APT50GT120JRDQ2 [ADPOW]

Thunderbolt IGBT; 迅雷IGBT
APT50GT120JRDQ2
型号: APT50GT120JRDQ2
厂家: ADVANCED POWER TECHNOLOGY    ADVANCED POWER TECHNOLOGY
描述:

Thunderbolt IGBT
迅雷IGBT

晶体 晶体管 功率控制 双极性晶体管 局域网
文件: 总9页 (文件大小:453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1200V
APT50GT120JRDQ2  
®
E
E
Thunderbolt IGBT®  
7
2
2
-
C
G
T
TheThunderblot IGBT® isanewgenerationofhighvoltagepowerIGBTs. UsingNon-Punch  
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast  
switching speed.  
O
S
"UL Recognized"  
file # E145592  
ISOTOP®  
• Low Forward Voltage Drop  
• Low Tail Current  
• High Freq. Switching to 50KHz  
• Ultra Low Leakage Current  
C
E
• RBSOA and SCSOA Rated  
G
• Intergrated Gate Resistor: Low EMI, High Reliability  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Parameter  
Symbol  
UNIT  
APT50GT120JRDQ2  
VCES  
VGE  
IC1  
Collector-Emitter Voltage  
1200  
Volts  
±30  
Gate-Emitter Voltage  
Continuous Collector Current @ TC = 25°C  
Continuous Collector Current @ TC = 110°C  
72  
IC2  
32  
Amps  
1
ICM  
Pulsed Collector Current  
150  
Switching Safe Operating Area @ TJ = 150°C  
150A @ 1200V  
379  
SSOA  
PD  
Watts  
°C  
Total Power Dissipation  
TJ,TSTG  
Operating and Storage Junction Temperature Range  
-55 to 150  
300  
TL  
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
TYP  
MAX  
Units  
V(BR)CES  
VGE(TH)  
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA)  
Gate Threshold Voltage (VCE = VGE, IC = 2mA, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C)  
1200  
4.5  
5.5  
3.2  
4.0  
6.5  
3.7  
Volts  
2.7  
VCE(ON)  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)  
400  
ICES  
µA  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)  
Gate-Emitter Leakage Current (VGE = ±20V)  
Intergrated Gate Resistor  
TBD  
300  
IGES  
nA  
RG(int)  
5
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
APT Website - http://www.advancedpower.com  
DYNAMIC CHARACTERISTICS  
Symbol Characteristic  
APT50GT120JRDQ2  
UNIT  
Test Conditions  
Capacitance  
MIN  
TYP  
MAX  
Cies  
Coes  
Cres  
VGEP  
Qg  
Input Capacitance  
2500  
250  
155  
7.5  
pF  
V
Output Capacitance  
VGE = 0V, VCE = 25V  
f = 1 MHz  
Reverse Transfer Capacitance  
Gate-to-Emitter Plateau Voltage  
Gate Charge  
VGE = 15V  
VCE = 600V  
IC = 50A  
3
Total Gate Charge  
240  
20  
Qge  
Qgc  
nC  
Gate-Emitter Charge  
Gate-Collector ("Miller") Charge  
110  
TJ = 150°C, RG = 1.07, VGE  
=
Switching Safe Operating Area  
SSOA  
td(on)  
A
150  
15V, L = 100µH, VCE = 1200V  
Inductive Switching (25°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
Current Fall Time  
23  
50  
VCC = 800V  
VGE = 15V  
IC = 50A  
tr  
ns  
td(off)  
215  
26  
tf  
RG = 1.07  
4
Eon1  
Eon2  
Turn-on Switching Energy  
3585  
4835  
1910  
23  
TJ = +25°C  
5
µJ  
ns  
Turn-on Switching Energy (Diode)  
6
Eoff  
Turn-off Switching Energy  
td(on)  
Inductive Switching (125°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
tr  
VCC = 800V  
VGE = 15V  
IC = 50A  
50  
td(off)  
tf  
255  
50  
Current Fall Time  
RG = 1.07  
4 4  
Eon1  
Eon2  
Eoff  
3580  
6970  
2750  
Turn-on Switching Energy  
TJ = +125°C  
55  
µJ  
Turn-on Switching Energy (Diode)  
6
Turn-off Switching Energy  
THERMAL AND MECHANICAL CHARACTERISTICS  
Symbol Characteristic  
UNIT  
MIN  
TYP  
MAX  
.33  
R
Junction to Case (IGBT)  
Junction to Case (DIODE)  
θJC  
θJC  
°C/W  
R
1.1  
gm  
WT  
VIsolation  
Package Weight  
29.2  
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)  
Volts  
2500  
1
2
3
4
Repetitive Rating: Pulse width limited by maximum junction temperature.  
For Combi devices, Ices includes both IGBT and FRED leakages  
See MIL-STD-750 Method 3471.  
Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current  
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.  
5
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching  
loss. (See Figures 21, 22.)  
6
7
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)  
RG is external gate resistance, not including RG(int) nor gate driver impedance.  
APT Reserves the right to change, without notice, the specifications and information contained herein.  
TYPICAL PERFORMANCE CURVES  
APT50GT120JRDQ2  
150  
125  
100  
75  
120  
15V  
13V  
V
= 15V  
GE  
100  
80  
12V  
TJ = 25°C  
60  
11V  
TJ = 125°C  
40  
50  
10V  
15  
20  
0
9V  
8V  
25  
0
7V  
20  
0
1
2
3
4
5
6
7
0
5
10  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 1, Output Characteristics(T = 25°C)  
FIGURE 2, Output Characteristics (T = 125°C)  
J
J
16  
14  
12  
140  
250µs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
T
= 50A  
= 25°C  
C
V
V
= 240V  
= 600V  
CE  
J
120  
100  
80  
60  
40  
20  
0
CE  
10  
8
V
= 960V  
CE  
TJ = -55°C  
TJ = 25°C  
TJ = 125°C  
6
4
2
0
0
2
4
6
8
10  
12  
14  
0
50  
100 150 200 250 300 350  
GATE CHARGE (nC)  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 3, Transfer Characteristics  
FIGURE 4, Gate Charge  
6
5
4
3
2
1
0
7
6
5
4
3
TJ = 25°C.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
VGE = 15V.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
I
= 100A  
C
I
= 100A  
C
I
= 50A  
= 25A  
C
I
= 50A  
C
I
I
= 25A  
C
C
2
1
0
8
10  
12  
14  
16  
25  
50  
75  
100  
125  
150  
V
, GATE-TO-EMITTER VOLTAGE (V)  
T , Junction Temperature (°C)  
GE  
J
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage  
FIGURE 6, On State Voltage vs Junction Temperature  
1.10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
10  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
T , JUNCTION TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
J
C
FIGURE 7, Threshold Voltage vs. Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
APT50GT120JRDQ2  
300  
250  
200  
150  
100  
50  
35  
30  
25  
20  
15  
10  
5
V
= 15V  
GE  
VGE =15V,TJ=125°C  
VGE =15V,TJ=25°C  
VCE = 800V  
VCE = 800V  
RG = 1Ω  
L = 100µH  
TJ = 25°C, or 125°C  
RG = 1Ω  
L = 100µH  
0
I
0
I
10  
30  
50  
70  
90  
110  
10  
30  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
50  
70  
90  
110  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
160  
60  
RG = 1, L = 100µH, VCE = 800V  
RG = 1, L = 100µH, VCE = 800V  
140  
120  
100  
80  
50  
40  
30  
20  
10  
T
J = 125°C, VGE = 15V  
60  
T
=
25°C, V = 15V  
GE  
J
40  
TJ = 25 or 125°C,VGE = 15V  
20  
0
I
0
I
10  
CE  
30  
50  
70  
90  
110  
10  
CE  
30  
50  
70  
90  
110  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
FIGURE 11, Current Rise Time vs Collector Current  
FIGURE 12, Current Fall Time vs Collector Current  
6000  
5000  
4000  
3000  
2000  
25,000  
20,000  
15,000  
10,000  
5,000  
0
V
V
R
=
=
= 1Ω  
800V  
+15V  
V
V
R
=
=
= 1Ω  
800V  
+15V  
CE  
GE  
CE  
GE  
G
G
T
J = 125°C  
T
= 125°C  
J
T
J = 25°C  
1000  
0
T
= 25°C  
J
10  
30  
50  
70  
90  
110  
10  
30  
50  
70  
90  
110  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn Off Energy Loss vs Collector Current  
25,000  
60,000  
50,000  
40,000  
30,000  
20,000  
V
V
T
=
=
800V  
+15V  
V
V
R
=
=
= 1Ω  
800V  
+15V  
CE  
GE  
CE  
GE  
E
100A  
E
100A  
on2,  
on2,  
= 125°C  
J
G
20,000  
15,000  
10,000  
5,000  
0
E
50A  
on2,  
E
50A  
E
100A  
25A  
on2,  
E
100A  
off,  
off,  
10,000  
0
E
25A  
25A  
E
50A  
on2,  
E
50A  
off,  
off,  
E
25A  
on2,  
E
E
off,  
off,  
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
G
J
FIGURE 15, Switching Energy Losses vs. Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
TYPICAL PERFORMANCE CURVES  
APT50GT120JRDQ2  
160  
140  
120  
100  
80  
4,000  
Cies  
1,000  
500  
60  
40  
Coes  
Cres  
20  
100  
0
0
10  
20  
30  
40  
50  
0 200 400 600 800 1000 1200 1400  
V , COLLECTOR TO EMITTER VOLTAGE  
CE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 17, Capacitance vs Collector-To-Emitter Voltage  
Figure 18,Minimim Switching Safe Operating Area  
0.35  
D = 0.9  
0.30  
0.25  
0.7  
0.20  
0.5  
0.15  
Note:  
t
0.3  
1
0.10  
t
2
t
1
t
0.05  
0.1  
SINGLE PULSE  
Duty Factor D =  
/
2
Peak T = P  
x Z  
+ T  
C
J
DM  
θJC  
0.05  
0
10-5  
10-4  
10-3  
10-2  
10-1  
1.0  
10  
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
70  
RC MODEL  
Junction  
temp. (°C)  
0.0836  
0.174  
0.0144  
0.252  
2.87  
Fmax = min (fmax, fmax2  
)
10  
5
0.05  
fmax1  
=
=
td(on) + tr + td(off) + tf  
Power  
(watts)  
Pdiss - Pcond  
Eon2 + Eoff  
fmax2  
Pdiss  
T
T
=
125°C  
75°C  
J
=
C
D = 50 %  
V
R
TJ - TC  
RθJC  
=
800V  
0.0732  
=
CE  
= 1.0Ω  
G
1
10 20 30 40 50 60 70 80 90 100  
Case temperature. (°C)  
I , COLLECTOR CURRENT (A)  
C
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL  
Figure 20, Operating Frequency vs Collector Current  
APT50GT120JRDQ2  
Gate Voltage  
10%  
APT30DQ120  
T
= 125°C  
J
td(on)  
tr  
VCE  
IC  
Collector Current  
VCC  
90%  
5%  
5%  
10%  
Collector Voltage  
A
Switching Energy  
D.U.T.  
Figure 21, Inductive Switching Test Circuit  
Figure 22, Turn-on Switching Waveforms and Definitions  
90%  
Gate Voltage  
T
= 125°C  
J
td(off)  
90%  
Collector Voltage  
tf  
10%  
0
Collector Current  
Switching Energy  
Figure 23, Turn-off Switching Waveforms and Definitions  
TYPICAL PERFORMANCE CURVES  
APT50GT120JRDQ2  
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Symbol  
IF(AV)  
Characteristic / Test Conditions  
APT50GT120JRDQ2  
UNIT  
Maximum Average Forward Current (TC = 89°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)  
30  
39  
IF(RMS)  
Amps  
IFSM  
210  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol  
UNIT  
Characteristic / Test Conditions  
MIN  
TYP  
MAX  
MAX  
IF = 50A  
2.98  
3.67  
2.36  
Volts  
Forward Voltage  
IF = 100A  
VF  
IF = 50A, TJ = 125°C  
DYNAMIC CHARACTERISTICS  
Characteristic  
Symbol  
MIN  
TYP  
25  
UNIT  
Test Conditions  
Reverse Recovery Time  
trr  
trr  
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C  
-
ns  
Reverse Recovery Time  
Reverse Recovery Charge  
-
300  
IF = 30A, diF/dt = -200A/µs  
VR = 800V, TC = 25°C  
Qrr  
IRRM  
trr  
-
-
-
-
-
360  
4
nC  
Amps  
ns  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
380  
1700  
8
IF = 30A, diF/dt = -200A/µs  
VR = 800V, TC = 125°C  
Qrr  
Reverse Recovery Charge  
nC  
Amps  
ns  
IRRM  
trr  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
160  
IF = 30A, diF/dt = -1000A/µs  
VR = 800V, TC = 125°C  
Qrr  
Reverse Recovery Charge  
2550  
nC  
IRRM  
Maximum Reverse Recovery Current  
Amps  
-
28  
1.20  
D = 0.9  
0.7  
1.00  
0.80  
0.60  
0.40  
0.20  
0
0.5  
Note:  
t
1
0.3  
t
2
t
1
t
/
2
Duty Factor D =  
0.1  
SINGLE PULSE  
10-3  
Peak T = P  
x Z  
+ T  
θJC C  
J
DM  
0.05  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (seconds)  
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION  
RC MODEL  
Junction  
temp(°C)  
0.219  
0.468  
0.341  
0.00306  
0.0463  
0.267  
Power  
(watts)  
Case temperature(°C)  
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL  
APT50GT120JRDQ2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
V
= 125°C  
= 800V  
J
60A  
R
30A  
T
= 175°C  
J
15A  
T
= 25°C  
J
T
= 125°C  
J
T
= -55°C  
4
J
10  
0
0
0
1
2
3
5
0
200  
400  
600  
800  
1000 1200  
-di /dt, CURRENT RATE OF CHANGE(A/µs)  
Figure 26. Reverse Recovery Time vs. Current Rate of Change  
V , ANODE-TO-CATHODE VOLTAGE (V)  
F
F
Figure 25. Forward Current vs. Forward Voltage  
30  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
T
V
= 125°C  
= 800V  
T
V
= 125°C  
= 800V  
J
J
60A  
R
R
25  
20  
15  
10  
5
60A  
30A  
30A  
15A  
15A  
500  
0
0
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
F
F
Figure 27. Reverse Recovery Charge vs. Current Rate of Change  
Figure 28. Reverse Recovery Current vs. Current Rate of Change  
1.2  
45  
Q
rr  
Duty cycle = 0.5  
T
= 175°C  
J
40  
35  
30  
25  
20  
15  
10  
5
t
rr  
1.0  
t
rr  
0.8  
I
RRM  
0.6  
0.4  
Q
rr  
0.2  
0.0  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
Figure 30. Maximum Average Forward Current vs. CaseTemperature  
100  
125  
150  
175  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. Dynamic Parameters vs. Junction Temperature  
200  
150  
100  
50  
0
1
10  
100 200  
V , REVERSE VOLTAGE (V)  
R
Figure 31. Junction Capacitance vs. Reverse Voltage  
TYPICAL PERFORMANCE CURVES  
APT50GT120JRDQ2  
V
r
diF/dt Adjust  
+18V  
0V  
APT10078BLL  
D.U.T.  
t
Q
/
30µH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 32. Diode Test Circuit  
1
2
IF - Forward Conduction Current  
1
4
5
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
IRRM - Maximum Reverse Recovery Current.  
Zero  
3
4
0.25 I  
RRM  
t
- Reverse Recovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
3
rr  
2
line through IRRM and 0.25 IRRM passes through zero.  
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 33, Diode Reverse Recovery Waveform and Definitions  
SOT-227 (ISOTOP®) Package Outline  
11.8 (.463)  
12.2 (.480)  
31.5 (1.240)  
31.7 (1.248)  
8.9 (.350)  
9.6 (.378)  
W=4.1 (.161)  
W=4.3 (.169)  
H=4.8 (.187)  
H=4.9 (.193)  
(4 places)  
7.8 (.307)  
8.2 (.322)  
Hex Nut M4  
(4 places)  
25.2 (0.992)  
25.4 (1.000)  
r = 4.0 (.157)  
(2 places)  
4.0 (.157)  
4.2 (.165)  
(2 places)  
0.75 (.030) 12.6 (.496)  
0.85 (.033) 12.8 (.504)  
3.3 (.129)  
3.6 (.143)  
1.95 (.077)  
2.14 (.084)  
14.9 (.587)  
15.1 (.594)  
* Emitter/Anode  
Collector/Cathode  
30.1 (1.185)  
30.3 (1.193)  
* Emitter/Anode terminals are  
shorted internally. Current  
handling capability is equal  
for either Emitter/Anode terminal.  
38.0 (1.496)  
38.2 (1.504)  
* Emitter/Anode  
Gate  
Dimensions in Millimeters and (Inches)  
ISOTOP®is aRegisteredTrademarkofSGSThomson. APT’s productsarecoveredbyoneor moreof U.S.patents4,895,810 5,045,903 5,089,434 5,182,234 5,019,522  
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058andforeignpatents. USandForeignpatentspending. AllRightsReserved.  

相关型号:

APT50GT120JU2

Boost chopper Trench + Field Stop IGBT
MICROSEMI

APT50GT120JU3

ISOTOP® Buck chopper Trench + Field Stop IGBT®
MICROSEMI

APT50GT120JU3

ISOTOP Buck chopper Trench IGBT
ADPOW

APT50GT120LR

Thunderbolt IGBT
MICROSEMI

APT50GT120LRDQ2

Insulated Gate Bipolar Transistor
MICROSEMI

APT50GT120LRDQ2G

Insulated Gate Bipolar Transistor, 106A I(C), 1200V V(BR)CES, N-Channel, TO-264AA, TO-264, 3 PIN
MICROSEMI

APT50GT120LRG

Thunderbolt IGBT
MICROSEMI

APT50GT60BR

Thunderbolt IGBT
MICROSEMI

APT50GT60BR

Thunderbolt IGBT
ADPOW

APT50GT60BRDL

Resonant Mode Combi IGBT
MICROSEMI

APT50GT60BRDLG

Resonant Mode Combi IGBT
MICROSEMI

APT50GT60BRDQ1

Thunderbolt IGBT
ADPOW