SZSZM2220SZ [ADI]

TRANSISTOR 20 mA, 36 V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, SO-8, BIP General Purpose Small Signal;
SZSZM2220SZ
型号: SZSZM2220SZ
厂家: ADI    ADI
描述:

TRANSISTOR 20 mA, 36 V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, SO-8, BIP General Purpose Small Signal

放大器 光电二极管 晶体管
文件: 总12页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Audio Dual Matched PNP Transistor  
SSM2220  
Data Sheet  
FEATURES  
PIN CONNECTION DIAGRAM  
SSM2220  
Low voltage noise at 100 Hz, 1 nV/√Hz maximum  
High gain bandwidth: 190 MHz typical  
Gain at IC = 1 mA, 165 typical  
Tight gain matching: 3% maximum  
Outstanding logarithmic conformance: rBE = 0.3 Ω typical  
Low offset voltage: 200 μV maximum  
TOP VIEW  
(Not to Scale)  
C
B
E
1
2
3
4
8
7
6
5
C
B
E
1
1
1
2
2
2
NC  
NC  
NOTES  
APPLICATIONS  
1. NC = NO CONNECT. THIS PIN IS  
NOT CONNECTED INTERNALLY.  
Microphone preamplifiers  
Tape head preamplifiers  
Figure 1.  
Current sources and mirrors  
Low noise precision instrumentation  
Voltage controlled amplifiers/multipliers  
GENERAL DESCRIPTION  
The SSM2220 is a dual, low noise, matched PNP transistor, which  
has been optimized for use in audio applications.  
across the base to emitter junction were used to clamp any reverse  
base to emitter junction potential. This prevents a base to emitter  
breakdown condition, which can result in degradation of gain and  
matching performance due to excessive breakdown current.  
The ultralow input voltage noise of the SSM2220 is typically only  
0.7 nV/√Hz over the entire audio bandwidth of 20 Hz to 20 kHz.  
The low noise, high bandwidth (190 MHz), and offset voltage of  
(200 μV maximum) make the SSM2220 an ideal choice for demand  
ing, low noise preamplifier applications.  
Another feature of the SSM2220 is its very low bulk resistance  
of 0.3 Ω typical, which assures accurate logarithmic conformance.  
The SSM2220 is offered in 8-lead plastic dual inline (PDIP) and  
8-lead standard small outline (SOIC), and its performance and  
characteristics are guaranteed over the extended industrial temper-  
ature range of −40°C to +85°C.  
The SSM2220 also offers excellent matching of the current gain  
(ΔhFE) to about 0.5%, which helps to reduce the high order ampli-  
fier harmonic distortion. In addition, to ensure the long-term  
stability of the matching parameters, internal protection diodes  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
SSM2220  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................5  
Applications Information.................................................................8  
Super Low Noise Amplifier..........................................................8  
Low Noise Microphone Preamplifier .........................................9  
Noise Measurement ................................................................... 10  
Current Sources.......................................................................... 10  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Pin Connection Diagram ................................................................ 1  
General Description......................................................................... 1  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
4/13—Rev. B to Rev. C  
11/03—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Features Section and Figure 1..................................... 1  
Change to Endnote 2 and Endnote 4, Table 1............................... 3  
Changed Breakdown Voltage Parameter, Table 2  
Changes to Ordering Guide.............................................................1  
Updated Outline Dimensions..........................................................9  
to Breakdown Voltage (Collector to Emitter), Table 2 ................ 3  
Changes to Table 3............................................................................ 4  
Changes to Figure 8 Caption, Figure 9 Caption,  
and Figure 12..................................................................................... 6  
Change to Figure 15 ......................................................................... 7  
Changes to Super Low Noise Amplifier Section, Figure 16, and  
Figure 17 Caption ............................................................................. 8  
Change to Figure 18 ......................................................................... 9  
Changes to Figure 19 and Noise Measurement Section............ 10  
Changes to Current Sources and Current  
Matching Sections .......................................................................... 11  
Updated Outline Dimensions ....................................................... 12  
Changes to Ordering Guide .......................................................... 12  
Rev. C | Page 2 of 12  
Data Sheet  
SSM2220  
SPECIFICATIONS  
TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
CURRENT GAIN1  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions/Comments  
hFE  
VCB = 0 V to 36 V  
IC = 1 mA  
IC = 100 μA  
IC = 10 μA  
IC = 100 μA, VCB = 0 V  
IC = 1 mA, VCB = 0 V  
80  
70  
60  
165  
150  
120  
0.5  
Current Gain Matching2  
NOISE VOLTAGE DENSITY3  
ΔhFE  
en  
6
%
0.8  
0.7  
0.7  
0.7  
40  
11  
12  
6
2
1
1
1
nV/√Hz fO = 10 Hz  
nV/√Hz fO = 100 Hz  
nV/√Hz fO = 1 kHz  
nV/√Hz fO = 10 kHz  
OFFSET VOLTAGE4  
VOS  
200  
200  
75  
45  
400  
0.75  
μV  
μV  
μV  
nA  
pA  
VCB = 0 V, IC = 100 μA  
Offset Voltage Change vs. Collector Voltage  
Offset Voltage Change vs. Collector Current  
OFFSET CURRENT  
ΔVOS/ΔVCB  
ΔVOS/ΔIC  
IOS  
IC = 100 μA, VCB1 = 0 V, VCB2 = −36 V  
VCB = 0 V, IC1 = 10 μA, IC2 = 1 mA  
IC = 100 μA, VCB = 0 V  
COLLECTOR TO BASE LEAKAGE CURRENT  
BULK RESISTANCE  
ICBO  
50  
0.3  
VCB = −36 V = VMAX  
rBE  
VCB = 0 V, 10 μA ≤ IC ≤ 1 mA  
IC = 1 mA, IB = 100 μA  
COLLECTOR SATURATION VOLTAGE  
VCE(SAT)  
0.026 0.1  
V
1 Current gain is measured at collector to base voltages (VCB) swept from 0 V to VMAX at indicated collector current. Typicals are measured at VCB = 0 V.  
2 Current gain matching (ΔhFE) is defined as follows:  
100(IB )(hFE  
)
min  
ΔhFE  
=
IC  
3 Sample tested. Noise tested and specified as equivalent input voltage for each transistor.  
4 Offset voltage is defined as follows:  
C1   
I
IC2  
KT  
q
VOS = VBE1 VBE2  
=
ln  
where VOS is the differential voltage for IC1 = IC2  
.
ELECTRICAL CHARACTERISTICS  
−40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VCB = 0 V to 36 V  
IC = 1 mA  
IC = 100 μA  
IC = 10 μA  
CURRENT GAIN  
hFE  
60  
50  
40  
125  
105  
90  
OFFSET VOLTAGE  
VOS  
TCVOS  
IOS  
30  
0.3  
10  
265  
1.0  
μV  
μV/°C  
nA  
IC = 100 μA, VCB = 0 V  
IC = 100 μA, VCB = 0 V  
IC = 100 μA, VCB = 0 V  
Offset Voltage Drift1  
OFFSET CURRENT  
200  
BREAKDOWN VOLTAGE (COLLECTOR TO EMITTER)  
BVCEO  
36  
V
1 Guaranteed by VOS test (TCVOS = VOS/T for VOS << VBE), where T = 298K for TA = 25°C.  
Rev. C | Page 3 of 12  
 
 
 
 
 
 
SSM2220  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Parameter  
Rating  
Table 4.  
Breakdown Voltage of  
Collector to Base Voltage (BVCBO  
Collector to Emitter Voltage (BVCEO  
Collector to Collector Voltage (BVCC)  
Emitter to Emitter Voltage (BVEE)  
Current  
1
Package Type  
8-Lead PDIP  
8-Lead SOIC  
θJA  
θJC  
43  
43  
Unit  
°C/W  
°C/W  
)
36 V  
36 V  
36 V  
36 V  
103  
158  
)
1 θJA is specified for worst-case mounting conditions; that is, θJA is specified for a  
device in a socket for the PDIP package, and a device soldered to a printed  
circuit board for SOIC packages.  
Collector (IC)  
Emitter (IE)  
20 mA  
20 mA  
Temperature Range  
Operating  
Storage  
ESD CAUTION  
–40°C to +85°C  
–65°C to +150°C  
–65°C to +150°C  
+300°C  
Junction  
Lead Temperature (Soldering, 60 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 4 of 12  
 
 
 
 
Data Sheet  
SSM2220  
TYPICAL PERFORMANCE CHARACTERISTICS  
250  
200  
V
I
= 5V  
= 1mA  
= 25°C  
T
V
= 25°C  
= 0V  
CE  
A
1s  
R
R
S
S
C
CB  
T
A
f = 1kHz  
40nV  
0V  
150  
100  
50  
R
= 100kΩ  
S
–40nV  
R
= 10kΩ  
S
R
= 1kΩ  
S
VERTICAL = 40nV/DIV  
HORIZONTAL = 1s/DIV  
20mV  
0
1
10  
100  
1000  
COLLECTOR CURRENT (µA)  
Figure 2. Low Frequency Noise  
Figure 5. Total Noise vs. Collector Current  
14  
12  
10  
8
6
V
= 5V  
T
V
= 25°C  
CE  
f = 1kHz  
A
= 0V  
CB  
5
4
3
2
1
0
R
= 1kΩ  
S
10Hz  
R
= 100kΩ  
S
6
4
R
= 10kΩ  
S
2
100Hz  
0
0.001  
0.01  
0.1  
1
0
3
6
9
12  
COLLECTOR CURRENT (mA)  
COLLECTOR CURRENT (mA)  
Figure 3. Noise Figure vs. Collector Current  
Figure 6. Noise Voltage Density vs. Collector Current  
1k  
0.5  
T
V
= 25°C  
= 0V  
T
V
= 25°C  
A
A
= 0V  
0.4  
0.3  
CB  
CB  
100  
10  
1
0.2  
0.1  
0
I
= 10µA  
C
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
I
= 100µA  
C
I
= 1mA  
C
0.1  
0.1  
–8  
–7  
–6  
–5  
–4  
–3  
10  
1
10  
100  
1k  
10k  
100k  
10  
10  
10  
10  
10  
FREQUENCY (Hz)  
COLLECTOR CURRENT (A)  
Figure 4. Emitter to Base Log Conformity  
Figure 7. Noise Voltage Density vs. Frequency  
Rev. C | Page 5 of 12  
 
SSM2220  
Data Sheet  
300  
10  
V
CB  
= 0V  
250  
200  
150  
100  
50  
+125°C  
1
+25°C  
–55°C  
+125°C  
+25°C  
0.1  
–55°C  
0
0.01  
10  
100  
COLLECTOR CURRENT (µA)  
1000  
0.01  
0.1  
1
10  
COLLECTOR CURRENT (mA)  
Figure 8. Current Gain (hFE) vs. Collector Current  
Figure 11. Saturation Voltage vs. Collector Current  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
A
I
= 1mA  
C
V
= –36V  
CB  
V
= 0V  
CB  
1
10  
100  
1000  
10000  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
COLLECTOR CURRENT (µA)  
TEMPERATURE (°C)  
Figure 12. Base to Emitter Voltage (VBE) vs. Collector Current  
Figure 9. Current Gain (hFE) vs. Temperature  
50  
40  
30  
20  
10  
0
1k  
100  
10  
T
V
= 25°C  
T = 25°C  
A
A
= 0V  
CB  
1
0.1  
0.001  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
0.01  
0.1  
1
10  
100  
COLLECTOR-BASE VOLTAGE (V)  
COLLECTOR CURRENT (mA)  
Figure 13. Collector to Base Capacitance vs. VCB  
Figure 10. Gain Bandwidth vs. Collector Current  
Rev. C | Page 6 of 12  
Data Sheet  
SSM2220  
1M  
100  
10  
T
= 25°C  
T
= 25°C  
A
A
100k  
10k  
1
0.1  
0.01  
1k  
1
10  
100  
1000  
1
10  
100  
1000  
COLLECTOR CURRENT (µA)  
COLLECTOR CURRENT (µA)  
Figure 14. Small Signal Input Resistance (hie) vs. Collector Current  
Figure 15. Small Signal Output Conductance (hoe) vs. Collector Current  
Rev. C | Page 7 of 12  
 
SSM2220  
Data Sheet  
APPLICATIONS INFORMATION  
PULSE RESPONSE  
A
C
= 10  
= 30pF  
V
F
–15V  
+15V  
7
0.01µF  
6
10µF  
0.001µF  
1.5kΩ  
0.01%  
1.5kΩ  
0.01%  
+
2
3
AD8671  
V
OUT  
0.01µF  
4
150Ω  
0.01µF  
5V  
20µs  
Q5 Q3 Q1  
Q2 Q4 Q6  
–15V  
+
LOW FREQUENCY NOISE  
SSM2220 PAIRS:  
Q1 – Q2  
A
= 1000  
= 1nV/DIV  
V
–15V  
27kΩ  
V
ERT  
Q3 – Q4  
Q5 – Q6  
Q7  
RED  
LED  
83Ω  
10µF  
0.001µF  
+
+15V  
Figure 16. Super Low Noise Amplifier  
0.1  
SUPER LOW NOISE AMPLIFIER  
The circuit in Figure 16 is a super low noise amplifier, with equiv-  
alent input voltage noise of 0.32 nV/√Hz. By paralleling SSM2220  
matched pairs, a reduction of the base spreading resistance by a  
factor of 3 results in a further reduction of amplifier noise by a fac-  
tor of √3. Additionally, the shot noise contribution is reduced by  
maintaining a high collector current (2 mA/device), which reduces  
the dynamic emitter resistance and decreases voltage noise. The  
voltage noise is inversely proportional to the square root of the  
stage current, whereas current noise increases proportionally.  
Accordingly, this amplifier capitalizes on voltage noise reduction  
techniques at the expense of increasing the current noise. However,  
high current noise is not usually important when dealing with  
low impedance sources.  
600Ω LOAD  
0.01  
NO LOAD  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 17. Total Harmonic Distortion vs. Frequency of Circuit in Figure 16  
This amplifier exhibits excellent full power ac performance,  
0.08% THD into a 600 Ω load, making it suitable for exacting  
audio applications (see Figure 17).  
Rev. C | Page 8 of 12  
 
 
 
 
Data Sheet  
SSM2220  
0.01µF  
+15V  
R1  
LED  
10µF  
+
250  
Q2  
2N29007A  
6
3
1
R6  
100Ω  
2
7
Q1  
SSM2220  
V
IN  
R5  
100Ω  
C1  
50pF  
8
8
2
3
1
V
AD8671  
4
OUT  
10µF  
R2  
27kΩ  
R3  
5kΩ  
R4  
5kΩ  
+
0.01µF  
THD < 0.005% 20Hz TO 20kHz  
0.5nV/ Hz  
–15V  
1/f CORNER < 1Hz  
Figure 18. Low Noise Microphone Preamplifier  
input stage emitter current of 4 mA is provided by Q2. The con-  
stant current in Q2 is set by using the forward voltage of a GaAsP  
LED as a reference. The difference between this voltage and the  
LOW NOISE MICROPHONE PREAMPLIFIER  
Figure 18 shows a microphone preamplifier that consists of an  
SSM2220 and a low noise op amp. The input stage operates at a  
relatively high quiescent current of 2 mA per side, which reduces  
the SSM2220 transistor voltage noise. The 1/f corner is less than  
1 Hz. Total harmonic distortion is under 0.005% for a 10 V p-p  
signal from 20 Hz to 20 kHz. The preamp gain is 100, but can be  
modified by varying R5 or R6 (VOUT/VIN = R5/R6 + 1). A total  
VBE of a silicon transistor is predictable and constant (to a few  
percent) over a wide temperature range. The voltage difference,  
approximately 1 V, is dropped across the 250 Ω resistor, which  
produces a temperature stabilized emitter current.  
Rev. C | Page 9 of 12  
 
 
SSM2220  
Data Sheet  
+5V  
+
0.1µF  
10µF  
3
6
SSM2220  
2
7
1
3
8
6
SSM2220  
2
7
1
8
+15V  
2mA  
0.01µF  
3
6
1kΩ  
ADJUST POT  
FOR 2mA  
(2V ACROSS  
1kRES)  
2
7
SSM2220  
DUT  
500Ω  
+15V  
7
1
8
0.01µF  
6
2.2pF  
7
2
6
3
2
AD8671  
4
e
n
1kΩ  
3
SPOT NOISE FOR  
EACH TRANSISTOR =  
e
n
AD8671  
10Ω  
5kΩ  
1%  
5kΩ  
10,000 ×  
2
0.01µF  
1%  
4
10kΩ  
100Ω  
5kΩ  
–15V  
10µF  
0.1µF  
0.01µF  
+
–15V  
–15V  
Figure 19. Voltage Noise Measurement Circuit  
+V  
NOISE MEASUREMENT  
All resistive components and semiconductor junctions contribute  
to the system input noise. Resistive components produce Johnson  
noise (en2 = 4kTBR, or en = 0.13√R nV/√Hz, where R is in kΩ). At  
semiconductor junctions, shot noise is caused by current flowing  
through a junction, producing voltage noise in series impedances  
such as transistor collector load resistors (In = 0.556√I pA/√Hz,  
where I is in μA).  
SSM2220  
Q4  
Q3  
Q2  
SSM2220  
Q1  
I
= I  
OUT  
Figure 19 illustrates a technique for measuring the equivalent  
input noise voltage of the SSM2220. A stage current of 1 mA is  
used to bias each side of the differential pair. The 5 kΩ collector  
resistors noise contribution is insignificant compared to the voltage  
noise of the SSM2220. Because noise in the signal path is referred  
back to the input, this voltage noise is attenuated by the gain of the  
circuit. Consequently, the noise contribution of the collector load  
resistors is only 0.048 nV/√Hz. This is considerably less than the  
typical 0.8 nV/√Hz input noise voltage of the SSM2220 transistor.  
+V – 2V  
BE  
I =  
R
R
Figure 20. Cascode Current Source  
CURRENT SOURCES  
A fundamental requirement for accurate current mirrors and active  
load stages is matched transistor components. Due to the excellent  
BE matching (the voltage difference between one VBE and another,  
which is required to equalize collector current) and gain matching,  
the SSM2220 can be used to implement a variety of standard cur-  
rent mirrors that can source current into a load such as an amplifier  
stage. The advantages of current loads in amplifiers vs. resistors  
are an increase of voltage gain due to higher impedances, larger  
signal range, and in many applications, a wider signal bandwidth.  
V
The noise contribution of the AD8671 gain stages is also negligible,  
due to the gain in the signal path. The op amp stages amplify the  
input referred noise of the transistors, increasing the signal strength  
to allow the noise spectral density,  
(
en  
input × 10,000, to be meas-  
)
ured with a spectrum analyzer. Because equal noise contributions  
from each transistor in the SSM2220 are assumed, the output is  
divided by √2 to determine the input noise of a single transistor.  
Figure 20 illustrates a cascode current mirror consisting of two  
SSM2220 transistor pairs.  
Air currents cause small temperature changes that can appear as  
low frequency noise. To eliminate this noise source, the measure-  
ment circuit must be thermally isolated. Effects of extraneous noise  
sources must also be eliminated by totally shielding the circuit.  
The cascode current source has a common base transistor in series  
with the output, which causes an increase in output impedance of  
the current source because VCE stays relatively constant. High fre-  
quency characteristics are improved due to a reduction of Miller  
capacitance. The small signal output impedance can be determined  
Rev. C | Page 10 of 12  
 
 
 
 
Data Sheet  
SSM2220  
by consulting Figure 15. Typical output impedance levels approach  
the performance of a perfect current source.  
If the resistors and transistors are equal and the collector  
voltages are the same, then the collector currents match precisely.  
Investigating the current matching errors resulting from a nonzero  
VOS, ΔIC is defined as the current error between the two transistors.  
1
(ro)Q3  
=
=1MΩ  
1.0μMho  
Figure 22 describes the relationship of current matching errors  
vs. offset voltage for a specified average current, IC. Note that  
because the relative error between the currents is exponentially  
proportional to the offset voltage, tight matching is required to  
design high accuracy current sources. For example, if the offset  
voltage were 5 mV at 100 μA collector current, the current match-  
ing error would be 20%. Additionally, temperature effects, such  
as offset drift (3 μV/°C per mV of VOS), degrade performance if  
Q1 and Q2 are not well matched.  
Q2 and Q3 are in series and operate at the same current level;  
therefore, the total output impedance is as follows:  
RO = hFE × (ro)Q3 ≈ (160)(1 MΩ) = 160 MΩ  
Current Matching  
The objective of current source or mirror design is generation  
of currents that either are matched or must maintain a constant  
ratio. However, mismatch of base emitter voltages causes output  
current errors. Consider the example of Figure 21.  
ΔI  
2
ΔI  
2
C
C
I
+
I –  
C
C
A CLOSELY MATCHED  
TRANSISTOR PAIR  
V
B
R1  
R2  
+
R1 = R2 = R  
Figure 21. Current Matching Circuit  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
I
= 10µA  
I = 100µA  
C
C
SSM2220 V  
OS  
PERFORMANCE  
R = 3kΩ  
= 200  
h
FE  
I
+ I  
2
C1  
C2  
I
=
C
I
= 1mA  
C
ΔI = I – I  
C1  
C2  
0
0.001  
0.01  
0.1  
(mV)  
1
10  
V
OS  
Figure 22. Current Matching Accuracy vs. Offset Voltage  
Rev. C | Page 11 of 12  
 
 
SSM2220  
Data Sheet  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 23. 8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
SSM2220PZ  
SSM2220S  
SSM2220SZ  
SSM2220SZ-REEL  
–40°C to +85°C  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
N-8  
R-8  
R-8  
R-8  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
1 Z = RoHS Compliant Part.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03096-0-4/13(C)  
Rev. C | Page 12 of 12  
 
 
 

相关型号:

SZSZM2402SZ

IC DUAL 1-CHANNEL, AUDIO/VIDEO SWITCH, PDSO16, SOL-16, Multiplexer or Switch
ADI

SZUESD3.3DT5G

ESD Protection Common Anode Diodes
ONSEMI

SZUESD5.0DT5G

ESD Protection Common Anode Diodes
ONSEMI

SZUESD6.0DT5G

ESD Protection Common Anode Diodes
ONSEMI

SZV

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS
RUBYCON

SZW05A0A

Single Color LED, Pure White, T-1, 2.9mm, ROHS COMPLIANT, CERAMIC, SMD, 2 PIN
SEOUL

SZW05A0B

Single Color LED,
SEOUL

SZW07A0A

Single Color LED, Pure White, 5.5mm, ROHS COMPLIANT, SMD, 8 PIN
SEOUL

SZWN5A0A

Single Color LED, Natural White, T-1, 2.9mm, ROHS COMPLIANT, SMD, 2 PIN
SEOUL

SZWW05A0A

Single Color LED, Warm White, T-1, 2.9mm, ROHS COMPLIANT, SMD, 3 PIN
SEOUL

SZWW4A0A

Single Color LED, Warm White, 4.4mm, ROHS COMPLIANT, SMD, 2 PIN
SEOUL

SZWW5A0B

Single Color LED
SEOUL