HMC7950LS6TR [ADI]

2 GHz to 28 GHz, GaAs pHEMT MMIC Low Noise Amplifier;
HMC7950LS6TR
型号: HMC7950LS6TR
厂家: ADI    ADI
描述:

2 GHz to 28 GHz, GaAs pHEMT MMIC Low Noise Amplifier

射频 微波
文件: 总16页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 GHz to 28 GHz, GaAs  
pHEMT MMIC Low Noise Amplifier  
Data Sheet  
HMC7950  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Output power for 1 dB compression (P1dB): 16 dBm typical  
Saturated output power (PSAT): 19.5 dBm typical  
Gain: 15 dB typical  
Noise figure: 2.0 dB typical  
Output third-order intercept (IP3): 26 dBm typical  
Supply voltage: 5 V at 64 mA  
50 Ω matched input/output  
NIC  
NIC  
NIC  
1
2
3
11  
10  
9
NIC  
NIC  
HMC7950  
APPLICATIONS  
Test instrumentation  
Military and space  
V
DD  
PACKAGE  
BASE  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The HMC7950 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transistor (pHEMT), monolithic microwave  
integrated circuit (MMIC). The HMC7950 is a wideband low  
noise amplifier that operates between 2 GHz and 28 GHz. The  
amplifier typically provides 15 dB of gain, 2.0 dB of noise figure,  
26 dBm of output IP3, and 16 dBm of output power for 1 dB gain  
compression, requiring 64 mA from a 5 V supply. The HMC7950  
is self biased with only a single positive supply needed to  
achieve a drain current, IDD, of 64 mA. The HMC7950 also has a  
gain control option, VGG2. The HMC7950 amplifier input/outputs  
are internally matched to 50 Ω and dc blocked. It comes in a  
6 mm × 6 mm, 16-terminal LCC SMT ceramic package that is  
easy to handle and assemble.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC7950  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 12  
Applications Information .............................................................. 13  
Evaluation Board ............................................................................ 14  
Evaluation Board Schematic..................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
2 GHz to 5 GHz Frequency Range............................................. 3  
5 GHz to 18 GHz Frequency Range........................................... 3  
18 GHz to 28 GHz Frequency Range......................................... 4  
DC Specifications ......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
9/2017—Rev. 0 to Rev. A  
Added Figure 37; Renumbered Sequentially .............................. 11  
1/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
Data Sheet  
HMC7950  
SPECIFICATIONS  
2 GHz TO 5 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = open, unless otherwise stated. When using VGG2, it is recommended to limit VGG2 from −2 V to +2.6 V.  
OUT is output power.  
P
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
2
5
13.5 15.5  
0.004  
dB/°C  
Input  
Output  
12  
13  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
13  
16.5  
20.5  
26.5  
3.0  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 4 dBm  
NF  
4.5  
5 GHz TO 18 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = open, unless otherwise stated. When using VGG2, it is recommended to limit VGG2 from −2 V to +2.6 V.  
OUT is output power.  
P
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
5
18  
13.3 15  
0.007  
dB/°C  
Input  
Output  
18  
14  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
13  
16  
19.5  
26  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 4 dBm  
NF  
2.0  
3.5  
Rev. A | Page 3 of 16  
 
 
 
HMC7950  
Data Sheet  
18 GHz TO 28 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = open, unless otherwise stated. When using VGG2, it is recommended to limit VGG2 from −2 V to +2.6 V. POUT  
is output power.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
18  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
28  
13  
16.5  
Gain Variation over Temperature  
RETURN LOSS  
0.012  
dB/°C  
Input  
Output  
19  
16  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
10  
14.5  
17  
24  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 4 dBm  
NF  
2.8  
5
DC SPECIFICATIONS  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 58 mA  
IDD  
64  
100  
mA  
3
4
5
6
7
5
V
V
V
V
V
V
V
IDD = 61 mA  
IDD = 64 mA  
IDD = 66 mA  
IDD = 69 mA  
SUPPLY VOLTAGE  
VGG2 PIN  
VDD  
3
7
VGG2  
Normal condition is VGG2 = open  
−2.0  
2.6  
Rev. A | Page 4 of 16  
 
 
Data Sheet  
HMC7950  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Supply Voltage (VDD)  
8 V  
Second Gate Bias Voltage (VGG2)  
Radio Frequency Input Power (RFIN)  
Channel Temperature  
−2.5 V to +3 V  
20 dBm  
175°C  
θ
JC is the junction to case thermal resistance.  
Table 6. Thermal Resistance  
Package Type  
EP-16-21  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 17.2 mW/°C Above 85°C)  
1.55 W  
θJC  
Unit  
Maximum Peak Reflow Temperature (MSL3)1 260°C  
58  
°C/W  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity, Human Body Model (HBM)  
−65°C to +150°C  
−40°C to +85°C  
250 V (Class 1A)  
1 Channel to ground pad. See JEDEC Standard JESD51-2 for additional  
information on optimizing the thermal impedance  
1 See the Ordering Guide section for more information.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 5 of 16  
 
 
 
HMC7950  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
11  
10  
9
NIC  
NIC  
NIC  
NIC  
NIC  
HMC7950  
TOP VIEW  
(Not to Scale)  
V
DD  
NOTES  
1. NIC = NO INTERNAL CONNECTION. NOTE THAT DATA  
SHOWN HEREIN WAS MEASURED WITH THESE PINS  
EXTERNALLY CONNECTED TO RF/DC GROUND.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin  
Mnemonic Description  
1, 2, 8, 9, 10,  
11, 12, 16  
NIC  
No Internal Connection. Note that data shown herein was measured with these pins externally connected  
to RF/dc ground. See Figure 3 for the interface schematic.  
3
VDD  
Power Supply Voltage for the Amplifier. Connect a dc bias to provide drain current (IDD). See Figure 4 for the  
interface schematic.  
4
VGG2  
Gain Control. This pin is dc-coupled and accomplishes gain control by reducing the internal voltage and  
becoming more negative. See Figure 5 for the interface schematic.  
5, 7, 13, 15  
6
GND  
RFIN  
These pins must be connected to RF/dc ground. See Figure 3 for the interface schematic.  
Radio Frequency (RF) Input. This pin is ac-coupled, but has a large resistor to GND for ESD protection, and  
matched to 50 Ω. See Figure 6 for the interface schematic.  
14  
RFOUT  
RF Output. This pin is ac-coupled, but has a large resistor to GND for ESD protection, and matched to 50 Ω. See  
Figure 7 for the interface schematic.  
EPAD (GND) Exposed Pad (Ground). The exposed pad must be connected to RF/dc ground. See Figure 3 for the interface  
schematic.  
INTERFACE SCHEMATICS  
GND  
RFIN  
Figure 3. GND Interface Schematic  
V
DD  
Figure 6. RFIN Interface Schematic  
Figure 4. VDD Interface Schematic  
RFOUT  
Figure 7. RFOUT Interface Schematic  
V
2
GG  
Figure 5. VGG2 Interface Schematic  
Rev. A | Page 6 of 16  
 
 
 
 
 
 
 
Data Sheet  
HMC7950  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
15  
10  
5
0
–5  
–10  
–15  
S21  
–20  
S11  
S22  
–25  
0
5
10  
15  
20  
25  
30  
35  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Response (Gain and Return Loss) vs. Frequency  
Figure 11. Gain vs. Frequency at Various Temperatures  
0
–5  
0
–5  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
2
6
10  
14  
18  
22  
26  
30  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Input Return Loss vs. Frequency at Various Temperatures  
Figure 12. Output Return Loss vs. Frequency at Various Temperatures  
6
18  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
17  
+85°C  
5
4
3
2
1
0
16  
15  
14  
13  
12  
11  
10  
9
8
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
Figure 10. Noise Figure vs. Frequency at Various Temperatures  
Figure 13. P1dB vs. Frequency at Various Temperatures  
Rev. A | Page 7 of 16  
 
HMC7950  
Data Sheet  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
–40°C  
+25°C  
+85°C  
4V  
5V  
6V  
8
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
Figure 14. PSAT vs. Frequency at Various Temperatures  
Figure 17. P1dB vs. Frequency at Various Supply Voltages  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
30  
28  
26  
24  
22  
20  
18  
–40°C  
+25°C  
+85°C  
4V  
5V  
6V  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (dBm)  
Figure 15. PSAT vs. Frequency at Various Supply Voltages  
Figure 18. Output IP3 vs. Frequency at Various Temperatures,  
OUT/Tone = 4 dBm  
P
30  
28  
26  
24  
22  
20  
18  
60  
50  
40  
30  
20  
4V  
5V  
6V  
4GHz  
10GHz  
16GHz  
22GHz  
28GHz  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (dBm)  
0
1
2
3
4
5
6
7
8
P
/TONE (dBm)  
OUT  
Figure 16. Output IP3 vs. Frequency at Various Supply Voltages  
OUT/Tone = 4 dBm  
Figure 19. Output Third-Order Intermodulation Distortion (IMD3) vs.  
OUT/Tone at Various Frequencies, VDD = 4 V  
P
P
Rev. A | Page 8 of 16  
Data Sheet  
HMC7950  
0.40  
0.36  
0.32  
0.28  
0.24  
76  
60  
4GHz  
4 GHz  
10GHz  
16GHz  
22GHz  
28GHz  
10GHz  
16GHz  
22GHz  
28GHz  
72  
68  
64  
60  
I
AT 16GHz  
50  
40  
30  
20  
DD  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
0
1
2
3
4
5
6
7
8
INPUT POWER (dBm)  
P
/TONE (dBm)  
OUT  
Figure 23. Power Dissipation and IDD vs. Input Power at Various Frequencies,  
16 GHz, TA = 85°C  
Figure 20. Output IMD3 vs. POUT/Tone at Various Frequencies, VDD = 5 V  
76  
60  
4GHz  
4GHz  
10GHz  
16GHz  
22GHz  
28GHz  
72  
10GHz  
16GHz  
22GHz  
28GHz  
50  
68  
64  
60  
40  
30  
20  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
0
1
2
3
4
5
6
7
8
INPUT POWER (dBm)  
P
/TONE (dBm)  
OUT  
Figure 21. Output IMD3 vs. POUT/Tone at Various Frequencies, VDD = 6 V  
Figure 24. IDD vs. Input Power at Various Frequencies  
0
1
0
70  
65  
60  
55  
50  
45  
40  
35  
–40°C  
I
I
2
GG  
DD  
+25°C  
+85°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
–2  
–3  
–4  
–5  
–6  
2
6
10  
14  
18  
22  
26  
30  
–1.5 –1.1 –0.7 –0.3 0.1  
0.5  
2 (V)  
0.9  
1.3  
1.7  
2.1  
2.5  
FREQUENCY (GHz)  
V
GG  
Figure 22. Reverse Isolation vs. Frequency at Various Temperatures  
Figure 25. IGG2 and IDD vs. VGG2 at 14 GHz, Input Power (PIN) = 0 dBm  
Rev. A | Page 9 of 16  
HMC7950  
Data Sheet  
22  
20  
18  
16  
14  
12  
10  
8
20  
–1.2V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
0.4V  
0.8V  
1.2V  
1.6V  
2V  
10  
2.4V  
0
–10  
–20  
–30  
6
0V  
–2V  
0.4V  
1V  
–1.6V  
–1.4V  
–1.2V  
–1V  
4
1.6V  
2.2V  
2.6V  
2
–0.8V  
–0.4V  
0
–40  
0
2
6
10  
14  
18  
22  
26  
30  
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 29. P1dB vs. Frequency at Various VGG2 Voltage Levels  
Figure 26. Gain vs. Frequency at Various VGG2 Voltage Levels  
22  
20  
18  
16  
14  
12  
10  
8
0
–1.2V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
0.4V  
0.8V  
1.2V  
1.6V  
2V  
0V  
–2V  
–1.6V  
–1.4V  
–1.2V  
–1V  
0.4V  
1V  
1.6V  
2.2V  
2.6V  
–5  
–10  
–15  
–20  
–25  
–0.8V  
–0.4V  
2.4V  
6
4
2
0
2
6
10  
14  
18  
22  
26  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 30. PSAT vs. Frequency at Various VGG2 Voltage Levels  
Figure 27. Input Return Loss vs. Frequency at Various VGG2 Voltage Levels  
30  
0
–2V  
0V  
0.4V  
1V  
–1.6V  
–1.4V  
–1.2V  
–1V  
1.6V  
2.2V  
2.6V  
25  
20  
15  
10  
5
–5  
–10  
–15  
–20  
–25  
–0.8V  
–0.4V  
–1.2V  
–0.8V  
–0.6V  
–0.4V  
0V  
0.8V  
1.2V  
1.6V  
2V  
2.4V  
0.4V  
0
2
6
10  
14  
18  
22  
26  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 28. Output Return Loss vs. Frequency at Various VGG2 Voltage Levels  
Figure 31. Output IP3 vs. Frequency at Various VGG2 Voltage Levels,  
OUT/Tone = 4 dBm  
P
Rev. A | Page 10 of 16  
Data Sheet  
HMC7950  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
–25  
–40°C  
+25°C  
+85°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
2.4 2.0 1.6 1.2 0.8 0.4  
0
–0.4 –0.8 –1.2 –1.6 –2.0  
FREQUENCY (GHz)  
V
2 (V)  
GG  
Figure 32. Gain vs. VGG2 at 14 GHz  
Figure 35. Second Harmonic vs. Frequency at Various Temperatures,  
POUT = 0 dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
45  
0dBm  
5dBm  
40  
35  
30  
25  
20  
15  
10  
5
0
2.4  
2.0  
1.6  
1.2  
0.8  
V
0.4  
0
–0.4 –0.8 –1.2  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
2 (V)  
FREQUENCY (GHz)  
GG  
Figure 36. Second Harmonic vs. Frequency at Various Output Powers  
Figure 33. Output IP3 vs. VGG2 at 14 GHz  
–70  
–80  
37  
–40°C  
+25°C  
+85°C  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
10  
100  
1k  
10k  
100k  
1M  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
OFFSET FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 37. Additive Phase Noise vs. Offset Frequency, RF Frequency = 8 GHz,  
RF Input Power = 2.5 dBm (P1dB)  
Figure 34. Output IP2 vs. Frequency at Various Temperatures,  
POUT/Tone = 4 dBm  
Rev. A | Page 11 of 16  
HMC7950  
Data Sheet  
THEORY OF OPERATION  
The HMC7950 is a GaAs, pHEMT, MMIC low noise amplifier.  
Its basic architecture is that of a single-supply, biased cascode  
distributed amplifier with an integrated RF choke for the drain.  
The cascode distributed architecture uses a fundamental cell  
consisting of a stack of two field effect transistors (FETs) with  
the source of the upper FET connected to the drain of the lower  
FET. The fundamental cell is then duplicated several times, with  
a transmission line feeding the RFIN signal to the gates of the  
lower FETs and a separate transmission line interconnecting the  
drains of the upper FETs and routing the amplified signal to the  
RFOUT pin. Additional circuit design techniques around each  
cell optimize the overall performance for broadband operation.  
The major benefit of this architecture is that high performance  
is maintained across a bandwidth far greater than a single  
instance of the fundamental cell can provide. A simplified  
schematic of this architecture is shown in Figure 38.  
Although the gate bias voltages of the upper FETs are set internally  
by a resistive voltage divider connected to VDD, the VGG2 pin  
provides the user with an optional means of changing the gate  
bias of the upper FETs. Application of a voltage to VGG2 allows  
the user to change the voltage output by the resistive divider,  
altering the gate bias of the upper FETs and thus changing the  
gain. Application of VGG2 voltages across the range of −2.0 V to  
+2.6 V affects gain changes of approximately 30 dB, depending  
on the frequency. Increasing the voltage applied to VGG2 increases  
the gain, whereas decreasing the voltage decreases the gain. For  
VDD = 5.0 V (nominal), the resulting VGG2 open circuit voltage  
is approximately 2.2 V.  
V
DD  
TRANSMISSION  
LINE  
RFOUT  
V
2
GG  
TRANSMISSION  
LINE  
RFIN  
Figure 38. Architecture and Simplified Schematic  
Rev. A | Page 12 of 16  
 
 
Data Sheet  
HMC7950  
APPLICATIONS INFORMATION  
Capacitive bypassing is recommended for VDD, as shown in the  
typical application circuit in Figure 39. Gain control is possible  
through the application of a dc voltage to VGG2. If gain control is  
used, capacitive bypassing of VGG2 is recommended as shown in  
the typical application circuit. If gain control is not used, VGG2  
can be either left open or capacitively bypassed as shown in  
Figure 39.  
The recommended bias sequence during power-down is as  
follows:  
1. Turn off the RF input signal.  
2. Remove the VGG2 voltage, or set it to 0 V.  
3. Set VDD to 0 V.  
Power-up and power-down sequences can differ from the ones  
described, although care must always be taken to ensure adherence  
to the values shown in the Absolute Maximum Ratings section.  
The recommended bias sequence during power-up is as follows:  
1. Set VDD to 5.0 V (this results in an IDD near its specified  
typical value).  
2. If the gain control function is to be used, apply a voltage  
within the range of −2.0 V to +2.6 V to VGG2 until the  
desired gain setting is achieved.  
Unless otherwise noted, all measurements and data shown were  
taken using the typical application circuit as configured on the  
HMC7950 evaluation board. The bias conditions shown in the  
Specifications section are recommended to optimize the overall  
performance. Operation using other bias conditions may result  
in performance that differs from the data shown in this data sheet.  
3. Apply the RF input signal.  
V
DD  
4.7µF  
10nF  
100pF  
3
2
1
V
2
GG  
4
5
16  
+
4.7µF  
10nF  
100pF  
RFIN  
15  
14  
13  
RFOUT  
6
7
8
12  
9
10  
11  
PACKAGE  
BASE  
GND  
Figure 39. Typical Application Circuit  
Rev. A | Page 13 of 16  
 
 
HMC7950  
Data Sheet  
EVALUATION BOARD  
The HMC7950 evaluation board is a 2-layer board fabricated  
using Rogers 4350 and using best practices for high frequency  
RF design. The RF input and RF output traces have a 50 Ω  
characteristic impedance.  
The evaluation board and populated components are designed  
to operate over the ambient temperature range of −40°C to  
+85°C. For the proper bias sequence, see the Applications  
Information section.  
C5  
C3  
C1  
C9  
The evaluation board schematic is shown in Figure 41. A fully  
populated and tested evaluation board, shown in Figure 40, is  
available from Analog Devices, Inc., upon request.  
C2  
C4  
C6  
Figure 40. Evaluation PCB  
Table 8. Bill of Materials for Evaluation PCB EV1HMC7950LS6  
Item  
Description  
RFIN, RFOUT  
C1, C7  
C3, C8  
C5, C9  
U1  
PCB mount, K connector, SRI Part Number 21-146-1000-92  
100 pF capacitor, 5%, 50 V, C0G, 0402 package  
10 nF capacitor, 10%, 16 V, X7R, 0402 package  
4.7 µF tantalum capacitor, 10%, 20 V, 1206 package  
Amplifier, HMC7950LS6  
PCB  
Evaluation PCB; circuit board material: Rogers 4350  
DC pins, Molex Part Number 87759-0414  
Do not install (DNI)  
VDD, VGG2  
C2, C4, C6, J3, J4, VGG  
Rev. A | Page 14 of 16  
 
 
Data Sheet  
HMC7950  
EVALUATION BOARD SCHEMATIC  
VGG2  
1
VDD  
1
2
3
4
2
3
4
GND  
GND  
+
C9  
4.7µF  
C3  
10nF  
C5  
4.7µF  
C1  
100pF  
C8  
10nF  
C7  
100pF  
3
2
1
16  
15  
4
5
V
2
NIC  
GND  
GG  
GND  
RFIN  
GND  
NIC  
HMC7950LS6  
RFOUT  
RFIN  
6
7
14  
13  
RFOUT  
GND  
EPAD  
12  
8
NIC  
9
10  
11  
VGG  
DNI  
1
2
3
4
GND  
C4  
DNI  
C2  
DNI  
C6  
DNI  
+
THRU_CAL  
J3  
DNI  
J4  
DNI  
Figure 41. Evaluation Board Schematic  
Rev. A | Page 15 of 16  
 
 
HMC7950  
Data Sheet  
OUTLINE DIMENSIONS  
3.45  
1.65  
6.10  
6.00 SQ  
5.90  
0.31  
0.25  
0.19  
0.35  
0.80  
PIN 1  
INDICATOR  
1.05  
12  
16  
1.00 BSC  
11  
9
1
3
2.06  
2.00  
1.94  
3.46  
3.40  
3.34  
3.55  
SQ  
0.56  
8
4
0.50  
0.44  
0.90  
TOP VIEW  
BOTTOM VIEW  
0.63  
0.57  
0.51  
1.21  
1.15  
5.90 BSC  
SIDE VIEW  
1.444  
1.317  
1.190  
1.09  
4.70  
4.65  
4.60  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.44 BSC  
0.50 MAX  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
Figure 42. 16-Terminal Ceramic Leadless Chip Carrier with Heat Sink [LCC_HS]  
(EP-16-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
MSL Rating2  
Lead Finish  
Package Description  
Package Option  
Branding3  
HMC7950LS6  
−40°C to +85°C  
MSL3  
Au  
16-Terminal LCC_HS  
EP-16-2  
H7950  
XXXX  
H7950  
XXXX  
HMC7950LS6TR  
−40°C to +85°C  
MSL3  
Au  
16-Terminal LCC_HS  
EP-16-2  
EV1HMC7950LS6  
Evaluation PCB  
1 The HMC7950LS6 and HMC7950LS6TR are RoHS compliant parts, made of low stress injection molded plastic.  
2 See the Absolute Maximum Ratings section for further information on the moisture sensitivity level (MSL) rating.  
3 XXXX is the four-digit lot number.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15412-0-9/17(A)  
Rev. A | Page 16 of 16  
 
 

相关型号:

HMC795LP5E

SiGe Wideband Direct Quadrature Modulator w/ vga, 50 - 2800 MHz
HITTITE

HMC795LP5E

SiGe Wideband Direct Quadrature Modulator SMT, with VGA, 50 - 2800 MHz
ADI

HMC795LP5ETR

SiGe Wideband Direct Quadrature Modulator SMT, with VGA, 50 - 2800 MHz
ADI

HMC797

GaAs PHEMT MMIC 1 WATT POWER AMPLIFIER, DC - 22 GHz
HITTITE

HMC797A

HMC797A
ADI

HMC797APM5E

HMC797APM5E
ADI

HMC797LP5E

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, DC - 22 GHz
HITTITE

HMC798ALC4

24 GHz to 34 GHz, GaAs, MMIC, Subharmonic SMT Mixer
ADI

HMC798ALC4TR

24 GHz to 34 GHz, GaAs, MMIC, Subharmonic SMT Mixer
ADI

HMC798ALC4TR-R5

24 GHz to 34 GHz, GaAs, MMIC, Subharmonic SMT Mixer
ADI

HMC798LC4

GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz
HITTITE

HMC798LC4TR

Double Balanced Mixer
HITTITE