HMC8401-SX [ADI]

HMC8401-SX;
HMC8401-SX
型号: HMC8401-SX
厂家: ADI    ADI
描述:

HMC8401-SX

射频 微波
文件: 总17页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DC to 28 GHz, GaAs pHEMT  
MMIC Low Noise Amplifier  
HMC8401  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Output power for 1 dB compression (P1dB): 16.5 dBm typical  
Saturated output power (PSAT): 19 dBm typical  
Gain: 14.5 dB typical  
Noise figure: 1.5 dB  
Output third-order intercept (IP3): 26 dBm typical  
Supply voltage: 7.5 V at 60 mA  
The HMC8401 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transistor (pHEMT), monolithic microwave  
integrated circuit (MMIC). The HMC8401 is a wideband low  
noise amplifier which operates between dc and 28 GHz. The  
amplifier provides 14.5 dB of gain, 1.5 dB noise figure, 26 dBm  
output IP3 and 16.5 dBm of output power at 1 dB gain compression  
while requiring 60 mA from a 7.5 V supply. The HMC8401 also  
has a gain control option, VGG2. The HMC8401 amplifier input/  
outputs are internally matched to 50 Ω facilitating integration  
into multichip modules (MCMs). All data is taken with the chip  
connected via two 0.025 mm (1 mil) wire bonds of minimal  
length 0.31 mm (12 mils).  
50 Ω matched input/output  
Die size: 2.55 mm × 1.5 mm × 0.05 mm  
APPLICATIONS  
Test instrumentation  
Microwave radios and very small aperture terminals (VSATs)  
Military and space  
Telecommunications infrastructure  
Fiber optics  
FUNCTIONAL BLOCK DIAGRAM  
3
4
HMC8401  
5
RFOUT  
V
2
GG  
2
1
RFIN  
8
7
6
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC8401  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................7  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 14  
Applications Information .............................................................. 15  
Biasing Procedures..................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
0.01 GHz to 3 GHz Frequency Range........................................ 3  
3 GHz to 26 GHz Frequency Range........................................... 3  
26 GHz to 28 GHz Frequency Range......................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs......................................................................................... 15  
Typical Application Circuit....................................................... 16  
Assembly Diagram ..................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
9/2017—Rev. 0 to Rev. A  
7/2016—Revision 0: Initial Version  
Changes to Supply Voltage Parameter, Table 1............................. 3  
Changes to Supply Voltage Parameter, Table 2............................. 3  
Changes to Supply Voltage Parameter, Table 3............................. 4  
Changes to Thermal Resistance, θJC (Channel to Die Bottom)  
Parameter Heading, Table 4 ............................................................ 5  
Changes to Table 5............................................................................ 6  
Changes to Figure 7.......................................................................... 7  
Added Figure 41; Renumbered Sequentially .............................. 13  
Rev. A | Page 2 of 17  
 
Data Sheet  
HMC8401  
SPECIFICATIONS  
0.01 GHz TO 3 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 7.5 V, IDQ = 60 mA, VGG2 = open, unless otherwise stated.1 When using VGG2, it is recommended to limit VGG2 from −2 V  
to +2.6 V.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
0.01  
13  
Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
3
GHz  
dB  
15  
Gain Variation Over Temperature  
RETURN LOSS  
0.005  
dB/°C  
Input  
Output  
14  
19  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
14.5  
4.5  
17  
19  
27  
2.5  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 10 dBm  
NF  
4.5  
8.5  
SUPPLY CURRENT  
Total Supply Current  
SUPPLY VOLTAGE  
IDQ  
60  
mA  
V
VDD  
7.5  
1 Adjust the VGG1 supply voltage between −2 V and 0 V to achieve IDQ = 60 mA typical.  
3 GHz TO 26 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 7.5 V, IDQ = 60 mA, VGG2 = open, unless otherwise stated.1 When using VGG2, it is recommended to limit VGG2 from −2 V  
to +2.6 V.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
3
Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
26  
GHz  
dB  
12.5  
14.5  
Gain Variation Over Temperature  
RETURN LOSS  
0.007  
dB/°C  
Input  
Output  
16  
17  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
14  
16.5  
19  
26  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 10 dBm  
NF  
1.5  
4.5  
8.5  
SUPPLY CURRENT  
Total Supply Current  
SUPPLY VOLTAGE  
IDQ  
60  
mA  
V
VDD  
4.5  
7.5  
1 Adjust the VGG1 supply voltage between −2 V and 0 V to achieve IDQ= 60 mA typical.  
Rev. A | Page 3 of 17  
 
 
 
HMC8401  
Data Sheet  
26 GHz TO 28 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 7.5 V, IDQ = 60 mA, VGG2 = open, unless otherwise stated.1 When using VGG2, it is recommended to limit VGG2 from −2 V  
to +2.6 V.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
26  
Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
28  
GHz  
dB  
12.5  
14.5  
Gain Variation Over Temperature  
RETURN LOSS  
0.009  
dB/°C  
Input  
Output  
15  
17  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
11.5  
4.5  
14  
17  
24  
2
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 10 dBm  
NF  
4
SUPPLY CURRENT  
Total Supply Current  
SUPPLY VOLTAGE  
IDQ  
60  
mA  
V
VDD  
7.5  
8.5  
1 Adjust the VGG1 supply voltage between −2 V and 0 V to achieve IDQ = 60 mA typical.  
Rev. A | Page 4 of 17  
 
Data Sheet  
HMC8401  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Drain Bias Voltage (VDD)  
Second Gate Bias Voltage (VGG2)  
RF Input Power (RFIN)  
Channel Temperature  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 18.3 mW/°C Above 85°C)  
+10 V  
−2.6 V to +3.6V  
20 dBm  
175°C  
1.67W  
Thermal Resistance, θJC (Channel to  
Die Bottom)  
54°C/W  
ESD CAUTION  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity, Human Body Model (HBM)  
−65°C to +150°C  
−55°C to +85°C  
Class 1A, 250 V  
Rev. A | Page 5 of 17  
 
 
HMC8401  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC8401  
3
4
5
2
1
ADI2014  
8
7
6
Figure 2. Pad Configuration  
Table 5. Pad Function Descriptions  
Pad No.  
Mnemonic  
Description  
1
RFIN  
Radio Frequency (RF) Input. This pad is dc coupled and matched to 50 Ω. See Figure 3 for the interface  
schematic.  
2
VGG2  
Gain Control. This pad is dc-coupled and accomplishes gain control by bringing this voltage lower and  
becoming more negative. Attach bypass capacitors to this pad as shown in Figure 44. See Figure 4 for the  
interface schematic.  
3
VDD  
Power Supply Voltage for the Amplifier. Connect a dc bias to provide drain current (IDD). Attach bypass  
capacitors to this pad as shown in Figure 44. See Figure 5 for the interface schematic.  
4, 6, 7  
ACG  
RFOUT  
VGG1  
Low Frequency Termination. Attach bypass capacitors to this pad as shown in Figure 44.See Figure 6 for the  
interface schematic.  
Radio Frequency (RF) Output. This pad is dc coupled and matched to 50 Ω. See Figure 3 for the interface  
schematic.  
Gate Control for the Amplifier. Adjust VGG1 to achieve the recommended bias current. Attach bypass  
capacitors to this pad as shown in Figure 44. See Figure 8 for the interface schematic.  
5
8
Die Bottom GND  
Die Bottom. The die bottom must be connected to RF/dc ground. See Figure 9 for the interface schematic.  
Rev. A | Page 6 of 17  
 
Data Sheet  
HMC8401  
INTERFACE SCHEMATICS  
RFOUT  
RFIN  
Figure 7. RFOUT Interface Schematic  
Figure 3. RFIN Interface Schematic  
V
2
GG  
V
1
GG  
Figure 8. VGG1 Interface Schematic  
Figure 4. VGG2 Interface Schematic  
V
GND  
DD  
Figure 9. GND Interface Schematic  
Figure 5. VDD Interface Schematic  
ACG  
Figure 6. ACG Interface Schematic  
Rev. A | Page 7 of 17  
 
 
 
 
 
 
 
HMC8401  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
17  
16  
15  
14  
13  
12  
11  
10  
9
10  
0
–10  
–20  
–30  
S11  
S21  
S22  
+85°C  
+25°C  
–55°C  
8
–40  
7
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Response Gain and Return Loss vs. Frequency  
Figure 13. Gain vs. Frequency at Various Temperatures  
0
0
–2  
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Input Return Loss vs. Frequency at Various Temperatures  
Figure 14. Output Return Loss vs. Frequency at Various Temperatures  
6
6
6.5V  
7.5V  
8.5V  
+85°C  
+25°C  
–55°C  
5
5
4
3
2
1
0
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Noise Figure vs. Frequency at Various Temperatures  
Figure 15. Noise Figure vs. Frequency at Various Supply Voltages  
Rev. A | Page 8 of 17  
 
Data Sheet  
HMC8401  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. P1dB vs. Frequency at Various Temperatures  
Figure 19. PSAT vs. Frequency at Various Temperatures  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6.5V  
7.5V  
8.5V  
6.5V  
7.5V  
8.5V  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. PSAT vs. Frequency at Various Supply Voltages  
Figure 17. P1dB vs. Frequency at Various Supply Voltages  
55  
30  
+85°C  
+25°C  
–55°C  
50  
45  
40  
35  
30  
25  
26  
22  
18  
14  
3GHz  
7GHz  
11GHz  
17GHz  
21GHz  
25GHz  
27GHz  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
P
/TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 21. Output Third-Order Intermodulation (IM3) vs. POUT/Tone for  
Various Frequencies at VDD = 6.5 V  
Figure 18. Output IP3 vs. Frequency for Various Temperatures at  
OUT = 0 dBm/Tone  
P
Rev. A | Page 9 of 17  
HMC8401  
Data Sheet  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
25  
3GHz  
3GHz  
7GHz  
7GHz  
11GHz  
17GHz  
21GHz  
25GHz  
27GHz  
11GHz  
17GHz  
21GHz  
25GHz  
27GHz  
25  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
P
/TONE (dBm)  
P
/TONE (dBm)  
OUT  
OUT  
Figure 25. Output IM3 vs. POUT/Tone for Various Frequencies at VDD = 8.5 V  
Figure 22. Output IM3 vs. POUT/Tone for Various Frequencies at VDD = 7.5 V  
20  
18  
16  
14  
12  
10  
8
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
0
+85°C  
+25°C  
–10  
–20  
–55°C  
–30  
–40  
–50  
–60  
–70  
–80  
6
4
P
OUT  
GAIN  
2
PAE  
I
DD  
0
–9  
–7  
–5  
–3  
–1  
1
3
5
7
0
5
10  
15  
20  
25  
30  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 26. Power Compression at 15 GHz  
Figure 23. Reverse Isolation vs. Frequency at Various Temperatures  
17  
0.70  
0.65  
0.60  
0.55  
0.50  
16  
15  
14  
13  
12  
11  
10  
9
3GHz  
9GHz  
5V  
0.45  
6.5V  
7.5V  
8.5V  
15GHz  
23GHz  
28GHz  
8
7
0.40  
–10  
0
5
10  
15  
20  
25  
30  
–8  
–6  
–4  
–2  
0
2
4
6
8
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 27. Gain vs. Frequency at Various Supply Voltages  
Figure 24. Power Dissipation vs. Input Power at Various Frequencies, TA = 85°C  
Rev. A | Page 10 of 17  
Data Sheet  
HMC8401  
0
–2  
0
–2V  
0V  
5V  
–1.6V  
–1.2V  
–0.8V  
+0.8V  
+1.6V  
+2.4V  
–2  
6.5V  
7.5V  
8.5V  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 31. Input Return Loss vs. Frequency at Various VGG2 Voltages  
Figure 28. Input Return Loss vs. Frequency at Various Supply Voltages  
0
0
–2V  
0V  
5V  
–1.6V  
–1.2V  
–0.8V  
+0.8V  
+1.6V  
+2.4V  
–2  
–4  
–2  
–4  
6.5V  
7.5V  
8.5V  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. Output Return Loss vs. Frequency at Various VGG2 Voltages  
Figure 29. Output Return Loss vs. Frequency at Various Supply Voltages  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
17  
16  
15  
14  
13  
12  
11  
10  
9
–2V  
0V  
–1.6V  
–1.2V  
–0.8V  
+0.8V  
+1.6V  
+2.4V  
8
7
8
2.4 2.0 1.6 1.2 0.8 0.4  
0
–0.4 –0.8 –1.2 –1.6 –2.0  
0
5
10  
15  
20  
25  
30  
V
2 (V)  
FREQUENCY (GHz)  
GG  
Figure 30. Gain vs. Frequency at Various VGG2 Voltages  
Figure 33. Gain vs. VGG2 at 14 GHz  
Rev. A | Page 11 of 17  
HMC8401  
Data Sheet  
17  
16  
15  
14  
13  
12  
11  
10  
9
30  
27  
24  
21  
18  
15  
25mA  
35mA  
45mA  
55mA  
60mA  
65mA  
8
7
0
5
10  
15  
20  
25  
30  
2.4 2.0 1.6 1.2 0.8 0.4  
0
–0.4 –0.8 –1.2 –1.6 –2.0  
FREQUENCY (GHz)  
V
2 (V)  
GG  
Figure 36. Output IP3 vs. VGG2 at 16 GHz  
Figure 34. Gain vs. Frequency at Various IDQ Currents  
0
–2  
0
–2  
25mA  
35mA  
45mA  
55mA  
60mA  
65mA  
25mA  
35mA  
45mA  
55mA  
60mA  
65mA  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 35. Input Return Loss vs. Frequency at Various IDQ Currents  
Figure 37. Output Return Loss vs. Frequency at Various IDQ Currents  
Rev. A | Page 12 of 17  
Data Sheet  
HMC8401  
30  
25  
20  
15  
10  
5
24  
20  
16  
12  
8
–2V  
–1V  
0V  
+1V  
+2V  
–1.8V  
–1.6V  
–1.4V  
–1.2  
–2V  
–1.2  
–1V  
+2V  
–1.8V  
–1.6V  
–1.4V  
4
0
0
2
6
10  
14  
18  
22  
26  
30  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 38. Output IP3 vs Frequency at Various VGG2 Voltages  
Figure 40. PSAT vs. Frequency at Various VGG2 Voltages  
35  
30  
25  
20  
15  
10  
24  
–2V  
–1.2  
–1V  
+2V  
–1.8V  
–1.6V  
–1.4V  
20  
16  
12  
8
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
4
0
0
3
6
9
12  
15  
18  
21  
24  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 41. OIP2 vs. Frequency at Various RF Pout  
Figure 39. P1dB vs. Frequency at Various VGG2 Voltages  
Rev. A | Page 13 of 17  
HMC8401  
Data Sheet  
THEORY OF OPERATION  
The HMC8401 is a GaAs, pHEMT, MMIC low noise amplifier.  
Its basic architecture is that of a cascode distributed amplifier  
with an integrated resistor for the drain. The cascode distributed  
architecture uses a fundamental cell consisting of a stack of two  
field effect transistors (FETs) with the source of the upper FET  
connected to drain of the lower FET. The fundamental cell is then  
duplicated several times with an RFIN transmission line intercon-  
necting the gates of the lower FETs and an RFOUT transmission  
line interconnecting the drains of the upper FETs.  
Though the gate bias voltages of the upper FETs are set internally  
by a resistive voltage divider tapped off of VDD, the VGG2 pad is  
provided to allow the user an optional means of changing the  
gate bias of the upper FETs. Adjustment of the VGG2 voltage  
across the range from −2 V through +2.4 V changes the gate  
bias of the upper FETs, thus affecting gain changes of  
approximately 4 dB, depending on frequency. Increasing the  
voltage applied to VGG2 increases the gain, while decreasing the  
voltage decreases the gain. For the nominal VDD = 7.5 V, the  
resulting VGG2 open circuit voltage is approximately 2.06 V.  
Additional circuit design techniques are used around each cell  
to optimize the overall bandwidth and noise figure. The major  
benefit of this architecture is that a low noise figure is maintained  
across a bandwidth far greater than what a single instance of the  
fundamental cell provides. A simplified schematic of this  
architecture is shown in Figure 42.  
A voltage applied to the VGG1 pad sets the gate bias of the lower  
FETs, providing control of the drain current. Unlike the upper  
FETs, a gate bias voltage for the lower FETs is not generated  
internally. For this reason, the application of a bias voltage to the  
V
GG1 pad is required and not optional.  
V
ACG  
DD  
To operate the HMC8401 at voltages lower than the nominal 7.5 V,  
use a bias tee to apply 5.25 V to the drain via the RFOUT pad.  
T-LINE  
RFOUT  
When using this alternate bias configuration, leave the VDD pad  
open and adjust VGG1 to obtain a nominal quiescent IDD = 60 mA.  
V
2
GG  
Though data taken using the alternate bias configuration is not  
presented on this data sheet, the resulting performance differs only  
slightly from that obtained using the typical bias configuration. The  
small signal gain is a few tenths of dB greater, the compression  
characteristics are slightly harder, and the noise figure characteristics  
remain mostly unchanged.  
T-LINE  
RFIN  
For additional information regarding this alternate bias  
configuration, contact Analog Devices Applications.  
V
1 ACG ACG  
GG  
Figure 42. Architecture and Simplified Schematic  
Rev. A | Page 14 of 17  
 
 
Data Sheet  
HMC8401  
APPLICATIONS INFORMATION  
BIASING PROCEDURES  
0.05mm (0.002") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
Capacitive bypassing is required for VDD and VGG1, as shown in  
the typical application circuit in Figure 44. Gain control is  
possible through the application of a dc voltage to VGG2. If gain  
control is used, then VGG2 must be bypassed by 100 pF, 0.1 μF, and  
4.7 μF capacitors. If gain control is not used, then VGG2 can be  
either left open or capacitively bypassed as described.  
RF GROUND PLANE  
The recommended bias sequence during power-up is as follows:  
0.150mm  
(0.005”) THICK  
MOLY TAB  
1. Set VGG1 to −2.0 V to pinch off the channels of the lower  
FETs.  
0.254mm (0.010") THICK ALUMINA  
THIN FILM SUBSTRATE  
Figure 43. Routing RF Signals with Molytab  
2. Set VDD to 7.5 V. Because the lower FETs are pinched off,  
I
DQ remains very low upon application of VDD.  
To minimize bond wire length, place microstrip substrates as  
close to the die as possible. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (3 mil to 6 mil).  
3. Adjust VGG1 to be more positive until the desired quiescent  
drain current is obtained.  
4. Apply the RF input signal.  
5. If the gain control function is to be used, apply to VGG2 a  
voltage within the range of −2.0 V to +2.4 V until the  
desired gain is achieved.  
Handling Precautions  
To avoid permanent damage, adhere to the following precautions:  
All bare die ship in either waffle or gel-based ESD protective  
containers, sealed in an ESD protective bag. After the sealed  
ESD protective bag is opened, store all die in a dry nitrogen  
environment.  
Use of the VGG2 (the gain control function) affects the drain  
current.  
The recommended bias sequence during power-down is as follows:  
Handle the chips in a clean environment. Never use liquid  
cleaning systems to clean the chip.  
1. Turn off the RF input signal.  
2. Remove the VGG2 voltage or set it to 0 V.  
3. Set VGG1 to −2.0 V to pinch off the channels of the lower  
FETs.  
4. Set VDD to 0 V.  
5. Set VGG1 to 0 V.  
Follow ESD precautions to protect against ESD strikes.  
While bias is applied, suppress instrument and bias supply  
transients. To minimize inductive pickup, use shielded  
signal and bias cables.  
Handle the chip along the edges with a vacuum collet or  
with a sharp pair of bent tweezers. The surface of the chip  
may have fragile air bridges and must not be touched with  
vacuum collet, tweezers, or fingers.  
Power-up and power-down sequences may differ from the ones  
described, though care must always be taken to ensure adherence  
to the values shown in the Absolute Maximum Ratings.  
Unless otherwise noted, all measurements and data shown  
were taken using the typical application circuit (see Figure 44),  
configured as shown on the assembly diagram (see Figure 45)  
and biased per the conditions in this section. The bias conditions  
shown in this section are the operating points recommended to  
optimize the overall performance. Operation using other bias  
conditions may provide performance that differs from what is  
shown in this data sheet. To obtain the best performance while  
not damaging the device, follow the recommended biasing  
sequence outlined in this section.  
Mounting  
The chip is back metallized and can be die mounted with gold/tin  
(AuSn) eutectic preforms or with electrically conductive epoxy.  
The mounting surface must be clean and flat.  
Eutectic Die Attach  
It is best to use an 80% gold/20% tin preform with a work surface  
temperature of 255°C and a tool temperature of 265°C. When  
hot 90% nitrogen/10% hydrogen gas is applied, maintain tool tip  
temperature at 290°C. Do not expose the chip to a temperature  
greater than 320°C for more than 20 sec. No more than 3 sec of  
scrubbing is required for attachment.  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETERWAVE GaAs MMICs  
Epoxy Die Attach  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy. To bring RF to and from the chip, use 50 Ω  
microstrip transmission lines on 0.127 mm (5 mil) thick alumina  
thin film substrates (see Figure 43).  
ABLETHERM 2600BT is recommended for die attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip after placing it into position. Cure the epoxy per the schedule  
provided by the manufacturer.  
Rev. A | Page 15 of 17  
 
 
 
 
HMC8401  
Data Sheet  
Wire Bonding  
Create ball bonds with a force of 40 g to 50 g and wedge bonds  
with a force of 18 g to 22 g. Create all bonds with a nominal stage  
temperature of 150°C. Apply a minimum amount of ultrasonic  
energy to achieve reliable bonds. Keep all bonds as short as  
possible, less than 12 mil (0.31 mm).  
RF bonds made with 0.003 in. × 0.0005 in. gold ribbon are recom-  
mended for the RF ports. These bonds must be thermosonically  
bonded with a force of 40 g to 60 g. DC bonds of 1 mil (0.025 mm)  
diameter, thermosonically bonded, are recommended.  
TYPICAL APPLICATION CIRCUIT  
V
DD  
4.7µF  
0.1µF  
2
100pF  
3
8
V
2
GG  
4
7
4.7µF  
0.1µF  
100pF  
5
RFOUT  
6
RFIN  
1
100pF  
0.1µF  
100pF  
4.7µF  
V
1
GG  
4.7µF  
0.1µF  
Figure 44. Typical Application Circuit  
ASSEMBLY DIAGRAM  
+
ALL BOND WIRES ARE  
1mil DIAMETER  
+
4.7µF  
4.7µF  
TO V SUPPLY  
DD  
0.1µF  
3mil NOMINAL GAP  
100pF  
TO V 2 SUPPLY  
GG  
0.1µF  
100pF  
100pF  
50Ω  
TRANSMISSION  
LINE  
100pF  
TO V 1 SUPPLY  
GG  
0.1µF  
0.1µF  
4.7µF  
4.7µF  
+
+
Figure 45. Assembly Diagram  
Rev. A | Page 16 of 17  
 
 
 
 
Data Sheet  
HMC8401  
OUTLINE DIMENSIONS  
2.549  
0.050  
0.013  
0.127  
3
4
0.536  
0.187  
0.187  
5
2
0.158  
1.614  
0.187  
0.187  
1
0.799  
8
7
6
0.449  
K8801  
0.146  
TOP VIEW  
SIDE VIEW  
0.009  
0.010  
1.891  
0.136  
0.152  
0.131  
0.118  
Figure 46. 8-Pad Bare Die [CHIP]  
(C-8-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−55°C to +85°C  
Package Description  
8-Pad Bare Die [CHIP]  
8-Pad Bare Die [CHIP]  
Package Option  
C-8-8  
C-8-8  
HMC8401  
HMC8401-SX  
−55°C to +85°C  
1 The HMC8401-SX is a sample order of two devices.  
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13850-0-9/17(A)  
Rev. A | Page 17 of 17  
 
 

相关型号:

HMC8401_18

Low Noise Amplifier
ADI

HMC8402

Low Noise Amplifier
ADI

HMC8402-SX

Low Noise Amplifier
ADI

HMC840LP6CE

FRACTIONAL-N PLL WITH INTEGRATED VCO 1310 - 1415, 2620 - 2830, 5240 - 5660 MHz
HITTITE

HMC840LP6CE

Fractional-N PLL with Integrated VCO SMT, 1.31 - 5.66 GHz
ADI

HMC840LP6CETR

Fractional-N PLL with Integrated VCO SMT, 1.31 - 5.66 GHz
ADI

HMC840LP6CETR

Phase Locked Loop
HITTITE

HMC8410

Low Noise Amplifier
ADI

HMC8410CHIPS

0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier
ADI

HMC8410CHIPS-SX

Low noise figure: 1.1 dB typical
ADI

HMC8410LP2FE

0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier
ADI

HMC8410LP2FETR

Low Noise Amplifier
ADI