EVAL-ADCMP580BCPZ [ADI]

Ultrafast SiGe Voltage Comparators; 超快的SiGe电压比较器
EVAL-ADCMP580BCPZ
型号: EVAL-ADCMP580BCPZ
厂家: ADI    ADI
描述:

Ultrafast SiGe Voltage Comparators
超快的SiGe电压比较器

比较器
文件: 总16页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultrafast SiGe  
Voltage Comparators  
ADCMP580/ADCMP581/ADCMP582  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
CCI  
180 ps propagation delay  
25 ps overdrive and slew rate dispersion  
8 GHz equivalent input rise time bandwidth  
100 ps minimum pulse width  
37 ps typical output rise/fall  
10 ps deterministic jitter (DJ)  
V
TERMINATION  
TP  
V
CCO  
V
NONINVERTING  
INPUT  
P
Q OUTPUT  
Q OUTPUT  
ADCMP580/  
ADCMP581/  
ADCMP582  
CML/ECL/  
PECL  
200 fs random jitter (RJ)  
V
INVERTING  
INPUT  
N
−2 V to +3 V input range with +5 V/−5 V supplies  
On-chip terminations at both input pins  
Resistor-programmable hysteresis  
Differential latch control  
V
EE  
V
TERMINATION  
HYS  
TN  
LE INPUT  
LE INPUT  
Power supply rejection > 70 dB  
V
EE  
Figure 1.  
APPLICATIONS  
Automatic test equipment (ATE)  
High speed instrumentation  
Pulse spectroscopy  
Medical imaging and diagnostics  
High speed line receivers  
Threshold detection  
Peak and zero-crossing detectors  
High speed trigger circuitry  
Clock and data signal restoration  
GENERAL DESCRIPTION  
The ADCMP580/ADCMP581/ADCMP582 are ultrafast voltage  
comparators fabricated on the Analog Devices, Inc. proprietary  
XFCB3 Silicon Germanium (SiGe) bipolar process. The  
ADCMP580 features CML output drivers, the ADCMP581  
features reduced swing ECL (negative ECL) output drivers, and  
the ADCMP582 features reduced swing PECL (positive ECL)  
output drivers.  
The CML output stage is designed to directly drive 400 mꢀ into  
50 Ω transmission lines terminated to ground. The NECL output  
stages are designed to directly drive 400 mꢀ into 50 Ω terminated  
to −2 . The PECL output stages are designed to directly drive  
400 mꢀ into 50 Ω terminated to ꢀCCO − 2 . High speed latch  
and programmable hysteresis are also provided. The differential  
latch input controls are also 50 Ω terminated to an independent  
TT pin to interface to either CML or ECL or to PECL logic.  
All three comparators offer 180 ps propagation delay and 100 ps  
minimum pulse width for 10 Gbps operation with 200 fs random  
jitter (RJ). Overdrive and slew rate dispersion are typically less  
than 15 ps.  
The ADCMP580/ADCMP581/ADCMP582 are available in a  
16-lead LFCSP_ꢀQ.  
The 5 ꢀ power supplies enable a wide −2 ꢀ to +3 ꢀ input  
range with logic levels referenced to the CML/NECL/PECL  
outputs. The inputs have 50 Ω on-chip termination resistors  
with the optional capability to be left open (on an individual  
pin basis) for applications requiring high impedance input.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2005–2007 Analog Devices, Inc. All rights reserved.  
 
ADCMP580/ADCMP581/ADCMP582  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Application Circuits ......................................................... 10  
Application Information................................................................ 11  
Power/Ground Layout and Bypassing..................................... 11  
ADCMP58x Family of Output Stages ..................................... 11  
Using/Disabling the Latch Feature........................................... 11  
Optimizing High Speed Performance ..................................... 12  
Comparator Propagation Delay Dispersion............................... 12  
Comparator Hysteresis .............................................................. 13  
Minimum Input Slew Rate Requirement................................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Information ......................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Considerations.............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
8/07—Rev. 0 to Rev. A  
Changes to Figure 1.......................................................................... 1  
Changes to Table 4............................................................................ 7  
Changes to Figure 9.......................................................................... 8  
Changes to Figure 21, Figure 22, and Figure 23 ......................... 10  
Changes to Using/Disabling the Latch Feature .......................... 11  
Changes to Comparator Hysteresis Section and Figure 29....... 13  
Changes to Ordering Guide .......................................................... 14  
7/05—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADCMP580/ADCMP581/ADCMP582  
SPECIFICATIONS  
CCI = 5.0 ꢀ; ꢀEE = −5.0 ꢀ; ꢀCCO = 3.3 ꢀ; TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
DC INPUT CHARACTERISTICS  
Input Voltage Range  
Input Differential Range  
Input Offset Voltage  
VP, VN  
−2.0  
−2.0  
−10.0  
+3.0  
+2.0  
+10.0  
V
V
VOS  
±±  
mV  
μV/°C  
μA  
nA/°C  
μA  
Ω
kΩ  
kΩ  
dB  
Offset Voltage Temperature Coefficient  
Input Bias Current  
Input Bias Current Temperature Coefficient  
Input Offset Current  
ΔVOS/dT  
IP, IN  
ΔIB/dT  
10  
15  
50  
+2  
±7 to 53  
50  
500  
±8  
Open termination  
30.0  
±5.0  
Input Resistance  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Active Gain  
Open termination  
Open termination  
AV  
Common-Mode Rejection Ratio  
Hysteresis  
CMRR  
VCM = −2.0 V to +3.0 V  
RHYS = ∞  
60  
1
dB  
mV  
LATCH ENABLE CHARACTERISTICS  
Latch Enable Input Impedance  
Latch-to-Output Delay  
Latch Minimum Pulse Width  
ADCMP580 (CML)  
ZIN  
Each pin, VTT at ac ground  
±7 to 53  
175  
100  
Ω
ps  
ps  
tPLOH, tPLOL VOD = 200 mV  
tPL  
VOD = 200 mV  
Latch Enable Input Range  
Latch Enable Input Differential  
Latch Setup Time  
−0.8  
0.2  
0
0.5  
V
V
ps  
ps  
0.±  
95  
−90  
tS  
tH  
VOD = 200 mV  
VOD = 200 mV  
Latch Hold Time  
ADCMP581 (NECL)  
Latch Enable Input Range  
Latch Enable Input Differential  
Latch Setup Time  
−1.8  
0.2  
+0.8  
0.5  
V
V
ps  
ps  
0.±  
70  
−65  
tS  
tH  
VOD = 200 mV  
VOD = 200 mV  
Latch Hold Time  
ADCMP582 (PECL)  
Latch Enable Input Range  
Latch Enable Input Differential  
Latch Setup Time  
VCCO − 1.8  
0.2  
VCCO − 0.8  
0.5  
V
V
ps  
ps  
0.±  
30  
−25  
tS  
tH  
VOD = 200 mV  
VOD = 200 mV  
Latch Hold Time  
DC OUTPUT CHARACTERISTICS  
ADCMP580 (CML)  
Output Impedance  
ZOUT  
VOH  
VOL  
50  
0
−0.±0  
395  
Ω
V
V
mV  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage Differential  
ADCMP581 (NECL)  
50 Ω to GND  
50 Ω to GND  
50 Ω to GND  
−0.10  
−0.50  
3±0  
+0.03  
−0.35  
±50  
Output Voltage High Level  
Output Voltage High Level  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage Low Level  
Output Voltage Low Level  
Output Voltage Differential  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
50 Ω to −2 V, TA = 125°C  
50 Ω to −2 V, TA = 25°C  
50 Ω to −2 V, TA = −55°C  
50 Ω to −2 V, TA = 125°C  
50 Ω to −2 V, TA = 25°C  
50 Ω to −2 V, TA = −55°C  
50 Ω to −2.0 V  
−0.99  
−1.06  
−1.11  
−1.±3  
−1.50  
−1.55  
3±0  
−0.87  
−0.9±  
−0.99  
−1.26  
−1.33  
−1.38  
395  
−0.75  
−0.82  
−0.87  
−1.13  
−1.20  
−1.25  
±50  
V
V
V
V
V
V
mV  
Rev. A | Page 3 of 16  
 
ADCMP580/ADCMP581/ADCMP582  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
ADCMP582 (PECL)  
VCCO = 3.3 V  
Output Voltage High Level  
Output Voltage High Level  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage Low Level  
Output Voltage Low Level  
Output Voltage Differential  
AC PERFORMANCE  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
50 Ω to VCCO − 2 V, TA = 125°C  
50 Ω to VCCO − 2 V, TA = 25°C  
50 Ω to VCCO − 2 V, TA = −55°C  
50 Ω to VCCO − 2 V, TA = 125°C  
50 Ω to VCCO − 2 V, TA = 25°C  
50 Ω to VCCO − 2 V, TA = −55°C  
50 Ω to VCCO − 2.0 V  
VCCO − 0.99 VCCO − 0.87 VCCO − 0.75  
VCCO − 1.06 VCCO − 0.9± VCCO − 0.82  
VCCO − 1.11 VCCO − 0.99 VCCO − 0.87  
VCCO − 1.±3 VCCO − 1.26 VCCO − 1.13  
VCCO − 1.50 VCCO − 1.33 VCCO − 1.20  
VCCO − 1.55 VCCO − 1.35 VCCO − 1.25  
V
V
V
V
V
V
mV  
3±0  
395  
±50  
Propagation Delay  
Propagation Delay Temperature Coefficient ΔtPD/dT  
Propagation Delay Skew—Rising  
Transition to Falling Transition  
tPD  
VOD = 500 mV  
180  
0.25  
10  
ps  
ps/°C  
ps  
VOD = 500 mV, 5 V/ns  
Overdrive Dispersion  
50 mV < VOD < 1.0 V  
10 mV < VOD < 200 mV  
2 V/ns to 10 V/ns  
100 ps to 5 ns  
1.0 V/ns, 15 MHz, VCM = 0.0 V  
VOD = 0.2 V, −2 V < VCM < 3 V  
10  
15  
15  
15  
10  
5
ps  
ps  
ps  
ps  
ps  
ps/V  
GHz  
Slew Rate Dispersion  
Pulse Width Dispersion  
Duty Cycle Dispersion 5% to 95%  
Common-Mode Dispersion  
Equivalent Input Bandwidth1  
BWEQ  
0.0 V to ±00 mV input,  
tR = tF = 25 ps, 20/80  
8
Toggle Rate  
Deterministic Jitter  
>50% output swing  
12.5  
15  
Gbps  
ps  
DJ  
DJ  
VOD = 500 mV, 5 V/ns,  
PRBS31 − 1 NRZ, 5 Gbps  
Deterministic Jitter  
VOD = 200 mV, 5 V/ns,  
25  
ps  
PRBS31 − 1 NRZ, 10 Gbps  
RMS Random Jitter  
Minimum Pulse Width  
Minimum Pulse Width  
Rise/Fall Time  
RJ  
VOD = 200 mV, 5 V/ns, 1.25 GHz  
ΔtPD < 5 ps  
ΔtPD < 10 ps  
0.2  
100  
80  
ps  
ps  
ps  
ps  
PWMIN  
PWMIN  
tR, tF  
20/80  
37  
POWER SUPPLY  
Positive Supply Voltage  
Negative Supply Voltage  
ADCMP580 (CML)  
VCCI  
VEE  
+±.5  
−5.5  
+5.0  
−5.0  
+5.5  
−±.5  
V
V
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
IVCCI  
IVEE  
PD  
VCCI = 5.0 V, 50 Ω to GND  
VEE = −5.0 V, 50 Ω to GND  
50 Ω to GND  
6
−±0  
230  
8
−3±  
260  
mA  
mA  
mW  
−50  
ADCMP581 (NECL)  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
IVCCI  
IVEE  
PD  
VCCI = 5.0 V, 50 Ω to −2 V  
VEE = −5.0 V, 50 Ω to −2 V  
50 Ω to −2 V  
6
−25  
155  
8
−19  
200  
mA  
mA  
mW  
−35  
+2.5  
−35  
ADCMP582 (PECL)  
Logic Supply Voltage  
Input Supply Current  
Output Supply Current  
Negative Supply Current  
Power Dissipation  
Power Supply Rejection (VCCI  
Power Supply Rejection (VEE)  
Power Supply Rejection (VCCO  
VCCO  
IVCCI  
IVCCO  
IVEE  
+3.3  
6
±±  
−25  
310  
−75  
−60  
−75  
+5.0  
8
55  
−19  
350  
V
VCCI = 5.0 V, 50 Ω to VCCO − 2 V  
VCCO = 5.0 V, 50 Ω to VCCO − 2 V  
VEE = −5.0 V, 50 Ω to VCCO − 2 V  
50 Ω to VCCO − 2 V  
VCCI = 5.0 V + 5%  
VEE = −5.0 V + 5%  
mA  
mA  
mA  
mW  
dB  
PD  
)
PSRVCCI  
PSRVEE  
PSRVCCO  
dB  
dB  
)
VCCO = 3.3 V + 5% (ADCMP582)  
1 Equivalent input bandwidth assumes a simple first-order input response and is calculated with the following formula: BWEQ = 0.22/(trCOMP2 trIN2), where trIN is the 20/80  
transition time of a quasi-Gaussian input edge applied to the comparator input and trCOMP is the effective transition time digitized by the comparator.  
Rev. A | Page ± of 16  
 
ADCMP580/ADCMP581/ADCMP582  
TIMING INFORMATION  
Figure 2 shows the ADCMP580/ADCMP581/ADCMP582 compare and latch timing relationships. Table 2 provides the definitions of the  
terms shown in Figure 2.  
LATCH ENABLE  
50%  
LATCH ENABLE  
tS  
tPL  
tH  
V
N
DIFFERENTIAL  
INPUT VOLTAGE  
V
± V  
OS  
N
V
OD  
tPDL  
tPLOH  
Q OUTPUT  
50%  
50%  
tF  
tPDH  
Q OUTPUT  
tPLOL  
tR  
Figure 2. Comparator Timing Diagram  
Table 2. Timing Descriptions  
Symbol  
Timing  
Description  
tPDH  
Input-to-Output High Delay  
Propagation delay measured from the time the input signal crosses the reference  
(± the input offset voltage) to the 50% point of an output low-to-high transition.  
tPDL  
tPLOH  
tPLOL  
tH  
Input-to-Output Low Delay  
Propagation delay measured from the time the input signal crosses the reference  
(± the input offset voltage) to the 50% point of an output high-to-low transition.  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output low-to-high transition.  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output high-to-low transition.  
Minimum time after the negative transition of the latch enable signal that the input  
signal must remain unchanged to be acquired and held at the outputs.  
Latch Enable-to-Output High Delay  
Latch Enable-to-Output Low Delay  
Minimum Hold Time  
tPL  
tS  
Minimum Latch Enable Pulse Width  
Minimum Setup Time  
Minimum time that the latch enable signal must be high to acquire an input signal change.  
Minimum time before the negative transition of the latch enable signal that an input  
signal change must be present to be acquired and held at the outputs.  
tR  
tF  
Output Rise Time  
Output Fall Time  
Amount of time required to transition from a low to a high output as measured at the  
20% and 80% points.  
Amount of time required to transition from a high to a low output as measured at the  
20% and 80% points.  
VN  
VOD  
Normal Input Voltage  
Voltage Overdrive  
Difference between the input voltages VP and VN for output true.  
Difference between the input voltages VP and VN for output false.  
Rev. A | Page 5 of 16  
 
 
 
ADCMP580/ADCMP581/ADCMP582  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
SUPPLY VOLTAGES  
Positive Supply Voltage (VCCI to GND)  
Negative Supply Voltage (VEE to GND)  
Logic Supply Voltage (VCCO to GND)  
INPUT VOLTAGES  
−0.5 V to +6.0 V  
–6.0 V to +0.5 V  
−0.5 V to +6.0 V  
Input Voltage  
−3.0 V to +±.0 V  
−2 V to +2 V  
−2.5 V to +5.5 V  
THERMAL CONSIDERATIONS  
Differential Input Voltage  
Input Voltage, Latch Enable  
HYSTERESIS CONTROL PIN  
Applied Voltage (HYS to VEE)  
Maximum Input/Output Current  
OUTPUT CURRENT  
The ADCMP580/ADCMP581/ADCMP582 16-lead LFCSP  
option has a θJA (junction-to-ambient thermal resistance) of  
70°C/W in still air.  
−5.5 V to +0.5 V  
1 mA  
ESD CAUTION  
ADCMP580 (CML)  
ADCMP581 (NECL)  
ADCMP582 (PECL)  
−25 mA  
−±0 mA  
−±0 mA  
TEMPERATURE  
Operating Temperature Range, Ambient  
Operating Temperature, Junction  
Storage Temperature Range  
−±0°C to +125°C  
125°C  
−65°C to +150°C  
Rev. A | Page 6 of 16  
 
ADCMP580/ADCMP581/ADCMP582  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
12 GND  
11 Q  
12 V  
CCO  
V
1
2
3
4
V
1
2
3
4
TP  
TP  
12 GND  
11 Q  
V
1
2
3
4
TP  
11 Q  
10 Q  
V
V
P
P
V
V
P
ADCMP581  
TOP VIEW  
(Not to Scale)  
ADCMP582  
TOP VIEW  
(Not to Scale)  
ADCMP580  
TOP VIEW  
(Not to Scale)  
V
10 Q  
V
N
N
10 Q  
N
V
V
TN  
9
GND  
9 V  
CCO  
TN  
V
9
GND  
TN  
Figure 4. ADCMP581 Pin Configuration  
Figure 5. ADCMP582 Pin Configuration  
Figure 3. ADCMP580 Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
VTP  
VP  
Termination Resistor Return Pin for VP Input.  
Noninverting Analog Input.  
3
VN  
Inverting Analog Input.  
±
5, 16  
6
VTN  
VCCI  
LE  
Termination Resistor Return Pin for VN Input.  
Positive Supply Voltage.  
Latch Enable Input Pin, Inverting Side. In compare mode (LE = low), the output tracks changes at the input of  
the comparator. In latch mode (LE = high), the output reflects the input state just prior to the comparator being  
placed into latch mode. LE must be driven in complement with LE.  
7
8
LE  
Latch Enable Input Pin, Noninverting Side. In compare mode (LE = high), the output tracks changes at the  
input of the comparator. In latch mode (LE = low), the output reflects the input state just prior to the  
comparator being placed into latch mode. LE must be driven in complement with LE.  
VTT  
Termination Return Pin for the LE/LE Input Pins.  
For the ADCMP580 (CML output stage), this pin should be connected to the GND ground.  
For the ADCMP581 (ECL output stage), this pin should be connected to the –2 V termination potential.  
For the ADCMP582 (PECL output stage), this pin should be connected to the VCCO – 2 V termination potential.  
Digital Ground Pin/Positive Logic Power Supply Terminal.  
For the ADCMP580/ADCMP581, this pin should be connected to the GND pin.  
For the ADCMP582, this pin should be connected to the positive logic power VCCO supply.  
Inverting Output. Q is logic low if the analog voltage at the noninverting input, VP, is greater than the analog  
voltage at the inverting input, VN, provided that the comparator is in compare mode. See the LE/LE descriptions  
(Pin 6 to Pin 7) for more information.  
9, 12  
10  
GND/VCCO  
Q
Q
11  
Noninverting Output. Q is logic high if the analog voltage at the noninverting input, VP, is greater than the  
analog voltage at the inverting input, VN, provided that the comparator is in compare mode. See the LE/LE  
descriptions (Pin 6 to Pin 7) for more information.  
13  
1±  
VEE  
HYS  
Negative Power Supply.  
Hysteresis Control. Leave this pin disconnected for zero hysteresis. Connect this pin to the VEE supply with a  
suitably sized resistor to add the desired amount of hysteresis. Refer to Figure 9 for proper sizing of the HYS  
hysteresis control resistor.  
15  
GND  
Analog Ground.  
Heat Sink N/C  
Paddle  
The metallic back surface of the package is not electrically connected to any part of the circuit. It can be left  
floating for optimal electrical isolation between the package handle and the substrate of the die. It can also  
be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal  
at package corners is connected to the heat sink paddle.  
Rev. A | Page 7 of 16  
 
ADCMP580/ADCMP581/ADCMP582  
TYPICAL PERFORMANCE CHARACTERISTICS  
CCI = 5.0 , EE = −5.0 , CCO = 3.3 , TA = 25°C, unless otherwise noted.  
12  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
V
COMMON-MODE BIAS SWEEP  
IN  
8
6
4
2
0
–4  
–2  
0
2
4
1
10  
100  
1k  
10k  
COMMON-MODE (V)  
R
HYS  
CONTROL RESISTOR ()  
Figure 6. Bias Current vs. Common-Mode Voltage  
Figure 9. Hysteresis vs. RHYS Control Resistor  
–0.8  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
V
vs. TEMPERATURE  
OH  
–0.9  
–1.0  
–1.1  
–1.2  
–1.3  
–1.4  
–1.5  
OUTPUT (NECL)  
V
vs. TEMPERATURE  
OUTPUT (PECL)  
OH  
V
vs. TEMPERATURE  
OUTPUT (NECL)  
OL  
V
vs. TEMPERATURE  
OUTPUT (PECL)  
OL  
–55  
–5  
45  
TEMPERATURE (°C)  
95  
145  
–55  
–5  
45  
TEMPERATURE (°C)  
95  
145  
Figure 7. ADCMP581 Output Voltage vs. Temperature  
Figure 10. ADCMP582 Output Voltage vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
4
3
2
1
0
+125°C COMMON-MODE OFFSET SWEEP  
+25°C COMMON-MODE OFFSET SWEEP  
–55°C COMMON-MODE OFFSET SWEEP  
0
100  
200  
300  
400  
500  
600  
–2  
0
2
4
–IHYST (µA)  
COMMON-MODE (V)  
Figure 8. Hysteresis vs. −IHYST  
Figure 11. A Typical VOS vs. Common-Mode Voltage  
Rev. A | Page 8 of 16  
 
 
ADCMP580/ADCMP581/ADCMP582  
5
4
45  
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
LOT2 CHAR1 RISE  
LOT2 CHAR1 FALL  
LOT3 CHAR1 RISE  
LOT3 CHAR1 FALL  
Q
RISE  
Q
Q
Q
RISE  
FALL  
FALL  
–2  
–1  
0
1
2
3
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
V
(V)  
TEMPERATURE (°C)  
CM  
Figure 12. ADCMP580 Propagation Delay Error vs. Common-Mode Voltage  
Figure 15. ADCMP581 tR/tF vs. Temperature  
M1  
M1  
M1  
M1  
5
Figure 16. ADCMP582 Eye Diagram at 2.5 Gbps  
Figure 13. ADCMP580 Eye Diagram at 7.5 Gbps  
18  
16  
14  
12  
10  
8
6
OD DISPERSION FALL  
4
2
0
OD DISPERSION RISE  
0
50  
100  
150  
200  
250  
OVERDRIVE (mV)  
Figure 14. Dispersion vs. Overdrive  
Rev. A | Page 9 of 16  
ADCMP580/ADCMP581/ADCMP582  
TYPICAL APPLICATION CIRCUITS  
GND  
V
TP  
50  
50Ω  
V
V
P
CML  
ADCMP580  
V
V
P
Q
Q
N
V
IN  
N ADCMP580  
V
TN  
50  
50Ω  
1kΩ  
V
EE  
LATCH  
INPUTS  
Figure 21. Disabling the Latch Feature on the ADCMP580  
Figure 17. Zero-Crossing Detector with CML Outputs  
V
TP  
V
V
P
Q
Q
V
V
P
P
RSECL  
ADCMP581  
N ADCMP581  
V
N
V
N
V
TN  
50  
50Ω  
50Ω  
50Ω  
750Ω  
V
= –2V  
TT  
V
V
TT  
TT  
V
EE  
LATCH  
INPUTS  
Figure 22. Disabling the Latch Feature on the ADCMP581  
Figure 18. LVDS to a 50 Ω Back-Terminated (RS) ECL Receiver  
V
P
RSPECL  
ADCMP582  
ADCMP580  
V
N
HYS  
50  
50Ω  
50  
50Ω  
0TO 5kΩ  
750Ω  
V
V
V
= V  
– 2V  
CCO  
CCO  
EE  
TT  
Figure 19. Adding Hysteresis Using the HYS Control  
Figure 23. Disabling the Latch Feature on the ADCMP582  
GND  
50Ω  
50Ω  
+
Q
Q
V
IN  
ADCMP580  
V
TH  
LATCH  
INPUTS  
Figure 20. Comparator with −2 to +3 V Input Range  
Rev. A | Page 10 of 16  
 
ADCMP580/ADCMP581/ADCMP582  
APPLICATION INFORMATION  
GND  
POWER/GROUND LAYOUT AND BYPASSING  
The ADCMP58x family of comparators is designed for very  
high speed applications. Consequently, high speed design  
techniques must be used to achieve the specified performance.  
It is critically important to use low impedance supply planes,  
particularly for the negative supply (ꢀEE), the output supply  
plane (ꢀCCO), and the ground plane (GND). Individual supply  
planes are recommended as part of a multilayer board. Provid-  
ing the lowest inductance return path for the switching currents  
ensures the best possible performance in the target application.  
50  
50Ω  
Q
Q
16mA  
It is also important to adequately bypass the input and output  
supplies. A 1 μF electrolytic bypass capacitor should be placed  
within several inches of each power supply pin to ground. In  
addition, multiple high quality 0.1 μF bypass capacitors should  
be placed as close as possible to each of the ꢀEE, ꢀCCI, and ꢀCCO  
supply pins and should be connected to the GND plane with  
redundant vias. High frequency bypass capacitors should be  
carefully selected for minimum inductance and ESR. Parasitic  
layout inductance should be strictly avoided to maximize the  
effectiveness of the bypass at high frequencies.  
V
EE  
Figure 24. Simplified Schematic Diagram of the ADCMP580 CML Output Stage  
GND/V  
CCO  
Q
Q
ADCMP58x FAMILY OF OUTPUT STAGES  
Specified propagation delay dispersion performance is achieved  
by using proper transmission line terminations. The outputs of  
the ADCMP580 family comparators are designed to directly  
drive 400 mꢀ into 50 Ω cable or microstrip/stripline transmis-  
sion lines terminated with 50 Ω referenced to the proper return.  
The CML output stage for the ADCMP580 is shown in the  
simplified schematic diagram in Figure 24. Each output is  
back-terminated with 50 Ω for best transmission line matching.  
The outputs of the ADCMP581/ADCMP582 are illustrated in  
Figure 25; they should be terminated to −2 ꢀ for ECL outputs of  
ADCMP581 and ꢀCCO − 2 ꢀ for PECL outputs of ADCMP582.  
As an alternative, Thevenin equivalent termination networks  
can also be used. If these high speed signals must be routed  
more than a centimeter, either microstrip or stripline techniques  
are required to ensure proper transition times and to prevent  
excessive output ringing and pulse width-dependent propagation  
delay dispersion.  
V
EE  
Figure 25. Simplified Schematic Diagram of the  
ADCMP581/ADCMP582 ECL/PECL Output Stage  
USING/DISABLING THE LATCH FEATURE  
LE  
The latch inputs (LE/ ) are active low for latch mode and are  
internally terminated with 50 Ω resistors to the ꢀTT pin. When  
using the ADCMP580, ꢀTT should be connected to ground.  
When using the ADCMP581, ꢀTT should be connected to −2 .  
When using the ADCMP582, ꢀTT should be connected externally  
to ꢀCCO − 2 , preferably with its own low inductance plane.  
When using the ADCMP580, the latch function can be disabled  
LE  
by connecting the  
pin to ꢀEE with an external pull-down  
resistor and by leaving the LE pin to ground. To prevent excessive  
power dissipation, the resistor should be 1 kΩ for the ADCMP580.  
When using the ADCMP581 comparators, the latch can be  
LE  
disabled by connecting the  
pin to ꢀEE with an external 750 Ω  
resistor and leaving the LE pin connected to −2 . The idea is to  
create an approximate 0.5 ꢀ offset using the internal resistor as  
half of the voltage divider. The ꢀTT pin should be connected as  
recommended.  
Rev. A | Page 11 of 16  
 
 
 
ADCMP580/ADCMP581/ADCMP582  
OPTIMIZING HIGH SPEED PERFORMANCE  
COMPARATOR PROPAGATION DELAY DISPERSION  
As with any high speed comparator, proper design and layout  
techniques are essential to obtaining the specified performance.  
Stray capacitance, inductance, inductive power, and ground  
impedances or other layout issues can severely limit performance  
and can cause oscillation. Discontinuities along input and output  
transmission lines can also severely limit the specified pulse  
width dispersion performance.  
The ADCMP58x family of comparators has been specifically  
designed to reduce propagation delay dispersion over a wide  
input overdrive range of 5 mꢀ to 500 m. Propagation delay  
dispersion is a change in propagation delays that results  
from a change in the degree of overdrive or slew rate (how far  
or fast the input signal exceeds the switching threshold). The  
overall result is a higher degree of timing accuracy.  
For applications in a 50 Ω environment, input and output  
matching have a significant impact on data-dependent (or  
deterministic) jitter (DJ) and pulse width dispersion  
performance. The ADCMP58x family of comparators provides  
internal 50 Ω termination resistors for both ꢀP and ꢀN inputs.  
The return side for each termination is pinned out separately  
with the ꢀTP and ꢀTN pins, respectively. If a 50 Ω termination  
is desired at one or both of the ꢀP/ꢀN inputs, the ꢀTP and ꢀTN  
pins can be connected (or disconnected) to (from) the desired  
termination potential as appropriate. The termination potential  
should be carefully bypassed using ceramic capacitors as dis-  
cussed previously to prevent undesired aberrations on the input  
signal due to parasitic inductance in the termination return  
path. If a 50 Ω termination is not desired, either one or both  
of the ꢀTP/ꢀTN termination pins can be left disconnected. In this  
case, the open pins should be left floating with no external pull  
downs or bypassing capacitors.  
Propagation delay dispersion is a specification that becomes  
important in critical timing applications, such as data commu-  
nications, automatic test and measurement, instrumentation,  
and event-driven applications, such as pulse spectroscopy,  
nuclear instrumentation, and medical imaging. Dispersion  
is defined as the variation in the overall propagation delay as  
the input overdrive conditions are changed (see Figure 26 and  
Figure 27). For the ADCMP58x family of comparators, disper-  
sion is typically <25 ps, because the overdrive varies from 5 mꢀ  
to 500 m, and the input slew rate varies from 1 ꢀ/ns to 10 ꢀ/ns.  
This specification applies for both positive and negative signals  
because the ADCMP58x family of comparators has almost  
equal delays for positive- and negative-going inputs.  
500mV OVERDRIVE  
INPUT VOLTAGE  
5mV OVERDRIVE  
± V  
For applications that require high speed operation but do not  
have on-chip 50 Ω termination resistors, some reflections  
should be expected, because the comparator inputs can no  
longer provide matched impedance to the input trace leading  
up to the device. It then becomes important to back-match the  
drive source impedance to the input transmission path leading  
to the input to minimize multiple reflections. For applications  
in which the comparator is less than 1 cm from the driving  
signal source, the source impedance should be minimized. High  
source impedance in combination with parasitic input capaci-  
tance of the comparator could cause undesirable degradation  
in bandwidth at the input, thus degrading the overall response.  
It is therefore recommended that the drive source impedance  
should be no more than 50 Ω for best high speed performance.  
V
N
OS  
DISPERSION  
Q/Q OUTPUT  
Figure 26. Propagation Delay—Overdrive Dispersion  
INPUT VOLTAGE  
1V/ns  
V
± V  
OS  
N
10V/ns  
DISPERSION  
Q/Q OUTPUT  
Figure 27. Propagation Delay—Slew Rate Dispersion  
Rev. A | Page 12 of 16  
 
 
 
ADCMP580/ADCMP581/ADCMP582  
The hysteresis pin can also be driven by a current source.  
It is biased approximately 400 mꢀ above ꢀEE and has an  
internal series resistance of approximately 600 Ω.  
80  
COMPARATOR HYSTERESIS  
Adding hysteresis to a comparator is often desirable in a noisy  
environment or when the differential inputs are very small or  
slow moving. The transfer function for a comparator with  
hysteresis is shown in Figure 28. If the input voltage approaches  
the threshold from the negative direction, the comparator  
switches from a low to a high when the input crosses +ꢀH/2.  
The new switching threshold becomes −ꢀH/2. The comparator  
remains in the high state until the threshold −ꢀH/2 is crossed  
from the positive direction. In this manner, noise centered on  
0 ꢀ input does not cause the comparator to switch states unless  
it exceeds the region bounded by H/2.  
70  
60  
50  
40  
30  
20  
10  
0
The customary technique for introducing hysteresis into a  
comparator uses positive feedback from the output back to  
the input. A limitation of this approach is that the amount  
of hysteresis varies with the output logic levels, resulting in  
hysteresis that is not symmetric about the threshold. The  
external feedback network can also introduce significant  
parasitics that reduce high speed performance and can even  
reduce overall stability in some cases.  
1
10  
100  
1k  
10k  
R
CONTROL RESISTOR ()  
HYS  
Figure 29. Comparator Hysteresis vs. RHYS Control Resistor  
MINIMUM INPUT SLEW RATE REQUIREMENT  
As with many high speed comparators, a minimum slew rate  
requirement must be met to ensure that the device does not  
oscillate as the input signal crosses the threshold. This oscil-  
lation is due in part to the high input bandwidth of the comparator  
and the feedback parasitics inherent in the package. A  
minimum slew rate of 50 ꢀ/μs should ensure clean output  
transitions from the ADCMP58x family of comparators.  
–V  
2
+V  
2
H
H
0V  
INPUT  
1
The slew rate may be too slow for other reasons. The extremely  
high bandwidth of these devices means that broadband noise  
can be a significant factor when input slew rates are low. There  
is 120 ꢁꢀ of thermal noise generated over the bandwidth of the  
comparator by the two 50 ꢂ terminations at room temperature.  
With a slew rate of only 50 ꢀ/ꢁs, the inputs are inside this noise  
band for over 2 ps, rendering the comparator’s jitter performance of  
200 fs irrelevant. Raising the slew rate of the input signal and/or  
reducing the bandwidth over which that resistance is seen at the  
input can greatly reduce jitter. Devices are not characterized this  
way but simply bypassing a reference input close to the package  
can reduce jitter 30% in low slew rate applications.  
0
OUTPUT  
Figure 28. Comparator Hysteresis Transfer Function  
The ADCMP58x family of comparators offers a programmable  
hysteresis feature that can significantly improve the accuracy  
and stability of the desired hysteresis. By connecting an external  
pull-down resistor from the HYS pin to ꢀEE, a variable amount  
of hysteresis can be applied. Leaving the HYS pin disconnected  
disables the feature, and hysteresis is then less than 1 m, as  
specified. The maximum range of hysteresis that can be applied  
by using this method is approximately 70 m.  
Figure 29 illustrates the amount of applied hysteresis as a  
function of the external resistor value. The advantage of  
applying hysteresis in this manner is improved accuracy,  
stability, and reduced component count. An external bypass  
capacitor is not required on the HYS pin, and it would likely  
degrade the jitter performance of the device.  
Rev. A | Page 13 of 16  
 
 
 
ADCMP580/ADCMP581/ADCMP582  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.65  
13  
12  
16  
1
0.45  
1.50 SQ  
1.35  
PIN 1  
TOP  
2.75  
BSC SQ  
EXPOSED  
PAD  
INDICATOR  
VIEW  
(BOTTOM VIEW)  
4
9
8
5
0.50  
BSC  
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
0.30  
PLANE  
0.20 REF  
0.23  
0.18  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 30. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
CP-16-3  
Branding  
G07  
G07  
G07  
G12  
G12  
G12  
G09  
G09  
G09  
G11  
G11  
G11  
G0B  
G0B  
G0B  
G10  
G10  
G10  
ADCMP580BCP-WP  
ADCMP580BCP–R2  
ADCMP580BCP–RL7  
ADCMP580BCPZ-WP1  
ADCMP580BCPZ–R21  
ADCMP580BCPZ–RL71  
ADCMP581BCP-WP  
ADCMP581BCP–R2  
ADCMP581BCP–RL7  
ADCMP581BCPZ-WP1  
ADCMP581BCPZ–R21  
ADCMP581BCPZ–RL71  
ADCMP582BCP-WP  
ADCMP582BCP-R2  
ADCMP582BCP-RL7  
ADCMP582BCPZ-WP1  
ADCMP582BCPZ-R21  
ADCMP582BCPZ-RL71  
EVAL-ADCMP580BCPZ1  
EVAL-ADCMP581BCPZ1  
EVAL-ADCMP582BCPZ1  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 1± of 16  
 
 
ADCMP580/ADCMP581/ADCMP582  
NOTES  
Rev. A | Page 15 of 16  
ADCMP580/ADCMP581/ADCMP582  
NOTES  
©2005–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04672-0-8/07(A)  
Rev. A | Page 16 of 16  

相关型号:

EVAL-ADCMP581BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP581BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP582BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP582BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP600BKSZ

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V
ADI

EVAL-ADCMP600BRJZ

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V
ADI

EVAL-ADCMP601BKSZ

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V
ADI

EVAL-ADCMP602BRMZ

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V
ADI

EVAL-ADCMP605BCPZ

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V, Single-Supply LVDS Comparators
ADI

EVAL-ADCMP605BCPZ1

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V, Single-Supply LVDS Comparators
ADI

EVAL-ADCMP607BCPZ

BOARD EVAL FOR ADCMP607 12LFCSP
ADI

EVAL-ADE5169F62EBZ

Single-Phase Energy Measurement IC with 8052 MCU, RTC, and LCD Driver
ADI