HMC8400-SX [ADI]

MMIC Low Noise Amplifier;
HMC8400-SX
型号: HMC8400-SX
厂家: ADI    ADI
描述:

MMIC Low Noise Amplifier

文件: 总15页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 GHz to 30 GHz, GaAs  
pHEMT MMIC Low Noise Amplifier  
Data Sheet  
HMC8400  
FEATURES  
GENERAL DESCRIPTION  
Output power for 1 dB compression (P1dB): 14.5 dBm typical  
Saturated output power (PSAT): 17 dBm typical  
Gain: 13.5 dB typical  
Noise figure: 2 dB  
Output third-order intercept (IP3): 26.5 dBm typical  
Supply voltage: 5 V at 67 mA  
The HMC8400 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transistor (pHEMT), monolithic microwave  
integrated circuit (MMIC). The HMC8400 is a wideband low  
noise amplifier that operates between 2 GHz and 30 GHz. The  
amplifier provides 13.5 dB of gain, a 2 dB noise figure, 26.5 dBm  
output IP3, and 14.5 dBm of output power at 1 dB gain compres-  
sion, requiring 67 mA from a 5 V supply. The HMC8400 is self  
biased with only a single positive supply needed to achieve a  
drain current IDD of 67 mA. The HMC8400 also has a gain control  
option, VGG2. The HMC8400 amplifier input/outputs are internally  
matched to 50 Ω and dc blocked, facilitating integration into  
multichip modules (MCMs). All data is taken with the chip  
connected via two 0.025 mm (1 mil) wire bonds of minimal  
length 0.31 mm (12 mils).  
50 Ω matched input/output  
Die size: 2.7 mm × 1.35 mm × 0.05 mm  
APPLICATIONS  
Test instrumentation  
Microwave radios and very small aperture terminals (VSATs)  
Military and space  
Telecommunications infrastructure  
Fiber optics  
FUNCTIONAL BLOCK DIAGRAM  
3
HMC8400  
V
DD  
4
RFOUT  
V
2
GG  
2
1
RFIN  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices.Trademarks and registered trademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC8400  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 12  
Applications Information .............................................................. 13  
Biasing Procedures..................................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
2 GHz to 6 GHz Frequency Range............................................. 3  
6 GHz to 20 GHz Frequency Range........................................... 3  
20 GHz to 30 GHz Frequency Range......................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs......................................................................................... 13  
Typical Application Circuit....................................................... 14  
Assembly Diagram ..................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
REVISION HISTORY  
5/2017—Rev. A to Rev. B  
Changes to Figure 1.......................................................................... 1  
Added Figure 32 and Figure 33; Renumbered Sequentially............11  
9/2016—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 14  
2/2016—Revision 0: Initial Version  
Rev. B | Page 2 of 15  
 
Data Sheet  
HMC8400  
SPECIFICATIONS  
2 GHz TO 6 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, IDD = 67 mA, VGG2 = open, unless otherwise stated. When using VGG2, it is recommended to limit VGG2 from −2 V to  
+2.6 V.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
2
6
GHz  
dB  
12  
14  
Gain Variation Over Temperature  
RETURN LOSS  
0.005  
dB/°C  
Input  
Output  
13  
15  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
13  
16  
19  
26.5  
3
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 10 dBm  
NF  
5
7
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 64 mA  
IDD  
67  
mA  
4
5
6
5
V
V
V
V
IDD = 67 mA  
IDD = 70 mA  
SUPPLY VOLTAGE  
VDD  
3
6 GHz TO 20 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, IDD = 67 mA, VGG2 = open, unless otherwise stated. When using VGG2, it is recommended to limit VGG2 from −2 V to  
+2.6 V.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
6
Max Unit  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
20  
GHz  
dB  
11.5 13.5  
0.006  
dB/°C  
Input  
Output  
18  
15  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
12.5 14.5  
dBm  
dBm  
dBm  
dB  
17  
25  
2
Measurement taken at POUT/tone = 10 dBm  
NF  
3.5  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 64 mA  
IDD  
67  
mA  
4
5
6
V
V
V
V
IDD = 67 mA  
IDD = 70 mA  
SUPPLY VOLTAGE  
VDD  
3
5
7
Rev. B | Page 3 of 15  
 
 
 
HMC8400  
Data Sheet  
20 GHz TO 30 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, IDD = 67 mA, VGG2 = open, unless otherwise stated. When using VGG2, it is recommended to limit VGG2 from −2 V to  
+2.6 V.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
20  
Max Unit  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
30  
GHz  
dB  
11.5 13.5  
0.008  
dB/°C  
Input  
Output  
15  
13  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
10.5 13.5  
dBm  
dBm  
dBm  
dB  
15.5  
24  
Measurement taken at POUT/tone = 10 dBm  
NF  
2.5  
4.5  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 64 mA  
IDD  
67  
mA  
4
5
6
V
V
V
V
IDD = 67 mA  
IDD = 70 mA  
SUPPLY VOLTAGE  
VDD  
3
5
7
Rev. B | Page 4 of 15  
 
Data Sheet  
HMC8400  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Drain Bias Voltage (VDD)  
Second Gate Bias Voltage (VGG2)  
RF Input Power (RFIN)  
Channel Temperature  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 17.2 mW/°C Above 85°C)  
8 V  
−2.5 V to +3 V  
23 dBm  
175°C  
1.55 W  
ESD CAUTION  
Thermal Resistance, θJA (Channel to  
Bottom Die)  
58°C/W  
Storage Temperature Range  
Operating Temperature Range  
−65°C to +150°C  
−55°C to +85°C  
ESD Sensitivity, Human Body Model (HBM) 250 V (Class 1A)  
Rev. B | Page 5 of 15  
 
 
HMC8400  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
3
V
DD  
HMC8400  
RFOUT  
4
2
1
V
2
GG  
RFIN  
NOTES  
1. DIE BOTTOM MUST BE CONNECTED TO RF/DC GROUND.  
Figure 2. Pad Configuration  
Table 5. Pad Function Descriptions  
Pad No.  
Mnemonic  
Description  
1
RFIN  
Radio Frequency (RF) Input. This pad is ac-coupled, but has a large resistor to GND for ESD protection,  
and matched to 50 Ω. See Figure 3 for the interface schematic.  
2
3
4
VGG2  
VDD  
Gain Control. This pad is dc-coupled and accomplishes gain control by bringing this voltage lower and  
becoming more negative. See Figure 4 for the interface schematic.  
Power Supply Voltage for the Amplifier. Connect a dc bias to provide drain current (IDD). See Figure 5 for  
the interface schematic.  
RF Output. This pad is ac-coupled, but has a large resistor to GND for ESD protection, and matched to 50 Ω.  
See Figure 6 for the interface schematic.  
RFOUT  
Die Bottom GND  
Die bottom must be connected to RF/dc ground. See Figure 7 for the interface schematic.  
INTERFACE SCHEMATICS  
RFIN  
RFOUT  
Figure 3. RFIN Interface Schematic  
Figure 6. RFOUT Interface Schematic  
V
2
GG  
GND  
Figure 4. VGG2 Interface Schematic  
Figure 7. GND Interface Schematic  
V
DD  
Figure 5. VDD Interface Schematic  
Rev. B | Page 6 of 15  
 
 
 
 
 
 
 
Data Sheet  
HMC8400  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
16  
14  
12  
10  
8
15  
10  
S11  
S21  
S22  
5
0
+85°C  
+25°C  
–55°C  
–5  
–10  
–15  
–20  
–25  
–30  
6
0
4
8
12  
16  
20  
24  
28  
32  
36  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Response Gain and Return Loss vs. Frequency  
Figure 11. Gain vs. Frequency at Various Temperatures  
0
–5  
0
–5  
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
2
6
10  
14  
18  
22  
26  
30  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Input Return Loss vs. Frequency at Various Temperatures  
Figure 12. Output Return Loss vs. Frequency at Various Temperatures  
5
18  
+85°C  
+25°C  
–55°C  
17  
16  
15  
14  
13  
12  
11  
10  
9
+85°C  
+25°C  
–55°C  
4
3
2
1
0
8
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
Figure 10. Noise Figure vs. Frequency at Various Temperatures  
Figure 13. P1dB vs. Frequency at Various Temperatures  
Rev. B | Page 7 of 15  
 
HMC8400  
Data Sheet  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
4V  
5V  
6V  
+85°C  
+25°C  
–55°C  
8
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
Figure 14. PSAT vs. Frequency at Various Temperatures  
Figure 17. P1dB vs. Frequency at Various Supply Voltages  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
30  
4V  
5V  
6V  
+85°C  
+25°C  
–55°C  
28  
26  
24  
22  
20  
18  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
Figure 18. Output IP3 vs. Frequency for Various Temperatures at  
OUT = 0 dBm/Tone  
Figure 15. PSAT vs. Frequency at Various Supply Voltages  
P
60  
50  
40  
30  
20  
30  
28  
26  
24  
22  
20  
18  
4V  
5V  
6V  
4GHz  
10GHz  
16GHz  
22GHz  
28GHz  
0
1
2
3
4
5
6
7
8
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
P
/TONE (dBm)  
OUT  
Figure 16. Output IP3 vs. Frequency at Various Supply Voltages  
Figure 19. Output Third-Order Intermodulation (IMD3) vs. POUT/Tone for  
Various Frequencies at VDD = 4 V  
Rev. B | Page 8 of 15  
Data Sheet  
HMC8400  
60  
0.40  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
4GHz  
4GHz  
10GHz  
16GHz  
22GHz  
28GHz  
10GHz  
16GHz  
22GHz  
28GHz  
50  
40  
30  
20  
0
1
2
3
4
5
6
7
8
–6  
–4  
–2  
0
2
4
6
8
P
/TONE (dBm)  
INPUT POWER (dBm)  
OUT  
Figure 20. IMD3 vs. POUT/Tone for Various Frequencies at VDD = 5 V  
Figure 23. Power Dissipation vs. Input Power at Various Frequencies, TA = 85°C  
60  
20  
10  
4GHz  
10GHz  
16GHz  
50  
40  
30  
20  
22GHz  
28GHz  
0
–10  
–20  
–2.0V  
–1.6V  
–1.4V  
–1.2V  
–1.0V  
–0.8V  
–0.4V  
0V  
+0.4V  
+1.0V  
+1.6V  
+2.2V  
+2.6V  
–30  
–40  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
P
/TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 21. IMD3 vs. POUT/Tone for Various Frequencies at VDD = 6 V  
Figure 24. Gain vs. Frequency at Various VGG2 Voltage Levels  
0
0
+85°C  
–5  
–10  
+25°C  
–55°C  
–10  
–20  
–15  
–20  
–25  
–30  
–35  
–40  
–30  
–40  
–50  
–60  
–70  
–2.0V  
–1.6V  
–1.4V  
–1.2V  
–1.0V  
–0.8V  
–0.4V  
0V  
+0.4V  
+1.0V  
+1.6V  
+2.2V  
+2.6V  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. Input Return Loss vs. Frequency at Various VGG2 Voltage Levels  
Figure 22. Reverse Isolation vs. Frequency at Various Temperatures  
Rev. B | Page 9 of 15  
HMC8400  
Data Sheet  
0
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–2.0V  
–1.6V  
–1.4V  
–1.2V  
–1.0V  
–0.8V  
–0.4V  
0V  
+0.4V  
+1.0V  
+1.6V  
+2.2V  
+2.6V  
–1.2V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
+0.4V  
+0.8V  
+1.2V  
+1.6V  
+2.0V  
+2.4V  
–40  
0
5
10  
15  
20  
25  
30  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Output Return Loss vs. Frequency at Various VGG2 Voltage Levels  
Figure 29. Output IP3 vs. Frequency at Various VGG2 Voltage Levels  
22  
16  
12  
8
–1.2V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
+0.4V  
+0.8V  
+1.2V  
+1.6V  
+2.0V  
+2.4V  
20  
18  
16  
14  
12  
10  
8
4
0
–4  
–8  
–12  
–16  
–20  
–24  
6
4
2
0
2
6
10  
14  
18  
22  
26  
30  
2.4 2.0 1.6 1.2 0.8 0.4  
0
–0.4 –0.8 –1.2 –1.6 2.0  
FREQUENCY (GHz)  
V
2 (V)  
GG  
Figure 27. P1dB vs. Frequency at Various VGG2 Voltage Levels  
Figure 30. Gain vs. VGG2 at 10 GHz  
22  
20  
18  
16  
14  
12  
10  
8
30  
26  
22  
18  
14  
10  
6
–1.2V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
+0.4V  
+0.8V  
+1.2V  
+1.6V  
+2.0V  
+2.4V  
4
2
0
2
6
10  
14  
18  
22  
26  
30  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
–0.4 –0.8 –1.2  
FREQUENCY (GHz)  
V
2 (V)  
GG  
Figure 28. PSAT vs. Frequency at Various VGG2 Voltage Levels  
Figure 31. Output IP3 vs. VGG2 at 10 GHz  
Rev. B | Page 10 of 15  
Data Sheet  
HMC8400  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–55°C  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. Output IP2 (OIP2) vs. Frequency for Various Temperatures at  
OUT = 0 dBm/Tone  
Figure 33. OIP2 vs. Frequency for Various POUT/Tone Levels  
P
Rev. B | Page 11 of 15  
HMC8400  
Data Sheet  
THEORY OF OPERATION  
The HMC8400 is a GaAs, pHEMT, MMIC low noise amplifier.  
The basic architecture is that of a self biased cascode distributed  
amplifier with an integrated RF choke for the drain. The cascode  
distributed architecture uses a fundamental cell consisting of a  
stack of two field effect transistors (FETs) connected from source to  
drain. The fundamental cell is then duplicated several times, with  
transmission lines interconnecting the drains of the top devices  
and the gates of the bottom devices, respectively.  
Though gate bias voltages are set internally via resistor connections  
and/or a resistive voltage divider tap off of VDD, the VGG2 pad is  
provided to allow the user a means of changing the gate bias of  
the upper FETs. Application of a voltage to VGG2 changes the  
voltage output by a resistive divider, thus altering the gate bias  
of the upper FETs. Adjustment of the bias in this manner allows  
the user a 30 dB gain control function. For gain control, VGG2  
voltages within the range of −2 V through +2.6 V can be applied.  
For VDD = 5.0 V dc, the VGG2 open-circuit voltage is  
Additional circuit design techniques are used around each cell  
to optimize the overall bandwidth and noise figure. The major  
benefit of this architecture is that a low noise figure is maintained  
across a bandwidth far greater than what a single instance of the  
fundamental cell provides. A simplified schematic of this  
architecture is shown in Figure 34.  
approximately 2.0 V.  
V
DD  
T-LINE  
RFOUT  
V
2
GG  
T-LINE  
RFIN  
Figure 34. Architecture and Simplified Schematic  
Rev. B | Page 12 of 15  
 
 
Data Sheet  
HMC8400  
APPLICATIONS INFORMATION  
To minimize bond wire length, place microstrip substrates as  
close to the die as possible. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (3 mil to 6 mil).  
BIASING PROCEDURES  
Capacitive bypassing is required for VDD, as shown in the typical  
application circuit in Figure 36. Gain control is possible through  
the application of a dc voltage to VGG2. If gain control is used,  
VGG2 must be bypassed by 100 pF, 0.01 µF, and 4.7 µF capacitors. If  
gain control is not used, VGG2 can be either left open or  
capacitively bypassed as described.  
Handling Precautions  
To avoid permanent damage, adhere to the following precautions:  
All bare die ship in either waffle or gel-based ESD protective  
containers, sealed in an ESD protective bag. After the sealed  
ESD protective bag is opened, store all die in a dry nitrogen  
environment.  
The recommended bias sequence during power-up is as follows:  
1. Set VDD to 5 V (this results in an IDD near the specified  
typical value).  
2. If the gain control function is to be used, apply to VGG2 a  
voltage within the range of −2 V to +2.6 V until the desired  
gain is achieved.  
Handle the chips in a clean environment. Never use liquid  
cleaning systems to clean the chip.  
Follow ESD precautions to protect against ESD strikes.  
While bias is applied, suppress instrument and bias supply  
transients. To minimize inductive pickup, use shielded  
signal and bias cables.  
3. Apply the RF input signal.  
The recommended bias sequence during power-down is as follows:  
Handle the chip along the edges with a vacuum collet or  
with a sharp pair of bent tweezers. The surface of the chip  
can have fragile air bridges and must not be touched with  
vacuum collet, tweezers, or fingers.  
1. Turn off the RF input signal.  
2. Remove the VGG2 voltage or set it to 0 V.  
3. Set VDD to 0 V.  
Unless otherwise noted, all measurements and data shown were  
taken using the typical application circuit (see Figure 36), configured  
as shown on the assembly diagram (see Figure 37) and biased  
per the conditions in the Specifications section. The bias conditions  
shown in the Specifications section are the operating points  
recommended to optimize the overall performance. Operation  
using other bias conditions can provide performance that differs  
from what is shown in this data sheet. To obtain the best  
performance while not damaging the device, follow the  
recommended biasing sequence outlined in this section.  
Mounting  
The chip is back metallized and can be die mounted with gold/tin  
(AuSn) eutectic preforms or with electrically conductive epoxy.  
The mounting surface must be clean and flat.  
Eutectic Die Attach  
It is best to use an 80% gold/20% tin preform with a work surface  
temperature of 255°C and a tool temperature of 265°C. When  
hot 90% nitrogen/10% hydrogen gas is applied, maintain tool tip  
temperature at 290°C. Do not expose the chip to a temperature  
greater than 320°C for more than 20 sec. No more than 3 sec of  
scrubbing is required for attachment.  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETERWAVE GaAs MMICs  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy. To bring RF to and from the chip, use 50 Ω  
microstrip transmission lines on 0.127 mm (5 mil) thick alumina  
thin film substrates (see Figure 35).  
Epoxy Die Attach  
ABLETHERM 2600BT is recommended for die attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip after placing it into position. Cure the epoxy per the schedule  
provided by the manufacturer.  
0.05mm (0.002") THICK GaAs MMIC  
Wire Bonding  
RIBBON BOND  
0.076mm  
(0.003")  
RF bonds made with 0.003 in. × 0.0005 in. gold ribbon are recom-  
mended for the RF ports. These bonds must be thermosonically  
bonded with a force of 40 g to 60 g. DC bonds of 1 mil (0.025 mm)  
diameter, thermosonically bonded, are recommended. Create ball  
bonds with a force of 40 g to 50 g and wedge bonds with a force  
of 18 g to 22 g. Create all bonds with a nominal stage temperature  
of 150°C. Apply a minimum amount of ultrasonic energy to  
achieve reliable bonds. Keep all bonds as short as possible, less  
than 12 mil (0.31 mm).  
RF GROUND PLANE  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
Figure 35. Routing RF Signals  
Rev. B | Page 13 of 15  
 
 
 
 
HMC8400  
Data Sheet  
TYPICAL APPLICATION CIRCUIT  
V
2
V
DD  
GG  
4.7µF  
0.01µF  
100pF  
100pF  
0.01µF  
4.7µF  
2
3
RFIN  
RFOUT  
1
4
Figure 36. Typical Application Circuit  
ASSEMBLY DIAGRAM  
4.7µF  
4.7µF  
TO V SUPPLY  
DD  
0.01µF  
ALL BOND WIRES ARE  
1mil DIAMETER  
TO V 2 SUPPLY  
0.01µF  
GG  
3mil NOMINAL GAP  
100pF  
100pF  
50Ω TRANSMISSION LINE  
Figure 37. Assembly Diagram  
Rev. B | Page 14 of 15  
 
 
 
 
Data Sheet  
HMC8400  
OUTLINE DIMENSIONS  
2.699  
0.05  
0.043  
0.175  
3
0.187  
0.708  
4
1.349  
0.187  
0.098  
2
0.187  
0.557  
1
ADI2014  
0.187  
0.085  
SIDE VIEW  
0.010  
0.010  
2.219  
0.1310.160  
0.085  
Figure 38. 4-Pad Bare Die [CHIP]  
(C-4-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
HMC8400  
Temperature Range  
−55°C to +85°C  
−55°C to +85°C  
Package Description  
4-Pad Bare Die [CHIP]  
4-Pad Bare Die [CHIP]  
Package Option  
C-4-1  
C-4-1  
HMC8400-SX  
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13852-0-5/17(B)  
Rev. B | Page 15 of 15  
 
 

相关型号:

HMC8401

Low Noise Amplifier
ADI

HMC8401-SX

HMC8401-SX
ADI

HMC8401_18

Low Noise Amplifier
ADI

HMC8402

Low Noise Amplifier
ADI

HMC8402-SX

Low Noise Amplifier
ADI

HMC840LP6CE

FRACTIONAL-N PLL WITH INTEGRATED VCO 1310 - 1415, 2620 - 2830, 5240 - 5660 MHz
HITTITE

HMC840LP6CE

Fractional-N PLL with Integrated VCO SMT, 1.31 - 5.66 GHz
ADI

HMC840LP6CETR

Fractional-N PLL with Integrated VCO SMT, 1.31 - 5.66 GHz
ADI

HMC840LP6CETR

Phase Locked Loop
HITTITE

HMC8410

Low Noise Amplifier
ADI

HMC8410CHIPS

0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier
ADI

HMC8410CHIPS-SX

Low noise figure: 1.1 dB typical
ADI