AD7172-4BCPZ-RL7 [ADI]

Low Power,  with 4- or 8-channel, 24-bit, 31.25 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers;
AD7172-4BCPZ-RL7
型号: AD7172-4BCPZ-RL7
厂家: ADI    ADI
描述:

Low Power,  with 4- or 8-channel, 24-bit, 31.25 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers

转换器
文件: 总62页 (文件大小:838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, 24-Bit, 31.25 kSPS, Sigma-Delta  
ADC with True Rail-to-Rail Buffers  
AD7172-4  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Fast and flexible output rate: 1.25 SPS to 31.25 kSPS  
Channel scan data rate of 6.21 kSPS/channel (161 μs settling)  
Performance specifications  
17.2 noise free bits at 31.25 kSPS  
24 noise free bits at 5 SPS  
INL: 2 ppm of FSR  
85 dB rejection of 50 Hz and 60 Hz with 50 ms settling  
User configurable input channels  
4 fully differential channels or 8 single-ended channels  
Crosspoint multiplexer  
True rail-to-rail analog and reference input buffers  
Internal or external clock  
The AD7172-4 is a low noise, low power, multiplexed, Σ-Δ analog-  
to-digital converter (ADC) with 4- or 8-channel (fully differential/  
single-ended) inputs for low bandwidth signals. The AD7172-4  
has a maximum channel scan rate of 6.21 kSPS (161 μs) for fully  
settled data. The output data rates range from 1.25 SPS to 31.25 kSPS.  
The AD7172-4 integrates key analog and digital signal condition-  
ing blocks to allow users to configure an individual setup for  
each analog input channel in use via the SPI. Integrated true rail-to-  
rail buffers on the analog inputs and reference inputs provide easy  
to drive high impedance inputs.  
The digital filter allows simultaneous 50 Hz and 60 Hz rejection  
at a 27.27 SPS output data rate. The user can switch between  
different filter options according to the demands of each channel  
in the application, with further digital processing functions such  
as offset and gain calibration registers, which are configurable  
on a per channel basis. General-purpose input/outputs (GPIOs)  
control external multiplexers synchronous to the ADC conversion  
timing. The specified temperature range is −40°C to +105°C.  
The AD7172-4 is in a 5 mm × 5 mm, 32-lead LFCSP.  
Power supply  
AVDD1 = 3.0 V to 5.5 V, AVDD2 = IOVDD = 2 V to 5.5 V  
Split supply with AVDD1 and AVSS at 2.5 V or 1.65 V  
ADC current: 1.5 mA  
Temperature range: −40°C to +105°C  
3- or 4-wire serial digital interface (Schmitt trigger on SCLK)  
Serial port interface (SPI), QSPI-, MICROWIRE-, and DSP-  
compatible  
Note that, throughout this data sheet, the dual function pin  
names are referenced by the relevant function only.  
APPLICATIONS  
Process control: PLC/DCS modules  
Temperature and pressure measurement  
Medical and scientific multichannel instrumentation  
Chromatography  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1 AVDD2 REGCAPA REF– REF+  
IOVDD REGCAPD  
1.8V  
CROSSPOINT  
MULTIPLEXER  
1.8V  
LDO  
RAIL-TO-RAIL  
REFERENCE  
INPUT  
LDO  
BUFFERS  
RAIL-TO-RAIL  
AIN0/REF2–  
AIN1/REF2+  
ANALOG  
INPUT  
AVDD  
CS  
BUFFERS  
SCLK  
DIN  
SERIAL  
INTERFACE  
AND CONTROL  
DIGITAL  
Σ-ADC  
FILTER  
DOUT/RDY  
SYNC  
ERROR  
AIN7  
AIN8  
XTAL AND INTERNAL  
CLOCK OSCILLATOR  
CIRCUITRY  
I/O AND EXTERNAL  
MUX CONTROL  
AVSS  
AD7172-4  
AVSS  
PDSW  
GPIO0 GPIO1 GPO2 GPO3  
XTAL1 XTAL2/CLKIO  
DGND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD7172-4* PRODUCT PAGE QUICK LINKS  
Last Content Update: 04/21/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Technical Articles  
Flexible Bandwidth 4 mA to 20 mA Current Input with  
Easy HART Compatibility  
EVALUATION KITS  
Tutorials  
AD7172-4 Evaluation Board  
MT-022: ADC Architectures III: Sigma-Delta ADC Basics  
DOCUMENTATION  
Data Sheet  
MT-023: ADC Architectures IV: Sigma-Delta ADC  
Advanced Concepts and Applications  
AD7172-4: Low Power, 24-Bit, 31.25 kSPS, Sigma-Delta  
ADC with True Rail-to-Rail Buffers Data Sheet  
DESIGN RESOURCES  
AD7172-4 Material Declaration  
PCN-PDN Information  
Technical Books  
The Data Conversion Handbook, 2005  
User Guides  
Quality And Reliability  
Symbols and Footprints  
UG-763: Evaluating the AD7172-4 Low Power 24-Bit, 31.25  
kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers  
DISCUSSIONS  
SOFTWARE AND SYSTEMS REQUIREMENTS  
AD717x Microcontroller No-OS  
View all AD7172-4 EngineerZone Discussions.  
SAMPLE AND BUY  
AD717x Eval+ Software  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD7172 Digital Filter Frequency Response Model  
AD7172-4 IBIS Model  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE DESIGNS  
CN0292  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
CN0364  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7172-4  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
CRC Calculation......................................................................... 40  
Integrated Functions...................................................................... 42  
General-Purpose Input/Output................................................ 42  
External Multiplexer Control ................................................... 42  
Delay ............................................................................................ 42  
16-Bit/24-Bit Conversions......................................................... 42  
DOUT_RESET ........................................................................... 42  
Synchronization.......................................................................... 42  
Error Flags................................................................................... 43  
DATA_STAT ............................................................................... 43  
IOSTRENGTH ........................................................................... 43  
Grounding and Layout .................................................................. 44  
Register Summary .......................................................................... 45  
Register Details ............................................................................... 47  
Communications Register......................................................... 47  
Status Register............................................................................. 48  
ADC Mode Register................................................................... 49  
Interface Mode Register ............................................................ 50  
Register Check............................................................................ 51  
Data Register............................................................................... 51  
GPIO Configuration Register................................................... 52  
ID Register................................................................................... 53  
Channel Register 0 ..................................................................... 54  
Channel Register 1 to Channel Register 7 .............................. 55  
Setup Configuration Register 0 ................................................ 56  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Timing Characteristics ................................................................ 7  
Timing Diagrams.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Noise Performance and Resolution.............................................. 17  
Getting Started................................................................................ 18  
Power Supplies ............................................................................ 19  
Digital Communication............................................................. 19  
AD7172-4 Reset.......................................................................... 20  
Configuration Overview ........................................................... 20  
Circuit Description......................................................................... 26  
Buffered Analog Input ............................................................... 26  
Crosspoint Multiplexer.............................................................. 26  
AD7172-4 Reference.................................................................. 27  
Buffered Reference Input........................................................... 28  
Clock Source ............................................................................... 28  
Digital Filters................................................................................... 29  
Sinc5 + Sinc1 Filter..................................................................... 29  
Sinc3 Filter................................................................................... 29  
Single Cycle Settling................................................................... 30  
Enhanced 50 Hz and 60 Hz Rejection Filters ......................... 33  
Operating Modes............................................................................ 35  
Continuous Conversion Mode ................................................. 35  
Continuous Read Mode............................................................. 36  
Single Conversion Mode ........................................................... 37  
Standby and Power-Down Modes............................................ 38  
Calibration................................................................................... 38  
Digital Interface .............................................................................. 39  
Checksum Protection................................................................. 39  
Setup Configuration Register 1 to Setup Configuration  
Register 7 ..................................................................................... 57  
Filter Configuration Register 0................................................. 58  
Filter Configuration Register 1 to Filter Configuration  
Register 7 ..................................................................................... 59  
Offset Register 0 ......................................................................... 59  
Offset Register 1 to Offset Register 7....................................... 59  
Gain Register 0............................................................................ 60  
Gain Register 1 to Gain Register 7........................................... 60  
Outline Dimensions....................................................................... 61  
Ordering Guide .......................................................................... 61  
Rev. B | Page 2 of 61  
Data Sheet  
AD7172-4  
REVISION HISTORY  
4/2017—Rev. A to Rev. B  
5/2015—Revision 0: Initial Version  
Changes to Outline Dimensions ...................................................68  
Changes to Ordering Guide...........................................................68  
5/2016—Rev. 0 to Rev. A  
Moved Revision History...................................................................3  
Changes to Table 5 ............................................................................9  
Changes to Figure 18 and Figure 19 .............................................13  
Changes to Power Supplies Section ..............................................19  
Rev. B | Page 3 of 61  
 
AD7172-4  
Data Sheet  
SPECIFICATIONS  
AVDD1 = 3.0 V to 5.5 V, AVDD2 = IOVDD = 2 V to 5.5 V, AVSS = DGND = 0 V, REF+ = 2.5 V, REF− = AVSS, MCLK = internal master  
clock = 2 MHz, TA = TMIN to TMAX (−40°C to +105°C), unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC SPEED AND PERFORMANCE  
Output Data Rate (ODR)  
No Missing Codes1  
Resolution  
1.25  
24  
31,250  
SPS  
Bits  
Excluding sinc3 filter ≥ 15 kSPS  
See Table 6 and Table 7  
Noise  
See Table 6 and Table 7  
ACCURACY  
Integral Nonlinearity (INL)  
Offset Error2  
Offset Drift  
Gain Error2  
2
75  
230  
5
5.2  
ppm of FSR  
μV  
nV/°C  
ppm of FSR  
ppm/°C  
Internal short  
Internal short  
AVDD1 = 5 V  
45  
0.5  
Gain Drift  
0.2  
REJECTION  
Power Supply Rejection  
Common-Mode Rejection  
At DC  
AVDD1, AVDD2, VIN = 1 V  
VIN = 0.1 V  
98  
dB  
95  
dB  
dB  
At 50 Hz, 60 Hz1  
20 Hz output data rate (postfilter), 50 Hz 120  
1 Hz and 60 Hz 1 Hz  
50 Hz 1 Hz and 60 Hz 1 Hz  
Normal Mode Rejection1  
Internal clock, 20 SPS ODR (postfilter)  
External clock, 20 SPS ODR (postfilter)  
71  
85  
90  
90  
dB  
dB  
ANALOG INPUTS  
Differential Input Range  
Absolute Voltage Limits1  
Input Buffers Disabled  
Input Buffers Enabled  
Analog Input Current  
Input Buffers Disabled  
Input Current  
VREF = (REF+) − (REF−)  
VREF  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
6
μA/V  
Input Current Drift  
Input Buffers Enabled  
Input Current  
Input Current Drift  
Crosstalk  
0.45  
nA/V/°C  
5.5  
0.1  
−120  
nA  
nA/°C  
dB  
1 kHz input  
REFERENCE INPUTS  
Differential Input Range  
Absolute Voltage Limits1  
Input Buffers Disabled  
Input Buffers Enabled  
REFIN Input Current  
Input Buffers Disabled  
Input Current  
VREF = (REF+) − (REF−)  
1
2.5  
AVDD1  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
9
μA/V  
Input Current Drift  
External clock  
Internal clock  
0.75  
1
nA/V/°C  
nA/V/°C  
Input Buffers Enabled  
Input Current  
Input Current Drift  
100  
2.5  
nA  
nA/°C  
Normal Mode Rejection1  
Common-Mode Rejection  
BURNOUT CURRENTS  
Source/Sink Current  
See the Rejection parameter  
95  
10  
dB  
μA  
Analog input buffers must be enabled  
Rev. B | Page 4 of 61  
 
Data Sheet  
AD7172-4  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GPIO (GPIO0, GPIO1)  
Input Mode Leakage Current1  
Floating State Output  
Capacitance  
Output Voltage1  
With respect to AVSS  
−10  
+10  
μA  
pF  
5
High, VOH  
Low, VOL  
Input Voltage1  
High, VIH  
ISOURCE = 200 μA  
ISINK = 800 μA  
AVSS + 4  
AVSS + 3  
V
V
AVSS + 0.4  
AVSS + 0.7  
V
V
Low, VIL  
CLOCK  
Internal Clock  
Frequency  
Accuracy  
Duty Cycle  
Output Voltage  
Low, VOL  
2
MHz  
%
%
−2.6%  
+2.5%  
0.4  
50  
V
V
High, VOH  
Crystal  
0.8 × IOVDD  
14  
Frequency  
Startup Time  
External Clock (CLKIO)  
Duty Cycle1  
LOGIC INPUTS  
Input Voltage1  
High, VINH  
16  
10  
2
16.384  
MHz  
μs  
MHz  
%
2.048  
70  
30  
50  
2 V ≤ IOVDD < 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
2 V ≤ IOVDD < 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
IOVDD ≥ 2.7 V  
0.65 × IOVDD  
0.7 × IOVDD  
V
V
V
V
V
V
μA  
Low, VINL  
0.35 × IOVDD  
0.7  
0.25  
0.2  
+10  
Hysteresis1  
0.08  
0.04  
−10  
IOVDD < 2.7 V  
Leakage Currents  
RDY  
LOGIC OUTPUT (DOUT/  
Output Voltage1  
High, VOH  
)
IOVDD ≥ 4.5 V, ISOURCE = 1 mA  
2.7 V ≤ IOVDD < 4.5 V, ISOURCE = 500 μA  
IOVDD < 2.7 V, ISOURCE = 200 μA  
IOVDD ≥ 4.5 V, ISINK = 2 mA  
2.7 V ≤ IOVDD < 4.5 V, ISINK = 1 mA  
IOVDD < 2.7 V, ISINK = 400 μA  
Floating state  
0.8 × IOVDD  
0.8 × IOVDD  
0.8 × IOVDD  
V
V
V
V
V
V
μA  
pF  
Low, VOL  
0.4  
0.4  
0.4  
+10  
Leakage Current  
Output Capacitance  
SYSTEM CALIBRATION1  
−10  
Floating state  
10  
Full-Scale (FS) Calibration Limit  
Zero-Scale Calibration Limit  
Input Span  
1.05 × FS  
2.1 × FS  
V
V
V
−1.05 × FS  
0.8 × FS  
POWER REQUIREMENTS  
Power Supply Voltage  
AVDD1 to AVSS  
3.0  
2
−2.75  
2
5.5  
5.5  
0
5.5  
6.35  
V
V
V
V
V
AVDD2 to AVSS  
AVSS to DGND  
IOVDD to DGND  
IOVDD to AVSS  
For AVSS < DGND  
Rev. B | Page 5 of 61  
AD7172-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLY CURRENTS  
All outputs unloaded, digital inputs  
connected to IOVDD or DGND  
Full Operating Mode  
AVDD1 Current  
AVDD1 = 5 V Typical,  
5.5 V Maximum  
AIN and REF buffers disabled  
0.23  
0.29  
2.15  
mA  
AIN and REF buffers enabled  
Each buffer: AIN and REF  
AIN and REF buffers disabled  
1.7  
0.38  
0.15  
mA  
mA  
mA  
AVDD1 = 3.3 V Typical,  
3.6 V Maximum1  
0.2  
1.9  
AIN and REF buffers enabled  
Each buffer: AIN and REF  
1.45  
0.33  
1
0.33  
0.61  
0.98  
32  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
AVDD2 Current  
IOVDD Current  
1.1  
0.5  
0.82  
External clock  
Internal clock  
External crystal  
LDO on  
Full power-down including LDO  
Standby Mode  
Power-Down Mode  
POWER DISSIPATION  
Full Operating Mode  
1
10  
μA  
Unbuffered, external clock; AVDD1 =  
3.3 V, AVDD2 = 2 V, IOVDD = 2 V  
Unbuffered, external clock;  
all supplies = 5 V  
Unbuffered, external clock;  
all supplies = 5.5 V  
Fully buffered, internal clock; AVDD1 =  
3.3 V, AVDD2 = 2 V, IOVDD = 2 V  
Fully buffered, internal clock;  
all supplies = 5 V  
Fully buffered, internal clock;  
all supplies = 5.5 V  
All supplies = 5 V  
Full power-down, all supplies = 5 V  
Full power-down, all supplies = 5.5 V  
3.16  
7.8  
mW  
mW  
mW  
mW  
mW  
mW  
10.4  
8
16.6  
22.4  
55  
Standby Mode  
Power-Down Mode  
160  
5
μW  
μW  
μW  
1 Specification is not production tested but is supported by characterization data at initial product release.  
2 Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale  
calibration reduces the gain error to the order of the noise for the programmed output data rate.  
Rev. B | Page 6 of 61  
Data Sheet  
AD7172-4  
TIMING CHARACTERISTICS  
IOVDD = 2 V to 5.5 V, DGND = 0 V, Input Logic 0 = 0 V, Input Logic 1 = IOVDD, CLOAD = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Test Conditions/Comments1, 2  
SCLK  
t3  
t4  
25  
25  
ns min  
ns min  
SCLK high pulse width  
SCLK low pulse width  
READ OPERATION  
t1  
0
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
ns max  
ns min  
ns min  
CS  
RDY  
falling edge to DOUT/  
active time  
15  
40  
0
12.5  
25  
2.5  
20  
0
IOVDD = 4.75 V to 5.5 V  
IOVDD = 2 V to 3.6 V  
SCLK active edge to data valid delay4  
IOVDD = 4.75 V to 5.5 V  
IOVDD = 2 V to 3.6 V  
CS  
Bus relinquish time after inactive edge  
3
t2  
t5  
t6  
CS  
SCLK inactive edge to inactive edge  
5
t7  
10  
RDY  
SCLK inactive edge to DOUT/  
high/low  
WRITE OPERATION  
t8  
4
0
8
8
5
ns min  
ns min  
ns min  
ns min  
CS  
falling edge to SCLK active edge setup time  
t9  
t10  
t11  
Data valid to SCLK edge setup time  
Data valid to SCLK edge hold time  
CS  
rising edge to SCLK edge hold time  
1 Sample tested during initial release to ensure compliance.  
2 See Figure 2 and Figure 3.  
3 This parameter is defined as the time required for the output to cross the VOL or VOH limits.  
4 The SCLK active edge is the falling edge of SCLK.  
5
RDY  
while DOUT/  
DOUT/  
returns high after a read of the data register. In single conversion mode and continuous conversion mode, the same data can be read again, if required,  
RDY  
is high, although care must be taken to ensure that subsequent reads do not occur close to the next output update. If the continuous read feature is  
enabled, the digital word can be read only once.  
TIMING DIAGRAMS  
CS (I)  
t6  
t1  
t5  
MSB  
LSB  
t7  
DOUT/RDY (O)  
t2  
t3  
SCLK (I)  
t4  
I = INPUT, O = OUTPUT  
Figure 2. Read Cycle Timing Diagram  
CS (I)  
t11  
t8  
SCLK (I)  
DIN (I)  
t9  
t10  
MSB  
LSB  
I = INPUT, O = OUTPUT  
Figure 3. Write Cycle Timing Diagram  
Rev. B | Page 7 of 61  
 
 
 
 
AD7172-4  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for a device soldered on a JEDEC test board for  
surface-mount packages.  
Table 3.  
Parameter  
Rating  
AVDD1, AVDD2 to AVSS  
AVDD1 to DGND  
IOVDD to DGND  
IOVDD to AVSS  
AVSS to DGND  
Analog Input Voltage to AVSS  
Reference Input Voltage to AVSS  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
Analog Input/Digital Input Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Soldering, Reflow Temperature  
ESD Rating (HBM)  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +7.5 V  
−3.25 V to +0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
10 mA  
−40°C to +105°C  
−65°C to +150°C  
150°C  
260°C  
4 kV  
Table 4. Thermal Resistance  
Package Type  
θJA  
Unit  
32-Lead, 5 mm × 5 mm LFCSP  
1-Layer JEDEC Board  
4-Layer JEDEC Board  
138 °C/W  
63  
41  
°C/W  
°C/W  
4-Layer JEDEC Board with 9 Thermal Vias  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 8 of 61  
 
 
 
Data Sheet  
AD7172-4  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AIN0/REF2–  
AIN1/REF2+  
DNC  
REGCAPA  
AVSS  
1
2
3
4
5
6
7
8
24 AIN3  
23  
22 GPO2  
21 GPIO1  
AIN2  
AD7172-4  
TOP VIEW  
20  
19  
GPIO0  
REGCAPD  
(Not to Scale)  
AVDD1  
AVDD2  
PDSW  
18 DGND  
17 IOVDD  
NOTES  
1. DNC = DO NOT CONNECT.  
2. SOLDER THE EXPOSED PAD TO A SIMILAR PAD ON THE PCB UNDER THE  
EXPOSED PAD TO CONFER MECHANICAL STRENGTH TO THE PACKAGE  
AND FOR HEAT DISSIPATION. THE EXPOSED PAD MUST BE CONNECTED TO  
AVSS THROUGH THIS PAD ON THE PCB.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
No.  
Mnemonic  
Type1 Description  
1
AIN0/REF2−  
AI  
Analog Input 0/Reference 2 Negative Input Terminal. A reference can be applied between the REF2+ and  
REF2− pins. REF2− can span from AVSS to AVDD1 − 1 V. Analog Input 0 is selectable through the crosspoint  
multiplexer. Reference 2 can be selected through the REF_SELx bits in the setup configuration  
(SETUPCONx) registers.  
2
AIN1/REF2+  
AI  
Analog Input 1/Reference 2 Positive Input Terminal. A reference can be applied between the REF2+ and  
REF2− pins. REF2+ can span from AVDD1 to AVSS + 1 V. Analog Input 1 is selectable through the crosspoint  
multiplexer. Reference 2 can be selected through the REF_SELx bits in the setup configuration  
(SETUPCONx) registers.  
3
DNC  
Do Not Connect. Do not connect to this pin.  
4
5
6
7
8
9
REGCAPA  
AVSS  
AVDD1  
AVDD2  
PDSW  
AO  
P
P
P
AO  
AI  
Analog LDO Regulator Output. Decouple this pin to AVSS using a 1 μF capacitor.  
Negative Analog Supply. This supply ranges from 0 V to −2.75 V and is nominally set to 0 V.  
Analog Supply Voltage 1. This voltage ranges from 3.0 V minimum to 5.5 V maximum with respect to AVSS.  
Analog Supply Voltage 2. This voltage ranges from 2 V to AVDD1 with respect to AVSS.  
Power-Down Switch Connected to AVSS. This pin is controlled by the PDSW bit in the GPIOCON register.  
Input 1 for Crystal.  
XTAL1  
10  
XTAL2/CLKIO  
AI/DI  
Input 2 for Crystal/Clock Input or Output. See the CLOCKSEL bit settings in the ADCMODE register in Table 28 for  
more information.  
11  
DOUT/RDY  
DO  
Serial Data Output/Data Ready Output. DOUT/RDY is a dual purpose pin. This pin is a serial data output pin  
to access the output shift register of the ADC. The output shift register can contain data from any of the  
on-chip data or control registers. The data-word/control word information is placed on the DOUT/RDY pin  
on the SCLK falling edge and is valid on the SCLK rising edge. When CS is high, the DOUT/RDY output is  
tristated. When CS is low, and a register is not being read, DOUT/RDY operates as a data ready pin, going  
low to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes  
high before the next update occurs. The DOUT/RDY falling edge can be used as an interrupt to a processor,  
indicating that valid data is available.  
12  
13  
DIN  
DI  
DI  
Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the  
control registers in the ADC, with the register address (RA) bits of the communications register identifying  
the appropriate register. Data is clocked in on the rising edge of SCLK.  
Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK pin has a  
Schmitt triggered input, making the interface suitable for opto-isolated applications.  
SCLK  
Rev. B | Page 9 of 61  
 
AD7172-4  
Data Sheet  
Pin  
No.  
Mnemonic  
Type1 Description  
14  
CS  
DI  
Chip Select Input. This is an active low logic input used to select the ADC. CS can be used to select the ADC  
in systems with more than one device on the serial bus. CS can be hardwired low, allowing the ADC to operate  
in 3-wire mode with the SCLK, DIN, and DOUT pins interfacing with the device. When CS is high, the  
DOUT/RDY output is tristated.  
15  
ERROR  
DI/O  
This pin can be used in one of the following three modes:  
Active low error input mode: this mode sets the ADC_ERROR bit in the status register.  
Active low, open-drain error output mode: the status register error bits are mapped to the ERROR pin. The  
ERROR pins of multiple devices can be wired together to a common pull-up resistor so that an error on any  
device can be observed.  
General-purpose output mode: the status of the pin is controlled by the ERR_DAT bit in the GPIOCON register.  
The pin is referenced between IOVDD and DGND, as opposed to the AVDD1 and AVSS levels used by the  
GPIO0 and GPIO1 pins. The ERROR pin has an active pull-up in this case.  
16  
17  
SYNC  
DI  
P
Synchronization Input. This pin allows synchronization of the digital filters and analog modulators when  
using multiple AD7172-4 devices.  
Digital Input/Output Supply Voltage. The IOVDD voltage ranges from 2 V to 5 V. IOVDD is independent of  
AVDD1 and AVDD2. For example, IOVDD can be operated at 3.3 V when AVDD1 or AVDD2 equals 5 V, or  
vice versa. If AVSS is set to −2.5 V, the voltage on IOVDD must not exceed 3.6 V.  
IOVDD  
18  
19  
DGND  
REGCAPD  
P
AO  
Digital Ground.  
Digital LDO Regulator Output. This pin is for decoupling purposes only. Decouple this pin to DGND using  
a 1 μF capacitor.  
20  
21  
GPIO0  
GPIO1  
I/O  
I/O  
General-Purpose Input/Output. 0 The logic input/output on this this pin is referred to the AVDD1 and AVSS  
supplies.  
General-Purpose Input/Output 1. The logic input/output on this this pin is referred to the AVDD1 and AVSS  
supplies.  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
GPO2  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
GPO3  
REF−  
O
General-Purpose Output. The logic output on this this pin is referred to the AVDD1 and AVSS supplies.  
Analog Input 2. Analog Input 2 is selectable through the crosspoint multiplexer.  
Analog Input 3. Analog Input 3 is selectable through the crosspoint multiplexer.  
Analog Input 4. Analog Input 4 is selectable through the crosspoint multiplexer.  
Analog Input 5. Analog Input 5 is selectable through the crosspoint multiplexer.  
Analog Input 6. Analog Input 6 is selectable through the crosspoint multiplexer.  
Analog Input 7. Analog Input 7 is selectable through the crosspoint multiplexer.  
Analog Input 8. Analog Input 8 is selectable through the crosspoint multiplexer.  
General-Purpose Output. The logic output on this this pin is referred to the AVDD1 and AVSS supplies.  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
O
AI  
Reference 1 Input Negative Terminal. REF− can span from AVSS to AVDD1 − 1 V. Reference 1 can be  
selected through the REF_SELx bits in the setup configuration (SETUPCONx) registers.  
32  
REF+  
EP  
AI  
P
Reference 1 Input Positive Terminal. A reference can be applied between REF+ and REF−. REF+ can span  
from AVDD1 to AVSS + 1 V. Reference 1 can be selected through the REF_SELx bits in the setup  
configuration (SETUPCONx) registers.  
Exposed Pad. Solder the exposed pad to a similar pad on the printed circuit board (PCB) under the  
exposed pad to confer mechanical strength to the package and for heat dissipation. The exposed pad must  
be connected to AVSS through this pad on the PCB.  
1 AI is analog input, AO is analog output, DI/O is bidirectional digital input/output, DO is digital output, DI is digital input, and P is power supply, I/O is input/output, and  
O is output.  
Rev. B | Page 10 of 61  
Data Sheet  
AD7172-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 5 V, AVDD2 = 5 V, IOVDD = 3.3 V, TA = 25°C, unless otherwise noted.  
8388492  
8388490  
8388488  
8388486  
8388484  
8388482  
8388480  
8388478  
1200  
1000  
800  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
8388480 8388482 8388484 8388486 8388488 8388490 8388492  
ADC CODE  
SAMPLE NUMBER  
Figure 5. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 1.25 SPS)  
Figure 8. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 1.25 SPS)  
8388510  
140  
120  
100  
80  
8388505  
8388500  
8388495  
8388490  
8388485  
8388480  
8388475  
8388470  
8388465  
8388460  
60  
40  
20  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 6. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 2.6 kSPS)  
Figure 9. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 2.6 kSPS)  
8388540  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8388530  
8388520  
8388510  
8388500  
8388490  
8388480  
8388470  
8388460  
8388450  
8388440  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 7. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 31.25 kSPS)  
Figure 10. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 31.25 kSPS)  
Rev. B | Page 11 of 61  
 
AD7172-4  
Data Sheet  
8388495  
8388493  
8388491  
8388489  
8388487  
8388485  
8388483  
1200  
1000  
800  
600  
400  
200  
0
8388481  
0
200  
400  
600  
800  
1000  
8388482 8388484 8388486 8388488 8388490 8388492 8388494  
ADC CODE  
SAMPLE NUMBER  
Figure 11. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 1.25 SPS)  
Figure 14. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 1.25 SPS)  
120  
100  
80  
60  
40  
20  
0
8388520  
8388510  
8388500  
8388490  
8388480  
8388470  
8388460  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 12. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 2.6 kSPS)  
Figure 15. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 2.6 kSPS)  
8388560  
120  
100  
80  
60  
40  
20  
0
8388540  
8388520  
8388500  
8388480  
8388460  
8388440  
8388420  
8388400  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 13. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 31.25 kSPS)  
Figure 16. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 31.25 kSPS)  
Rev. B | Page 12 of 61  
Data Sheet  
AD7172-4  
0.000020  
0.000018  
0.000016  
0.000014  
0.000012  
0.000010  
0.000008  
0.000006  
0.000004  
0.000002  
0
–60  
–70  
ANALOG INPUT BUFFERS OFF  
ANALOG INPUT BUFFERS ON  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1000 201000 401000 601000 80100010010001201000140100016010001801000  
V
FREQUENCY (Hz)  
IN  
FREQUENCY (MHz)  
Figure 17. Noise vs. External Master Clock Frequency,  
Analog Input Buffers On and Off  
Figure 20. Power Supply Rejection Ratio (PSRR) vs. VIN Frequency  
6
0
–20  
CRYSTAL BUFFERS OFF  
CRYSTAL BUFFERS ON  
CLK BUFFERS OFF  
CLK BUFFERS ON  
2.5V REFERENCE,  
ANALOG INPUT BUFFERS OFF  
4
–40  
2
–60  
0
–2  
–4  
–80  
–100  
–120  
–140  
2.5V REFERENCE, ANALOG INPUT BUFFERS ON  
5V REFERENCE, ANALOG INPUT BUFFERS OFF  
5V REFERENCE, ANALOG INPUT BUFFERS ON  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
IN  
1
10  
100  
1k  
10k  
100k  
1M  
V
FREQUENCY (Hz)  
IN  
Figure 18. Common-Mode Rejection Ratio (CMRR) vs. VIN Frequency  
(VIN = 0.1 V, Output Data Rate = 31.25 kSPS)  
Figure 21. Integral Nonlinearity (INL) vs. VIN  
(Differential Input)  
35  
30  
25  
20  
15  
10  
5
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25  
INL (ppm)  
10  
20  
30  
V
40  
50  
60  
70  
FREQUENCY (Hz)  
IN  
Figure 22. INL Distribution Histogram (Differential Input, All Input Buffers  
Enabled, VREF = 2.5 V External, 100 Units)  
Figure 19. Common-Mode Rejection Ratio (CMRR) vs. VIN Frequency  
(VIN = 0.1 V, 10 Hz to 70 Hz, Output Data Rate = 20 SPS, Enhanced Filter)  
Rev. B | Page 13 of 61  
AD7172-4  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
A
BUFFERS ON  
BUFFERS OFF  
IN  
IN  
0
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
INL (ppm)  
Figure 23. INL Distribution Histogram (Differential Input, All Input Buffers  
Disabled, VREF = 2.5 V External, 100 Units)  
Figure 26. INL vs. Temperature (Differential Input, VREF = 2.5 V External)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.996 1.997 1.998 1.999  
2.00  
2.001 2.002 2.003  
INL (ppm)  
FREQUENCY (MHz)  
Figure 24. INL Distribution Histogram (All Input Buffers Enabled, Differential  
Input, VREF = 5 V External, 100 Units)  
Figure 27. Internal Oscillator Frequency/Accuracy Distribution Histogram  
(100 Units)  
40  
35  
30  
25  
20  
15  
10  
5
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
1.95  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
INL (ppm)  
Figure 25. INL Distribution Histogram (All Input Buffers Disabled, Differential  
Input, VREF = 5 V External, 100 Units)  
Figure 28. Internal Oscillator Frequency vs. Temperature  
Rev. B | Page 14 of 61  
Data Sheet  
AD7172-4  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70  
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
OFFSET (µV)  
GAIN ERROR (ppm of FSR)  
Figure 29. Offset Error Distribution Histogram (Internal Short, 100 Units)  
Figure 32. Gain Error Distribution Histogram  
(All Input Buffers Disabled, 100 Units)  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
6
4
2
0
0
–5040302010  
0
10 20 30 40 50 60 70 80 90 100110  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
OFFSET DRIFT (nV/°C)  
GAIN DRIFT (ppm/°C)  
Figure 30. Offset Error Drift Distribution Histogram (Internal Short, 100 Units)  
Figure 33. Gain Drift Distribution Histogram  
(All Input Buffers Enabled, 100 Units)  
25  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
–8 –7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
–0.05  
0
0.05  
0.10  
0.15  
0.20  
0.25  
GAIN ERROR (ppm of FSR)  
GAIN DRIFT (ppm/°C)  
Figure 31. Gain Error Distribution Histogram  
(All Input Buffers Enabled, 100 Units)  
Figure 34. Gain Drift Distribution Histogram  
(All Input Buffers Disabled, 100 Units)  
Rev. B | Page 15 of 61  
AD7172-4  
Data Sheet  
700  
600  
500  
400  
300  
200  
100  
0
10  
5
–40°C, AIN–  
–40°C, AIN+  
+25°C, AIN–  
+25°C, AIN+  
+85°C, AIN–  
+85°C, AIN+  
+105°C, AIN–  
0
–5  
–10  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 35. Current Consumption vs. Temperature (Standby Mode)  
Figure 37. Analog Input Current vs. Input Voltage  
(VCM = 2.5 V)  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
AIN+ = AVDD1 – 0.2V  
AIN– = AVSS + 0.2V  
AIN+ = AVDD1  
AIN– = AVSS  
0
–5  
–10  
–15  
0
9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
CURRENT (µA)  
Figure 36. Burnout Current Distribution Histogram  
(100 Units)  
Figure 38. Analog Input Current vs. Temperature  
Rev. B | Page 16 of 61  
 
 
Data Sheet  
AD7172-4  
NOISE PERFORMANCE AND RESOLUTION  
Table 6 and Table 7 show the rms noise, peak-to-peak noise,  
effective resolution, and the noise free (peak-to-peak) resolution  
of the AD7172-4 for various output data rates and filters. The  
numbers given are for the bipolar input range with a 5 V  
reference. These numbers are typical and are generated with a  
differential input voltage of 0 V when the ADC is continuously  
converting on a single channel. It is important to note that the  
peak-to-peak resolution is calculated based on the peak-to-peak  
noise. The peak-to-peak resolution represents the resolution for  
which there is no code flicker.  
Table 6. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate Using the Sinc5 + Sinc1 Filter (Default)1  
Output Data Rate (SPS) RMS Noise (μV rms) Effective Resolution (Bits) Peak-to-Peak Noise (μV p-p) Peak-to-Peak Resolution (Bits)  
Input Buffers Disabled  
31,250  
15,625  
10,417  
1007  
59.52  
49.68  
8.2  
7.0  
6.0  
2.2  
0.48  
0.47  
0.25  
0.088  
20.2  
20.4  
20.7  
22.2  
24  
24  
24  
24  
66  
52  
45  
15  
3.2  
3.1  
1.6  
0.32  
17.2  
17.5  
17.8  
19.3  
21.6  
21.6  
22.6  
24  
16.63  
1.25  
Input Buffers Enabled  
31,250  
15,625  
10,417  
1007  
59.52  
49.68  
16.63  
1.25  
9.5  
8.2  
7.1  
2.6  
0.62  
0.53  
0.32  
0.089  
20  
74  
63  
53  
16  
3.6  
3.3  
1.7  
0.35  
17  
20.2  
20.4  
21.9  
24  
24  
24  
17.3  
17.5  
19.3  
21.4  
21.5  
22.2  
24  
24  
1 Selected rates only, 1000 samples.  
Table 7. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate Using the Sinc3 Filter1  
Output Data Rate (SPS) RMS Noise (μV rms) Effective Resolution (Bits) Peak-to-Peak Noise (μV p-p) Peak-to-Peak Resolution (Bits)  
Input Buffers Disabled  
31,250  
15,625  
10,417  
1008  
59.98  
50  
211  
27.2  
7.9  
15.5  
18.5  
20.3  
22.6  
24  
24  
24  
24  
1600  
205  
57  
11  
2.5  
2.3  
1.1  
0.27  
12.5  
15.6  
17.4  
19.8  
21.9  
22  
1.6  
0.38  
0.35  
0.21  
0.054  
16.67  
1.25  
23.1  
24  
Input Buffers Enabled  
31,250  
15,625  
10,417  
1008  
59.98  
50  
16.67  
1.25  
212  
27.7  
8.5  
15.5  
18.5  
20.2  
22.4  
24  
24  
24  
24  
1600  
210  
63  
13  
2.8  
2.5  
1.2  
0.29  
12.5  
15.5  
17.3  
19.6  
21.8  
22  
1.8  
0.45  
0.44  
0.24  
0.073  
23  
24  
1 Selected rates only, 1000 samples.  
Rev. B | Page 17 of 61  
 
 
 
AD7172-4  
Data Sheet  
GETTING STARTED  
The AD7172-4 offers the user a fast settling, high resolution,  
multiplexed ADC with high levels of configurability, including  
the following features:  
The AD7172-4 includes two separate linear regulator blocks for  
both the analog and digital circuitry. The analog LDO regulator  
regulates the AVDD2 supply to 1.8 V, supplying the ADC core.  
Tie the AVDD1 and AVDD2 supplies together for the easiest  
connection. If there is already a clean analog supply rail in the  
system in the range of 2 V (minimum) to 5.5 V (maximum), the  
user can choose to connect this supply to the AVDD2 input,  
allowing lower power dissipation.  
Four fully differential or eight single-ended analog inputs.  
A crosspoint multiplexer that selects any analog input  
combination as the input signals to be converted, routing  
them to the modulator positive or negative input.  
True rail-to-rail buffered analog and reference inputs.  
Fully differential inputs or single-ended inputs relative to  
any analog input.  
Per channel configurability—up to eight different setups  
can be defined. A separate setup can be mapped to each of  
the channels. Each setup allows the user to configure  
whether the buffers are enabled or disabled, gain and offset  
correction, filter type, output data rate, and reference  
source selection.  
16MHz  
CX2  
CX1  
SEE THE BUFFERED ANALOG INPUT SECTION  
FOR FURTHER DETAILS.  
OPTIONAL EXTERNAL  
CRYSTAL CIRCUITRY  
CAPACITORS  
9
XTAL1  
1
AIN0/REF2–  
XTAL2/CLKIO 10  
DOUT/RDY 11  
CLKIN  
OPTIONAL  
EXTERNAL  
CLOCK  
DOUT/RDY  
DIN  
2
AIN1/REF2+  
AIN6  
INPUT  
12  
DIN  
13  
SCLK  
SCLK  
27  
14  
15  
16  
CS  
ERROR  
SYNC  
CS  
ERROR  
SYNC  
28  
29  
AIN7  
AIN8  
AD7172-4  
IOVDD  
0.1µF  
17  
18  
IOVDD  
DGND  
VIN  
1
3
REGCAPD 19  
2
4
7
6
V
NC  
IN  
0.1µF  
1µF  
4.7µF  
0.1µF  
AVDD1  
ADR44xBRZ  
AVDD1  
AVDD2  
6
7
4
32  
31  
GND  
5
V
REF+  
REF–  
0.1µF  
OUT  
AVDD2  
0.1µF  
4.7µF  
0.1µF  
8
0.1µF  
REGCAPA  
AVSS  
5
0.1µF  
1µF  
Figure 39. Typical Connection Diagram  
Rev. B | Page 18 of 61  
 
Data Sheet  
AD7172-4  
The linear regulator for the digital IOVDD supply performs a  
similar function, regulating the input voltage applied at the  
IOVDD pin to 1.8 V for the internal digital filtering. The serial  
interface signals always operate from the IOVDD supply at the  
pin; meaning, if 3.3 V is applied to the IOVDD pin, the  
interface logic inputs and outputs operate at this level.  
The ADM660 and ADP7182 generate a clean negative rail for  
AVSS in the bipolar configuration to provide optimal converter  
performance.  
ADP7118  
LDO  
5V  
INPUT  
+2.5V: AVDD1/AVDD2  
ADP7118  
LDO  
+3.3V: IOVDD  
The AD7172-4 can be used across a wide variety of applications,  
providing high resolution and accuracy. A sample of these  
scenarios is as follows:  
–5V  
ADM660  
LDO  
ADP7182  
LDO  
–2.5V: AVSS  
Figure 41. Bipolar AD7172-4 Supply Rails  
Fast scanning of analog input channels using the internal  
multiplexer  
Fast scanning of analog input channels using an external  
multiplexer with automatic control from the GPIOs  
High resolution at lower speeds in either channel scanning  
or ADC per channel applications  
Single ADC per channel: the fast low latency output allows  
further application specific filtering in external micro-  
controllers, DSPs, or FPGAs  
Table 8. Recommended Power Management Devices  
Product  
ADP7118  
ADP7182  
ADM660  
Description  
20 V, 200 mA, low noise, CMOS LDO regulator  
−28 V, −200 mA, low noise, linear regulator  
CMOS switched capacitor voltage converter  
DIGITAL COMMUNICATION  
The AD7172-4 has a 3- or 4-wire SPI interface that is compatible  
with QSPI™, MICROWIRE, and DSPs. The interface operates in  
POWER SUPPLIES  
CS  
SPI Mode 3 and can be operated with tied low. In SPI Mode 3,  
The AD7172-4 has three independent power supply pins: AVDD1,  
AVDD2, and IOVDD. AVDD1 powers the crosspoint multiplexer  
and integrated analog and reference input buffers. AVDD1 is  
referenced to AVSS, and AVDD1 − AVSS = 3.3 V or 5 V.  
AVDD1 and AVSS can be a single 3.3 V or 5 V supply, or a  
1.65 V or 2.5 V split supply. The split supply operation allows  
true bipolar inputs. When using split supplies, consider the  
absolute maximum ratings (see the Absolute Maximum Ratings  
section).  
the SCLK pin idles high, the falling edge of SCLK is the drive  
edge, and the rising edge of SCLK is the sample edge. This  
means that data is clocked out on the falling/drive edge and data  
is clocked in on the rising/sample edge.  
DRIVE EDGE  
SAMPLE EDGE  
AVDD2 powers the internal 1.8 V analog LDO regulator. This  
regulator powers the ADC core. AVDD2 is referenced to AVSS,  
and AVDD2 to AVSS can range from 5.5 V (maximum) to 2 V  
(minimum).  
Figure 42. SPI Mode 3 SCLK Edges  
Accessing the ADC Register Map  
The communications register controls access to the full register  
map of the ADC. This register is an 8-bit write only register. On  
power-up or after a reset, the digital interface defaults to a state  
where it is expecting a write to the communications register;  
therefore, all communication begins by writing to the  
communications register.  
IOVDD powers the internal 1.8 V digital LDO regulator. This  
regulator powers the digital logic of the ADC. IOVDD sets the  
voltage levels for the SPI interface of the ADC. IOVDD is refer-  
enced to DGND, and IOVDD to DGND can vary from 5.5 V  
(maximum) to 2 V (minimum).  
There are no specific requirements for a power supply sequence  
on the AD7172-4. When all power supplies are stable, a device  
reset is required; see the AD7172-4 Reset section for how to  
reset the device.  
The data written to the communications register determines  
which register is being accessed and if the next operation is a read  
or write. The RA bits (Bits[5:0] in Register 0x00) determine the  
specific register to which the read or write operation applies.  
Recommended Linear Regulators  
When the read or write operation to the selected register is  
complete, the interface returns to its default state, where it  
expects a write operation to the communications register.  
The ADP7118 provides the positive supply rails, creating either  
a single 5 V or 3.3 V, or dual AVDD1/IOVDD, depending on  
the required supply configuration. The ADP7118 can operate  
from input voltages up to 20 V.  
ADP7118  
LDO  
12V  
INPUT  
5V: AVDD1  
ADP7118  
LDO  
3.3V: AVDD2/IOVDD  
Figure 40. Single Supply Linear Regulator  
Rev. B | Page 19 of 61  
 
 
AD7172-4  
Data Sheet  
Figure 43 and Figure 44 illustrate writing to and reading from a  
register by first writing the 8-bit command to the communications  
register, followed by the data for that register.  
8 BITS, 16 BITS,  
CONFIGURATION OVERVIEW  
After power-on or reset, the AD7172-4 default configuration is  
as follows:  
8-BIT COMMAND  
OR 24 BITS OF DATA  
Channel configuration. CH0 is enabled, AIN0 is selected  
as the positive input, and AIN1 is selected as the negative  
input. Setup 0 is selected.  
CS  
Setup configuration. The analog input buffers are disabled  
and the reference input buffers are also disabled. The REF  
pins are selected as the reference source.  
COMMAND  
DATA  
DIN  
Filter configuration. The sinc5 + sinc1 filter is selected and  
the maximum output data rate of 31.25 kSPS is selected.  
ADC mode. Continuous conversion mode and the internal  
oscillator are enabled.  
SCLK  
Figure 43. Writing to a Register  
(8-Bit Command with Register Address Followed by Data 8, 16, or 24 Bits; Data  
Length on DIN Is Dependent on the Register Selected)  
Interface mode. CRC and data + status output are disabled.  
Note that only a few of the register setting options are shown;  
this list is just an example. For full register information, see the  
Register Details section.  
8 BITS, 16 BITS,  
OR 24 BITS OUTPUT  
8-BIT COMMAND  
CS  
Figure 45 shows an overview of the suggested flow for changing  
the ADC configuration, divided into the following three blocks:  
COMMAND  
DIN  
Channel configuration (see Box A in Figure 45)  
Setup configuration (see Box B in Figure 45)  
ADC mode and interface mode configuration (see Box C  
in Figure 45)  
DOUT/RDY  
DATA  
Channel Configuration  
SCLK  
The AD7172-4 has eight independent channels and eight  
independent setups. The user can select any of the analog input  
pairs on any channel, as well as any of the eight setups for any  
channel, giving the user full flexibility in the channel configuration.  
This also allows per channel configuration when using  
differential inputs and single-ended inputs because each  
channel can have its own dedicated setup.  
Figure 44. Reading from a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, 24 Bits;  
RDY  
Data Length on DOUT/  
Is Dependent on the Register Selected)  
Reading the ID register is the recommended method for verifying  
correct communication with the device. The ID register is a  
read only register and contains the value 0x205X for the  
AD7172-4. The communications register and the ID register  
details are described in Table 9 and Table 10.  
Channel Registers  
The channel registers select which of the nine analog input pins  
(AIN0 to AIN8) are used as either the positive analog input  
(AIN+) or the negative analog input (AIN−) for that channel.  
This register also contains a channel enable/disable bit and the  
setup selection bits, which are used to select which of the eight  
available setups to use for this setup channel.  
AD7172-4 RESET  
After a power-up cycle and when the power supplies are stable,  
a device reset is required. In situations where interface synchro-  
nization is lost, a device reset is also required. A write operation  
of at least 64 serial clock cycles with DIN high returns the ADC to  
its default state by resetting the entire device, including the register  
When the AD7172-4 is operating with more than one channel  
enabled, the channel sequencer cycles through the enabled  
channels in sequential order, from Channel 0 to Channel 7. If a  
channel is disabled, it is skipped by the sequencer. Details of the  
channel register for Channel 0 are shown in Table 11.  
CS  
contents. Alternatively, if is being used with the digital interface,  
CS  
returning  
high sets the digital interface to its default state and  
halts any serial interface operation.  
Rev. B | Page 20 of 61  
 
 
 
 
 
Data Sheet  
AD7172-4  
A
B
C
CHANNEL CONFIGURATION  
SELECT POSITIVE AND NEGATIVE INPUT FOR EACH ADC CHANNEL  
SELECT ONE OF 8 SETUPS FOR ADC CHANNEL  
SETUP CONFIGURATION  
8 POSSIBLE ADC SETUPS  
SELECT FILTER ORDER, OUTPUT DATA RATE, AND MORE  
ADC MODE AND INTERFACE MODE CONFIGURATION  
SELECT ADC OPERATING MODE, CLOCK SOURCE,  
ENABLE CRC, DATA + STATUS, AND MORE  
Figure 45. Suggested ADC Configuration Flow  
Table 9. Communications Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
Reset  
RW  
0x00  
COMMS [7:0]  
WEN  
W
RA  
0x00  
W
R/  
Table 10. ID Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 3  
Reset  
RW  
0x07  
ID  
[15:8]  
[7:0]  
ID[15:8]  
ID[7:0]  
0x205X  
R
Table 11. Channel Register 0  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x10  
CH0  
[15:8] CH_EN0  
[7:0]  
SETUP_SEL0  
Reserved  
AINNEG0  
AINPOS0[4:3]  
0x8001  
RW  
AINPOS0[2:0]  
Rev. B | Page 21 of 61  
 
 
 
 
AD7172-4  
Data Sheet  
Setup Configuration Registers  
ADC Setups  
The setup configuration registers allow the user to select the output  
coding of the ADC by selecting between bipolar mode and  
unipolar mode. In bipolar mode, the ADC accepts negative  
differential input voltages, and the output coding is offset binary. In  
unipolar mode, the ADC accepts only positive differential voltages,  
and the coding is straight binary. In either case, the input voltage  
must be within the AVDD1/AVSS supply voltages. The user can  
select the reference source using these registers. Three options are  
available: a reference connected between the REF+ and REF− pins,  
between REF2+ and REF2− pins , or using AVDD1 − AVSS.  
The analog input and reference input buffers can also be  
enabled or disabled using these registers.  
The AD7172-4 has eight independent setups. Each setup  
consists of the following four registers:  
Setup configuration register  
Filter configuration register  
Gain register  
Offset register  
For example, Setup 0 consists of Setup Configuration Register 0,  
Filter Configuration Register 0, Gain Register 0, and Offset  
Register 0. Figure 46 shows the grouping of these registers The  
setup is selectable from the channel registers (see the Channel  
Configuration section), which allows each channel to be  
assigned to one of eight separate setups. Table 12 through Table 15  
show the four registers that are associated with Setup 0. This  
structure is repeated for Setup 1 to Setup 7.  
Filter Configuration Registers  
The filter configuration registers select which digital filter is  
used at the output of the ADC modulator. The order of the filter  
and the output data rate are selected by setting the bits in these  
registers. For more information, see the Digital Filters section.  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
SETUPCON0  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON0  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN0  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
OFFSET1  
0x31  
OFFSET2  
0x32  
OFFSET3  
0x33  
OFFSET4  
0x34  
OFFSET5  
0x35  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
ANALOG INPUT BUFFERS  
REFERENCE INPUT BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
REFERENCE SOURCE  
ENHANCED 50/60  
Figure 46. ADC Setup Register Grouping  
Table 12. Setup Configuration Register 0  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x20 SETUPCON0 [15:8]  
[7:0]  
Reserved  
BI_UNIPOLAR0 REFBUF0+ REFBUF0− AINBUF0+ AINBUF0− 0x1000  
RW  
BURNOUT_EN0 Reserved  
REF_SEL0  
Reserved  
Table 13. Filter Configuration Register 0  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x28 FILTCON0 [15:8] SINC3_MAP0  
[7:0] Reserved  
Reserved  
ORDER0  
ENHFILTEN0  
ENHFILT0  
0x0500  
RW  
ODR0  
Table 14. Gain Register 0  
Reg. Name  
Bits  
Bits[23:0]  
Reset  
RW  
0x38 GAIN0  
[23:0]  
GAIN0[23:0]  
0x5XXXX0 RW  
Table 15. Offset Register 0  
Reg. Name  
Bits  
Bits[23:0]  
Reset  
RW  
0x30 OFFSET0  
[23:0]  
OFFSET0[23:0]  
0x800000 RW  
Rev. B | Page 22 of 61  
 
 
 
 
Data Sheet  
AD7172-4  
ADC Mode and Interface Mode Configuration  
Gain Registers  
The ADC mode register and the interface mode register configure  
the core peripherals for use by the AD7172-4 and the mode for  
the digital interface.  
The gain registers are 24-bit registers that hold the gain  
calibration coefficient for the ADC. The gain registers are  
read/write registers. These registers are configured at power-on  
with factory calibrated coefficients. Therefore, every device has  
different default coefficients. The default value is automatically  
overwritten if the user initiates a system full-scale calibration or  
writes to a gain register. For more information on calibration,  
see the Operating Modes section.  
ADC Mode Register  
The ADC mode register primarily sets the conversion mode of  
the ADC to either continuous or single conversion. The user  
can also select the standby and power-down modes, as well as  
any of the calibration modes. In addition, this register contains  
the clock source select bits The reference select bits are  
contained in the setup configuration registers (see the ADC  
Setups section for more information). The details of this register  
are shown in Table 16.  
Offset Registers  
The offset registers hold the offset calibration coefficient for the  
ADC. The power-on reset value of the offset registers is 0x800000.  
The offset registers are 24-bit read/write registers. The power-on  
reset value is automatically overwritten if the user initiates an  
internal or system zero-scale calibration or if the user writes to an  
offset register.  
Interface Mode Register  
The interface mode register configures the digital interface  
operation. This register allows the user to control data-word  
length, CRC enable, data plus status read, and continuous read  
mode. The details of this register are shown in Table 17. For more  
information, see the Digital Interface section.  
Table 16. ADC Mode Register  
Reg. Name  
0x01 ADCMODE [15:8] Reserved  
[7:0] Reserved  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Reserved  
Bit 2  
CLOCKSEL  
Bit 1  
Delay  
Reserved  
Bit 0  
Reset  
RW  
HIDE_DELAY SING_CYC  
Mode  
0x2000 RW  
Table 17. Interface Mode Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Reserved  
CONTREAD DATA_STAT  
Bit 5  
Bit 4  
ALT_SYNC IOSTRENGTH  
Reserved CRC_EN  
Bit 3  
Bit 2  
Bit 1  
Reserved  
Reserved  
Bit 0  
Reset  
RW  
0x02 IFMODE [15:8]  
[7:0]  
DOUT_RESET  
WL16  
0x0000 RW  
REG_CHECK  
Rev. B | Page 23 of 61  
 
 
AD7172-4  
Data Sheet  
Understanding Configuration Flexibility  
An alternative way to implement these four fully differential  
inputs is to take advantage of four of the eight available setups.  
Motivation for doing this includes having a different speed/noise  
requirement on each of the differential inputs, or a specific  
offset or gain correction may be needed for each channel. Figure 48  
shows how each of the differential inputs can use a separate  
setup, allowing full flexibility in the configuration of each channel.  
The most straightforward implementation of the AD7172-4 is  
to use four differential inputs with adjacent analog inputs and  
run all of them with the same setup, gain correction, and offset  
correction registers. In this case, the user selects the following  
differential inputs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5, and  
AIN6/AIN7. In Figure 47, the registers shown in black font  
must be programmed for such a configuration. The registers  
that are shown in gray font are redundant in this configuration.  
Programming the gain and offset registers is optional for any  
use case, as indicated by the dashed lines between the register  
blocks.  
CHANNEL  
REGISTERS  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
CH0  
SETUPCON0  
FILTCON0  
GAIN0  
0x38  
OFFSET0  
0x30  
0x10  
0x20  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
OFFSET2  
0x32  
OFFSET3  
0x33  
OFFSET4  
0x34  
OFFSET5  
0x35  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
AND OUTPUT DATA RATE  
GAIN CORRECTION  
OPTIONALLY  
PROGRAMMED  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP 0  
ANALOG INPUT BUFFERS  
REFERENCE INPUT BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50/60  
Figure 47. Four Fully Differential Inputs, Using a Single Setup (SETUPCON0, FILTCON0, GAIN0, OFFSET0)  
CHANNEL  
REGISTERS  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
CH0  
SETUPCON0  
FILTCON0  
0x28  
GAIN0  
0x38  
OFFSET0  
0x30  
0x10  
0x20  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
OFFSET2  
0x32  
OFFSET3  
0x33  
OFFSET4  
0x34  
OFFSET5  
0x35  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
AND OUTPUT DATA RATE  
GAIN CORRECTION  
OPTIONALLY  
PROGRAMMED  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP 0  
ANALOG INPUT BUFFERS  
REFERENCE INPUT BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50/60  
Figure 48. Four Fully Differential Inputs with One Setup per Channel  
Rev. B | Page 24 of 61  
 
 
Data Sheet  
AD7172-4  
Figure 49 shows an example of how the channel registers span  
between the analog input pins and the setup configurations  
downstream. In this example, three differential inputs and two  
single-ended inputs are required. The single-ended inputs are the  
AIN4/AIN8 and AIN7/AIN8 combinations. The differential input  
pairs are AIN0/AIN1 and AIN2/AIN3, both using Setup 0, and  
AIN5/AIN6 using Setup 2. The two single-ended input pairs are  
set up as diagnostics, and in this example use separate setups,  
namely Setup 1 and Setup 4. Given that five setups are selected  
for use, the SETUPCON0 to SETUPCON4 registers are pro-  
grammed as required, and the FILTCON0 to FILTCON4 registers  
are programmed as required. Optional gain and offset  
correction can be employed on a per setup basis by  
programming GAIN0 and GAIN1 and OFFSET0 and  
OFFSET1.  
In the example shown in Figure 49, the CH0 to CH4 registers  
are used. Setting the MSB in each of these registers, the CH_EN0  
to CH_EN4 bits enable the five combinations via the crosspoint  
mux. When the AD7172-4 converts, the sequencer transitions  
in ascending sequential order from CH0 through CH4 before  
looping back to CH0 to repeat the sequence.  
CHANNEL  
REGISTERS  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
CH0  
SETUPCON0  
FILTCON0  
GAIN0  
0x38  
OFFSET0  
0x30  
0x10  
0x20  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
OFFSET2  
0x32  
OFFSET3  
0x33  
OFFSET4  
0x34  
OFFSET5  
0x35  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
AND OUTPUT DATA RATE  
GAIN CORRECTION  
OPTIONALLY  
PROGRAMMED  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP 0  
ANALOG INPUT BUFFERS  
REFERENCE INPUT BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50/60  
Figure 49. Mixed Differential and Single-Ended Configuration Using Multiple Shared Setups  
Rev. B | Page 25 of 61  
 
AD7172-4  
Data Sheet  
CIRCUIT DESCRIPTION  
AVDD1  
BUFFERED ANALOG INPUT  
AIN0  
AIN1  
The AD7172-4 has true rail-to-rail, integrated, precision unity-  
gain buffers on both ADC analog inputs. The buffers provide  
high input impedance with only 5.5 nA typical input current,  
allowing high impedance sources to be connected directly to  
the analog inputs. The buffers fully drive the internal ADC  
switch capacitor sampling network, simplifying the analog  
front-end circuit requirements while consuming a very efficient  
0.38 mA typical per buffer. Each analog input buffer amplifier is  
fully chopped, meaning that it minimizes the offset error drift  
and 1/f noise of the buffer. The 1/f noise profile of the ADC and  
buffer combined is shown in Figure 50.  
AVSS  
AVDD1  
Ø1  
+IN  
CS1  
CS2  
AVSS  
Ø2  
Ø2  
AVDD1  
AIN2  
AVSS  
–IN  
AVDD1  
Ø1  
AIN3  
AIN4  
0
AVSS  
AVDD1  
–50  
–100  
–150  
–200  
–250  
AVSS  
Figure 51. Simplified Analog Input Circuit  
The CS1 and CS2 capacitors have a magnitude in the order of a  
number of picofarads each. This capacitance is the combination  
of both the sampling capacitance and the parasitic capacitance.  
Fully Differential Inputs  
Because the AIN0 to AIN8 analog inputs are connected to a  
crosspoint multiplexer, any combination of signals can create an  
analog input pair. This allows the user to select four fully  
differential inputs or eight single-ended inputs.  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 50. Shorted Input Fast Fourier Transform (FFT), Analog Input  
Buffers Enabled  
If four fully differential input paths are connected to the  
AD7172-4, using adjacent analog inputs for the differential input  
pair, such as AIN2/AIN3, is recommended. This is due to the  
relative locations of these pins to each other. Decouple all analog  
inputs to AVSS.  
The analog input buffers do not suffer from linearity degradation  
when operating at the rails, unlike many discrete amplifiers.  
When operating at or close to the AVDD1 and AVSS supply  
rails, there is an increase in input current. This increase is most  
notable at higher temperatures. Figure 37 and Figure 38 show  
the input current for various conditions. With the analog input  
buffers disabled, the average input current to the AD7172-4  
changes linearly with the differential input voltage at a rate of  
6 μA/V.  
Single-Ended Inputs  
The user can also choose to measure eight different single-  
ended analog inputs. In this case, each of the analog inputs is  
converted as the difference between the single-ended input to be  
measured and a set analog input common pin. Because there is  
a crosspoint multiplexer, the user can set any of the analog inputs  
as the common pin. An example of such a scenario is to connect  
the AIN4 pin to AVSS and then select this input when configuring  
the crosspoint multiplexer. When using the AD7172-4 with  
single-ended inputs, INL degrades.  
CROSSPOINT MULTIPLEXER  
There are nine analog input pins: AIN0 to AIN8. Each of these  
pins connects to the internal crosspoint multiplexer. The  
crosspoint multiplexer enables any of these inputs to be configured  
as an input pair, either single-ended or fully differential. The  
AD7172-4 can have up to eight active channels. When more than  
one channel is enabled, the channels are automatically sequenced  
in order from the lowest enabled channel number to the highest  
enabled channel number. The output of the multiplexer is  
connected to the input of the integrated true rail-to-rail buffers.  
These buffers can be bypassed and the multiplexer output can  
be directly connected to the switched capacitor input of the ADC.  
The simplified analog input circuit is shown in Figure 51.  
Rev. B | Page 26 of 61  
 
 
 
 
 
Data Sheet  
AD7172-4  
Standard low noise, low drift voltage references, such as the  
AD7172-4 REFERENCE  
ADR445, ADR444, and ADR441, are recommended for use.  
Apply the reference to the AD7172-4 reference pins as shown in  
Figure 52. Decouple the output of the reference to AVSS. As  
shown in Figure 52, the ADR441 output is decoupled with a  
0.1 μF capacitor at its output for stability purposes. The output  
is then connected to a 4.7 μF capacitor, which acts as a reservoir  
for any dynamic charge required by the ADC, and followed by a  
0.1 μF decoupling capacitor at the REF+ input. This capacitor is  
placed as close as possible to the REF+ and REF− pins. e  
REF− pin is connected directly to the AVSS potential.  
The AD7172-4 offers the user the option of either supplying a  
reference to the REF or REF2 pins of the device or using  
AVDD1 – AVSS. Select the reference source to be used by the  
analog input by setting the REF_SELx bits (Bits[5:4]) in the setup  
configuration registers appropriately. The structure of the Setup  
Configuration 0 register is shown in Table 18. The AD7172-4  
defaults on power-up to use the REF+ and REF− reference  
inputs, REF+ and REF−.  
AD7172-4  
3V TO 18V  
ADR4412  
32  
31  
REF+  
REF–  
2.5V V  
0.1µF  
1
0.1µF  
4.7µF  
0.1µF  
REF  
1
1
1
1
1
2
ALL DECOUPLING IS TO AVSS.  
ANY OF THE ADR44x FAMILY OF REFERENCES CAN BE USED.  
THE ADR441 ENABLES REUSE OF THE 3.3V ANALOG SUPPLY  
NEEDED FOR AVDD1 TO POWER THE REFERENCE V  
.
IN  
Figure 52. ADR441 Connected to AD7172-4 REF Pins  
Table 18. Setup Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x20 SETUPCON0 [15:8]  
[7:0]  
Reserved  
BI_UNIPOLAR0 REFBUF0+ REFBUF0− AINBUF0+ AINBUF0− 0x1000 RW  
BURNOUT_EN0 Reserved  
REF_SEL0  
Reserved  
Table 19. ADC Mode Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
CLOCKSEL  
Bit 1  
Delay  
Reserved  
Bit 0  
Reset  
RW  
0x01  
ADCMODE [15:8]  
[7:0]  
Reserved HIDE_DELAY  
Reserved  
SING_CYC  
Mode  
Reserved  
0x2000  
RW  
Rev. B | Page 27 of 61  
 
 
 
 
AD7172-4  
Data Sheet  
IOSTRENGTH bit is set at higher IOVDD levels (see Table 29  
for more information).  
BUFFERED REFERENCE INPUT  
The AD7172-4 has true rail-to-rail, integrated, precision unity  
gain buffers on both ADC reference inputs. The buffers provide  
the benefit of providing high input impedance and allowing  
high impedance external sources to be directly connected to the  
reference inputs. The integrated reference buffers can fully drive  
the internal reference switch capacitor sampling network,  
simplifying the reference circuit requirements while consuming  
a very efficient 0.38 mA typical per buffer. Each reference input  
buffer amplifier is fully chopped, meaning that it minimizes the  
offset error drift and 1/f noise of the buffer. When using a  
reference, such as the ADR445, ADR444, or ADR441, these  
buffers are not required because these references, with proper  
decoupling, can drive the reference inputs directly.  
External Crystal  
If higher precision, lower jitter clock sources are required, the  
AD7172-4 can use an external crystal to generate the master clock.  
The crystal is connected to the XTAL1 and XTAL2/CLKIO pins.  
A recommended crystal for use is the FA-20H, a 16 MHz,  
10 ppm, 9 pF crystal from Epson-Toyocom that is available in a  
surface-mount package. As shown in Figure 53, insert two  
capacitors (CX1 and CX2) from the traces connecting the  
crystal to the XTAL1 and XTAL2/CLKIO pins. These capacitors  
allow circuit tuning. Connect these capacitors to the DGND  
pin. The value for these capacitors depends on the length and  
capacitance of the trace connections between the crystal and the  
XTAL1 and XTAL2/CLKIO pins. Therefore, the values of these  
capacitors differ depending on the PCB layout and the crystal  
employed.  
CLOCK SOURCE  
The AD7172-4 uses a nominal master clock of 2 MHz. The  
AD7172-4 can source its sampling clock from one of three  
sources:  
AD7172-4  
CX1  
1
An internal oscillator  
9
XTAL1  
An external crystal (use a 16 MHz crystal automatically  
divided internally to set the 2 MHz clock)  
An external clock source  
XTAL2/CLKIO 10  
CX2  
1
All output data rates listed in the data sheet relate to a master  
clock rate of 2 MHz. Using a lower clock frequency from, for  
instance, an external source scales any listed data rate propor-  
tionally. To achieve the specified data rates, particularly rates for  
rejection of 50 Hz and 60 Hz, use a 2 MHz clock. The source of  
the master clock is selected by setting the CLOCKSEL bits  
(Bits[3:2]) in the ADC mode register as shown in Table 19. The  
default operation on power-up and reset of the AD7172-4 is to  
operate with the internal oscillator. It is possible to fine tune the  
output data rate and filter notch at low output data rates using  
the SINC3_MAPx bit. See the Sinc3 Filter section for more  
information.  
1
DECOUPLE TO DGND.  
Figure 53. External Crystal Connections  
The external crystal circuitry can be sensitive to the SCLK  
edges, depending on the SCLK frequency, IOVDD voltage,  
crystal circuitry layout, and the crystal used. During crystal startup,  
any disturbances caused by the SLCK edges may cause double  
edges on the crystal input, resulting in invalid conversions until  
the crystal voltage has reached a high enough level such that  
any interference from the SCLK edges is insufficient to cause  
double clocking. This double clocking can be avoided by  
ensuring that the crystal circuitry has reached a sufficient  
voltage level after startup before applying any SCLK.  
Internal Oscillator  
Due to the nature of the crystal circuitry, it is therefore  
recommended that empirical testing of the circuit be performed  
under the required conditions, with the final PCB layout and  
crystal, to ensure correct operation.  
The internal oscillator runs at 16 MHz and is internally divided  
down to 2 MHz for the modulator and can be used as the ADC  
master clock. The internal oscillator is the default clock source for  
the AD7172-4 and is specified with an accuracy of −2.6% to  
+2.5%.  
External Clock  
The AD7172-4 can also use an externally supplied clock. In  
systems where this is desirable, the external clock is routed to  
the XTAL2/CLKIO pin. In this configuration, the XTAL2/  
CLKIO pin accepts the externally sourced clock and routes it to  
the modulator. The logic level of this clock input is defined by  
the voltage applied to the IOVDD pin.  
There is an option to allow the internal clock oscillator to be output  
on the XTAL2/CLKIO pin. The clock output is driven to the  
IOVDD logic level. This option can affect the dc performance of  
the AD7172-4 due to the disturbance introduced by the output  
driver. The extent to which the performance is affected depends  
on the IOVDD voltage supply. Higher IOVDD voltages create a  
wider logic output swing from the driver and affect performance  
to a greater extent. This effect is further exaggerated if the  
Rev. B | Page 28 of 61  
 
 
 
Data Sheet  
AD7172-4  
DIGITAL FILTERS  
The AD7172-4 has three flexible filter options to allow  
optimization of noise, settling time, and rejection:  
SINC3 FILTER  
The sinc3 filter achieves the best single-channel noise performance  
at lower rates and is, therefore, most suitable for single-channel  
applications. The sinc3 filter always has a settling time equal to  
The sinc5 + sinc1 filter  
The sinc3 filter  
Enhanced 50 Hz and 60 Hz rejection filters  
t
SETTLE = 3/Output Data Rate  
Figure 56 shows the frequency domain filter response for the  
sinc3 filter. The sinc3 filter has good roll-off over frequency and  
has wide notches for good notch frequency rejection.  
50Hz AND 60Hz  
POSTFILTER  
SINC1  
SINC5  
SINC3  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
Figure 54. Digital Filter Block Diagram  
The filter and output data rate are configured by setting the  
appropriate bits in the filter configuration register for the  
selected setup. Each channel can use a different setup and  
therefore, a different filter and output data rate. See the Register  
Details section for more information.  
SINC5 + SINC1 FILTER  
The sinc5 + sinc1 filter is targeted at multiplexed applications  
and achieves single cycle settling at output data rates of 2.6 kSPS  
and less. The sinc5 block output is fixed at the maximum rate of  
31.25 kSPS, and the sinc1 block output data rate can be varied to  
control the final ADC output data rate. Figure 55 shows the  
frequency domain response of the sinc5 + sinc1 filter at a 50 SPS  
output data rate. The sinc5 + sinc1 filter has a slow roll-off over  
frequency and narrow notches.  
–120  
0
50  
100  
FREQUENCY (Hz)  
150  
Figure 56. Sinc3 Filter Response  
The output data rates with the accompanying settling time and  
rms noise for the sinc3 filter are shown in Table 22 and Table 23. It  
is possible to fine tune the output data rate for the sinc3 filter by  
setting the SINC3_MAPx bit in the filter configuration registers.  
If this bit is set, the mapping of the filter register changes to directly  
program the decimation rate of the sinc3 filter. All other options  
are eliminated. The data rate when on a single channel can be  
calculated using the following equation:  
0
–20  
–40  
fMOD  
Output Data Rate   
–60  
32 FILTCONx[14:0]  
where:  
–80  
f
MOD is the modulator rate (MCLK/2) and is equal to 1 MHz.  
FILTCONx[14:0] are the contents on the filter configuration  
registers, excluding the MSB.  
–100  
–120  
For example, an output data rate of 50 SPS can be achieved with  
SINC3_MAPx enabled by setting the FILTCONx[14:0] bits to a  
value of 625.  
0
50  
100  
FREQUENCY (Hz)  
150  
Figure 55. Sinc5 + Sinc1 Filter Response at 50 SPS ODR  
The output data rates with the accompanying settling time and  
rms noise for the sinc5 + sinc1 filter are shown in Table 20 and  
Table 21.  
Rev. B | Page 29 of 61  
 
 
 
 
 
AD7172-4  
Data Sheet  
Figure 58 shows the same step on the analog input but with  
single cycle settling enabled. The analog input requires at least a  
single cycle for the output to be fully settled. The output data  
SINGLE CYCLE SETTLING  
The AD7172-4 can be configured by setting the SING_CYC bit  
in the ADC mode register so that only fully settled data is output,  
thus effectively putting the ADC into a single cycle settling mode.  
This mode achieves single cycle settling by reducing the output  
data rate to be equal to the settling time of the ADC for the selected  
output data rate. This bit has no effect with the sinc5 + sinc1 filter  
at output data rates of 2.6 kSPS and less.  
RDY  
rate, as indicated by the  
signal, is now reduced to equal the  
settling time of the filter at the selected output data rate.  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
Figure 57 shows a step on the analog input with single cycle  
settling mode disabled and the sinc3 filter selected. The analog  
input requires at least three cycles after the step change for the  
output to reach the final settled value.  
tSETTLE  
Figure 58. Step Input with Single Cycle Settling  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
1/ODR  
Figure 57. Step Input Without Single Cycle Settling  
Table 20. Output Data Rate, Settling Time, and Noise Using the Sinc5 + Sinc1 Filter with Input Buffers Disabled  
Default Output  
Data Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(μV rms)  
Noise  
(μV p-p)2  
31,250  
15,625  
10,417  
5208  
2597  
1007  
503.8  
381  
200.3  
100.2  
59.52  
49.68  
20.01  
16.63  
10  
6211  
5181  
4444  
3115  
2597  
1007  
503.8  
381  
200.3  
100.2  
59.52  
49.68  
20.01  
16.63  
10  
161 μs  
193 μs  
225 μs  
321 μs  
385 μs  
993 μs  
1.99 ms  
2.63 ms  
4.99 ms  
9.99 ms  
16.8 ms  
20.13 ms  
49.98 ms  
60.13 ms  
100 ms  
200 ms  
400 ms  
800 ms  
31,250  
15,625  
10,417  
5208  
3906  
1157  
539  
401  
206  
102  
59.98  
50  
20  
16.67  
10  
5
2.5  
8.2  
7.0  
6.0  
4.5  
3.9  
2.2  
1.5  
1.3  
0.88  
0.64  
0.48  
0.47  
0.27  
0.25  
0.2  
0.14  
0.091  
0.088  
20.2  
20.4  
20.7  
21.1  
21.3  
22.2  
22.6  
22.9  
23.3  
23.8  
24  
24  
24  
24  
24  
24  
24  
24  
66  
52  
45  
33  
29  
15  
10  
9.1  
6.1  
4.2  
3.2  
3.1  
1.7  
1.6  
1.1  
0.75  
0.32  
0.32  
17.2  
17.5  
17.8  
18.2  
18.4  
19.3  
19.9  
20.1  
20.6  
21.2  
21.6  
21.6  
22.4  
22.6  
23.1  
24  
5
2.5  
1.25  
5
2.5  
1.25  
24  
24  
1.25  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 30 of 61  
 
 
 
 
Data Sheet  
AD7172-4  
Table 21. Output Data Rate, Settling Time, and Noise Using the Sinc5 + Sinc1 Filter with Input Buffers Enabled  
Default Output Data  
Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or  
with Multiple  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(μV rms)  
Noise  
Channels Enabled1  
(μV p-p)2  
31,250  
15,625  
10,417  
5208  
2597  
1007  
503.8  
381  
200.3  
100.2  
59.52  
49.68  
20.01  
16.63  
10  
6211  
5181  
4444  
3115  
2597  
1007  
503.8  
381  
200.3  
100.2  
59.52  
49.68  
20.01  
16.63  
10  
161 μs  
193 μs  
225 μs  
321 μs  
385 μs  
993 μs  
1.99 ms  
2.63 ms  
4.99 ms  
9.99 ms  
16.8 ms  
20.13 ms  
49.98 ms  
60.13 ms  
100 ms  
200 ms  
400 ms  
800 ms  
31,250  
15,625  
10,417  
5208  
3906  
1157  
539  
401  
206  
102  
59.98  
50  
20  
16.67  
10  
5
2.5  
9.5  
8.2  
7.1  
5.3  
4.7  
2.6  
1.8  
1.6  
20  
74  
63  
53  
39  
29  
16  
12  
11  
7.5  
5.1  
3.6  
3.3  
1.8  
1.7  
1.2  
0.83  
0.35  
0.35  
17  
20.2  
20.4  
20.9  
21  
21.9  
22.4  
22.6  
23.1  
23.6  
24  
24  
24  
24  
24  
24  
24  
24  
17.3  
17.5  
18  
18.4  
19.3  
19.7  
19.8  
20.3  
21  
21.4  
21.5  
22.4  
22.5  
23  
1.1  
0.75  
0.62  
0.53  
0.32  
0.32  
0.25  
0.18  
0.11  
0.089  
5
2.5  
1.25  
5
2.5  
1.25  
23.5  
24  
24  
1.25  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 31 of 61  
 
AD7172-4  
Data Sheet  
Table 22. Output Data Rate, Settling Time, and Noise Using the Sinc3 Filter with Input Buffers Disabled  
Default Output  
Data Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(μV rms)  
Noise  
(μV p-p)2  
31,250  
15,625  
10,417  
5,208  
2,604  
1,008  
504  
400.6  
200.3  
100.2  
59.98  
50  
20.01  
16.67  
10  
5
2.5  
10,309  
5,181  
3,460  
1,733  
867.3  
335.9  
167.98  
133.5  
66.67  
33.39  
19.99  
16.67  
6.67  
97 μs  
193 μs  
289 μs  
577 μs  
1.15 ms  
2.98 ms  
5.95 ms  
7.49 ms  
14.98 ms  
29.95 ms  
50.02 ms  
60 ms  
31,250  
15,625  
10,417  
5,208  
2,604  
1,008  
504  
400.6  
200.3  
100.2  
59.98  
50  
211  
27.2  
7.9  
3.7  
2.5  
15.5  
18.5  
20.3  
21.4  
21.9  
22.6  
23.1  
23.3  
23.7  
24  
24  
24  
24  
24  
24  
24  
24  
24  
1600  
205  
57  
27  
17  
11  
7.5  
6.7  
4.6  
3.1  
2.5  
2.3  
1.2  
12.5  
15.6  
17.4  
18.5  
19.2  
19.8  
20.3  
20.5  
21  
1.6  
1.1  
0.99  
0.68  
0.47  
0.38  
0.35  
0.21  
0.21  
0.18  
0.18  
0.16  
0.054  
21.6  
21.9  
22  
149.95 ms 20.01  
23  
5.56  
3.33  
1.67  
0.83  
180 ms  
300 ms  
600 ms  
1.2 sec  
2.4 sec  
16.67  
10  
5
2.5  
1.25  
1.1  
23.1  
23.5  
24  
24  
24  
0.83  
0.56  
0.41  
0.27  
1.25  
0.42  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 1000 samples.  
Table 23. Output Data Rate, Settling Time, and Noise Using the Sinc3 Filter with Input Buffers Enabled  
Default Output  
Data Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(μV rms)  
Noise  
(μV p-p)2  
31,250  
15,625  
10,417  
5,208  
2,604  
1,008  
504  
400.6  
200.3  
100.2  
59.98  
50  
20.01  
16.67  
10  
5
2.5  
10,309  
5,181  
3,460  
1,733  
867.3  
335.9  
167.98  
133.5  
66.67  
33.39  
19.99  
16.67  
6.67  
97 μs  
193 μs  
289 μs  
577 μs  
31,250  
15,625  
10,417  
5,208  
2,604  
1,008  
504  
400.6  
200.3  
100.2  
59.98  
50  
20.01  
16.67  
10  
5
2.5  
212  
27.7  
8.5  
4.3  
3.0  
1.8  
1.3  
1.2  
0.82  
0.57  
0.45  
0.44  
0.26  
0.24  
0.19  
0.12  
0.098  
0.073  
15.5  
18.5  
20.2  
21.2  
21.7  
22.4  
22.9  
23  
23.5  
24  
24  
24  
24  
1600  
210  
63  
28  
20  
13  
8.9  
8.2  
5.6  
3.8  
2.8  
2.5  
1.3  
12.5  
15.5  
17.3  
18.4  
19  
19.6  
20.1  
20.2  
20.8  
21.3  
21.8  
22  
22.9  
23  
23.4  
24  
24  
24  
1.15 ms  
2.98 ms  
5.95 ms  
7.49 ms  
14.98 ms  
29.95 ms  
50.02 ms  
60 ms  
149.95 ms  
180 ms  
300 ms  
600 ms  
1.2 sec  
5.56  
3.33  
1.67  
0.83  
24  
24  
24  
24  
1.2  
0.91  
0.62  
0.45  
0.29  
1.25  
0.42  
2.4 sec  
1.25  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 32 of 61  
 
 
Data Sheet  
AD7172-4  
selected when using the enhanced filters to achieve the specified  
settling time and noise performance. Table 24 shows the output  
data rates with the accompanying settling time, rejection, and  
rms noise. Figure 59 to Figure 66 show the frequency domain  
plots of the responses from the enhanced filters.  
ENHANCED 50 Hz AND 60 Hz REJECTION FILTERS  
The enhanced filters provide rejection of 50 Hz and 60 Hz  
simultaneously and allow the user to trade off settling time and  
rejection. These filters can operate up to 27.27 SPS or can reject  
up to 90 dB of 50 Hz 1 Hz and 60 Hz 1 Hz interference.  
These filters are operated by postfiltering the output of the sinc5 +  
sinc1 filter. For this reason, the sinc5 + sinc1 filter must be  
Table 24. Enhanced Filters Output Data Rate, Noise, Settling Time, and Rejection Using the Enhanced Filters  
Settling Simultaneous Rejection of Noise Peak-to-Peak  
Output Data Rate (SPS) Time (ms) 50 Hz 1 Hz and 60 Hz 1 Hz(dB)1  
(μV rms) Resolution (Bits) Comments  
27.27  
25  
20  
36.67  
40.0  
50.0  
60.0  
47  
62  
85  
90  
0.45  
0.44  
0.41  
0.417  
21.4  
21.4  
21.7  
21.7  
See Figure 59 and Figure 62  
See Figure 60 and Figure 63  
See Figure 61 and Figure 64  
See Figure 65 and Figure 66  
16.667  
1 Master clock = 2.00 MHz.  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 59. 27.27 SPS ODR, 36.67 ms Settling Time  
Figure 61. 20 SPS ODR, 50 ms Settling Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 60. 25 SPS ODR, 40 ms Settling Time  
Figure 62. 27.27 SPS ODR, 36.67 ms Settling Time (40 Hz to 70 Hz)  
Rev. B | Page 33 of 61  
 
 
 
 
 
 
AD7172-4  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
40  
–100  
45  
50  
55  
60  
65  
70  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 63. 25 SPS ODR, 40 ms Settling Time (40 Hz to 70 Hz)  
Figure 65. 16.667 SPS ODR, 60 ms Settling Time  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–70  
–80  
–90  
–100  
40  
45  
50  
55  
60  
65  
70  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 64. 20 SPS ODR, 50 ms Settling Time (40 Hz to 70 Hz)  
Figure 66. 16.667 SPS ODR, 60 ms Settling Time (40 Hz to 70 Hz)  
Rev. B | Page 34 of 61  
 
 
 
 
Data Sheet  
AD7172-4  
OPERATING MODES  
The AD7172-4 has a number of operating modes that can be set  
from the ADC mode register and interface mode register (see  
Table 28 and Table 29). These modes are as follows and are  
described in the following sections:  
register. When the data-word has been read from the data register,  
RDY  
the DOUT/  
pin goes high. The user can read this register  
additional times, if required. However, ensure that the data  
register is not being accessed at the completion of the next  
conversion; otherwise, the new conversion word is lost.  
Continuous conversion mode  
Continuous read mode  
Single conversion mode  
Standby mode  
Power-down mode  
Calibration modes (three)  
When several channels are enabled, the ADC automatically  
sequences through the enabled channels, performing one  
conversion on each channel. When all the channels have been  
converted, the sequence starts again with the first channel. The  
channels are converted in order from the lowest enabled channel  
to the highest enabled channel. The data register is updated as  
CONTINUOUS CONVERSION MODE  
RDY  
soon as each conversion is available. The  
output pulses  
low each time a conversion is available. The user can then read  
the conversion while the ADC converts the next enabled channel.  
Continuous conversion mode is the default power-up mode.  
RDY  
The AD7172-4 converts continuously, and the  
status register goes low each time a conversion is complete. If  
RDY  
bit in the  
CS  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion data,  
are output each time the data register is read. The status register  
indicates the channel to which the conversion corresponds.  
is low, the  
output also goes low when a conversion is  
complete. To read a conversion, write to the communications  
register to indicate that the next operation is a read of the data  
CS  
0x44  
0x44  
DIN  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 67. Continuous Conversion Mode  
Rev. B | Page 35 of 61  
 
 
AD7172-4  
Data Sheet  
To enable continuous read mode, set the CONTREAD bit in the  
interface mode register. When this bit is set, the only serial interface  
operations possible are reads from the data register. To exit con-  
tinuous read mode, issue a dummy read of the ADC data register  
CONTINUOUS READ MODE  
In continuous read mode, it is not required to write to the  
communications register before reading ADC data; apply only  
RDY  
the required number of SCLKs after the  
indicate the end of a conversion. When the conversion is read,  
RDY  
output goes low to  
RDY  
command (0x44) while the  
output is low. Alternatively, apply  
CS  
a software reset, that is, 64 SCLKs with  
= 0 and DIN = 1.  
the  
output returns high until the next conversion is  
This resets the ADC and all register contents. These are the only  
commands that the interface recognizes after it is placed in  
continuous read mode. Hold DIN low in continuous read mode  
until an instruction is to be written to the device.  
available. In this mode, the data can be read only once. Ensure  
that the data-word is read before the next conversion is  
complete. If the user has not read the conversion before the  
completion of the next conversion or if insufficient serial clocks  
are applied to the AD7172-4 to read the data-word, the serial  
output register is reset shortly before the next conversion is  
complete, and the new conversion is placed in the output serial  
register. The ADC must be configured for continuous  
conversion mode to use continuous read mode.  
If multiple ADC channels are enabled, each channel is output  
in turn, with the status bits being appended to the data if the  
DATA_STAT bit is set in the interface mode register. The status  
register indicates the channel to which the conversion corresponds.  
CS  
0x02  
0x0080  
DIN  
DATA  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 68. Continuous Read Mode  
Rev. B | Page 36 of 61  
 
Data Sheet  
AD7172-4  
output goes low. The ADC then selects the next channel and  
SINGLE CONVERSION MODE  
begins a conversion. The user can read the present conversion  
while the next conversion is being performed. When the next  
conversion is complete, the data register is updated; therefore,  
the user has a limited period in which to read the conversion.  
When the ADC has performed a single conversion on each of  
the selected channels, it returns to standby mode.  
In single conversion mode, the AD7172-4 performs a single  
conversion and is placed in standby mode after the conversion  
RDY  
is complete. The  
of a conversion. When the data-word has been read from the  
RDY  
output goes low to indicate the completion  
data register, the  
output goes high. The data register can be  
RDY  
read several times, if required, even when the  
high.  
output has gone  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion, are  
output each time the data register is read. The two LSBs of the  
status register indicate the channel to which the conversion  
corresponds.  
If several channels are enabled, the ADC automatically  
sequences through the enabled channels and performs a  
conversion on each channel. When a conversion is started, the  
RDY  
output goes high and remains high until a valid conversion is  
CS  
RDY  
available and is low. When the conversion is available, the  
CS  
0x01  
0x8010  
0x44  
DIN  
DATA  
DOUT/RDY  
SCLK  
Figure 69. Single Conversion Mode  
Rev. B | Page 37 of 61  
 
AD7172-4  
Data Sheet  
To start a calibration, write the relevant value to the mode bits  
STANDBY AND POWER-DOWN MODES  
RDY  
RDY  
in the ADC mode register. The DOUT/  
pin and the  
bit  
In standby mode, most blocks are powered down. The LDO  
regulators remain active so that the registers maintain their  
contents. The crystal oscillator remains active if selected. To  
power down the clock in standby mode, set the CLOCKSEL bits  
in the ADC mode register to 00 (internal oscillator mode).  
in the status register go high when the calibration initiates. When  
the calibration is complete, the contents of the corresponding offset  
RDY  
or gain register are updated, the  
bit in the status register is  
RDY  
CS  
is low), and the  
reset and the  
output pin returns low (if  
AD7172-4 reverts to standby mode.  
In power-down mode, all blocks are powered down, including  
the LDO regulators. All registers lose their contents, and the GPIO  
outputs are placed in three-state. To prevent accidental entry to  
power-down mode, the ADC must first be placed in standby  
During an internal offset calibration, the selected positive  
analog input pin is disconnected, and both modulator inputs  
are connected internally to the selected negative analog input  
pin. Therefore, it is necessary to ensure that the voltage on the  
selected negative analog input pin does not exceed the allowed  
limits and is free from excessive noise and interference.  
CS  
mode. Exiting power-down mode requires 64 SCLKs with  
= 0  
and DIN = 1, that is, a serial interface reset. A delay of 500 μs is  
recommended before issuing a subsequent serial interface  
command to allow the LDO regulator to power up.  
However, for system calibrations the system zero-scale (offset)  
and system full-scale (gain) voltages must be applied to the  
ADC pins before initiating the calibration modes. As a result,  
errors external to the ADC are removed.  
CALIBRATION  
The AD7172-4 allows a two-point calibration to be performed  
to eliminate any offset and gain errors. Three calibration modes  
are used to eliminate these offset and gain errors on a per setup  
basis:  
From an operational point of view, treat a calibration like  
another ADC conversion. An offset calibration, if required,  
must always be performed before a full-scale calibration. Set the  
Internal zero-scale calibration mode  
System zero-scale calibration mode  
System full-scale calibration mode  
RDY  
system software to monitor the  
bit in the status register or  
output to determine the end of a calibration via a  
RDY  
the  
polling sequence or an interrupt driven routine. All calibrations  
require a time equal to the settling time of the selected filter and  
output data rate to be completed.  
There is no internal full-scale calibration mode because this is  
calibrated in the factory at the time of production.  
An internal offset calibration, system zero-scale calibration, and  
system full-scale calibration can be performed at any output data  
rate. Using lower output data rates results in better calibration  
accuracy and is accurate for all output data rates. A new offset  
calibration is required for a given channel if the reference source  
for that channel is changed.  
Only one channel can be active during calibration. After each  
conversion, the ADC conversion result is scaled using the ADC  
calibration registers before being written to the data register.  
The default value of the offset register is 0x800000, and the  
nominal value of the gain register is 0x555555. The calibration  
range of the ADC gain is from 0.4 × VREF to 1.05 × VREF. The  
following equations show the calculations that are used. In  
unipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
The offset error is typically 75 μV and an offset calibration  
reduces the offset error to the order of the noise. The gain error  
is factory calibrated at ambient temperature. Following this  
calibration, the gain error is typically 5 ppm of FSR.  
0.75VIN  
VREF  
Data   
223 (Offset0x800000)   
The AD7172-4 provides the user with access to the on-chip  
calibration registers, allowing the microprocessor to read the  
calibration coefficients of the device and to write its own  
calibration coefficients. A read or write of the offset and gain  
registers can be performed at any time except during an internal  
or self calibration.  
Gain  
2  
0x400000  
In bipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
0.75 VIN  
VREF  
Data   
223 (Offset 0x800000)   
Gain  
0x400000  
0x800000  
Rev. B | Page 38 of 61  
 
 
Data Sheet  
AD7172-4  
DIGITAL INTERFACE  
The programmable functions of the AD7172-4 are controlled via  
the SPI. The serial interface of the AD7172-4 consists of four  
For CRC checksum calculations during a write operation, the  
following polynomial is always used:  
CS  
RDY  
signals: , DIN, SCLK, and DOUT/  
. The DIN input  
x8 + x2 + x + 1  
transfers data into the on-chip registers, and the DOUT output  
accesses data from the on-chip registers. SCLK is the serial clock  
input for the device, and all data transfers (either on the DIN input  
or on the DOUT output) occur with respect to the SCLK signal.  
During read operations, the user can select between this  
polynomial and a simpler exclusive OR (XOR) function. The  
XOR function requires less time to process on the host  
microcontroller than the polynomial-based checksum. The  
CRC_EN bits in the interface mode register enable and disable  
the checksum and allow the user to select between the  
polynomial check and the simple XOR check.  
RDY  
The DOUT/  
the output going low if  
available in the data register. The  
a read operation from the data register is complete. The  
output also goes high before updating the data register to  
indicate when not to read from the device to ensure that a data  
read is not attempted while the register is being updated. Take  
pin also functions as a data ready signal, with  
CS  
is low when a new data-word is  
RDY  
output is reset high when  
RDY  
The checksum is appended to the end of each read and write  
transaction. The checksum calculation for the write transaction  
is calculated using the 8-bit command word and the 8-bit to  
24-bit data. For a read transaction, the checksum is calculated  
using the command word and the 8-bit to 32-bit data output.  
Figure 70 and Figure 71 show SPI write and read transactions,  
respectively.  
RDY  
care to avoid reading from the data register when the  
output is about to go low. The best method to ensure that no data  
RDY  
read occurs is to always monitor the  
output. Start reading  
output goes low, and  
ensure a sufficient SCLK rate, such that the read is completed  
CS  
RDY  
the data register as soon as the  
8-BIT COMMAND  
UP TO 24-BIT INPUT  
8-BIT CRC  
CS  
CS  
is used to select a device.  
before the next conversion result.  
can decode the AD7172-4 in systems where several components  
are connected to the serial bus.  
CS  
DATA  
CRC  
DIN  
Figure 2 and Figure 3 show timing diagrams for interfacing to  
SCLK  
CS  
the AD7172-4 using  
to decode the device. Figure 2 shows  
the timing for a read operation from the AD7172-4, and Figure 3  
shows the timing for a write operation to the AD7172-4. It is  
possible to read from the data register several times even though  
Figure 70. SPI Write Transaction with CRC  
UP TO 32-BIT  
8-BIT COMMAND  
OUTPUT  
8-BIT CRC  
CS  
RDY  
the  
output returns high after the first read operation.  
However, take care to ensure that the read operations are complete  
before the next output update occurs. In continuous read mode,  
the data register can be read only once.  
CMD  
DIN  
CS  
DOUT/  
RDY  
Operate the serial interface in 3-wire mode by tying  
low. In  
pins are used to  
communicate with the AD7172-4. The end of the conversion  
RDY  
DATA  
CRC  
RDY  
this case, the SCLK, DIN, and DOUT/  
SCLK  
can also be monitored using the  
bit in the status register.  
CS  
The AD7172-4 can be reset by writing 64 SCLKs with  
= 0  
Figure 71. SPI Read Transaction with CRC  
and DIN = 1. A reset returns the interface to the state in which it  
expects a write to the communications register. This operation  
resets the contents of all registers to their power-on values.  
Following a reset, allow a period of 500 μs before addressing the  
serial interface.  
If checksum protection is enabled when continuous read mode  
is active, an implied read data command of 0x44 before every  
data transmission must be accounted for when calculating the  
checksum value. This implied read data command ensures a  
nonzero checksum value even if the ADC data equals 0x000000.  
CHECKSUM PROTECTION  
The AD7172-4 has a checksum mode that can improve  
interface robustness. Using the checksum ensures that only  
valid data is written to a register and allows data read from a  
register to be validated. If an error occurs during a register  
write, the CRC_ERROR bit is set in the status register. However,  
to ensure that the register write is successful, read back the  
register and verify the checksum.  
Rev. B | Page 39 of 61  
 
 
 
 
AD7172-4  
Data Sheet  
aligned so that the MSB is adjacent to the leftmost Logic 1 of the  
data. An XOR function is applied to the data to produce a new,  
shorter number. The polynomial is again aligned so that its MSB is  
adjacent to the leftmost Logic 1 of the new result, and the procedure  
is repeated. This process repeats until the original data is reduced to  
a value less than the polynomial. This is the 8-bit checksum.  
CRC CALCULATION  
Polynomial  
The checksum, which is eight bits wide, is generated using the  
polynomial  
x8 + x2 + x + 1  
To generate the checksum, the data is left shifted by eight bits to  
create a number ending in eight Logic 0s. The polynomial is  
Example of a Polynomial CRC Calculation—24-Bit Word: 0x654321 (8-Bit Command and 16-Bit Data)  
An example of generating the 8-bit checksum using the polynomial based checksum is as follows:  
Initial value  
011001010100001100100001  
01100101010000110010000100000000  
left shifted eight bits  
polynomial  
x8 + x2 + x + 1  
=
100000111  
100100100000110010000100000000  
100000111  
XOR result  
polynomial  
XOR result  
polynomial  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
checksum = 0x86  
100011000110010000100000000  
100000111  
11111110010000100000000  
100000111  
1111101110000100000000  
100000111  
111100000000100000000  
100000111  
11100111000100000000  
100000111  
1100100100100000000  
100000111  
100101010100000000  
100000111  
101101100000000  
100000111  
1101011000000  
100000111  
101010110000  
100000111  
1010001000  
100000111  
10000110  
Rev. B | Page 40 of 61  
 
Data Sheet  
AD7172-4  
XOR Calculation  
The checksum, which is 8 bits wide, is generated by splitting the data into bytes and then performing an XOR of the bytes.  
Example of an XOR Calculation—24-Bit Word: 0x654321 (8-Bit Command and 16-Bit Data)  
Using the previous example, divide into three bytes: 0x65, 0x43, and 0x21  
01100101  
01000011  
00100110  
00100001  
00000111  
0x65  
0x43  
XOR result  
0x21  
CRC  
Rev. B | Page 41 of 61  
AD7172-4  
Data Sheet  
INTEGRATED FUNCTIONS  
The AD7172-4 has integrated functions that improve the  
usefulness of a number of applications as well as serve  
diagnostic purposes in safety conscious applications.  
The effect on the noise performance depends on the delay time  
compared to the conversion time. It is possible to absorb the  
delay only for output data rates less than 2.6 kSPS with the  
exception of the following four rates, which cannot absorb any  
delay: 381 SPS, 59.52 SPS, 49.68 SPS, and 16.66 SPS.  
GENERAL-PURPOSE INPUT/OUTPUT  
The AD7172-4 has two digital GPIO pins (GPIO0 and GPIO1)  
and two general-purpose digital output pins (GPO2 and  
GPO3). As the naming convention suggests, the GPIO0 and  
GPIO1 pins can be configured as inputs or outputs, but GPO2  
and GPO3 are outputs only. The GPIOx and GPOx pins are  
enabled using the following bits in the GPIOCON register:  
IP_EN0, IP_EN1 (or OP_EN0, OP_EN1) for GPIO0 and  
GPIO1, and OP_EN2_3 for GPO2 and GPO3.  
16-BIT/24-BIT CONVERSIONS  
By default, the AD7172-4 generates 24-bit conversions.  
However, the width of the conversions can be reduced to 16 bits.  
Setting the WL16 bit in the interface mode register to 1 rounds  
all data conversions to 16 bits. Clearing this bit sets the width of  
the data conversions to 24 bits.  
DOUT_RESET  
When the GPIO0 pin or the GPIO1 pin is enabled as an input,  
the logic level at the pin is contained in the GP_DATA0 or  
GP_DATA1 bit, respectively. When the GPIO0, GPIO1, GPO2,  
or GPO3 pin is enabled as an output, the GP_DATA0, GP_DATA1,  
GP_DATA2, or GP_DATA3 bit, respectively, determine the logic  
level output at the pin. The logic levels for these pins are referenced  
to AVDD1 and AVSS.  
RDY  
The serial interface uses a shared DOUT/  
pin. By default,  
signal. During a data read, this pin  
outputs the data from the register being read. After the read is  
RDY  
RDY  
this pin outputs the  
complete, the pin reverts to outputting the  
fixed period of time (t7). However, this time may be too short for  
CS  
signal after a short  
some microcontrollers and can be extended until the  
brought high by setting the DOUT_RESET bit in the interface  
CS  
pin is  
ERROR  
The  
When the ERR_EN bits in the GPIOCON register are set to 11,  
ERROR  
pin can also be used as a general-purpose output.  
mode register to 1. This setting means that  
must frame each  
read operation and compete the serial interface transaction.  
the  
pin operates as a general-purpose output. In this  
SYNCHRONIZATION  
Normal Synchronization  
configuration, the ERR_DAT bit in the GPIOCON register  
determines the logic level output at the pin. The logic level for  
the pin is referenced to IOVDD and DGND.  
When the SYNC_EN bit in the GPIOCON register is set to 1,  
SYNC  
SYNC  
the  
pin functions as a synchronization input. The  
All general-purpose outputs have an active pull-up.  
input allows the user to reset the modulator and the digital filter  
without affecting any of the setup conditions on the device. This  
feature allows the user to start to gather samples of the analog  
EXTERNAL MULTIPLEXER CONTROL  
If an external multiplexer is used to increase the channel count,  
the multiplexer logic pins can be controlled via the AD7172-4  
GPIOx pins. With the MUX_IO bit, the GPIOx timing is controlled  
by the ADC; therefore, the channel change is synchronized with  
the ADC, eliminating any need for external synchronization.  
SYNC  
input from a known point, the rising edge of the  
input.  
SYNC  
The  
input must be low for at least one master clock cycle  
to ensure that synchronization occurs.  
If multiple AD7172-4 devices are operated from a common master  
clock, they can be synchronized so that their analog inputs are  
sampled simultaneously. This synchronization is typically  
completed after each AD7172-4 device has performed its own  
calibration or has calibration coefficients loaded into its  
DELAY  
It is possible to insert a programmable delay before the AD7172-4  
begins to take samples. This delay allows an external amplifier  
or multiplexer to settle and can also alleviate the specification  
requirements for the external amplifier or multiplexer. Eight  
programmable settings, ranging from 0 μs to 8 ms, can be set using  
the delay bits in the ADC mode register (Register 0x01, Bits[10:8]).  
SYNC  
calibration registers. A falling edge on the  
digital filter and the analog modulator and places the AD7172-4  
SYNC  
input resets the  
into a consistent known state. While the  
input is low, the  
SYNC  
AD7172-4 is maintained in this known state. On the  
If a delay greater than 0 μs is selected and the HIDE_DELAY bit  
in the ADC mode register is set to 0, this delay is added to the  
conversion time, regardless of the selected output data rate.  
input rising edge, the modulator and filter are taken out of this  
reset state, and on the next master clock edge, the device starts to  
gather input samples again.  
When using the sinc5 + sinc1 filter, it is possible to hide this  
delay such that the output data rate remains the same as the output  
data rate without the delay enabled. If the HIDE_DELAY bit is  
set to 1 and the selected delay is less than half of the conversion  
time, the delay can be absorbed by reducing the number of  
averages the digital filter performs, which keeps the conversion  
time the same but can affect the noise performance.  
The device is taken out of reset on the master clock falling edge  
SYNC  
following the  
multiple devices are being synchronized, take the  
high on the master clock rising edge to ensure that all devices  
SYNC  
input low to high transition. Therefore, when  
SYNC  
input  
are released on the master clock falling edge. If the  
input  
is not taken high in sufficient time, a difference of one master  
Rev. B | Page 42 of 61  
 
 
 
 
 
 
 
Data Sheet  
AD7172-4  
clock cycle between the devices is possible; that is, the instant at  
which conversions are available differs from device to device by  
a maximum of one master clock cycle.  
the on-chip registers. If a bit changes, the REG_ERROR bit is  
set to 1. Therefore, for writes to the on-chip registers, set the  
REG_CHECK bit to 0. When the registers have been updated,  
the REG_CHECK bit can be set to 1. The AD7172-4 calculates a  
checksum of the on-chip registers. If one of the register values  
has changed, the REG_ERROR bit is set to 1. If an error is  
flagged, the REG_CHECK bit must be set to 0 to clear the  
REG_ERROR bit in the status register. The register check  
function does not monitor the data register, status register, or  
interface mode register.  
SYNC  
The  
command for a single channel when in normal synchronization  
SYNC  
input can also be used as a start conversion  
mode. In this mode, the rising edge of the  
RDY  
input starts a  
output indicates  
conversion, and the falling edge of the  
when the conversion is complete. The settling time of the filter is  
required for each data register update. After the conversion is  
SYNC  
complete, bring the  
conversion start signal.  
input low in preparation for the next  
ERROR  
Input/Output  
ERROR  
The  
pin functions as an error input/output pin or as a  
Alternate Synchronization  
general-purpose output pin. The ERR_EN bits in the GPIOCON  
register determine the function of the pin.  
SYNC  
In alternate synchronization mode, the  
input operates as a  
start conversion command when several channels of the AD7172-4  
are enabled. Setting the ALT_SYNC bit in the interface mode  
register to 1 enables an alternate synchronization scheme. When  
ERROR  
When ERR_EN is set to 10, the  
open-drain error output. The three error bits in the status  
register (ADC_ERROR, CRC_ERROR, and REG_ERROR) are  
pin functions as an  
SYNC  
the  
on the current channel, selects the next channel in the sequence,  
SYNC  
input is taken low, the ADC completes the conversion  
ERROR  
ORed, inverted, and mapped to the  
output. Therefore, the  
output indicates that an error has occurred. The status  
register must be read to identify the error source.  
ERROR  
ERROR  
and then waits until the  
input is taken high to start the  
output goes low when the conversion is  
complete on the current channel, and the data register is updated  
SYNC  
RDY  
conversion. The  
When ERR_EN is set to 01, the  
error input. The error output of another component can be  
ERROR  
pin functions as an  
with the corresponding conversion. Therefore, the  
input  
does not interfere with the sampling on the currently selected  
channel but allows the user to control the instant at which the  
conversion begins on the next channel in the sequence.  
connected to the AD7172-4  
indicates when an error occurs on either itself or the external  
ERROR  
input so that the AD7172-4  
component. The value on the  
input is inverted and ORed  
with the errors from the ADC conversion, and the result is  
indicated via the ADC_ERROR bit in the status register. The value  
Alternate synchronization mode can be used only when several  
channels are enabled. It is not recommended to use this mode  
when a single channel is enabled.  
ERROR  
of the  
GPIO onfiguration register.  
ERROR  
input is reflected in the ERR_DAT bit in the  
ERROR FLAGS  
The  
input/output is disabled when ERR_EN is set to 00.  
The status register contains three error bits (ADC_ERROR,  
CRC_ERROR, and REG_ERROR) that flag errors with the  
ADC conversion, errors with the CRC check, and errors caused  
ERROR  
When the ERR_EN bits are set to 11, the  
as a general-purpose output.  
pin operates  
ERROR  
by changes in the registers, respectively. In addition, the  
output can indicate that an error has occurred.  
DATA_STAT  
The contents of the status register can be appended to each con-  
version on the AD7172-4 using the DATA_STAT bit in the  
IFMODE register. This function is useful if several channels are  
enabled. Each time a conversion is output, the contents of the  
status register are appended. The two LSBs of the status register  
indicate to which channel the conversion corresponds. In  
addition, the user can determine if any errors are being flagged  
by the error bits.  
ADC_ERROR  
The ADC_ERROR bit in the status register flags any errors that  
occur during the conversion process. The flag is set when an over-  
range or underrange result is output from the ADC. The ADC  
also outputs all 0s or all 1s when an undervoltage or overvoltage  
occurs. This flag is reset only when the overvoltage or undervoltage  
is removed. This flag is not reset by a read of the data register.  
IOSTRENGTH  
CRC_ERROR  
The serial interface can operate with a power supply as low as  
If the CRC value that accompanies a write operation does not  
correspond with the information sent, the CRC_ERROR flag is  
set. The flag is reset when the status register is explicitly read.  
RDY  
2 V. However, at this low voltage, the DOUT/  
pin may not  
have sufficient drive strength if there is moderate parasitic  
capacitance on the board or if the SCLK frequency is high. The  
IOSTRENGTH bit in the interface mode register increases the  
REG_ERROR  
The REG_ERROR flag is used in conjunction with the  
REG_CHECK bit in the interface mode register. When the  
REG_CHECK bit is set, the AD7172-4 monitors the values in  
RDY  
drive strength of the DOUT/  
pin.  
Rev. B | Page 43 of 61  
 
 
 
AD7172-4  
Data Sheet  
GROUNDING AND LAYOUT  
The analog inputs and reference inputs are differential and,  
therefore, most of the voltages in the analog modulator are  
common-mode voltages. The high common-mode rejection of  
the device removes common-mode noise on these inputs. The  
analog and digital supplies to the AD7172-4 are independent  
and connected to separate pins to minimize coupling between the  
analog and digital sections of the device. The digital filter  
provides rejection of broadband noise on the power supplies,  
except at integer multiples of the master clock frequency.  
supply lines to the AD7172-4 must use as wide a trace as  
possible to provide low impedance paths and reduce glitches on  
the power supply line. Shield fast switching signals like clocks  
with digital ground to prevent radiating noise to other sections  
of the board and never run clock signals near the analog inputs.  
Avoid crossover of digital and analog signals. Run traces on  
opposite sides of the board at right angles to each other. This  
technique reduces the effects of feedthrough on the board. A  
microstrip technique is by far the best but is not always possible  
with a double-sided board.  
The digital filter also removes noise from the analog and  
reference inputs, provided that these noise sources do not  
saturate the analog modulator. As a result, the AD7172-4 is  
more immune to noise interference than a conventional high  
resolution converter. However, because the resolution of the  
AD7172-4 is high and the noise levels from the converter are so  
low, take care with regard to grounding and layout.  
Good decoupling is important when using high resolution ADCs.  
The AD7172-4 has three power supply pins: AVDD1, AVDD2,  
and IOVDD. The AVDD1 and AVDD2 pins are referenced to  
AVSS, and the IOVDD pin is referenced to DGND. Decouple  
AVDD1 and AVDD2 with a 10 μF capacitor in parallel with a  
0.1 μF capacitor to AVSS on each pin. Place the 0.1 μF capacitor  
as close as possible to the device on each supply, ideally right up  
against the device. Decouple IOVDD with a 10 μF capacitor in  
parallel with a 0.1 μF capacitor to DGND. Decouple all analog  
inputs to AVSS. Decouple the REF and REF2 pins to AVSS.  
The PCB that houses the ADC must be designed such that the  
analog and digital sections are separated and confined to  
certain areas of the board. A minimum etch technique is  
generally best for ground planes because it results in the best  
shielding.  
The AD7172-4 also has two on-board LDO regulators, one that  
regulates the AVDD2 supply and one that regulates the IOVDD  
supply. For the REGCAPA pin, use 1 μF and 0.1 μF capacitors to  
AVSS. Similarly, for the REGCAPD pin, use 1 μF and 0.1 μF  
capacitors to DGND.  
In any layout, the user must consider the flow of currents in the  
system, ensuring that the paths for all return currents are as close as  
possible to the paths the currents took to reach their destinations.  
Avoid running digital lines under the device because this  
couples noise onto the die. Allow the analog ground plane to  
run under the AD7172-4 to prevent noise coupling. The power  
If using the AD7172-4 for split supply operation, a separate  
plane must be used for AVSS.  
Rev. B | Page 44 of 61  
 
Data Sheet  
AD7172-4  
REGISTER SUMMARY  
Table 25. Register Summary  
Reg. Name  
Bits  
Bit 7  
RA  
Bit 0  
Reset  
RW  
0x00 COMMS  
[7:0]  
WEN  
R/W  
0x00  
W
0x00 STATUS  
[7:0]  
RDY  
HIDE_DELAY  
SING_CYC  
MODE  
CHANNEL  
DELAY  
RESERVED  
0x80  
R
0x01 ADCMODE  
[15:8]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
0x2000  
RW  
CLOCKSEL  
IOSTRENGTH  
0x02 IFMODE  
[15:8]  
[7:0]  
RESERVED  
ALT_SYNC  
REGISTER_CHECK[23:0]  
DATA[23:0]  
ID[15:8]  
ID[7:0]  
RESERVED  
DOUT_RESET 0x0000  
WL16  
RW  
CONTREAD  
0x03 REGCHECK  
0x04 DATA  
[23:0]  
[23:0]  
[15:8]  
[7:0]  
0x000000  
R
0x000000  
0x0800  
R
0x06 GPIOCON  
RESERVED  
GP_DATA3  
ERR_DAT  
RW  
GP_DATA0  
0x07 ID  
[15:8]  
[7:0]  
0x205X  
0x8001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
R
0x10 CH0  
[15:8]  
[7:0]  
CH_EN0  
CH_EN1  
CH_EN2  
CH_EN3  
CH_EN4  
CH_EN5  
CH_EN6  
CH_EN7  
SETUP_SEL0  
SETUP_SEL1  
SETUP_SEL2  
SETUP_SEL3  
SETUP_SEL4  
RESERVED  
AINNEG0  
RESERVED  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
AINPOS0[4:3]  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
AINPOS0[2:0]  
AINPOS1[2:0]  
AINPOS2[2:0]  
AINPOS3[2:0]  
0x11 CH1  
[15:8]  
[7:0]  
AINPOS1[4:3]  
AINPOS2[4:3]  
AINPOS3[4:3]  
AINPOS4[4:3]  
AINPOS5[4:3]  
AINPOS6[4:3]  
AINPOS7[4:3]  
0x12 CH2  
[15:8]  
[7:0]  
0x13 CH3  
[15:8]  
[7:0]  
0x14 CH4  
[15:8]  
[7:0]  
RESERVED  
AINPOS4[2:0]  
AINNEG4  
0x15 CH5  
[15:8]  
[7:0]  
SETUP_SEL5  
SETUP_SEL6  
SETUP_SEL7  
RESERVED  
AINPOS5[2:0]  
AINPOS6[2:0]  
AINNEG5  
RESERVED  
AINNEG6  
RESERVED  
AINNEG7  
0x16 CH6  
[15:8]  
[7:0]  
0x17 CH7  
[15:8]  
[7:0]  
AINPOS7[2:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x20 SETUPCON0  
0x21 SETUPCON1  
0x22 SETUPCON2  
0x23 SETUPCON3  
0x24 SETUPCON4  
0x25 SETUPCON5  
0x26 SETUPCON6  
0x27 SETUPCON7  
0x28 FILTCON0  
0x29 FILTCON1  
0x2A FILTCON2  
0x2B FILTCON3  
0x2C FILTCON4  
0x2D FILTCON5  
0x2E FILTCON6  
[15:8]  
[7:0]  
REF_SEL0  
REF_SEL1  
REF_SEL2  
REF_SEL3  
REF_SEL4  
REF_SEL5  
REF_SEL6  
REF_SEL7  
ENHFILTEN0  
ENHFILTEN1  
ENHFILTEN2  
ENHFILTEN3  
ENHFILTEN4  
ENHFILTEN5  
ENHFILTEN6  
AINBUF0− 0x1000  
AINBUF1− 0x1000  
AINBUF2− 0x1000  
AINBUF3− 0x1000  
AINBUF4− 0x1000  
AINBUF5− 0x1000  
AINBUF6− 0x1000  
AINBUF7− 0x1000  
0x0500  
BURNOUT_EN0  
BURNOUT_EN1  
BURNOUT_EN2  
BURNOUT_EN3  
BURNOUT_EN4  
BURNOUT_EN5  
BURNOUT_EN6  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
[15:8]  
[7:0]  
BURNOUT_EN7  
SINC3_MAP0  
RESERVED  
RESERVED  
[15:8]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ENHFILT0  
ENHFILT1  
ENHFILT2  
ENHFILT3  
ENHFILT4  
ENHFILT5  
ORDER0  
ODR0  
ODR1  
ODR2  
ODR3  
ODR4  
ODR5  
ODR6  
[15:8]  
[7:0]  
SINC3_MAP1  
RESERVED  
0x0500  
ORDER1  
ORDER2  
ORDER3  
ORDER4  
ORDER5  
ORDER6  
[15:8]  
[7:0]  
SINC3_MAP2  
RESERVED  
0x0500  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
0x0500  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
0x0500  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
0x0500  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
0x0500  
Rev. B | Page 45 of 61  
 
AD7172-4  
Data Sheet  
Reg. Name  
Bits  
Bit 7  
RESERVED  
ORDER7  
ENHFILTEN7  
ODR7  
ENHFILT7  
Bit 0  
Reset  
RW  
0x2F FILTCON7  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
0x0500  
RW  
0x30 OFFSET0  
0x31 OFFSET1  
0x32 OFFSET2  
0x33 OFFSET3  
0x34 OFFSET4  
0x35 OFFSET5  
0x36 OFFSET6  
0x37 OFFSET7  
0x38 GAIN0  
0x39 GAIN1  
0x3A GAIN2  
0x3B GAIN3  
0x3C GAIN4  
0x3D GAIN5  
0x3E GAIN6  
0x3F GAIN7  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
OFFSET0[23:0]  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
OFFSET5[23:0]  
OFFSET6[23:0]  
OFFSET6[23:0]  
OFFSET7[23:0]  
GAIN0[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
GAIN4[23:0]  
GAIN5[23:0]  
GAIN6[23:0]  
GAIN7[23:0]  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
Rev. B | Page 46 of 61  
Data Sheet  
AD7172-4  
REGISTER DETAILS  
COMMUNICATIONS REGISTER  
Address: 0x00, Reset: 0x00, Name: COMMS  
All access to the on-chip registers must start with a write to the communications register. This write determines what register is accessed  
next and whether the operation is a write or a read.  
Table 26. Bit Descriptions for COMMS  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
W
7
WEN  
This bit must be low to begin communications with the ADC.  
6
W
This bit determines if the command is a read or write operation.  
0x0  
W
R/  
0
Write command  
1
Read command  
[5:0]  
RA  
The register address bits determine which register is to be read from or written to as part of the current communication.  
0x00  
W
000000 Status register  
000001 ADC mode register  
000010 Interface mode register  
000011 Register check register  
000100 Data register  
000110 GPIO configuration register  
000111 ID register  
010000 Channel Register 0  
010001 Channel Register 1  
010010 Channel Register 2  
010011 Channel Register 3  
010100 Channel Register 4  
010101 Channel Register 5  
010110 Channel Register 6  
010111 Channel Register 7  
100000 Setup Configuration Register 0  
100001 Setup Configuration Register 1  
100010 Setup Configuration Register 2  
100011 Setup Configuration Register 3  
100100 Setup Configuration Register 4  
100101 Setup Configuration Register 5  
100110 Setup Configuration Register 6  
100111 Setup Configuration Register 7  
101000 Filter Configuration Register 0  
101001 Filter Configuration Register 1  
101010 Filter Configuration Register 2  
101011 Filter Configuration Register 3  
101100 Filter Configuration Register 4  
101101 Filter Configuration Register 5  
101110 Filter Configuration Register 6  
101111 Filter Configuration Register 7  
110000 Offset Register 0  
110001 Offset Register 1  
110010 Offset Register 2  
110011 Offset Register 3  
110100 Offset Register 4  
110101 Offset Register 5  
110110 Offset Register 6  
110111 Offset Register 7  
111000 Gain Register 0  
111001 Gain Register 1  
111010 Gain Register 2  
111011 Gain Register 3  
111100 Gain Register 4  
111101 Gain Register 5  
111110 Gain Register 6  
111111 Gain Register 7  
Rev. B | Page 47 of 61  
 
 
 
AD7172-4  
Data Sheet  
STATUS REGISTER  
Address: 0x00, Reset: 0x80, Name: STATUS  
The status register is an 8-bit register that contains ADC and serial interface status information. It can optionally be appended to the data  
register by setting the DATA_STAT bit in the interface mode register.  
Table 27. Bit Descriptions for STATUS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
RDY  
The status of RDY is output to the DOUT/RDYpin whenever CS is low and a 0x1  
register is not being read. This bit goes low when the ADC has written a  
new result to the data register. In ADC calibration modes, this bit goes low  
when the ADC has written the calibration result. RDY is brought high  
automatically by a read of the data register.  
R
0
1
New data result available  
Awaiting new data result  
6
ADC_ERROR  
This bit by default indicates if an ADC overrange or underrange has  
occurred. The ADC result is clamped to 0xFFFFFF for overrange errors and  
0x000000 for underrange errors. This bit is updated when the ADC result is  
written and is cleared at the next update after removing the overrange or  
underrange condition.  
0x0  
R
0
1
No error  
Error  
5
4
CRC_ERROR  
REG_ERROR  
This bit indicates if a CRC error has taken place during a register write. For  
register reads, the host microcontroller determines if a CRC error has  
occurred. This bit is cleared by a read of this register.  
No error  
CRC error  
0x0  
0x0  
R
R
0
1
This bit indicates if the content of one of the internal registers has  
changed from the value calculated when the register integrity check was  
activated. The check is activated by setting the REG_CHECK bit in the  
interface mode register. This bit is cleared by clearing the REG_CHECK bit.  
0
1
No error  
Error  
3
RESERVED  
CHANNEL  
These bits are reserved.  
0x0  
0x0  
R
R
[2:0]  
These bits indicate which channel was active for the ADC conversion  
whose result is currently in the data register. This may be different from  
the channel currently being converted. The mapping is a direct map from  
the channel register; therefore, Channel 0 results in 0x0 and Channel 7  
results in 0x7.  
000 Channel 0  
001 Channel 1  
010 Channel 2  
011 Channel 3  
100 Channel 4  
101 Channel 5  
110 Channel 6  
111 Channel 7  
Rev. B | Page 48 of 61  
 
Data Sheet  
AD7172-4  
ADC MODE REGISTER  
Address: 0x01, Reset: 0x2000, Name: ADCMODE  
The ADC mode register controls the operating mode of the ADC and the master clock selection. A write to the ADC mode register resets  
the filter and the bits and starts a new conversion or calibration.  
RDY  
Table 28. Bit Descriptions for ADCMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
15  
RESERVED  
HIDE_DELAY  
Reserved  
14  
If a programmable delay is set using the DELAY bits, this bit allows the  
delay to be hidden by absorbing the delay into the conversion time for  
selected data rates with the sinc5 + sinc1 filter. See the Delay section for  
more information.  
0x0  
RW  
0
1
Enabled  
Disabled  
13  
SING_CYC  
This bit can be used when only a single channel is active to set the ADC  
to only output at the settled filter data rate.  
0x1  
RW  
0
1
Disabled  
Enabled  
[12:11] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
[10:8]  
DELAY  
These bits allow a programmable delay to be added after a channel  
switch to allow settling of external circuitry before the ADC starts  
processing its input.  
RW  
000 0 μs  
001 32 μs  
010 128 μs  
011 320 μs  
100 800 μs  
101 1.6 ms  
110 4 ms  
111 8 ms  
7
RESERVED  
MODE  
This bit is reserved; set this bit to 0.  
0x0  
0x0  
R
[6:4]  
These bits control the operating mode of the ADC. See the Operating  
Modes section for more information.  
RW  
000 Continuous conversion mode  
001 Single conversion mode  
010 Standby mode  
011 Power-down mode  
100 Internal offset calibration  
110 System offset calibration  
111 System gain calibration  
[3:2]  
[1:0]  
CLOCKSEL  
RESERVED  
This bit is used to select the ADC clock source. Selecting internal  
oscillator also enables the internal oscillator.  
00 Internal oscillator  
01 Internal oscillator output on the XTAL2/CLKIO pin  
10 External clock input on the XTAL2/CLKIO pin  
11 External crystal on the XTAL1 and XTAL2/CLKIO pins  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
RW  
R
Rev. B | Page 49 of 61  
 
 
AD7172-4  
Data Sheet  
INTERFACE MODE REGISTER  
Address: 0x02, Reset: 0x0000, Name: IFMODE  
The interface mode register configures various serial interface options.  
Table 29. Bit Descriptions for IFMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
These bits are reserved; set these bits to 0.  
12  
11  
ALT_SYNC  
This bit enables a different behavior of the SYNC pin to allow the use of  
SYNC as a control for conversions when cycling channels (see the  
description of the SYNC_EN bit in the GPIO Configuration Register section  
for details).  
Disabled  
Enabled  
0x0  
RW  
0
1
IOSTRENGTH  
This bit controls the drive strength of the DOUT/RDY pin. Set this bit when 0x0  
reading from the serial interface at high speed with a low IOVDD supply  
and moderate capacitance.  
RW  
0
1
Disabled (default)  
Enabled  
[10:9]  
8
RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
DOUT_RESET  
See the DOUT_RESET section for more information.  
RW  
0
1
Disabled  
Enabled  
7
6
CONTREAD  
DATA_STAT  
This enables a continuous read of the ADC data register. The ADC must be 0x0  
configured in continuous conversion mode to use continuous read. For  
more details, see the Operating Modes section.  
Disabled  
Enabled  
RW  
RW  
0
1
This enables the status register to be appended to the data register when  
read so that the channel and status information are transmitted with the  
data. This is the only way to ensure that the channel bits read from the  
status register correspond to the data in the data register.  
0x0  
0
1
Disabled  
Enabled  
5
REG_CHECK  
This bit enables a register integrity checker, which can be used to monitor 0x0  
any change in the value of the user registers. To use this feature, configure  
all other registers as desired, with this bit cleared. Then write to this register to  
set the REG_CHECK bit to 1. If the contents of any of the registers change,  
the REG_ERROR bit is set in the status register. To clear the error, set the  
REG_CHECK bit to 0. Neither the interface mode register nor the ADC data  
or status registers are included in the registers that are checked. If a  
register must have a new value written, this bit must first be cleared;  
otherwise, an error is flagged when the new register contents are written.  
RW  
0
1
Disabled  
Enabled  
4
RESERVED  
CRC_EN  
This bit is reserved; set this bit to 0.  
0x0  
R
[3:2]  
Enables CRC protection of register reads/writes. CRC increases the  
number of bytes in a serial interface transfer by one. See the CRC  
Calculation section for more details.  
0x00  
RW  
00 Disabled  
01 XOR checksum enabled for register read transactions; register writes still  
use CRC with these bits set  
10 CRC checksum enabled for read and write transactions  
This bit is reserved; set this bit to 0.  
1
RESERVED  
0x0  
R
Rev. B | Page 50 of 61  
 
 
Data Sheet  
AD7172-4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
WL16  
This bit changes the ADC data register to 16 bits. The ADC is not reset by a 0x0  
write to the interface mode register; therefore, the ADC result is not  
rounded to the correct word length immediately after writing to this bit.  
The first new ADC result is correct.  
RW  
0
1
24-bit data  
16-bit data  
REGISTER CHECK  
Address: 0x03, Reset: 0x000000, Name: REGCHECK  
The register check register is a 24-bit checksum calculated by exclusively OR'ing the contents of the user registers. The REG_CHECK bit  
in the interface mode register must be set for this register to operate; otherwise, the register reads 0.  
Table 30. Bit Descriptions for REGCHECK  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
REGISTER_CHECK  
This register contains the 24-bit checksum of user registers when the  
REG_CHECK bit is set in the interface mode register.  
0x000000  
R
DATA REGISTER  
Address: 0x04, Reset: 0x000000, Name: DATA  
The data register contains the ADC conversion result. The encoding is offset binary, or it can be changed to unipolar by the  
RDY RDY  
output high ifthey  
BI_UNIPOLARx bits in the setup configuration registers. Reading the data register brings the  
bit and the  
output has been brought high, it is not possible to know if  
RDY  
are low. The ADC result can be read multiple times; however, because the  
another ADC result is imminent. After the command to read the ADC register is received, the ADC does not write a new result into the  
data register.  
Table 31. Bit Descriptions for DATA  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
DATA  
This register contains the ADC conversion result. If DATA_STAT is set in  
the interface mode register, the status register is appended to this  
register when read, making this a 32-bit register. If WL16 is set in the  
interface mode register, this register is reduced to 16 bits.  
0x000000  
R
Rev. B | Page 51 of 61  
 
 
AD7172-4  
Data Sheet  
GPIO CONFIGURATION REGISTER  
Address: 0x06, Reset: 0x0800, Name: GPIOCON  
The GPIO configuration register controls the general-purpose input/output pins of the ADC.  
Table 32. Bit Descriptions for GPIOCON  
Bits  
Bit Name  
RESERVED  
PDSW  
Settings Description  
Reset  
0x0  
Access  
R
15  
These bits are reserved; set these bits to 0.  
14  
This bit enables/disables the power-down switch function. Setting the bit allows  
the pin to sink current. This function can be used for bridge sensor applications  
where the switch controls the power-up/power-down of the bridge.  
0x0  
RW  
13  
12  
OP_EN2_3  
MUX_IO  
This bit enables the GPO2 and GPO3 pins. Outputs are referenced between AVDD1 0x0  
and AVSS.  
RW  
RW  
This bit allows the ADC to control an external multiplexer, using GPIO0/GPIO1/ GPO2 in 0x0  
sync with the internal channel sequencing. The analog input pins used for a channel  
can still be selected on a per channel basis. Therefore, it is possible to have a 8-  
channel multiplexer in front of each analog input pair (AIN0/AIN1 to AIN6/AIN7),  
giving a total of 32 differential channels. However, only 8 channels at a time can be  
automatically sequenced. Following the sequence of 8 channels, the user must employ  
an SPI command to change the selected analog input pair before it sequences through  
the next 8 channels supplied by the external multiplexer.  
There is a delay function that allows extra time for the analog input to settle, in  
conjunction with any switching from an external multiplexer (see the delay bits in the  
ADC Mode Register section).  
11  
SYNC_EN  
This bit enables the SYNC pin as a sync input. When the pin is low, this bit holds  
the ADC and filter in reset until the SYNC pin goes high. An alternative operation  
of the SYNC pin is available when the ALT_SYNC bit in the interface mode register  
is set. This mode only works when multiple channels are enabled. In this case, a  
low on the SYNC pin does not immediately reset the filter/modulator. Instead, if  
the SYNC pin is low when the channel is due to be switched, the modulator and  
filter are prevented from starting a new conversion. Bringing SYNC high begins the  
next conversion. This alternative sync mode allows SYNC to be used while cycling  
through channels.  
0x1  
RW  
0
1
Disabled.  
Enabled.  
[10:9]  
ERR_EN  
These bits enable the ERROR pin as an error input/output.  
0x0  
RW  
00 Disabled.  
01 ERROR is an error input. The (inverted) readback state is OR'ed with other error  
sources and is available in the ADC_ERROR bit in the status register. The ERROR pin  
state can also be read from the ERR_DAT bit in this register.  
10 ERROR is an open-drain error output. The status register error bits are OR'ed,  
inverted, and mapped to the ERROR pin. The ERROR pins of multiple devices can  
be wired together to a common pull-up resistor so that an error on any device can  
be observed.  
11 ERROR is a general-purpose output. The status of the pin is controlled by the  
ERR_DAT bit in this register. This output is referenced between IOVDD and DGND,  
as opposed to the AVDD1 and AVSS levels used by the GPIO pins. The ERROR pin  
has an active pull-up in this case.  
8
ERR_DAT  
This bit determines the logic level at the ERROR pin if the pin is enabled as a  
general-purpose output. This bit reflects the readback status of the pin if the pin is  
enabled as an input.  
0x0  
RW  
7
6
5
GP_DATA3  
GP_DATA2  
IP_EN1  
This bit is the write data for GPO3.  
0x0  
0x0  
0x0  
W
This bit is the write data for GPO2.  
W
This bit turns GPIO1 into an input. Inputs are referenced to AVDD1 or AVSS.  
RW  
0
1
Disabled.  
Enabled.  
Rev. B | Page 52 of 61  
 
Data Sheet  
AD7172-4  
Bits  
Bit Name  
Settings Description  
This bit turns GPIO0 into an input. Inputs are referenced to AVDD1 or AVSS.  
Disabled.  
Enabled.  
Reset  
Access  
4
IP_EN0  
0x0  
RW  
0
1
3
2
OP_EN1  
OP_EN0  
This bit turns GPIO1 into an output. Outputs are referenced between AVDD1 and AVSS. 0x0  
Disabled.  
Enabled.  
RW  
RW  
0
1
This bit turns GPIO0 into an output. Outputs are referenced between AVDD1 and AVSS. 0x0  
0
1
Disabled.  
Enabled.  
1
0
GP_DATA1  
GP_DATA0  
This bit is the readback or write data for GPIO1.  
This bit is the readback or write data for GPIO0.  
0x0  
0x0  
RW  
RW  
ID REGISTER  
Address: 0x07, Reset: 0x205X, Name: ID  
The ID register returns a 16-bit ID. For the AD7172-4, this ID is 0x205X.  
Table 33. Bit Descriptions for ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
ID  
The ID register returns a 16-bit ID code that is specific to the ADC.  
0x205X  
R
0x205X AD7172-4  
Rev. B | Page 53 of 61  
 
AD7172-4  
Data Sheet  
CHANNEL REGISTER 0  
Address: 0x10, Reset: 0x8001, Name: CH0  
The channel registers are 16-bit registers that select which channels are currently active, which inputs are selected for each channel, and  
which setup is used to configure the ADC for that channel.  
Table 34. Bit Descriptions for CH0  
Bits  
Bit Name  
Settings Description  
Reset Access  
15  
CH_EN0  
This bit enables Channel 0. If more than one channel is enabled, the ADC  
0x1  
RW  
automatically sequences between them.  
Disabled  
Enabled (default)  
0
1
[14:12] SETUP_SEL0  
These bits identify which of the eight setups are used to configure the ADC for this  
channel. A setup comprises a set of four registers: the setup configuration register, the  
filter configuration register, the offset register, and the gain register. All channels can  
use the same setup, in which case the same 2-bit value must be written to these bits on  
all active channels, or up to eight channels can be configured differently.  
0x0  
RW  
000 Setup 0  
001 Setup 1  
010 Setup 2  
011 Setup 3  
100 Setup 4  
101 Setup 5  
110 Setup 6  
111 Setup 7  
[11:10] RESERVED  
[9:5] AINPOS0  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
These bits select which input is connected to the positive input of the ADC for this  
channel.  
RW  
00000 AIN0 (default)  
00001 AIN1  
00010 AIN2  
00011 AIN3  
00100 AIN4  
00101 AIN5  
00110 AIN6  
00111 AIN7  
01000 AIN8  
10011 ((AVDD1 − AVSS)/5)+ (analog input buffers must be enabled)  
10100 ((AVDD1 − AVSS)/5)− (analog input buffers must be enabled)  
10101 REF+  
10110 REF−  
[4:0]  
AINNEG0  
These bits select which input is connected to the negative input of the ADC for this  
channel.  
0x1  
RW  
00000 AIN0  
00001 AIN1 (default)  
00010 AIN2  
00011 AIN3  
00100 AIN4  
00101 AIN5  
00110 AIN6  
00111 AIN7  
01000 AIN8  
10011 ((AVDD1 − AVSS)/5)+  
10100 ((AVDD1 − AVSS)/5)−  
10101 REF+  
10110 REF−  
Rev. B | Page 54 of 61  
 
Data Sheet  
AD7172-4  
CHANNEL REGISTER 1 TO CHANNEL REGISTER 7  
Address: 0x11 to 0x17, Reset: 0x0001, Name: CH1 to CH7  
The remaining seven channel registers share the same layout as Channel Register 0.  
Table 35. CH1 to CH7 Register Map  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x11  
CH1  
[15:8]  
[7:0]  
CH_EN1  
SETUP_SEL1  
RESERVED  
AINPOS1[4:3]  
0x0001  
RW  
AINPOS1[2:0]  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
RESERVED  
AINNEG4  
RESERVED  
AINNEG5  
RESERVED  
AINNEG6  
RESERVED  
AINNEG7  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
[15:8]  
[7:0]  
CH_EN2  
CH_EN3  
CH_EN4  
CH_EN5  
CH_EN6  
CH_EN7  
SETUP_SEL2  
SETUP_SEL3  
SETUP_SEL4  
SETUP_SEL5  
SETUP_SEL6  
SETUP_SEL7  
AINPOS2[4:3]  
AINPOS3[4:3]  
AINPOS4[4:3]  
AINPOS5[4:3]  
AINPOS6[4:3]  
AINPOS7[4:3]  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
RW  
RW  
RW  
RW  
RW  
RW  
AINPOS2[2:0]  
AINPOS3[2:0]  
AINPOS4[2:0]  
AINPOS5[2:0]  
AINPOS6[2:0]  
AINPOS7[2:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
Rev. B | Page 55 of 61  
 
AD7172-4  
Data Sheet  
SETUP CONFIGURATION REGISTER 0  
Address: 0x20, Reset: 0x1000, Name: SETUPCON0  
The setup configuration registers are 16-bit registers that configure the reference selection, input buffers, and output coding of the ADC.  
Table 36. Bit Descriptions for SETUPCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
These bits are reserved; set these bits to 0.  
This bit sets the output coding of the ADC for Setup 0.  
Unipolar coded output  
Bipolar coded output (offset binary)  
This bit enables or disables the REF+ input buffer.  
REF+ buffer disabled  
12  
11  
10  
9
BI_UNIPOLAR0  
0x1  
RW  
0
1
REFBUF0+  
REFBUF0−  
AINBUF0+  
AINBUF0−  
BURNOUT_EN0  
0x0  
0x0  
0x0  
0x0  
0x00  
RW  
RW  
RW  
RW  
R
0
1
REF+ buffer enabled  
This bit enables or disables the REF− input buffer.  
REF− buffer disabled  
REF− buffer enabled  
0
1
This bit enables or disables the AIN+ input buffer.  
AIN+ buffer disabled  
AIN+ buffer enabled  
0
1
8
This bit enables or disables the AIN− input buffer.  
AIN− buffer disabled  
AIN− buffer enabled  
0
1
7
This bit enables a 10 μA current source on the positive analog input  
selected and a 10 μA current sink on the negative analog input selected.  
The burnout currents are useful in diagnosis of an open wire, whereby  
the ADC result goes to full scale. Enabling the burnout currents during  
measurement results in an offset voltage on the ADC. The best strategy  
for diagnosing an open wire is turning on the burnout currents at  
intervals, before or after precision measurements.  
6
RESERVED  
REF_SEL0  
These bits are reserved; set these bits to 0.  
0x00  
0x0  
R
[5:4]  
These bits allow the user to select the reference source for ADC  
conversion on Setup 0.  
RW  
00 External reference supplied to the REF+ and REF− pins.  
01 External Reference 2 supplied to AIN1/REF2+ and AIN0/REF2− pins.  
11 AVDD1 − AVSS. This can be used to as a diagnostic to validate other  
reference values.  
[3:0]  
RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
R
Rev. B | Page 56 of 61  
 
Data Sheet  
AD7172-4  
SETUP CONFIGURATION REGISTER 1 TO SETUP CONFIGURATION REGISTER 7  
Address: 0x21 to 0x27, Reset: 0x1000, Name: SETUPCON1 to SETUPCON7  
The remaining seven setup configuration registers share the same layout as Setup Configuration Register 0.  
Table 37. SETUPCON1 to SETUPCON7 Register Map  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x21  
SETUPCON1  
[15:8]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BI_UNIPOLAR1  
REFBUF1+  
REFBUF1−  
AINBUF1+  
AINBUF1−  
0x1000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
BURNOUT_EN1  
BURNOUT_EN2  
BURNOUT_EN3  
BURNOUT_EN4  
BURNOUT_EN5  
BURNOUT_EN6  
BURNOUT_EN7  
REF_SEL1  
BI_UNIPOLAR2  
REF_SEL2  
BI_UNIPOLAR3  
REF_SEL3  
BI_UNIPOLAR4  
REF_SEL4  
BI_UNIPOLAR5  
REF_SEL5  
BI_UNIPOLAR6  
REF_SEL6  
BI_UNIPOLAR7  
REF_SEL7  
RESERVED  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
[15:8]  
[7:0]  
REFBUF2+  
REFBUF3+  
REFBUF4+  
REFBUF5+  
REFBUF6+  
REFBUF7+  
REFBUF2−  
REFBUF3−  
AINBUF2+  
AINBUF2−  
AINBUF3−  
AINBUF4−  
AINBUF5−  
AINBUF6−  
AINBUF7−  
0x1000  
0x1000  
0x1000  
0x1000  
0x1000  
0x1000  
RESERVED  
[15:8]  
[7:0]  
AINBUF3+  
RESERVED  
[15:8]  
[7:0]  
REFBUF4−  
AINBUF4+  
RESERVED  
[15:8]  
[7:0]  
REFBUF5−  
AINBUF5+  
RESERVED  
[15:8]  
[7:0]  
REFBUF6−  
AINBUF6+  
RESERVED  
[15:8]  
[7:0]  
REFBUF7− AINBUF7+  
RESERVED  
Rev. B | Page 57 of 61  
 
AD7172-4  
Data Sheet  
FILTER CONFIGURATION REGISTER 0  
Address: 0x28, Reset: 0x0500, Name: FILTCON0  
The filter configuration registers are 16-bit registers that configure the ADC data rate and filter options. Writing to any of these registers  
resets any active ADC conversion and restarts converting at the first channel in the sequence.  
Table 38. Bit Descriptions for FILTCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
SINC3_MAP0  
If this bit is set, the mapping of the filter register changes to directly  
program the decimation rate of the sinc3 filter for Setup 0. All other  
options are eliminated. This allows fine tuning of the output data rate and  
filter notch for rejection of specific frequencies. The data rate when on a  
single channel equals fMOD/(32 × FILTCON0[14:0]).  
0x0  
RW  
[14:12] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
R
11  
ENHFILTEN0  
This bit enables various postfilters for enhanced 50 Hz and 60 Hz rejection 0x0  
for Setup 0. The ORDER0 bits must be set to 00 to select the sinc5 + sinc1  
filter for this to work.  
RW  
0
1
Disabled  
Enabled  
[10:8]  
ENHFILT0  
These bits select between various postfilters for enhanced 50 Hz and  
60 Hz rejection for Setup 0.  
0x5  
RW  
010 27 SPS, 47 dB rejection, 36.7 ms settling  
011 21.25 SPS, 62 dB rejection, 40 ms settling  
101 20 SPS, 86 dB rejection, 50 ms settling  
110 16.67 SPS, 92 dB rejection, 60 ms settling  
This bit is reserved; set this bit to 0.  
7
RESERVED  
ORDER0  
0x0  
0x0  
R
[6:5]  
These bits control the order of the digital filter that processes the  
modulator data for Setup 0.  
RW  
00 Sinc5 + sinc1 (default)  
11 Sinc3  
[4:0]  
ODR0  
These bits control the output data rate of the ADC and, therefore, the  
settling time and noise for Setup 0. Rates shown are for the sinc5 + sinc1  
filter. See Table 20 to Table 23.  
0x0  
RW  
00000 31,250  
00001 31,250  
00010 31,250  
00011 31,250  
00100 31,250  
00101 31,250  
00110 15,625  
00111 10,417  
01000 5208  
01001 2597  
01010 1007  
01011 503.8  
01100 381  
01101 200.3  
01110 100.2  
01111 59.52  
10000 49.68  
10001 20.01  
10010 16.63  
10011 10  
10100  
5
10101 2.5  
10110 1.25  
Rev. B | Page 58 of 61  
 
Data Sheet  
AD7172-4  
FILTER CONFIGURATION REGISTER 1 TO FILTER CONFIGURATION REGISTER 7  
Address: 0x29 to 0x2F, Reset: 0x0500, Name: FILTCON1 to FILTCON7  
The remaining seven filter configuration registers share the same layout as Filter Configuration Register 0.  
Table 39. FILTCON1 to FILTCON7 Register Map  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
ODR1  
Bit 1  
ENHFILT1  
Bit 0  
Reset  
RW  
0x29  
FILTCON1  
[15:8]  
[7:0]  
SINC3_MAP1  
RESERVED  
RESERVED  
ENHFILTEN1  
0x0500  
RW  
ORDER1  
RESERVED  
ORDER2  
RESERVED  
ORDER3  
RESERVED  
ORDER4  
RESERVED  
ORDER5  
RESERVED  
ORDER6  
RESERVED  
ORDER7  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
[15:8]  
[7:0]  
SINC3_MAP2  
RESERVED  
ENHFILTEN2  
ENHFILTEN3  
ENHFILTEN4  
ENHFILTEN5  
ENHFILTEN6  
ENHFILTEN7  
ENHFILT2  
ENHFILT3  
ENHFILT4  
ENHFILT5  
ENHFILT6  
ENHFILT7  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
RW  
RW  
RW  
RW  
RW  
RW  
ODR2  
ODR3  
ODR4  
ODR5  
ODR6  
ODR7  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
[15:8]  
[7:0]  
SINC3_MAP4  
RESERVED  
[15:8]  
[7:0]  
SINC3_MAP5  
RESERVED  
[15:8]  
[7:0]  
SINC3_MAP6  
RESERVED  
[15:8]  
[7:0]  
SINC3_MAP7  
RESERVED  
OFFSET REGISTER 0  
Address: 0x30, Reset: 0x800000, Name: OFFSET0  
The offset (zero-scale) registers are 24-bit registers that compensate for any offset error in the ADC or in the system.  
Table 40. Bit Descriptions for OFFSET0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
OFFSET0  
Offset calibration coefficient for Setup 0.  
0x800000 RW  
OFFSET REGISTER 1 TO OFFSET REGISTER 7  
Address: 0x31 to 0x33, Reset: 0x800000, Name: OFFSET1 to OFFSET7  
The remaining seven offset registers share the same layout as Offset Register 0.  
Table 41. OFFSET1 to OFFSET7 Register Map  
Reg. Name  
Bits  
Reset  
RW  
0x31 OFFSET1 [23:0]  
0x32 OFFSET2 [23:0]  
0x33 OFFSET3 [23:0]  
0x34 OFFSET4 [23:0]  
0x35 OFFSET5 [23:0]  
0x36 OFFSET6 [23:0]  
0x37 OFFSET7 [23:0]  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
OFFSET4[23:0]  
OFFSET5[23:0]  
OFFSET6[23:0]  
OFFSET7[23:0]  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
Rev. B | Page 59 of 61  
 
 
 
AD7172-4  
Data Sheet  
GAIN REGISTER 0  
Address: 0x38, Reset: 0x5XXXX0, Name: GAIN0  
The gain (full-scale) registers are 24-bit registers that compensate for any gain error in the ADC or in the system.  
Table 42. Bit Descriptions for GAIN0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
GAIN0  
Gain calibration coefficient for Setup 0.  
0x5XXXX0 RW  
GAIN REGISTER 1 TO GAIN REGISTER 7  
Address: 0x39 to 0x3F, Reset: 0x5XXXX0, Name: GAIN1 to GAIN7  
The remaining seven gain registers share the same layout as Gain Register 0.  
Table 43. GAIN1 to GAIN7 Register Map  
Reg. Name  
0x39 GAIN1  
0x3A GAIN2  
0x3B GAIN3  
0x3C GAIN4  
0x3D GAIN5  
0x3E GAIN6  
0x3F GAIN7  
Bits  
Reset  
RW  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
GAIN4[23:0]  
GAIN5[23:0]  
GAIN6[23:0]  
GAIN7[23:0]  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
Rev. B | Page 60 of 61  
 
 
Data Sheet  
AD7172-4  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
IONS  
INDIC ATOR AREA OPT  
(SEE DETAIL A)  
25  
32  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5.  
Figure 72. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD7172-4BCPZ  
AD7172-4BCPZ-RL  
AD7172-4BCPZ-RL7  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
CP-32-12  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12676-0-4/17(B)  
Rev. B | Page 61 of 61  
 
 

相关型号:

AD7172-4_17

ADC with True Rail-to-Rail Buffers
ADI

AD7173-8

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
ADI

AD7173-8BCPZ

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
ADI

AD7173-8BCPZ-RL

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
ADI

AD7175-2

24-Bit, 250 kSPS, Sigma-Delta ADC Settling and True Rail-to-Rail Buffers
ADI

AD7175-2BRUZ

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2BRUZ-RL

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2BRUZ-RL7

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2_17

24-Bit, 250 kSPS, Sigma-Delta ADC Settling and True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ-RL

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ-RL7

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI