVG  
STAGE5 fast FIFO WORD0  
STAGE5 fast FIFO WORD1  
STAGE5 fast FIFO WORD2  
STAGE5 fast FIFO WORD3  
STAGE5 fast FIFO WORD4  
STAGE5 fast FIFO WORD5  
STAGE5 fast FIFO WORD6  
STAGE5 fast FIFO WORD7  
STAGE5 slow FIFO WORD0  
STAGE5 slow FIFO WORD1  
STAGE5 slow FIFO WORD2  
STAGE5 slow FIFO WORD3  
STAGE5 slow FIFO WORD4  
STAGE5 slow FIFO WORD5  
STAGE5 slow FIFO WORD6  
STAGE5 slow FIFO WORD7  
STAGE5 slow FIFO ambient value  
STAGE5 fast FIFO average value  
STAGE5 peak FIFO WORD0 value  
STAGE5 peak FIFO WORD1 value  
STAGE5 maximum value FIFO WORD0  
STAGE5 maximum value FIFO WORD1  
STAGE5 maximum value FIFO WORD2  
STAGE5 maximum value FIFO WORD3  
STAGE5 average maximum FIFO value  
STAGE5 high threshold value  
STAGE5 temporary maximum value  
STAGE5 minimum value FIFO WORD0  
STAGE5 minimum value FIFO WORD1  
STAGE5 minimum value FIFO WORD2  
STAGE5 minimum value FIFO WORD3  
STAGE5 average minimum FIFO value  
STAGE5 low threshold value  
STAGE5 temporary minimum value  
Set to 0  
STAGE5_LOW_THRESHOLD  
STAGE5_MIN_TEMP  
Unused  
Rev. 0 | Page 61 of 68  
AD7147  
Table 45. STAGE6 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x1B8  
[15:0]  
X
R/W  
STAGE6_CONV_DATA  
STAGE6 CDC 16-bit conversion data  
(copy of CDC_RESULT_S6 register)  
0x1B9  
0x1BA  
0x1BB  
0x1BC  
0x1BD  
0x1BE  
0x1BF  
0x1C0  
0x1C1  
0x1C2  
0x1C3  
0x1C4  
0x1C5  
0x1C6  
0x1C7  
0x1C8  
0x1C9  
0x1CA  
0x1CB  
0x1CC  
0x1CD  
0x1CE  
0x1CF  
0x1D0  
0x1D1  
0x1D2  
0x1D3  
0x1D4  
0x1D5  
0x1D6  
0x1D7  
0x1D8  
0x1D9  
0x1DA  
0x1DB  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE6_FF_WORD0  
STAGE6_FF_WORD1  
STAGE6_FF_WORD2  
STAGE6_FF_WORD3  
STAGE6_FF_WORD4  
STAGE6_FF_WORD5  
STAGE6_FF_WORD6  
STAGE6_FF_WORD7  
STAGE6_SF_WORD0  
STAGE6_SF_WORD1  
STAGE6_SF_WORD2  
STAGE6_SF_WORD3  
STAGE6_SF_WORD4  
STAGE6_SF_WORD5  
STAGE6_SF_WORD6  
STAGE6_SF_WORD7  
STAGE6_SF_AMBIENT  
STAGE6_FF_AVG  
STAGE6_PEAK_DETECT_WORD0  
STAGE6_PEAK_DETECT_WORD1  
STAGE6_MAX_WORD0  
STAGE6_MAX_WORD1  
STAGE6_MAX_WORD2  
STAGE6_MAX_WORD3  
STAGE6_MAX_AVG  
STAGE6_HIGH_THRESHOLD  
STAGE6_MAX_TEMP  
STAGE6_MIN_WORD0  
STAGE6_MIN_WORD1  
STAGE6_MIN_WORD2  
STAGE6_MIN_WORD3  
STAGE6_MIN_AVG  
STAGE6 fast FIFO WORD0  
STAGE6 fast FIFO WORD1  
STAGE6 fast FIFO WORD2  
STAGE6 fast FIFO WORD3  
STAGE6 fast FIFO WORD4  
STAGE6 fast FIFO WORD5  
STAGE6 fast FIFO WORD6  
STAGE6 fast FIFO WORD7  
STAGE6 slow FIFO WORD0  
STAGE6 slow FIFO WORD1  
STAGE6 slow FIFO WORD2  
STAGE6 slow FIFO WORD3  
STAGE6 slow FIFO WORD4  
STAGE6 slow FIFO WORD5  
STAGE6 slow FIFO WORD6  
STAGE6 slow FIFO WORD7  
STAGE6 slow FIFO ambient value  
STAGE6 fast FIFO average value  
STAGE6 peak FIFO WORD0 value  
STAGE6 peak FIFO WORD1 value  
STAGE6 maximum value FIFO WORD0  
STAGE6 maximum value FIFO WORD1  
STAGE6 maximum value FIFO WORD2  
STAGE6 maximum value FIFO WORD3  
STAGE6 average maximum FIFO value  
STAGE6 high threshold value  
STAGE6 temporary maximum value  
STAGE6 minimum value FIFO WORD0  
STAGE6 minimum value FIFO WORD1  
STAGE6 minimum value FIFO WORD2  
STAGE6 minimum value FIFO WORD3  
STAGE6 average minimum FIFO value  
STAGE6 low threshold value  
STAGE6 temporary minimum value  
Set to 0  
STAGE6_LOW_THRESHOLD  
STAGE6_MIN_TEMP  
Unused  
Rev. 0 | Page 62 of 68  
AD7147  
Table 46. STAGE7 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x1DC  
[15:0]  
X
R/W  
STAGE7_CONV_DATA  
STAGE7 CDC 16-bit conversion data  
(copy of CDC_RESULT_S7 register)  
0x1DD  
0x1DE  
0x1DF  
0x1E0  
0x1E1  
0x1E2  
0x1E3  
0x1E4  
0x1E5  
0x1E6  
0x1E7  
0x1E8  
0x1E9  
0x1EA  
0x1EB  
0x1EC  
0x1ED  
0x1EE  
0x1EF  
0x1F0  
0x1F1  
0x1F2  
0x1F3  
0x1F4  
0x1F5  
0x1F6  
0x1F7  
0x1F8  
0x1F9  
0x1FA  
0x1FB  
0x1FC  
0x1FD  
0x1FE  
0x1FF  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE7_FF_WORD0  
STAGE7_FF_WORD1  
STAGE7_FF_WORD2  
STAGE7_FF_WORD3  
STAGE7_FF_WORD4  
STAGE7_FF_WORD5  
STAGE7_FF_WORD6  
STAGE7_FF_WORD7  
STAGE7_SF_WORD0  
STAGE7_SF_WORD1  
STAGE7_SF_WORD2  
STAGE7_SF_WORD3  
STAGE7_SF_WORD4  
STAGE7_SF_WORD5  
STAGE7_SF_WORD6  
STAGE7_SF_WORD7  
STAGE7_SF_AMBIENT  
STAGE7_FF_AVG  
STAGE7_PEAK_DETECT_WORD0  
STAGE7_PEAK_DETECT_WORD1  
STAGE7_MAX_WORD0  
STAGE7_MAX_WORD1  
STAGE7_MAX_WORD2  
STAGE7_MAX_WORD3  
STAGE7_MAX_AVG  
STAGE7_HIGH_THRESHOLD  
STAGE7_MAX_TEMP  
STAGE7_MIN_WORD0  
STAGE7_MIN_WORD1  
STAGE7_MIN_WORD2  
STAGE7_MIN_WORD3  
STAGE7_MIN_AVG  
STAGE7 fast FIFO WORD0  
STAGE7 fast FIFO WORD1  
STAGE7 fast FIFO WORD2  
STAGE7 fast FIFO WORD3  
STAGE7 fast FIFO WORD4  
STAGE7 fast FIFO WORD5  
STAGE7 fast FIFO WORD6  
STAGE7 fast FIFO WORD7  
STAGE7 slow FIFO WORD0  
STAGE7 slow FIFO WORD1  
STAGE7 slow FIFO WORD2  
STAGE7 slow FIFO WORD3  
STAGE7 slow FIFO WORD4  
STAGE7 slow FIFO WORD5  
STAGE7 slow FIFO WORD6  
STAGE7 slow FIFO WORD7  
STAGE7 slow FIFO ambient value  
STAGE7 fast FIFO average value  
STAGE7 peak FIFO WORD0 value  
STAGE7 peak FIFO WORD1 value  
STAGE7 maximum value FIFO WORD0  
STAGE7 maximum value FIFO WORD1  
STAGE7 maximum value FIFO WORD2  
STAGE7 maximum value FIFO WORD3  
STAGE7 average maximum FIFO value  
STAGE7 high threshold value  
STAGE7 temporary maximum value  
STAGE7 minimum value FIFO WORD0  
STAGE7 minimum value FIFO WORD1  
STAGE7 minimum value FIFO WORD2  
STAGE7 minimum value FIFO WORD3  
STAGE7 average minimum FIFO value  
STAGE7 low threshold value  
STAGE7 temporary minimum value  
Set to 0  
STAGE7_LOW_THRESHOLD  
STAGE7_MIN_TEMP  
Unused  
Rev. 0 | Page 63 of 68  
AD7147  
Table 47. STAGE8 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x200  
[15:0]  
X
R/W  
STAGE8_CONV_DATA  
STAGE8 CDC 16-bit conversion data  
(copy of CDC_RESULT_S8 register)  
0x201  
0x202  
0x203  
0x204  
0x205  
0x206  
0x207  
0x208  
0x209  
0x20A  
0x20B  
0x20C  
0x20D  
0x20E  
0x20F  
0x210  
0x211  
0x212  
0x213  
0x214  
0x215  
0x216  
0x217  
0x218  
0x219  
0x21A  
0x21B  
0x21C  
0x21D  
0x21E  
0x21F  
0x220  
0x221  
0x222  
0x223  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE8_FF_WORD0  
STAGE8_FF_WORD1  
STAGE8_FF_WORD2  
STAGE8_FF_WORD3  
STAGE8_FF_WORD4  
STAGE8_FF_WORD5  
STAGE8_FF_WORD6  
STAGE8_FF_WORD7  
STAGE8_SF_WORD0  
STAGE8_SF_WORD1  
STAGE8_SF_WORD2  
STAGE8_SF_WORD3  
STAGE8_SF_WORD4  
STAGE8_SF_WORD5  
STAGE8_SF_WORD6  
STAGE8_SF_WORD7  
STAGE8_SF_AMBIENT  
STAGE8_FF_AVG  
STAGE8_PEAK_DETECT_WORD0  
STAGE8_PEAK_DETECT_WORD1  
STAGE8_MAX_WORD0  
STAGE8_MAX_WORD1  
STAGE8_MAX_WORD2  
STAGE8_MAX_WORD3  
STAGE8_MAX_AVG  
STAGE8_HIGH_THRESHOLD  
STAGE8_MAX_TEMP  
STAGE8_MIN_WORD0  
STAGE8_MIN_WORD1  
STAGE8_MIN_WORD2  
STAGE8_MIN_WORD3  
STAGE8_MIN_AVG  
STAGE8 fast FIFO WORD0  
STAGE8 fast FIFO WORD1  
STAGE8 fast FIFO WORD2  
STAGE8 fast FIFO WORD3  
STAGE8 fast FIFO WORD4  
STAGE8 fast FIFO WORD5  
STAGE8 fast FIFO WORD6  
STAGE8 fast FIFO WORD7  
STAGE8 slow FIFO WORD0  
STAGE8 slow FIFO WORD1  
STAGE8 slow FIFO WORD2  
STAGE8 slow FIFO WORD3  
STAGE8 slow FIFO WORD4  
STAGE8 slow FIFO WORD5  
STAGE8 slow FIFO WORD6  
STAGE8 slow FIFO WORD7  
STAGE8 slow FIFO ambient value  
STAGE8 fast FIFO average value  
STAGE8 peak FIFO WORD0 value  
STAGE8 peak FIFO WORD1 value  
STAGE8 maximum value FIFO WORD0  
STAGE8 maximum value FIFO WORD1  
STAGE8 maximum value FIFO WORD2  
STAGE8 maximum value FIFO WORD3  
STAGE8 average maximum FIFO value  
STAGE8 high threshold value  
STAGE8 temporary maximum value  
STAGE8 minimum value FIFO WORD0  
STAGE8 minimum value FIFO WORD1  
STAGE8 minimum value FIFO WORD2  
STAGE8 minimum value FIFO WORD3  
STAGE8 average minimum FIFO value  
STAGE8 low threshold value  
STAGE7 temporary minimum value  
Set to 0  
STAGE8_LOW_THRESHOLD  
STAGE8_MIN_TEMP  
Unused  
Rev. 0 | Page 64 of 68  
AD7147  
Table 48. STAGE9 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x224  
[15:0]  
X
R/W  
STAGE9_CONV_DATA  
STAGE9 CDC 16-bit conversion data  
(copy of CDC_RESULT_S9 register)  
0x225  
0x226  
0x227  
0x228  
0x229  
0x22A  
0x22B  
0x22C  
0x22D  
0x22E  
0x22F  
0x230  
0x231  
0x232  
0x233  
0x234  
0x235  
0x236  
0x237  
0x238  
0x239  
0x23A  
0x23B  
0x23C  
0x23D  
0x23E  
0x23F  
0x240  
0x241  
0x242  
0x243  
0x244  
0x245  
0x246  
0x247  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE9_FF_WORD0  
STAGE9_FF_WORD1  
STAGE9_FF_WORD2  
STAGE9_FF_WORD3  
STAGE9_FF_WORD4  
STAGE9_FF_WORD5  
STAGE9_FF_WORD6  
STAGE9_FF_WORD7  
STAGE9_SF_WORD0  
STAGE9_SF_WORD1  
STAGE9_SF_WORD2  
STAGE9_SF_WORD3  
STAGE9_SF_WORD4  
STAGE9_SF_WORD5  
STAGE9_SF_WORD6  
STAGE9_SF_WORD7  
STAGE9_SF_AMBIENT  
STAGE9_FF_AVG  
STAGE9_PEAK_DETECT_WORD0  
STAGE9_PEAK_DETECT_WORD1  
STAGE9_MAX_WORD0  
STAGE9_MAX_WORD1  
STAGE9_MAX_WORD2  
STAGE9_MAX_WORD3  
STAGE9_MAX_AVG  
STAGE9_HIGH_THRESHOLD  
STAGE9_MAX_TEMP  
STAGE9_MIN_WORD0  
STAGE9_MIN_WORD1  
STAGE9_MIN_WORD2  
STAGE9_MIN_WORD3  
STAGE9_MIN_AVG  
STAGE9 fast FIFO WORD0  
STAGE9 fast FIFO WORD1  
STAGE9 fast FIFO WORD2  
STAGE9 fast FIFO WORD3  
STAGE9 fast FIFO WORD4  
STAGE9 fast FIFO WORD5  
STAGE9 fast FIFO WORD6  
STAGE9 fast FIFO WORD7  
STAGE9 slow FIFO WORD0  
STAGE9 slow FIFO WORD1  
STAGE9 slow FIFO WORD2  
STAGE9 slow FIFO WORD3  
STAGE9 slow FIFO WORD4  
STAGE9 slow FIFO WORD5  
STAGE9 slow FIFO WORD6  
STAGE9 slow FIFO WORD7  
STAGE9 slow FIFO ambient value  
STAGE9 fast FIFO average value  
STAGE9 peak FIFO WORD0 value  
STAGE9 peak FIFO WORD1 value  
STAGE9 maximum value FIFO WORD0  
STAGE9 maximum value FIFO WORD1  
STAGE9 maximum value FIFO WORD2  
STAGE9 maximum value FIFO WORD3  
STAGE9 average maximum FIFO value  
STAGE9 high threshold value  
STAGE9 temporary maximum value  
STAGE9 minimum value FIFO WORD0  
STAGE9 minimum value FIFO WORD1  
STAGE9 minimum value FIFO WORD2  
STAGE9 minimum value FIFO WORD3  
STAGE9 average minimum FIFO value  
STAGE9 low threshold value  
STAGE9 temporary minimum value  
Set to 0  
STAGE9_LOW_THRESHOLD  
STAGE9_MIN_TEMP  
Unused  
Rev. 0 | Page 65 of 68  
AD7147  
Table 49. STAGE10 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x248  
[15:0]  
X
R/W  
STAGE10_CONV_DATA  
STAGE10 CDC 16-bit conversion data  
(copy of CDC_RESULT_S10 register)  
0x249  
0x24A  
0x24B  
0x24C  
0x24D  
0x24E  
0x24F  
0x250  
0x251  
0x252  
0x253  
0x254  
0x255  
0x256  
0x257  
0x258  
0x259  
0x25A  
0x25B  
0x25C  
0x25D  
0x25E  
0x25F  
0x260  
0x261  
0x262  
0x263  
0x264  
0x265  
0x266  
0x267  
0x268  
0x269  
0x26A  
0x26B  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE10_FF_WORD0  
STAGE10_FF_WORD1  
STAGE10_FF_WORD2  
STAGE10_FF_WORD3  
STAGE10_FF_WORD4  
STAGE10_FF_WORD5  
STAGE10_FF_WORD6  
STAGE10_FF_WORD7  
STAGE10_SF_WORD0  
STAGE10_SF_WORD1  
STAGE10_SF_WORD2  
STAGE10_SF_WORD3  
STAGE10_SF_WORD4  
STAGE10_SF_WORD5  
STAGE10_SF_WORD6  
STAGE10_SF_WORD7  
STAGE10_SF_AMBIENT  
STAGE10_FF_AVG  
STAGE10_PEAK_DETECT_WORD0  
STAGE10_PEAK_DETECT_WORD1  
STAGE10_MAX_WORD0  
STAGE10_MAX_WORD1  
STAGE10_MAX_WORD2  
STAGE10_MAX_WORD3  
STAGE10_MAX_AVG  
STAGE10_HIGH_THRESHOLD  
STAGE10_MAX_TEMP  
STAGE10_MIN_WORD0  
STAGE10_MIN_WORD1  
STAGE10_MIN_WORD2  
STAGE10_MIN_WORD3  
STAGE10_MIN_AVG  
STAGE10 fast FIFO WORD0  
STAGE10 fast FIFO WORD1  
STAGE10 fast FIFO WORD2  
STAGE10 fast FIFO WORD3  
STAGE10 fast FIFO WORD4  
STAGE10 fast FIFO WORD5  
STAGE10 fast FIFO WORD6  
STAGE10 fast FIFO WORD7  
STAGE10 slow FIFO WORD0  
STAGE10 slow FIFO WORD1  
STAGE10 slow FIFO WORD2  
STAGE10 slow FIFO WORD3  
STAGE10 slow FIFO WORD4  
STAGE10 slow FIFO WORD5  
STAGE10 slow FIFO WORD6  
STAGE10 slow FIFO WORD7  
STAGE10 slow FIFO ambient value  
STAGE10 fast FIFO average value  
STAGE10 peak FIFO WORD0 value  
STAGE10 peak FIFO WORD1 value  
STAGE10 maximum value FIFO WORD0  
STAGE10 maximum value FIFO WORD1  
STAGE10 maximum value FIFO WORD2  
STAGE10 maximum value FIFO WORD3  
STAGE10 average maximum FIFO value  
STAGE10 high threshold value  
STAGE10 temporary maximum value  
STAGE10 minimum value FIFO WORD0  
STAGE10 minimum value FIFO WORD1  
STAGE10 minimum value FIFO WORD2  
STAGE10 minimum value FIFO WORD3  
STAGE10 average minimum FIFO value  
STAGE10 low threshold value  
STAGE10 temporary minimum value  
Set to 0  
STAGE10_LOW_THRESHOLD  
STAGE10_MIN_TEMP  
Unused  
Rev. 0 | Page 66 of 68  
AD7147  
Table 50. STAGE11 Results Registers  
Default  
Value  
Address Data Bit  
Type  
Name  
Description  
0x26C  
[15:0]  
X
R/W  
STAGE11_CONV_DATA  
STAGE11 CDC 16-bit conversion data  
(copy of CDC_RESULT_S11 register)  
0x26D  
0x26E  
0x26F  
0x270  
0x271  
0x272  
0x273  
0x274  
0x275  
0x276  
0x277  
0x278  
0x279  
0x27A  
0x27B  
0x27C  
0x27D  
0x27E  
0x27F  
0x280  
0x281  
0x282  
0x283  
0x284  
0x285  
0x286  
0x287  
0x288  
0x289  
0x28A  
0x28B  
0x28C  
0x28D  
0x28E  
0x28F  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE11_FF_WORD0  
STAGE11_FF_WORD1  
STAGE11_FF_WORD2  
STAGE11_FF_WORD3  
STAGE11_FF_WORD4  
STAGE11_FF_WORD5  
STAGE11_FF_WORD6  
STAGE11_FF_WORD7  
STAGE11_SF_WORD0  
STAGE11_SF_WORD1  
STAGE11_SF_WORD2  
STAGE11_SF_WORD3  
STAGE11_SF_WORD4  
STAGE11_SF_WORD5  
STAGE11_SF_WORD6  
STAGE11_SF_WORD7  
STAGE11_SF_AMBIENT  
STAGE11_FF_AVG  
STAGE11_PEAK_DETECT_WORD0  
STAGE11_PEAK_DETECT_WORD1  
STAGE11_MAX_WORD0  
STAGE11_MAX_WORD1  
STAGE11_MAX_WORD2  
STAGE11_MAX_WORD3  
STAGE11_MAX_AVG  
STAGE11_HIGH_THRESHOLD  
STAGE11_MAX_TEMP  
STAGE11_MIN_WORD0  
STAGE11_MIN_WORD1  
STAGE11_MIN_WORD2  
STAGE11_MIN_WORD3  
STAGE11_MIN_AVG  
STAGE11 fast FIFO WORD0  
STAGE11 fast FIFO WORD1  
STAGE11 fast FIFO WORD2  
STAGE11 fast FIFO WORD3  
STAGE11 fast FIFO WORD4  
STAGE11 fast FIFO WORD5  
STAGE11 fast FIFO WORD6  
STAGE11 fast FIFO WORD7  
STAGE11 slow FIFO WORD0  
STAGE11 slow FIFO WORD1  
STAGE11 slow FIFO WORD2  
STAGE11 slow FIFO WORD3  
STAGE11 slow FIFO WORD4  
STAGE11 slow FIFO WORD5  
STAGE11 slow FIFO WORD6  
STAGE11 slow FIFO WORD7  
STAGE11 slow FIFO ambient value  
STAGE11 fast FIFO average value  
STAGE11 peak FIFO WORD0 value  
STAGE11 peak FIFO WORD1 value  
STAGE11 maximum value FIFO WORD0  
STAGE11 maximum value FIFO WORD1  
STAGE11 maximum value FIFO WORD2  
STAGE11 maximum value FIFO WORD3  
STAGE11 average maximum FIFO value  
STAGE11 high threshold value  
STAGE11 temporary maximum value  
STAGE11 minimum value FIFO WORD0  
STAGE11 minimum value FIFO WORD1  
STAGE11 minimum value FIFO WORD2  
STAGE11 minimum value FIFO WORD3  
STAGE11 average minimum FIFO value  
STAGE11 low threshold value  
STAGE11 temporary minimum value  
Set to 0  
STAGE11_LOW_THRESHOLD  
STAGE11_MIN_TEMP  
Unused  
Rev. 0 | Page 67 of 68  
AD7147  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
7
12  
0.23 MIN  
0.80 MAX  
0.65 TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8  
Figure 62. 24-Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Very Thin Quad  
(CP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Serial Interface Description  
SPI Interface  
Package Description  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-24-3  
CP-24-3  
CP-24-3  
CP-24-3  
AD7147ACPZ-REEL1  
AD7147ACPZ-500RL71  
AD7147ACPZ-1REEL1  
AD7147ACPZ-1500RL71  
EVAL-AD7147EBZ1  
EVAL-AD7147-1EBZ1  
SPI Interface  
I2C Interface  
I2C Interface  
SPI Interface  
I2C Interface  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06663-0-9/07(0)  
Rev. 0 | Page 68 of 68  
 
 
 

相关型号:

EVAL-AD7147EBZ

CapTouch⑩ Programmable Controller for Single-Electrode Capacitance Sensors
ADI

EVAL-AD7152EBZ

12-Bit Capacitance-to-Digital Converter
ADI

EVAL-AD7156EBZ

Ultralow Power, 1.8 V, 3 mm × 3 mm, 2-Channel Capacitance Converter
ADI

EVAL-AD7173-8SDZ

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
ADI

EVAL-AD7176-2SDZ

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

EVAL-AD7262EDZ

1 MSPS, 12-Bit, Simultaneous Sampling SAR ADC with PGA and Four Comparators
ADI

EVAL-AD7264EDZ

1 MSPS, 14-Bit, Simultaneous Sampling SAR ADC with PGA and Four Comparators
ADI

EVAL-AD7265CB

Differential/Single-Ended Input, Dual 1 MSPS, 12-Bit, 3-Channel SAR ADC
ADI

EVAL-AD7265CB1

Differential Input, Dual 1 MSPS, 12-Bit, 3-Channel SAR ADC
ADI

EVAL-AD7266CB1

Differential Input, Dual 2 MSPS, 12-Bit, 3-Channel SAR ADC
ADI

EVAL-AD7266EDZ

Differential/Single-Ended Input, Dual
ADI

EVAL-AD7273CB

3 MSPS,10-/12-Bit ADCs in 8-Lead TSOT
ADI