OP200GS [ADI]

Dual Low Offset, Low Power Operational Amplifier; 双低失调,低功耗运算放大器
OP200GS
型号: OP200GS
厂家: ADI    ADI
描述:

Dual Low Offset, Low Power Operational Amplifier
双低失调,低功耗运算放大器

运算放大器 光电二极管
文件: 总12页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Low Offset, Low Power  
Operational Amplifier  
a
OP200  
PIN CONNECTIONS  
FEATURES  
Low Input Offset Voltage: 75 V Max  
Low Offset Voltage Drift, Over –55C TA +125C:  
0.5 V/C Max  
16-Pin SOIC  
(S-Suffix)  
<
<
Low Supply Current (Per Amplifier): 725 mA Max  
High Open-Loop Gain: 5000 V/mV Min  
Low Input Bias Current: 2 nA Max  
Low Noise Voltage Density: 11 nV/÷Hz at 1 kHz  
Stable with Large Capacitive Loads: 10 nF Typ  
Pin Compatible to OP221, MC1458, and LT1013 with  
Improved Performance  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
–IN A  
+IN A  
NC  
OUT A  
NC  
NC  
V–  
V+  
NC  
NC  
+IN B  
–IN B  
NC  
NC  
Available in Die Form  
OUT B  
NC  
GENERAL DESCRIPTION  
The OP200 is the first monolithic dual operational amplifier to  
offer OP77 type precision performance. Available in the industry  
standard 8-pin pinout, the OP200 combines precision performance  
with the space and cost savings offered by a dual amplifier.  
NC = NO CONNECT  
EPOXY MINI-DI  
(P-Suffix),  
P
The OP200 features an extremely low input offset voltage of less  
than 75 mV with a drift below 0.5 mV/C, guaranteed over the full  
military temperature range. Open-loop gain of the OP200 exceeds  
5,000,000 into a 10 kW load; input bias current is under 2 nA;  
CMR is over 120 dB and PSRR below 1.8 mV/V. On-chip zener-  
zap trimming is used to achieve the extremely low input offset  
voltage of the OP200 and eliminates the need for offset pulling.  
8-Pin Hermetic DIP  
(Z-Suffix)  
V+  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V–  
A
OUT B  
–IN B  
+IN B  
+
Power consumption of the OP200 is very low, with each amplifier  
drawing less than 725 mA of supply current. The total current  
drawn by the dual OP200 is less than one-half that of a single  
OP07, yet the OP200 offers significant improvements over this  
industry standard op amp. The voltage noise density of the OP200,  
11 nV/÷Hz at 1 kHz, is half that of most competitive devices.  
B
+
The OP200 is an ideal choice for applications requiring multiple  
precision op amps and where low power consumption is critical.  
The OP200 is pin compatible with the OP221, LM158,  
MC1458/1558, and LT1013.  
For a quad precision op amp, see the OP400.  
V+  
BIAS  
OUT  
VOLTAGE  
LIMITING  
NETWORK  
+IN  
–IN  
V–  
Figure 1. Simplified Schematic (One of two amplifiers is shown.)  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP200–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
(VS = ±15 V, TA = 25C, unless otherwise noted.)  
OP200A/E  
OP200F  
OP200G  
Parameter  
Symbol Conditions  
Min Typ Max Min Typ Max Min Typ Max  
Unit  
Input Offset Voltage VOS  
25  
75  
50  
150  
80  
200  
mV  
Long Term Input  
Voltage Stability  
0.1  
0.1  
0.1  
mV/mo  
nA  
Input Offset Current IOS  
VCM = 0 V  
0.05 1.0  
0.05 2.0  
0.05 3.5  
Input Bias Current  
IB  
VCM = 0 V  
0.1  
0.5  
2.0  
0.1  
0.5  
4.0  
0.1  
0.5  
5.0  
nA  
Input Noise Voltage en p-p  
0.1 Hz to 10 Hz  
mVp-p  
nV/ΊHz  
Input Noise  
en  
fO = 10 Hz  
fO = 1000 Hz  
22  
11  
36  
18  
22  
11  
36  
18  
22  
11  
Voltage Density1  
Input Noise Current in p-p  
0.1 Hz to 10 Hz  
fO = 10 Hz  
15  
15  
15  
pAp-p  
pA/ΊHz  
MW  
Input Noise  
Current Density  
Input Resistance  
in  
0.4  
10  
0.4  
10  
0.4  
10  
Differential Mode RIN  
Input Resistance  
Common Mode  
RINCM  
AVO  
125  
125  
125  
GW  
Large Signal  
Voltage Gain  
VO - ±10 V  
RL = 10 kW  
RL = 2 kW  
5000 12000  
2000 3700  
3000 7000  
1500 3200  
3000 7000  
1500 3200  
M/mV  
NOTES  
1Sample tested  
2Guaranteed but not 100% tested  
3Guaranteed by CMR test  
–2–  
REV. A  
OP200  
(VS = 15 V, –55C £ TA £ +125C for OP200A, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP200A  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
Max  
125  
0.5  
Unit  
Input Offset Voltage  
Average Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
45  
mV  
TCVOS  
IOS  
0.2  
mV/C  
nA  
VCM = 0 V  
VCM = 0 V  
0.15  
0.9  
2.5  
IB  
5.0  
nA  
Large Signal Voltage Gain  
AVO  
VO = 10 V  
RL = 10 W  
RL = 2 kW  
3000  
1000  
9000  
2700  
V/mV  
V/mV  
Input Voltage Range*  
IVR  
±12  
±12.5  
130  
V
Common-Mode Rejection  
Power Supply Rejection Ratio  
Output Voltage Swing  
CMR  
PSRR  
VO  
VCM = ±12 V  
115  
dB  
VS = +3 V to +18 V  
0.2  
3.2  
mV/V  
RL = 10 kW  
RL = 2 kW  
±12  
±11  
±12.4  
±12  
V
V
Supply Current Per Amplifier  
Capacitive Load Stability  
ISY  
No Load  
AV = +1  
600  
8
775  
mA  
nF  
NOTE  
*Guaranteed by CMR test.  
ELECTRICAL CHARACTERISTICS (VS = 15 V, TA = 25C, unless otherwise noted.)  
OP200A/E  
OP200F  
OP200G  
Parameter  
Symbol Conditions  
Min  
Typ Max Min Typ Max Min Typ Max  
Unit  
Input Voltage Range3 IVR  
±12  
±13  
135  
0.4  
±12  
±13  
135  
0.4  
±12  
±13  
130  
0.6  
V
Common-Mode  
Rejection  
CMR  
VCM = ±12 V  
120  
115  
110  
dB  
Power Supply  
VS = ±3 V  
to ±18 V  
Rejection Ratio  
PSRR  
VO  
1.8  
3.2  
5.6  
mV/V  
Output Voltage  
Swing  
RL= 10 kW  
RL = 2 kW  
±12  
±11  
±12.6  
±12.2  
±12  
±11  
±12.6  
±12.2  
±12  
±11  
±12.6  
±12.2  
V
V
Supply Current  
Per Amplifier  
ISY  
SR  
No Load  
570  
725  
570  
725  
570  
725  
mA  
Slew Rate  
0.1  
0.15  
0.1  
0.15  
0.1  
0.15  
V/mS  
Gain Bandwidth  
Product  
GBWP  
AV = 1  
500  
500  
500  
kHz  
Channel Separation2  
VO = 20 Vp-p  
fO = 10 Hz  
CS  
123  
145  
3.2  
123  
145  
3.2  
123  
145  
3.2  
dB  
pF  
Input Capacitance  
CIN  
Capacitive Load  
Stability  
AV = 1  
No Oscillations  
10  
10  
10  
nF  
NOTES  
1Sample tested  
2Guaranteed but not 100% tested  
3Guaranteed by CMR test  
–3–  
REV. A  
OP200–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = ±15 V, –40C £ TA £ +85C, unless otherwise noted.)  
OP200E  
Min  
OP200F  
OP200G  
Parameter  
Symbol Conditions  
Typ Max Min Typ Max Min Typ Max  
Unit  
Input Offset Voltage VOS  
35  
100  
80  
250  
110  
300  
mV  
Average Input Offset  
Voltage Drift  
TCVOS  
0.2  
0.5  
0.5  
1.5  
0.6  
0.1  
0.5  
2.0  
mV/C  
nA  
Input Offset Current IOS  
VCM = 0 V  
VCM = 0 V  
0.08 2.5  
0 3 5.0  
0.08 3.5  
6.0  
Input Bias Current  
IB  
0.3  
70  
10.0  
nA  
Large-Signal  
Voltage Gain  
VO = ±10 V  
RL= 10 kW  
RL = 2 kW  
AVO  
3000 10000  
1500 3200  
2000 5000  
1000 2500  
2000 5000  
1000 2500  
V/mV  
V/mV  
Input Voltage  
Range*  
IVR  
±12  
±12.5  
±12  
±12.5  
±12  
±12.5  
V
Common-Mode  
Rejection  
CMR  
PSRR  
VCM = ±12 V  
115  
130  
110  
130  
105  
130  
0.3  
dB  
Power Supply  
Rejection Ratio  
VS = ±3 V  
to ±18 V  
0.15 3.2  
0.15 5.6  
10.0  
775  
mV/V  
Output Voltage  
Swing  
VO  
RL = 10 kW  
RL = 2 kW  
±12  
±11  
±12.4  
±12  
±12  
±11  
±12.4  
±12  
±12  
±11  
±12.4  
±12.2  
V
V
Supply Current  
Per Amplifier  
ISY  
No Load  
600  
775  
600  
775  
600  
mA  
Capacitive Load  
Stability  
AV = 1  
No Oscillations  
10  
10  
10  
10  
10  
10  
nF  
nF  
NOTE  
*Guaranteed by CMR test.  
–4–  
REV. A  
OP200  
1/2  
20Vp-p @ 10Hz  
V
V
100ꢄ  
10kꢄ  
1
OP200  
50kꢄ  
50ꢄ  
1/2  
TO SPECTRUM  
ANALYZER  
e
OUT  
OP200  
1/2  
1/2  
2
OP200  
OP200  
e
(nV/ Hz) = 2 e  
(nV/ Hz) 101  
V
OUT  
OUT  
1
CHANNEL SEPARATION = 20 LOG  
V /1000  
2
Figure 2. Channel Separation Test Circuit  
Figure 3. Noise Test Schematic  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Package  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
Output Short-Circuit Duration . . . . . . . . . . . . . . Continuous  
Storage Temperature Range  
P, S, Z-Package . . . . . . . . . . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300C  
Junction Temperature (TJ) . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range  
TA = 25C  
OS Max  
(V)  
Operating  
Temperature  
Range  
V
CERDIP  
8-Pin  
Plastic  
75  
75  
150  
200  
200  
OP200AZ  
OP200EZ  
OP200FZ*  
MIL  
XIND  
XIND  
XIND  
XIND  
OP200GP  
OP200GS  
OP200A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55C to +125C  
OP200E, OP200F . . . . . . . . . . . . . . . . . . . . –40C to +85C  
OP200G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
*Not for new design, obsolete April 2002.  
For military processed devices, please refer to the Standard  
Microcircuit Drawing (SMD) available at  
2
Package Type  
JA  
JC  
Unit  
www.dscc.dla.mil/programs/milspec/default.asp  
8-Pin Hermetic DIP (Z)  
8-Pin Plastic DIP (P)  
16-Pin SOL (S)  
148  
96  
92  
16  
37  
27  
C/W  
C/W  
C/W  
SMD Part Number  
ADI Equivalent  
NOTES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
5962-8859301M2A  
5962-8859301MPA  
OP200ARCMDA  
OP200AZMDA  
otherwise noted.  
2
JA is specified for worst case mounting conditions, i.e., JA is specified for  
device in socket for CERDIP and P-DIP packages; JA is specified for device  
soldered to printed circuit board for SOL package.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP200 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–5–  
–Typical Performance Characteristics  
OP200  
60  
3
2
T
= 25C  
= 15V  
A
S
V = 15V  
S
V
= 15V  
S
V
50  
40  
30  
20  
2
1
5
1
0
–1  
–2  
–3  
10  
0
–75 –50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
–75 –50 –25  
0
25  
50  
75 100 125  
TIME – Minutes  
TEMPERATURE – C  
TEMPERATURE – C  
TPC 1. Warm-Up Drift  
TPC 2. Input Offset Voltage  
vs. Temperature  
TPC 3. Input Bias Current vs.  
Temperature  
300  
250  
200  
150  
100  
50  
140  
120  
100  
1.0  
0.8  
0.6  
T
= 25C  
V
= 15V  
A
S
T
= 25C  
S
A
S
V
= 15V  
V
= 15V  
80  
60  
0.4  
0.2  
0
40  
20  
0
0
–75 –50 –25  
0
25  
50  
75 100 125  
1
10  
100  
1k  
10k  
100k  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE – C  
FREQUENCY – Hz  
COMON-MODE VOLTAGE – V  
TPC 4. Input Offset Current vs.  
Temperature  
TPC 5. Input Bias Current vs.  
Common-Mode Voltage  
TPC 6. Common-Mode Rejection  
vs. Frequency  
100  
1000  
T
= 25C  
= 15V  
T
= 25C  
= 15V  
A
S
A
S
V
V
100  
10  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 7. Voltage Noise Density  
vs. Frequency  
TPC 8. Current Noise Density  
vs. Frequency  
TPC 9. 0.1 to 10Hz Noise  
–6–  
REV. A  
OP200  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.16  
1.15  
1.14  
1.13  
140  
120  
100  
80  
TWO AMPLIFIERS  
= 25C  
NEGATIVE  
SUPPLY  
TWO AMPLIFIERS  
= 15V  
T
A
V
S
POSITIVE  
SUPPLY  
60  
40  
1.12  
1.11  
20  
0
T
= 25C  
A
–75 –50 –25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
1k  
10k  
100k  
2  
6  
10  
14  
16  
FREQUENCY – Hz  
TEMPERATURE – C  
SUPPLY VOLTAGE – V  
TPC 10. Total Supply Current  
vs. Supply Voltage  
TPC 11. Total Supply Current  
vs. Temperature  
TPC 12. Power Supply Rejection  
vs. Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
6000  
140  
120  
100  
80  
V
= 15V  
= 2kꢄ  
T
= 25C  
= 15V  
S
L
A
S
R
V
5000  
4000  
3000  
2000  
60  
0
PHASE  
90  
135  
40  
GAIN  
10k  
20  
0.2  
0.1  
1000  
0
180  
0
–20  
10  
–75 –50 –25  
0
25  
50  
75 100 125  
–75 –50 –25  
0
25  
50  
75 100 125  
1M  
100  
1k  
100k  
TEMPERATURE – C  
TEMPERATURE – C  
FREQUENCY – Hz  
TPC 13. Power Supply Rejection  
vs. Temperature  
TPC 14. Open Loop Gain vs.  
Temperature  
TPC 15. Open Loop Gain and  
Phase Shift vs. Frequency  
140  
30  
1
A
A
A
= 100  
= 10  
= 1  
V
T
= 25C  
T
= 25C  
A
S
A
S
V
= 15V  
V
= 15V  
120  
100  
25  
20  
15  
10  
5
V
V
A
= 1000  
V
0.1  
80  
60  
40  
A
= 100  
= 10  
= 1  
V
V
A
A
0.01  
T
= 25C  
= 15V  
A
S
V
V
20  
0
V
R
= 10V p-p  
OUT  
= 2kꢄ  
L
0
10  
0.001  
100  
1k  
FREQUENCY – Hz  
10k  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 16. Closed Loop Gain  
vs. Frequency  
TPC 17. Maximum Output Swing  
vs. Frequency  
TPC 18. Total Harmonic Distortion  
vs. Frequency  
–7–  
REV. A  
OP200  
50  
29  
28  
27  
26  
25  
24  
23  
22  
150  
140  
130  
120  
T
= 25C  
A
S
T
= 25C  
45  
40  
A
S
V
= 15V  
V
= 15V  
FALLING  
RISING  
35  
30  
25  
20  
15  
10  
SINKING  
110  
100  
90  
SOURCING  
1
5
0
0
0.5  
1.0  
1.5  
1.0  
1.5  
3.0  
0
2
3
4
5
10  
100  
1k  
10k  
100k  
CAPACITIVE LOAD – nF  
TIME – Minutes  
FREQUENCY – Hz  
TPC 19. Overshoot vs.  
Capacitive Load  
TPC 20. Short-Circuit  
Current vs. Time  
TPC 21. Channel Separation  
vs. Frequency  
TPC 22. Large-Signal  
Transient Response  
TPC 23. Small-Signal  
Transient Response  
TPC 24. Small-Signal Transient  
Response CLOAD = 1 nF  
APPLICATIONS INFORMATION  
+15V  
The OP200 is inherently stable at all gains and is capable of  
driving large capacitive loads without oscillating. Nonetheless,  
good supply decoupling is highly recommended. Proper supply  
decoupling reduces problems caused by supply line noise and  
improves the capacitive load driving capability of the OP200.  
3
2
8
1/2  
V
1
IN  
V
OP200AZ  
OUT  
5
6
7
1/2  
4
OP200AZ  
–15V  
20kꢄ  
APPLICATIONS  
20kꢄ  
5kꢄ  
5kꢄ  
DUAL LOW-POWER INSTRUMENTATION AMPLIFIER  
A dual instrumentation amplifier that consumes less than 33 mW  
of power per channel is shown in Figure 4. The linearity of the  
instrumentation amplifier exceeds 16 bits in gains of 5 to 200  
and is better than 14 bits in gains from 200 to 1000. CMRR is  
above 115 dB (Gain = 1000). Offset voltage drift is typically  
0.2 mV/C over the military temperature range which is compa-  
rable to the best monolithic instrumentation amplifiers. The  
bandwidth of the low-power instrumentation amplifier is a func-  
tion of gain and is shown below:  
V
REF  
R
G
40000  
V
=
5 +  
V
+ V  
OUT  
IN REF  
R
G
Figure 4. Dual Low-Power Instrumentation Amplifier  
The output signal is specified with respect to the reference  
input, which is normally connected to analog ground. The  
reference input can be used to offset the output from –10 V  
to +10 V if required.  
Gain  
Bandwidth  
5
10  
100  
1000  
150 kHz  
67 kHz  
7.5 kHz  
500 Hz  
–8–  
REV. A  
OP200  
PRECISION ABSOLUTE VALUE AMPLIFIER  
PRECISION CURRENT PUMP  
The circuit of Figure 5 is a precision absolute value amplifier  
with an input impedance of 10 MW. The high gain and low  
TCVOS of the OP200 ensure accurate operation with microvolt  
input signals. In this circuit, the input always appears as a  
common-mode signal to the op amps. The CMR of the OP200  
exceeds 120 dB, yielding an error of less than 2 ppm.  
Maximum output current of the precision current pump shown  
in Figure 6 is ±10 mA. Voltage compliance is ±10 V with ±15 V  
supplies. Output impedance of the current transmitter exceeds  
3 MW with linearity better than 16 bits.  
R3  
R1  
10kꢄ  
10kꢄ  
2
3
R5  
+15  
C2  
100ꢄ  
1/2  
1
I
V
R2  
OUT  
0.1pF  
OP200EZ  
IN  
10kꢄ  
+15  
8
R1  
R3  
1kꢄ  
1kꢄ  
5
6
R4  
7
1/2  
1kꢄ  
6
C1  
D1  
OP200EZ  
30pF  
1N4148  
1/2  
7
3
8
V
< 10V  
OP200AZ  
OUT  
4
1/2  
1
5
0V < V  
OUT  
OP200AZ  
V
RS  
V
IN  
100ꢄ  
IN  
D1  
2
I
=
=
= 10mA/V  
V
OUT  
IN  
1N4148  
C2  
4
–15  
R2  
0.1pF  
2kꢄ  
Figure 6. Precision Current Pump  
–15  
DUAL 12-BIT VOLTAGE OUTPUT DAC  
Figure 5. Precision Absolute Value Amplifier  
The dual output DAC shown in Figure 7 is capable of providing  
untrimmed 12-bit accurate operation over the entire military  
temperature range. Offset voltage, bias current and gain errors  
of the OP-200 contribute less than 1/lO of an LSB error at 12  
bits over the military temperature range.  
5V  
21  
V
DD  
R
A
8
FB  
3
2
DAC-8222EW  
10V  
REFERENCE  
VOLTAGE  
DAC A  
1/2  
I
A
V
A
OUT  
4
REF  
2
DAC8212AV  
1/2  
1
4
OUTA  
–15V  
OP200AZ  
3
+
DAC DATA BUS  
PINS 6(MSB) – 17(LSB)  
23  
24  
1
R
B
FB  
DAC B  
1/2  
I
B
V
B
OUT  
6
5
22 REF  
DAC8212AV  
1/2  
7
OUTB  
OP200AZ  
AGND  
18  
DAC A/DAC B  
+
19  
20  
DAC  
CS  
CONTROL  
WR  
DGND  
5
Figure 7. Dual 12-Bit Voltage Output DAC  
REV. A  
–9–  
OP200  
+5V  
DUAL PRECISION VOLTAGE REFERENCE  
–2.5V  
A dual OP200 and a REF-43, a 2.5 V reference, can be used to  
build a ±2.5 V precision voltage reference. Maximum output  
current from each reference is ±10 mA with load regulation  
under 25 mV/mA. Line regulation is better than 15 mV/V and  
output voltage drift is under 20 mV/C. Output voltage noise  
from 0.1 Hz to 10 Hz is typically 75 mV p-p. R1 and D1 ensure  
correct start-up.  
R2  
10kꢄ  
R1  
22kꢄ  
2
3
8
D1  
1N914  
1/2  
OP-200AZ  
2
4
R4  
R3  
10kꢄ  
6
6
PROGRAMMABLE HIGH RESOLUTION WINDOW  
COMPARATOR  
5kꢄ  
REF-43A  
–5V  
7
1/2  
4
OP200AZ  
The programmable window comparator shown in Figure 9 is  
easily capable of 12-bit accuracy over the full military tempera-  
ture range. A dual CMOS 12-bit DAC, the DAC-8212, is used  
in the voltage switching mode to set the upper and lower thresh-  
olds (DAC A and DAC B, respectively).  
5
–2.5V  
Figure 8. Dual Precision Voltage Reference  
15V  
V
IN  
21  
V
DD  
8
DAC A  
1/2  
I
A
R
A
4
10V  
2
OUT  
REF  
3
2
+
REFERENCE  
DAC8212AV  
1/2  
1
5V  
R1  
OP200AZ  
10kꢄ  
D1  
R3  
1N4148  
TTL OUT  
10kꢄ  
DAC DATA BUS  
PINS 6(MSB) – 17(LSB)  
–15V  
Q1  
R4  
2N2222  
D2  
4
5
10kꢄ  
+
1N4148  
R2  
1/2  
7
10kꢄ  
OUTB  
OP200AZ  
DAC B  
1/2  
R
B
I
B
REF 22  
24  
OUT  
DAC8212AV  
18  
19  
20  
DAC A/DAC B  
DAC  
CONTROL  
SIGNALS  
CS  
WR  
DGND AGND  
5
1
Figure 9. Programmable High Resolution Window Comparator  
–10–  
REV. A  
OP200  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
PIN CONNECTIONS  
16-Pin SOIC  
(S-Suffix)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
1
9
8
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
45ꢁ  
8ꢁ  
0ꢁ  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
Epoxy MINI-DI  
(P-Suffix)  
P
0.430 (10.92)  
0.348 (8.84)  
8
5
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.160 (4.06)  
0.115 (2.93)  
0.195 (4.95)  
0.115 (2.93)  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558) 0.070 (1.77) SEATING  
PLANE  
0.014 (0.356) 0.045 (1.15)  
8-Pin Hermetic DIP  
(Z-Suffix)  
0.005 (0.13) 0.055 (1.4)  
MIN  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
0.100 (2.54)  
0.405 (10.29) MAX  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
15  
0
0.023 (0.58) 0.070 (1.78)  
0.014 (0.36) 0.030 (0.76)  
PLANE  
REV. A  
–11–  
OP200  
Revision History  
Location  
Page  
Data Sheet changed from REV. 0 to REV. A.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
–12–  
REV. A  

相关型号:

OP200GS-REEL

Dual Low Offset, Low Power Operational Amplifier
ADI

OP200GSZ

Dual Low Offset, Low Power Operational Amplifier
ADI

OP200GSZ-REEL

Dual Low Offset, Low Power Operational Amplifier
ADI

OP200GZ

Dual Low Offset, Low Power Operational Amplifier
ADI

OP200_04

Dual Low Offset, Low Power Operational Amplifier
ADI

OP20420000J0G

Strip Terminal Block,
AMPHENOL

OP20422000J0G

Strip Terminal Block
AMPHENOL

OP207

DUAL ULTRALOW VOS MATCHED OPERATIONAL AMPLIFIER
ADI

OP207-903Y

DUAL OP-AMP, 230uV OFFSET-MAX, CDIP14, CERAMIC, DIP-14
ADI

OP207AY

Operational Amplifier, 2 Func, 230uV Offset-Max, BIPolar, CDIP14
CALOGIC

OP207AY

IC DUAL OP-AMP, 230 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, DIP-14, Operational Amplifier
ADI

OP207AY/883

IC DUAL OP-AMP, 230 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, DIP-14, Operational Amplifier
ADI