AD7175-2BRUZ-RL [ADI]

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 µs Settling and True Rail-to-Rail Buffers;
AD7175-2BRUZ-RL
型号: AD7175-2BRUZ-RL
厂家: ADI    ADI
描述:

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 µs Settling and True Rail-to-Rail Buffers

光电二极管 转换器
文件: 总63页 (文件大小:1115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24-Bit, 250 kSPS, Sigma-Delta ADC with  
20 µs Settling and True Rail-to-Rail Buffers  
Data Sheet  
AD7175-2  
FEATURES  
GENERAL DESCRIPTION  
Fast and flexible output rate: 5 SPS to 250 kSPS  
Channel scan data rate of 50 kSPS/channel (20 µs settling)  
Performance specifications  
The AD7175-2 is a low noise, fast settling, multiplexed, 2-/4-  
channel (fully/pseudo differential) Σ-Δ analog-to-digital converter  
(ADC) for low bandwidth inputs. It has a maximum channel  
scan rate of 50 kSPS (20 µs) for fully settled data. The output  
data rates range from 5 SPS to 250 kSPS.  
17.2 noise free bits at 250 kSPS  
20 noise free bits at 2.5 kSPS  
24 noise free bits at 20 SPS  
The AD7175-2 integrates key analog and digital signal condition-  
ing blocks to allow users to configure an individual setup for  
each analog input channel in use. Each feature can be user selected  
on a per channel basis. Integrated true rail-to-rail buffers on the  
analog inputs and external reference inputs provide easy to drive  
high impedance inputs. The precision 2.5 V low drift (2 ppm/°C)  
band gap internal reference (with output reference buffer) adds  
embedded functionality to reduce external component count.  
INL: 1 ppm of FSR  
85 dB rejection of 50 Hz and 60 Hz with 50 ms settling  
User configurable input channels  
2 fully differential channels or 4 single-ended channels  
Crosspoint multiplexer  
On-chip 2.5 V reference ( 2 ppm/°C drift)  
True rail-to-rail analog and reference input buffers  
Internal or external clock  
The digital filter allows simultaneous 50 Hz/60 Hz rejection at  
27.27 SPS output data rate. The user can switch between  
different filter options according to the demands of each  
channel in the application. The ADC automatically switches  
through each selected channel. Further digital processing  
functions include offset and gain calibration registers,  
configurable on a per channel basis.  
Power supply: AVDD1 = 5 V, AVDD2 = IOVDD = 2 V to 5 V  
Split supply with AVDD1/AVSS at 2.5 V  
ADC current: 8.4 mA  
Temperature range: −40°C to +105°C  
3- or 4-wire serial digital interface (Schmitt trigger on SCLK)  
Serial port interface (SPI), QSPI, MICROWIRE, and DSP  
compatible  
The device operates with a 5 V AVDD1, or 2.5 V AVDD1/AVSS,  
and 2 V to 5 V AVDD2 and IOVDD supplies. The specified  
operating temperature range is −40°C to +105°C. The AD7175-2 is  
in a 24-lead TSSOP package.  
APPLICATIONS  
Process control: PLC/DCS modules  
Temperature and pressure measurement  
Medical and scientific multichannel instrumentation  
Chromatography  
Note that, throughout this data sheet, the dual function pin  
names are referenced by the relevant function only.  
FUNCTIONAL BLOCK DIAGRAM  
REF– REF+ REFOUT  
AVDD1 AVDD2 REGCAPA  
IOVDD REGCAPD  
AVDD1  
AVSS  
BUFFERED  
PRECISION  
REFERENCE  
1.8V  
LDO  
1.8V  
LDO  
CROSSPOINT  
MULTIPLEXER  
INT  
REF  
RAIL-TO-RAIL  
REFERENCE  
INPUT BUFFERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AVDD  
CS  
SCLK  
SERIAL  
INTERFACE  
AND CONTROL  
DIGITAL  
FILTER  
Ȉꢀǻꢁ$'&  
DIN  
DOUT/RDY  
SYNC/ERROR  
RAIL-TO-RAIL  
ANALOG INPUT  
BUFFERS  
GPIO AND  
MUX  
I/O CONTROL  
XTAL AND INTERNAL  
CLOCK OSCILLATOR  
CIRCUITRY  
AVSS  
AD7175-2  
TEMPERATURE  
SENSOR  
AVSS  
GPIO0 GPIO1  
XTAL1 XTAL2/CLKIO  
DGND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother  
rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No  
license isgranted by implication or otherwise under any patent or patent rightsof Analog Devices.  
Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
AD7175-2* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
• Analog Devices Introduces Industry’s First 24-Bit Sigma  
Delta A/D Converter with Rail-to-Rail Analog and  
Reference Input Buffers On-chip  
EVALUATION KITS  
AD7175-2 Evaluation Board  
Technical Articles  
Fundamental Principles Behind the Sigma-Delta ADC  
Topology: Part 1  
DOCUMENTATION  
Data Sheet  
Fundamental Principles Behind the Sigma-Delta ADC  
Topology: Part 2  
• AD7175-2: 24-Bit, 250 kSPS, Sigma-Delta ADC with 20 μs  
Settling and True Rail-to-Rail Buffers Data Sheet  
Tutorials  
Technical Books  
MT-022: ADC Architectures III: Sigma-Delta ADC Basics  
The Data Conversion Handbook, 2005  
User Guides  
MT-023: ADC Architectures IV: Sigma-Delta ADC  
Advanced Concepts and Applications  
UG-741: Evaluating the AD7175-2 24-Bit, 250 kSPS, Sigma-  
Delta ADC with 20 μs Settling and Integrated Analog  
Input Buffer  
DESIGN RESOURCES  
AD7175-2 Material Declaration  
PCN-PDN Information  
SOFTWARE AND SYSTEMS REQUIREMENTS  
Quality And Reliability  
Symbols and Footprints  
AD7175 Microcontroller Renesas Driver  
AD7176-2 FMC-SDP Interposer & Evaluation Board / Xilinx  
KC705 Reference Design  
DISCUSSIONS  
View all AD7175-2 EngineerZone Discussions.  
AD717x Microcontroller No-OS  
AD717x Eval+ Software  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD7175-2 Digital Filter Frequency Response Model  
AD7175-2 IBIS Model  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE DESIGNS  
CN0292  
CN0363  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
CN0364  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7175-2  
Data Sheet  
TABLE OF CONTENTS  
Checksum Protection ................................................................ 43  
CRC Calculation......................................................................... 44  
Integrated Functions ...................................................................... 46  
General-Purpose Input/Output................................................ 46  
External Multiplexer Control ................................................... 46  
Delay ............................................................................................ 46  
16-Bit/24-Bit Conversions......................................................... 46  
DOUT_RESET ........................................................................... 46  
Synchronization.......................................................................... 46  
Error Flags................................................................................... 47  
DATA_STAT ............................................................................... 47  
IOSTRENGTH ........................................................................... 48  
Internal Temperature Sensor .................................................... 48  
Grounding and Layout .................................................................. 49  
Register Summary .......................................................................... 50  
Register Details ............................................................................... 51  
Communications Register......................................................... 51  
Status Register............................................................................. 52  
ADC Mode Register................................................................... 53  
Interface Mode Register ............................................................ 54  
Register Check............................................................................ 55  
Data Register............................................................................... 55  
GPIO Configuration Register................................................... 56  
ID Register................................................................................... 57  
Channel Register 0 ..................................................................... 57  
Channel Register 1 to Channel Register 3 .............................. 58  
Setup Configuration Register 0 ................................................ 59  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Timing Characteristics ................................................................ 7  
Timing Diagrams.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Noise Performance and Resolution.............................................. 19  
Getting Started................................................................................ 20  
Power Supplies ............................................................................ 21  
Digital Communication............................................................. 21  
AD7175-2 Reset.......................................................................... 22  
Configuration Overview ........................................................... 22  
Circuit Description......................................................................... 28  
Buffered Analog Input ............................................................... 28  
Crosspoint Multiplexer.............................................................. 28  
AD7175-2 Reference.................................................................. 29  
Buffered Reference Input........................................................... 30  
Clock Source ............................................................................... 30  
Digital Filters................................................................................... 31  
Sinc5 + Sinc1 Filter..................................................................... 31  
Sinc3 Filter................................................................................... 31  
Single Cycle Settling................................................................... 32  
Enhanced 50 Hz and 60 Hz Rejection Filters......................... 36  
Operating Modes............................................................................ 39  
Continuous Conversion Mode ................................................. 39  
Continuous Read Mode............................................................. 40  
Single Conversion Mode ........................................................... 41  
Standby and Power-Down Modes............................................ 42  
Calibration................................................................................... 42  
Digital Interface .............................................................................. 43  
Setup Configuration Register 1 to Setup Configuration  
Register 3 ..................................................................................... 59  
Filter Configuration Register 0................................................. 60  
Filter Configuration Register 1 to Filter Configuration  
Register 3 ..................................................................................... 61  
Offset Register 0 ......................................................................... 61  
Offset Register 1 to Offset Register 3....................................... 61  
Gain Register 0............................................................................ 61  
Gain Register 1 to Gain Register 3........................................... 61  
Outline Dimensions....................................................................... 62  
Ordering Guide .......................................................................... 62  
Rev. B | Page 2 of 62  
Data Sheet  
AD7175-2  
REVISION HISTORY  
5/2016—Rev. A to Rev. B  
9/2014—Rev. 0 to Rev. A  
Changes to Figure 1...........................................................................1  
Added Endnote Reference 1 to 0°C to 105°C Parameter and  
−40°C to +105°C Parameter, Table 1 ..............................................4  
Change to Sensitivity Parameter, Table 1.......................................5  
Changes to Power Supplies Section ..............................................21  
Change to Table 21..........................................................................34  
Change to Table 22..........................................................................35  
Changes to Internal Temperature Sensor Section.......................48  
Changes to Ordering Guide...........................................................60  
7/2014—Revision 0: Initial Version  
Rev. B | Page 3 of 62  
AD7175-2  
Data Sheet  
SPECIFICATIONS  
AVDD1 = 4.5 V to 5.5 V, AVDD2 = 2 V to 5.5 V, IOVDD = 2 V to 5.5 V, AVSS = DGND = 0 V, REF+ = 2.5 V, REF− = AVSS,  
MCLK = internal master clock = 16 MHz, TA = TMIN to TMAX (−40°C to +105°C), unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC SPEED AND PERFORMANCE  
Output Data Rate (ODR)  
No Missing Codes1  
Resolution  
5
250,000  
SPS  
Bits  
Excluding sinc3 filter ≥ 125 kSPS  
See Table 6 and Table 7  
24  
Noise  
See Table 6 and Table 7  
ACCURACY  
Integral Nonlinearity (INL)  
Analog input buffers enabled  
Analog input buffers disabled  
Internal short  
3.5  
1
7.8  
3.5  
ppm of FSR  
ppm of FSR  
µV  
Offset Error2  
Offset Drift  
Gain Error2  
40  
80  
35  
0.4  
Internal short  
nV/°C  
85  
ppm of FSR  
ppm/°C  
Gain Drift  
0.75  
REJECTION  
Power Supply Rejection  
Common-Mode Rejection  
At DC  
AVDD1, AVDD2, VIN = 1 V  
VIN = 0.1 V  
95  
dB  
95  
dB  
dB  
At 50 Hz, 60 Hz1  
20 Hz output data rate (post filter),  
50 Hz 1 Hz and 60 Hz 1 Hz  
120  
Normal Mode Rejection1  
50 Hz 1 Hz and 60 Hz 1 Hz  
Internal clock, 20 SPS ODR (postfilter)  
External clock, 20 SPS ODR (postfilter)  
71  
85  
90  
90  
dB  
dB  
ANALOG INPUTS  
Differential Input Range  
Absolute Voltage Limits1  
Input Buffers Disabled  
Input Buffers Enabled  
Analog Input Current  
Input Buffers Disabled  
Input Current  
VREF = (REF+) − (REF−)  
VREF  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
48  
0.75  
4
µA/V  
Input Current Drift  
External clock  
nA/V/°C  
nA/V/°C  
Internal clock ( 2.5% clock)  
Input Buffers Enabled  
Input Current  
30  
75  
nA  
Input Current Drift  
AVDD1 − 0.2 V to AVSS + 0.2 V  
AVDD1 to AVSS  
pA/°C  
nA/°C  
dB  
1
Crosstalk  
1 kHz input  
−120  
INTERNAL REFERENCE  
Output Voltage  
Initial Accuracy3  
100 nF external capacitor to AVSS  
REFOUT, with respect to AVSS  
REFOUT, TA = 25°C  
2.5  
V
−0.12  
−10  
+0.12  
% of V  
Temperature Coefficient  
0°C to 105°C1  
−40°C to +105°C1  
Reference Load Current, ILOAD  
Power Supply Rejection  
Load Regulation  
2
3
5
ppm/°C  
ppm/°C  
mA  
10  
+10  
AVDD1, AVDD2, (line regulation)  
∆VOUT/∆ILOAD  
90  
dB  
32  
ppm/mA  
µV rms  
nV/√Hz  
Voltage Noise  
eN, 0.1 Hz to 10 Hz, 2.5 V reference  
eN, 1 kHz, 2.5 V reference  
4.5  
215  
Voltage Noise Density  
Rev. B | Page 4 of 62  
Data Sheet  
AD7175-2  
Parameter  
Test Conditions/Comments  
Min  
Typ  
200  
25  
Max  
Unit  
µs  
Turn-On Settling Time  
Short-Circuit Current, ISC  
EXTERNAL REFERENCE INPUTS  
Differential Input Range  
Absolute Voltage Limits1  
Input Buffers Disabled  
Input Buffers Enabled  
REFIN Input Current  
Input Buffers Disabled  
Input Current  
100 nF REFOUT capacitor  
mA  
VREF = (REF+) − (REF−)  
1
2.5  
AVDD1  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
72  
1.2  
6
µA/V  
Input Current Drift  
External clock  
Internal clock  
nA/V/°C  
nA/V/°C  
Input Buffers Enabled  
Input Current  
800  
nA  
Input Current Drift  
Normal Mode Rejection1  
Common-Mode Rejection  
TEMPERATURE SENSOR  
Accuracy  
1.25  
nA/°C  
See the Rejection parameter  
After user calibration at 25°C  
95  
dB  
2
°C  
Sensitivity  
470  
µV/K  
BURNOUT CURRENTS  
Source/Sink Current  
Analog input buffers must be enabled  
With respect to AVSS  
10  
µA  
GENERAL-PURPOSE INPUT/  
OUTPUT (GPIO0, GPIO1)  
Input Mode Leakage Current1  
−10  
+10  
µA  
pF  
Floating State Output  
Capacitance  
5
1
Output High Voltage, VOH  
ISOURCE = 200 µA  
ISINK = 800 µA  
AVSS + 4  
AVSS + 3  
V
V
V
V
1
Output Low Voltage, VOL  
AVSS + 0.4  
AVSS + 0.7  
1
Input High Voltage, VIH  
1
Input Low Voltage, VIL  
CLOCK  
Internal Clock  
Frequency  
16  
50  
MHz  
%
Accuracy  
−2.5%  
+2.5%  
0.4  
Duty Cycle  
%
Output Low Voltage, VOL  
Output High Voltage, VOH  
Crystal  
V
0.8 × IOVDD  
14  
V
Frequency  
16  
10  
16  
50  
16.384  
MHz  
µs  
Startup Time  
External Clock (CLKIO)  
Duty Cycle1  
16.384  
70  
MHz  
%
30  
Rev. B | Page 5 of 62  
AD7175-2  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
1
Input High Voltage, VINH  
2 V ≤ IOVDD < 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
2 V ≤ IOVDD < 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
IOVDD ≥ 2.7 V  
0.65 × IOVDD  
0.7 × IOVDD  
V
V
1
Input Low Voltage, VINL  
0.35 × IOVDD  
V
0.7  
V
Hysteresis1  
0.08  
0.04  
−10  
0.25  
0.2  
V
IOVDD < 2.7 V  
V
Leakage Currents  
+10  
µA  
LOGIC OUTPUT (DOUT/RDY)  
1
Output High Voltage, VOH  
IOVDD ≥ 4.5 V, ISOURCE = 1 mA  
2.7 V ≤ IOVDD < 4.5 V, ISOURCE = 500 µA  
IOVDD < 2.7 V, ISOURCE = 200 µA  
IOVDD ≥ 4.5 V, ISINK = 2 mA  
2.7 V ≤ IOVDD < 4.5 V, ISINK = 1 mA  
IOVDD < 2.7 V, ISINK = 400 µA  
Floating state  
0.8 × IOVDD  
0.8 × IOVDD  
0.8 × IOVDD  
V
V
V
1
Output Low Voltage, VOL  
0.4  
0.4  
0.4  
+10  
V
V
V
Leakage Current  
Output Capacitance  
SYSTEM CALIBRATION1  
Full-Scale (FS) Calibration Limit  
Zero-Scale Calibration Limit  
Input Span  
−10  
µA  
pF  
Floating state  
10  
1.05 × FS  
2.1 × FS  
V
V
V
−1.05 × FS  
0.8 × FS  
POWER REQUIREMENTS  
Power Supply Voltage  
AVDD1 to AVSS  
4.5  
5.5  
5.5  
0
V
V
V
V
V
AVDD2 to AVSS  
2
AVSS to DGND  
−2.75  
2
IOVDD to DGND  
5.5  
6.35  
IOVDD to AVSS  
For AVSS < DGND  
POWER SUPPLY CURRENTS4  
All outputs unloaded, digital inputs  
connected to IOVDD or DGND  
Full Operating Mode  
AVDD1 Current  
Analog input and reference input  
buffers disabled, external reference  
1.4  
1.75  
13  
1.65  
2
mA  
mA  
mA  
Analog input and reference input  
buffers disabled, internal reference  
Analog input and reference input  
buffers enabled, external reference  
16  
Each buffer: AIN+, AIN−, REF+, REF−  
External reference  
Internal reference  
External clock  
2.9  
4.5  
4.75  
2.5  
2.75  
3
mA  
mA  
mA  
mA  
mA  
mA  
µA  
AVDD2 Current  
IOVDD Current  
5
5.2  
2.8  
3.1  
Internal clock  
External crystal  
Standby Mode (LDO On)  
Power-Down Mode  
Internal reference off, total current  
consumption  
25  
Internal reference on, total current  
consumption  
425  
5
µA  
µA  
Full power-down (including LDO and  
internal reference)  
10  
Rev. B | Page 6 of 62  
Data Sheet  
AD7175-2  
Parameter  
POWER DISSIPATION4  
Full Operating Mode  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
All buffers disabled, external clock and  
reference, AVDD2 = 2 V, IOVDD = 2 V  
21  
42  
mW  
mW  
mW  
mW  
mW  
mW  
All buffers disabled, external clock and  
reference, all supplies = 5 V  
All buffers disabled, external clock and  
reference, all supplies = 5.5 V  
52  
All buffers enabled, internal clock and  
reference, AVDD2 = 2 V, IOVDD = 2 V  
82  
All buffers enabled, internal clock and  
reference, all supplies = 5 V  
105  
All buffers enabled, internal clock and  
reference, all supplies = 5.5 V  
136  
50  
Standby Mode  
Internal reference off, all supplies = 5 V  
Internal reference on, all supplies = 5 V  
Full power-down, all supplies = 5 V  
125  
2.2  
25  
µW  
mW  
µW  
Power-Down Mode  
1 Specification is not production tested but is supported by characterization data at initial product release.  
2 Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale  
calibration reduces the gain error to the order of the noise for the programmed output data rate.  
3 This specification includes moisture sensitivity level (MSL) preconditioning effects.  
4 This specification is with no load on the REFOUT and digital output pins.  
TIMING CHARACTERISTICS  
IOVDD = 2 V to 5.5 V, DGND = 0 V, Input Logic 0 = 0 V, Input Logic 1 = IOVDD, CLOAD = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Test Conditions/Comments1, 2  
SCLK  
t3  
25  
25  
ns min  
ns min  
SCLK high pulse width  
SCLK low pulse width  
t4  
READ OPERATION  
t1  
0
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
ns max  
ns min  
ns min  
CS falling edge to DOUT/RDY active time  
IOVDD = 4.75 V to 5.5 V  
15  
40  
0
IOVDD = 2 V to 3.6 V  
SCLK active edge to data valid delay4  
3
t2  
12.5  
25  
2.5  
20  
0
IOVDD = 4.75 V to 5.5 V  
IOVDD = 2 V to 3.6 V  
5
t5  
Bus relinquish time after CS inactive edge  
t6  
t7  
SCLK inactive edge to CS inactive edge  
10  
SCLK inactive edge to DOUT/RDY high/low  
WRITE OPERATION  
t8  
0
8
8
5
ns min  
ns min  
ns min  
ns min  
CS falling edge to SCLK active edge setup time4  
Data valid to SCLK edge setup time  
t9  
t10  
t11  
Data valid to SCLK edge hold time  
CS rising edge to SCLK edge hold time  
1 Sample tested during initial release to ensure compliance.  
2 See Figure 2 and Figure 3.  
3 This parameter is defined as the time required for the output to cross the VOL or VOH limits.  
4 The SCLK active edge is the falling edge of SCLK.  
5
RDY  
DOUT/  
while DOUT/  
returns high after a read of the data register. In single conversion mode and continuous conversion mode, the same data can be read again, if required,  
RDY  
is high, although care must be taken to ensure that subsequent reads do not occur close to the next output update. If the continuous read feature is  
enabled, the digital word can be read only once.  
Rev. B | Page 7 of 62  
AD7175-2  
Data Sheet  
TIMING DIAGRAMS  
CS (I)  
t6  
t1  
t5  
MSB  
LSB  
DOUT/RDY (O)  
t7  
t2  
t3  
SCLK (I)  
t4  
I = INPUT, O = OUTPUT  
Figure 2. Read Cycle Timing Diagram  
CS (I)  
t11  
t8  
SCLK (I)  
DIN (I)  
t9  
t10  
MSB  
LSB  
I = INPUT, O = OUTPUT  
Figure 3. Write Cycle Timing Diagram  
Rev. B | Page 8 of 62  
Data Sheet  
AD7175-2  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for a device soldered on a JEDEC test board for  
surface-mount packages.  
Table 3.  
Parameter  
Rating  
AVDD1, AVDD2 to AVSS  
AVDD1 to DGND  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +7.5 V  
−3.25 V to +0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
10 mA  
Table 4. Thermal Resistance  
Package Type  
θJA  
Unit  
IOVDD to DGND  
24-Lead TSSOP  
IOVDD to AVSS  
JEDEC 1-Layer Board  
JEDEC 2-Layer Board  
149  
81  
°C/W  
°C/W  
AVSS to DGND  
Analog Input Voltage to AVSS  
Reference Input Voltage to AVSS  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
Analog Input/Digital Input Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Soldering, Reflow Temperature  
ESD Rating (HBM)  
ESD CAUTION  
−40°C to +105°C  
−65°C to +150°C  
150°C  
260°C  
4 kV  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 9 of 62  
AD7175-2  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
AIN4  
AIN3  
REF–  
AIN2  
REF+  
AIN1  
REFOUT  
REGCAPA  
AVSS  
AIN0  
GPIO1  
GPIO0  
REGCAPD  
DGND  
IOVDD  
SYNC/ERROR  
CS  
AD7175-2  
TOP VIEW  
(Not to Scale) 18  
AVDD1  
17  
16  
15  
14  
13  
AVDD2  
9
XTAL1  
10  
11  
12  
XTAL2/CLKIO  
DOUT/RDY  
DIN  
SCLK  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Type1  
Pin No.  
Mnemonic  
AIN4  
Description  
1
2
3
AI  
Analog Input 4. Selectable through crosspoint multiplexer.  
REF−  
AI  
Reference Input Negative Terminal. REF− can span from AVSS to AVDD1 − 1 V.  
REF+  
AI  
Reference Input Positive Terminal. An external reference can be applied between REF+ and REF−. REF+  
can span from AVSS + 1 V to AVDD1.The device functions with a reference magnitude from 1 V to  
AVDD1.  
4
REFOUT  
REGCAPA  
AVSS  
AO  
AO  
P
Buffered Output of Internal Reference. The output is 2.5 V with respect to AVSS.  
Analog LDO Regulator Output. Decouple this pin to AVSS using a 1 µF and a 0.1 µF capacitor.  
Negative Analog Supply. This supply ranges from −2.75 V to 0 V and is nominally set to 0 V.  
Analog Supply Voltage 1. This voltage is 5 V 10% with respect to AVSS.  
Analog Supply Voltage 2. This voltage ranges from 2 V to 5 V with respect to AVSS.  
Input 1 for Crystal.  
5
6
7
AVDD1  
P
8
AVDD2  
P
9
XTAL1  
AI  
10  
XTAL2/CLKIO  
AI/DI  
Input 2 for Crystal/Clock Input or Output. Based on the CLOCKSEL bits in the ADCMODE register. There  
are four options available for selecting the MCLK source:  
Internal oscillator: no output.  
Internal oscillator: output to XTAL2/CLKIO. Operates at IOVDD logic level.  
External clock: input to XTAL2/CLKIO. Input must be at IOVDD logic level.  
External crystal: connected between XTAL1 and XTAL2/CLKIO.  
11  
DOUT/RDY  
DO  
Serial Data Output/Data Ready Output. DOUT/RDY is a dual purpose pin. It functions as a serial data  
output pin to access the output shift register of the ADC. The output shift register can contain data  
from any of the on-chip data or control registers. The data-word/control word information is placed on  
the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge. When CS is high, the  
DOUT/RDY output is three-stated. When CS is low, DOUT/RDY operates as a data ready pin, going low  
to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes  
high before the next update occurs. The DOUT/RDY falling edge can be used as an interrupt to a  
processor, indicating that valid data is available.  
12  
DIN  
DI  
Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the  
control registers in the ADC, with the register address (RA) bits of the communications register  
identifying the appropriate register. Data is clocked in on the rising edge of SCLK.  
13  
14  
SCLK  
CS  
DI  
DI  
Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK has a  
Schmitt triggered input, making the interface suitable for opto-isolated applications.  
Chip Select Input. This is an active low logic input selects the ADC. CS can select the ADC in systems  
with more than one device on the serial bus. CS can be hardwired low, allowing the ADC to operate in 3-  
wire mode with SCLK, DIN, and DOUT used to interface with the device. When CS is high, the  
DOUT/RDY output is three-stated.  
Rev. B | Page 10 of 62  
Data Sheet  
AD7175-2  
Pin No.  
Mnemonic  
SYNC/ERROR  
Type1  
Description  
15  
DI/O  
Synchronization Input/Error Input/Output. This pin can be switched between a logic input and a logic  
output in the GPIOCON register. When synchronization input (SYNC) is enabled, this pin allows  
synchronization of the digital filters and analog modulators when using multiple AD7175-2 devices.  
For more information, see the Synchronization section. When the synchronization input is disabled,  
this pin can be used in one of three modes:  
Active low error input mode: this mode sets the ADC_ERROR bit in the status register.  
Active low, open-drain error output mode: the status register error bits are mapped to the ERROR  
output. The SYNC/ERROR pins of multiple devices can be wired together to a common pull-up resistor  
so that an error on any device can be observed.  
General-purpose output mode: the status of the pin is controlled by the ERR_DAT bit in the GPIOCON  
register. The pin is referenced between IOVDD and DGND, as opposed to the AVDD1 and AVSS levels  
used by the GPIOx pins. The pin has an active pull-up in this case.  
16  
IOVDD  
P
Digital Input/Output Supply Voltage. The IOVDD voltage ranges from 2 V to 5 V. IOVDD is independent  
of AVDD2. For example, IOVDD can be operated at 3 V when AVDD2 equals 5 V, or vice versa. If AVSS is  
set to −2.5 V, the voltage on IOVDD must not exceed 3.6 V.  
17  
18  
DGND  
P
Digital Ground.  
REGCAPD  
AO  
Digital LDO Regulator Output. This pin is for decoupling purposes only. Decouple this pin to DGND  
using a 1 µF and a 0.1 µF capacitor.  
19  
20  
21  
22  
23  
24  
GPIO0  
GPIO1  
AIN0  
AIN1  
AIN2  
AIN3  
DI/O  
DI/O  
AI  
General-Purpose Input/Output 0. The pin is referenced between AVDD1 and AVSS levels.  
General-Purpose Input/Output 1. The pin is referenced between AVDD1 and AVSS levels.  
Analog Input 0. Selectable through the crosspoint multiplexer.  
AI  
Analog Input 1. Selectable through the crosspoint multiplexer.  
AI  
Analog Input 2. Selectable through the crosspoint multiplexer.  
AI  
Analog Input 3. Selectable through the crosspoint multiplexer.  
1 AI is analog input, AO is analog output, DI/O is bidirectional digital input/output, DO is digital output, DI is digital input, and P is power supply.  
Rev. B | Page 11 of 62  
AD7175-2  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 5 V, AVDD2 = 5 V, IOVDD = 3.3 V, TA = 25°C, unless otherwise noted.  
8390000  
8389500  
8389000  
8388500  
8388000  
8387500  
8387000  
8386500  
8386000  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
8388460 8388461 8388462 8388463 8388464 8388465 8388466  
ADC CODE  
Figure 5. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
Figure 8. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
120  
100  
80  
60  
40  
20  
0
8388480  
8388475  
8388470  
8388465  
8388460  
8388455  
8388450  
8388445  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 6. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
Figure 9. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
8388520  
45  
40  
35  
30  
25  
20  
15  
10  
5
8388500  
8388480  
8388460  
8388440  
8388420  
8388400  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 7. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Figure 10. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Rev. B | Page 12 of 62  
Data Sheet  
AD7175-2  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8390000  
8389500  
8389000  
8388500  
8388000  
8387500  
8387000  
8386500  
8386000  
8385500  
8385000  
8388490 8388491 8388492 8388493 8388494 8388495 8388496  
ADC CODE  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
Figure 14. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
Figure 11. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8388520  
8388515  
8388510  
8388505  
8388500  
8388495  
8388490  
8388485  
8388480  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 15. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
Figure 12. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
35  
30  
25  
20  
15  
10  
5
8388580  
8388560  
8388540  
8388520  
8388500  
8388480  
8388460  
8388440  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 13. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Figure 16. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Rev. B | Page 13 of 62  
AD7175-2  
Data Sheet  
0
–20  
0.000016  
0.000014  
0.000012  
0.000010  
0.000008  
0.000006  
0.000004  
0.000002  
0
BUFFER ON  
BUFFER OFF  
–40  
–60  
–80  
–100  
–120  
1
10  
100  
V
1k  
10k  
100k  
1M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
INPUT COMMON-MODE VOLTAGE (V)  
IN  
Figure 20. Common-Mode Rejection Ratio (CMRR) vs. VIN Frequency  
(VIN = 0.1 V, Output Data Rate = 250 kSPS)  
Figure 17. Noise vs. Input Common-Mode Voltage, Analog Input Buffers  
On and Off  
–80  
–90  
20  
ANALOG INPUT BUFFERS OFF  
ANALOG INPUT BUFFERS ON  
18  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
16  
14  
12  
10  
8
6
4
2
0
10  
20  
30  
V
40  
50  
60  
70  
0
2
4
6
8
10  
12  
14  
16  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
IN  
Figure 18. Noise vs. External Master Clock Frequency,  
Analog Input Buffers On and Off  
Figure 21. Common-Mode Rejection Ratio (CMRR) vs. VIN Frequency  
(VIN = 0.1 V, 10 Hz to 70 Hz, Output Data Rate = 20 SPS Enhanced Filter)  
16800000  
16780000  
16760000  
16740000  
16720000  
16700000  
16680000  
16660000  
CONTINUOUS CONVERSION—REFERENCE DISABLED  
STANDBY—REFERENCE DISABLED  
STANDBY—REFERENCE ENABLED  
–60  
AVDD1—EXTERNAL 2.5V REFERENCE  
AVDD1—INTERNAL 2.5V REFERENCE  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
SAMPLE NUMBER  
V
FREQUENCY (Hz)  
IN  
Figure 19. Internal Reference Settling Time  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. VIN Frequency  
Rev. B | Page 14 of 62  
Data Sheet  
AD7175-2  
20  
30  
25  
20  
15  
10  
5
INTERNAL 2.5V REF,  
ANALOG INPUT BUFFERS OFF  
INTERNAL 2.5V REF,  
ANALOG INPUT BUFFERS ON  
EXTERNAL 2.5V REF,  
ANALOG INPUT BUFFERS OFF  
EXTERNAL 2.5V REF,  
ANALOG INPUT BUFFERS ON  
EXTERNAL 5V REF,  
ANALOG INPUT BUFFERS OFF  
15  
10  
5
EXTERNAL 5V REF,  
ANALOG INPUT BUFFERS ON  
0
–5  
–10  
–15  
–20  
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V
(V)  
INL ERROR (ppm)  
IN  
Figure 23. Integral Nonlinearity (INL) vs. VIN  
(Differential Input)  
Figure 26. Integral Nonlinearity (INL) Distribution Histogram (Analog Input  
Buffers Enabled, Differential Input, VREF = 5 V External, 100 Units)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00  
INL ERROR (ppm)  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
INL ERROR (ppm)  
Figure 24. Integral Nonlinearity (INL) Distribution Histogram (Differential  
Input, Analog Input Buffers Enabled, VREF = 2.5 V External, 100 Units)  
Figure 27. Integral Nonlinearity (INL) Distribution Histogram (Analog Input  
Buffers Disabled, Differential Input, VREF = 5 V External, 100 Units)  
30  
25  
20  
15  
10  
5
5.0  
BUFFER DISABLED  
BUFFER ENABLED  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
–40  
–20  
0
20  
40  
60  
80  
100  
INL ERROR (ppm)  
TEMPERATURE (°C)  
Figure 25. Integral Nonlinearity (INL) Distribution Histogram (Differential  
Input, Analog Input Buffers Disabled, VREF = 2.5 V External, 100 Units)  
Figure 28. Integral Nonlinearity (INL) vs. Temperature  
(Differential Input, VREF = 2.5 V External)  
Rev. B | Page 15 of 62  
AD7175-2  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
15.98 15.99 16.00 16.01 16.02 16.03 16.04 16.05  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
OFFSET ERROR (µV)  
FREQUENCY (MHz)  
Figure 29. Internal Oscillator Frequency/Accuracy Distribution Histogram  
(100 Units)  
Figure 32. Offset Error Distribution Histogram (Internal Short)  
(248 Units)  
16400000  
16300000  
16200000  
16100000  
16000000  
15900000  
15800000  
15700000  
15600000  
35  
30  
25  
20  
15  
10  
5
0
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
OFFSET DRIFT ERROR (nV/°C)  
Figure 30. Internal Oscillator Frequency vs. Temperature  
Figure 33. Offset Error Drift Distribution Histogram (Internal Short)  
(248 Units)  
0.0010  
40  
35  
30  
25  
20  
15  
10  
5
0.0005  
0
–0.0005  
–0.0010  
0
–40  
–20  
0
20  
40  
60  
80  
100  
–4  
–3  
–2  
–1  
0
1
2
3
4
TEMPERATURE (°C)  
GAIN ERROR (ppm/FSR)  
Figure 31. Absolute Reference Error vs. Temperature  
Figure 34. Gain Error Distribution Histogram (Analog Input Buffers Enabled)  
(100 Units)  
Rev. B | Page 16 of 62  
Data Sheet  
AD7175-2  
0.025  
0.020  
0.015  
0.010  
0.005  
0
30  
25  
20  
15  
10  
5
BUFFERS DISABLED  
BUFFERS ENABLED  
0
–40  
–20  
0
20  
40  
60  
80  
100  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
GAIN ERROR (ppm/FSR)  
TEMPERATURE (°C)  
Figure 35. Gain Error Distribution Histogram  
(Analog Input Buffers Disabled, 100 Units)  
Figure 38. Current Consumption vs. Temperature  
(Continuous Conversion Mode)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
20  
15  
10  
5
0
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
GAIN ERROR DRIFT (ppm/FSR)  
Figure 36. Gain Error Drift Distribution Histogram  
(Analog Input Buffers Enabled, 100 Units)  
Figure 39. Current Consumption vs. Temperature (Power-Down Mode)  
40  
35  
30  
25  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
6
4
2
0
0
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55  
GAIN ERROR DRIFT (ppm/FSR)  
–1.2 –1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
TEMPERATURE DELTA (°C)  
Figure 37. Gain Error Drift Distribution Histogram  
(Analog Input Buffers Disabled, 100 Units)  
Figure 40. Temperature Sensor Distribution Histogram  
(Uncalibrated, 100 Units)  
Rev. B | Page 17 of 62  
AD7175-2  
Data Sheet  
35  
30  
25  
20  
15  
10  
5
100  
80  
AIN+ = AVDD1 – 0.2V  
AIN– = AVSS + 0.2V  
AIN+ = AVDD1  
AIN– = AVSS  
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
0
–40  
–20  
0
20  
40  
60  
80  
100  
9.60 9.65 9.70 9.75 9.80 9.85 9.90 9.95 10.00 10.05 10.10  
CURRENT (µA)  
TEMPERATURE (°C)  
Figure 41. Burnout Current Distribution Histogram  
(100 Units)  
Figure 43. Analog Input Current vs. Temperature  
100  
80  
–40°C, AIN+  
–40°C, AIN–  
+25°C, AIN+  
+25°C, AIN–  
+105°C, AIN+  
+105°C, AIN–  
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
INPUT VOLTAGE (V)  
Figure 42. Analog Input Current vs. Input Voltage  
(VCM = 2.5 V)  
Rev. B | Page 18 of 62  
Data Sheet  
AD7175-2  
NOISE PERFORMANCE AND RESOLUTION  
Table 6 and Table 7 show the rms noise, peak-to-peak noise,  
effective resolution and the noise free (peak-to-peak) resolution  
of the AD7175-2 for various output data rates and filters. The  
numbers given are for the bipolar input range with an external  
5 V reference.  
These numbers are typical and are generated with a differential  
input voltage of 0 V when the ADC is continuously converting  
on a single channel. It is important to note that the peak-to-  
peak resolution is calculated based on the peak-to-peak noise.  
The peak-to-peak resolution represents the resolution for which  
there is no code flicker.  
Table 6. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate using Sinc5 + Sinc1 Filter (Default)1  
Output Data Rate (SPS)  
RMS Noise (µV rms)  
Effective Resolution (Bits)  
Peak-to-Peak Noise (µV p-p) Peak-to-Peak Resolution (Bits)  
Input Buffers Disabled  
250,000  
8.7  
20.1  
20.8  
21.9  
23.6  
24  
65  
17.2  
17.8  
19.1  
20.9  
23.1  
23.3  
24  
62,500  
5.5  
43  
10,000  
2.5  
18.3  
5.2  
1000  
0.77  
0.19  
0.18  
0.1  
59.92  
1.1  
49.96  
24  
0.95  
0.45  
0.34  
16.66  
24  
5
0.07  
24  
24  
Input Buffers Enabled  
250,000  
62,500  
10,000  
1000  
9.8  
20  
85  
16.8  
17.5  
18.7  
20.7  
23.0  
23.3  
23.9  
24  
6.4  
20.6  
21.7  
23.4  
24  
55  
3
23  
0.92  
0.23  
0.2  
5.7  
1.2  
1
59.98  
49.96  
16.66  
5
24  
0.13  
0.07  
24  
0.66  
0.32  
24  
1 Selected rates only, 1000 samples.  
Table 7. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate using Sinc3 Filter1  
Output Data Rate (SPS)  
RMS Noise (µV rms)  
Effective Resolution (Bits)  
Peak-to-Peak Noise (µV p-p) Peak-to-Peak Resolution (Bits)  
Input Buffers Disabled  
250,000  
210  
5.2  
15.5  
20.9  
22.4  
24  
1600  
40  
12.6  
17.9  
19.4  
21.3  
23.6  
23.8  
24  
62,500  
10,000  
1.8  
14  
1000  
0.56  
0.13  
0.13  
0.07  
0.05  
3.9  
60  
24  
0.8  
50  
24  
0.7  
16.66  
24  
0.37  
0.21  
5
24  
24  
Input Buffers Enabled  
250,000  
62,500  
10,000  
1000  
60  
210  
5.8  
15.5  
20.7  
22.2  
23.7  
24  
1600  
48  
12.6  
17.7  
19.3  
21.1  
23.1  
23.5  
24  
2.1  
16  
0.71  
0.17  
0.15  
0.12  
0.08  
4.5  
1.1  
50  
24  
0.83  
0.6  
16.66  
5
24  
24  
0.35  
24  
1 Selected rates only, 1000 samples.  
Rev. B | Page 19 of 62  
AD7175-2  
Data Sheet  
GETTING STARTED  
The AD7175-2 offers the user a fast settling, high resolution,  
multiplexed ADC with high levels of configurability.  
The AD7175-2 includes a precision 2.5 V low drift ( 2 ppm/°C)  
band gap internal reference. This reference can used for the ADC  
conversions, reducing the external component count. Alternatively,  
the reference can be output to the REFOUT pin to be used as a  
low noise biasing voltage for external circuitry. An example of  
this is using the REFOUT signal to set the input common mode  
for an external amplifier.  
x
x
Two fully differential or four single-ended analog inputs.  
Crosspoint multiplexer selects any analog input combina-  
tion as the input signals to be converted, routing them to  
the modulator positive or negative input.  
x
x
True rail-to-rail buffered analog and reference inputs.  
Fully differential input or single-ended input relative to any  
analog input.  
The AD7175-2 includes two separate linear regulator blocks for  
both the analog and digital circuitry. The analog LDO regulates  
the AVDD2 supply to 1.8 V, supplying the ADC core. The user  
can tie the AVDD1 and AVDD2 supplies together for easiest  
connection. If there is already a clean analog supply rail in the  
system in the range of 2 V (minimum) to 5.5 V (maximum), the  
user can also choose to connect this to the AVDD2 input,  
allowing lower power dissipation.  
x
Per channel configurability—up to four different setups can be  
defined. A separate setup can be mapped to each of the  
channels. Each setup allows the user to configure whether  
the buffers are enabled or disabled, gain and offset correction,  
filter type, output data rate, and reference source selection  
(internal/external).  
GENERAL-PURPOSE I/O 0 AND  
GENERAL-PURPOSE I/O 1  
OUTPUT HIGH = AVDDx  
OUTPUT LOW = AVSS  
GPIO0  
GPIO1  
16MHz  
20  
19  
CX2  
CX1  
GPIO0  
GPIO1  
OPTIONAL EXTERNAL  
CRYSTAL CIRCUITRY  
CAPACITORS  
9
XTAL1  
21  
AIN0  
10  
XTAL2/CLKI0  
CLKIN  
OPTIONAL  
EXTERNAL  
CLOCK  
INPUT  
DOUT/RDY 11  
DOUT/RDY  
DIN  
22  
23  
AIN1  
AIN2  
12  
DIN  
13  
SCLK  
CS  
SCLK  
14  
15  
CS  
SYNC/ERROR  
SYNC/ERROR  
IOVDD  
24  
1
AIN3  
AIN4  
AD7175-2  
16  
17  
IOVDD  
DGND  
0.1µF  
VIN  
1
3
REGCAPD 18  
2
4
7
6
V
NC  
IN  
0.1µF  
1µF  
AVDD1  
4.7µF  
0.1µF  
ADR445BRZ  
AVDD1  
AVDD2  
7
8
5
0.1µF  
3
GND  
5
V
REF+  
REF–  
OUT  
AVDD2  
0.1µF  
4.7µF  
0.1µF  
0.1µF  
8
2
4
0.1µF  
REFOUT  
REGCAPA  
2.5V REFERENCE  
OUTPUT  
0.1µF  
1µF  
AVSS  
6
0.1µF  
Figure 44. Typical Connection Diagram  
Rev. B | Page 20 of 62  
AD7175-2  
Data Sheet  
The linear regulator for the digital IOVDD supply performs a  
similar function, regulating the input voltage applied at the  
IOVDD pin to 1.8 V for the internal digital filtering. The serial  
interface signals always operate from the IOVDD supply seen at  
the pin. This means that if 3.3 V is applied to the IOVDD pin,  
the interface logic inputs and outputs operate at this level.  
DRIVE EDGE  
SAMPLE EDGE  
Figure 45. SPI Mode 3 SCLK Edges  
The AD7175-2 can be used across a wide variety of applications,  
providing high resolution and accuracy. A sample of these  
scenarios is as follows:  
Accessing the ADC Register Map  
The communications register controls access to the full register  
map of the ADC. This register is an 8-bit write only register. On  
power-up or after a reset, the digital interface defaults to a state  
where it is expecting a write to the communications register;  
therefore, all communication begins by writing to the  
communications register.  
x
x
x
x
Fast scanning of analog input channels using the internal  
multiplexer  
Fast scanning of analog input channels using an external  
multiplexer with automatic control from the GPIOs.  
High resolution at lower speeds in either channel scanning  
or ADC per channel applications  
The data written to the communications register determines  
which register is being accessed and if the next operation is a  
read or write. The register address bits (RA[5:0]) determine the  
specific register to which the read or write operation applies.  
Single ADC per channel: the fast low latency output allows  
further application specific filtering in an external micro-  
controller, DSP, or FPGA  
When the read or write operation to the selected register is  
complete, the interface returns to the default state, where it  
expects a write operation to the communications register.  
POWER SUPPLIES  
The AD7175-2 has three independent power supply pins:  
AVDD1, AVDD2, and IOVDD.  
Figure 46 and Figure 47 illustrate writing to and reading from a  
register by first writing the 8-bit command to the communications  
register, followed by the data for that register.  
8 BITS, 16 BITS,  
AVDD1 powers the crosspoint multiplexer and integrated analog  
and reference input buffers. AVDD1 is referenced to AVSS, and  
AVDD1 − AVSS = 5 V only. This can be a single 5 V supply or a  
2.5 V split supply. The split supply operation allows true bipolar  
inputs. When using split supplies, consider the absolute maximum  
ratings (see the Absolute Maximum Ratings section).  
8-BIT COMMAND  
OR 24 BITS OF DATA  
CS  
AVDD2 powers the internal 1.8 V analog LDO regulator. This  
regulator powers the ADC core. AVDD2 is referenced to AVSS,  
and AVDD2 − AVSS can range from 5.5 V (maximum) to 2 V  
(minimum).  
CMD  
DATA  
DIN  
SCLK  
IOVDD powers the internal 1.8 V digital LDO regulator. This  
regulator powers the digital logic of the ADC. IOVDD sets the  
voltage levels for the SPI interface of the ADC. IOVDD is refer-  
enced to DGND, and IOVDD − DGND can vary from 5.5 V  
(maximum) to 2 V (minimum).  
Figure 46. Writing to a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, or 24 Bits;  
Data Length on DIN Is Dependent on the Register Selected)  
8 BITS, 16 BITS,  
24 BITS, OR  
32 BITS OUTPUT  
There is no specific requirement for a power supply sequence  
on the AD7175-2. When all power supplies are stable, a device  
reset is required; see the AD7175-2 Reset section for details on  
how to reset the device.  
8-BIT COMMAND  
CS  
CMD  
DIGITAL COMMUNICATION  
DIN  
The AD7175-2 has a 3- or 4-wire SPI interface that is compatible  
with QSPI™, MICROWIRE®, and DSPs. The interface operates  
DOUT/RDY  
DATA  
CS  
in SPI Mode 3 and can be operated with  
tied low. In SPI  
Mode 3, the SCLK idles high, the falling edge of SCLK is the  
drive edge, and the rising edge of SCLK is the sample edge. This  
means that data is clocked out on the falling/drive edge and data  
is clocked in on the rising/sample edge.  
SCLK  
Figure 47. Reading from a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, or 24 Bits;  
Data Length on DOUT Is Dependent on the Register Selected)  
Rev. B | Page 21 of 62  
AD7175-2  
Data Sheet  
Reading the ID register is the recommended method for verifying  
correct communication with the device. The ID register is a  
read only register and contains the value 0x0CDX for the  
AD7175-2. The communications register and the ID register  
details are described in Table 8 and Table 9.  
Figure 48 shows an overview of the suggested flow for changing  
the ADC configuration, divided into the following three blocks:  
x
x
x
Channel configuration (see Box A in Figure 48)  
Setup configuration (see Box B in Figure 48)  
ADC mode and interface mode configuration (see Box C  
in Figure 48)  
AD7175-2 RESET  
In situations where interface synchronization is lost, a write  
operation of at least 64 serial clock cycles with DIN high returns the  
ADC to the default state by resetting the entire device, including  
Channel Configuration  
The AD7175-2 has four independent channels and four independ-  
ent setups. The user can select any of the analog input pairs on  
any channel, as well as any of the four setups for any channel,  
giving the user full flexibility in the channel configuration. This  
also allows per channel configuration when using differential  
inputs and single-ended inputs because each channel can have a  
dedicated setup.  
CS  
the register contents. Alternatively, if  
is being used with the  
high sets the digital interface to  
CS  
digital interface, returning  
the default state and halts any serial interface operation.  
CONFIGURATION OVERVIEW  
After power-on or reset, the AD7175-2 default configuration is  
as follows:  
Channel Registers  
x
Channel configuration. CH0 is enabled, AIN0 is selected  
as the positive input, and AIN1 is selected as the negative  
input. Setup 0 is selected.  
The channel registers select which of the five analog input pins  
(AIN0 to AIN4) are used as either the positive analog input (AIN+)  
or the negative analog input (AIN−) for that channel. This register  
also contains a channel enable/disable bit and the setup selection  
bits, which pick which of the four available setups to use for this  
channel.  
x
Setup configuration. The internal reference and the analog  
input buffers are enabled. The reference input buffers are  
disabled.  
x
x
x
Filter configuration. The sinc5 + sinc 1 filter is selected and  
the maximum output data rate of 250 kSPS is selected.  
ADC mode. Continuous conversion mode and the internal  
oscillator are enabled.  
When the AD7175-2 is operating with more than one channel  
enabled, the channel sequencer cycles through the enabled  
channels in sequential order, from Channel 0 to Channel 3. If a  
channel is disabled, it is skipped by the sequencer. Details of the  
channel register for Channel 0 are shown in Table 10.  
Interface mode. CRC and data + status output are disabled.  
Note that only a few of the register setting options are shown;  
this list is just an example. For full register information, see the  
Register Details section.  
A
B
C
CHANNEL CONFIGURATION  
SELECT POSITIVE AND NEGATIVE INPUT FOR EACH ADC CHANNEL  
SELECT ONE OF 4 SETUPS FOR ADC CHANNEL  
SETUP CONFIGURATION  
4 POSSIBLE ADC SETUPS  
SELECT FILTER ORDER, OUTPUT DATA RATE, AND MORE  
ADC MODE AND INTERFACE MODE CONFIGURATION  
SELECT ADC OPERATING MODE, CLOCK SOURCE,  
ENABLE CRC, DATA + STATUS, AND MORE  
Figure 48. Suggested ADC Configuration Flow  
Table 8. Communications Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
Reset  
RW  
0x00  
COMMS [7:0]  
RA  
0x00  
W
WEN  
R/W  
Table 9. ID Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 3  
Reset  
RW  
0x07  
ID  
[15:8]  
[7:0]  
ID[15:8]  
ID[7:0]  
0x0CDX  
R
Rev. B | Page 22 of 62  
Data Sheet  
AD7175-2  
Table 10. Channel 0 Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Reserved  
AINNEG0  
Bit 1  
Bit 0  
Reset  
RW  
0x10  
CH0  
[15:8] CH_EN0  
[7:0]  
Reserved  
AINPOS0[2:0]  
SETUP_SEL[2:0]  
AINPOS0[4:3]  
0x8001  
RW  
Rev. B | Page 23 of 62  
AD7175-2  
Data Sheet  
ADC Setups  
Setup Configuration Registers  
The AD7175-2 has four independent setups. Each setup consists  
of the following four registers:  
The setup configuration registers allow the user to select the output  
coding of the ADC by selecting between bipolar and unipolar. In  
bipolar mode, the ADC accepts negative differential input voltages,  
and the output coding is offset binary. In unipolar mode, the ADC  
accepts only positive differential voltages, and the coding is straight  
binary. In either case, the input voltage must be within the AVDD1/  
AVSS supply voltages. The user can select the reference source  
using this register. Three options are available: an internal 2.5 V  
reference, an external reference connected between the REF+  
and REF− pins, or AVDD1 − AVSS. The analog input and  
reference input buffers can also be enabled or disabled using  
this register.  
x
x
x
x
Setup configuration register  
Filter configuration register  
Offset register  
Gain register  
For example, Setup 0 consists of Setup Configuration Register 0,  
Filter Configuration Register 0, Gain Register 0, and Offset  
Register 0. Figure 49 shows the grouping of these registers The  
setup is selectable from the channel registers (see the Channel  
Configuration section), which allows each channel to be assigned  
to one of four separate setups. Table 11 through Table 14 show the  
four registers that are associated with Setup 0. This structure is  
repeated for Setup 1 to Setup 3.  
Filter Configuration Registers  
The filter configuration register selects which digital filter is  
used at the output of the ADC modulator. The order of the filter  
and the output data rate is selected by setting the bits in this  
register. For more information, see the Digital Filters section.  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
SETUPCON0  
SETUPCON1  
SETUPCON2  
SETUPCON3  
FILTCON0  
FILTCON1  
FILTCON2  
FILTCON3  
GAIN0  
GAIN1  
GAIN2  
GAIN3  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x28  
0x29  
0x2A  
0x2B  
0x38  
0x39  
0x3A  
0x3B  
OFFSET1  
0x31  
OFFSET2  
0x32  
OFFSET3  
0x33  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
DATA OUTPUT CODING  
REFERENCE SOURCE  
INPUT BUFFERS  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 49. ADC Setup Register Grouping  
Table 11. Setup Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x20 SETUPCON0 [15:8]  
[7:0]  
Reserved  
BI_UNIPOLAR0 REFBUF0+ REFBUF0− AINBUF0+ AINBUF0− 0x1320  
RW  
BURNOUT_EN0 Reserved  
REF_SEL0  
Reserved  
Table 12. Filter Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Reserved  
ORDER0  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x28 FILTCON0 [15:8] SINC3_MAP0  
[7:0] Reserved  
ENHFILTEN0  
ENHFILT0  
0x0500  
RW  
ODR0  
Table 13. Gain Configuration 0 Register  
Reg. Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x38 GAIN0  
[23:0]  
GAIN0[23:0]  
0x5XXXX0 RW  
Table 14. Offset Configuration 0 Register  
Reg. Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x30 OFFSET0  
[23:0]  
OFFSET0[23:0]  
0x800000 RW  
Rev. B | Page 24 of 62  
Data Sheet  
AD7175-2  
ADC Mode and Interface Mode Configuration  
Gain Registers  
The ADC mode register and the interface mode register configure  
the core peripherals for use by the AD7175-2 and the mode for  
the digital interface.  
The gain register is a 24-bit register that holds the gain  
calibration coefficient for the ADC. The gain registers are  
read/write registers. These registers are configured at power-on  
with factory calibrated coefficients. Therefore, every device has  
different default coefficients. The default value is automatically  
overwritten if a system full-scale calibration is initiated by the  
user or if the gain register is written to by the user. For more  
information on calibration, see the Operating Modes section.  
ADC Mode Register  
The ADC mode register is used primarily to set the conversion  
mode of the ADC to either continuous or single conversion.  
The user can also select the standby and power-down modes,  
as well as any of the calibration modes. In addition, this register  
contains the clock source select bits and the internal reference  
enable bits. The reference select bits are contained in the setup  
configuration registers (see the ADC Setups section for more  
information).  
Offset Registers  
The offset register holds the offset calibration coefficient for the  
ADC. The power-on reset value of the offset register is 0x800000.  
The offset register is a 24-bit read/write register. The power-on  
reset value is automatically overwritten if an internal or system  
zero-scale calibration is initiated by the user or if the offset register  
is written to by the user.  
Interface Mode Register  
The interface mode register configures the digital interface  
operation. This register allows the user to control data-word  
length, CRC enable, data plus status read, and continuous read  
mode. The details of both registers are shown in Table 15 and  
Table 16. For more information, see the Digital Interface section.  
Table 15. ADC Mode Register  
Reg. Name  
0x01 ADCMODE [15:8] REF_EN  
[7:0] Reserved  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Reserved  
Bit 2  
CLOCKSEL  
Bit 1  
Delay  
Reserved  
Bit 0  
Reset  
RW  
HIDE_DELAY SING_CYC  
Mode  
0x8000 RW  
Table 16. Interface Mode Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Reserved  
CONTREAD DATA_STAT  
Bit 5  
Bit 4  
ALT_SYNC IOSTRENGTH  
Reserved CRC_EN  
Bit 3  
Bit 2  
Bit 1  
Reserved  
Reserved  
Bit 0  
Reset  
RW  
0x02 IFMODE [15:8]  
[7:0]  
DOUT_RESET  
WL16  
0x0000 RW  
REG_CHECK  
Rev. B | Page 25 of 62  
AD7175-2  
Data Sheet  
Understanding Configuration Flexibility  
Programming the gain and offset registers is optional for any use  
case, as indicated by the dashed lines between the register blocks.  
The most straightforward implementation of the AD7175-2 is  
to use two differential inputs with adjacent analog inputs and  
run both of them with the same setup, gain correction, and offset  
correction register. In this case, the user selects the following  
differential inputs: AIN0/AIN1 and AIN2/AIN3. In Figure 50,  
the registers shown in black font must be programmed for such  
a configuration. The registers that are shown in gray font are  
redundant in this configuration.  
An alternative way to implement these two fully differential  
inputs is by taking advantage of the four available setups.  
Motivation for doing this includes having a different speed/noise  
requirement on each of the differential inputs, or there may be a  
specific offset or gain correction for each channel. Figure 51  
shows how each of the differential inputs can use a separate  
setup, allowing full flexibility in the configuration of each channel.  
CHANNEL  
REGISTERS  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
CH0  
SETUPCON0  
FILTCON0  
GAIN0  
0x38  
OFFSET0  
0x30  
0x10  
0x20  
0x28  
0x29  
0x2A  
0x2B  
CH1  
CH2  
CH3  
SETUPCON1  
SETUPCON2  
SETUPCON3  
FILTCON1  
FILTCON2  
FILTCON3  
GAIN1  
GAIN2  
GAIN3  
OFFSET1  
0x31  
0x21  
0x22  
0x23  
0x39  
0x3A  
0x3B  
0x11  
0x12  
0x13  
OFFSET2  
0x32  
OFFSET3  
0x33  
SELECT ANALOG INPUT PAIRS  
ENABLE THE CHANNEL  
SELECT SETUP 0  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
AND OUTPUT DATA RATE  
GAIN CORRECTION  
OPTIONALLY  
PROGRAMMED  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
DATA OUTPUT CODING  
REFERENCE SOURCE  
INPUT BUFFERS  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 50. Two Fully Differential Inputs, Both Using a Single Setup (SETUPCON0; FILTCON0; GAIN0; OFFSET0)  
CHANNEL  
REGISTERS  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
CH0  
SETUPCON0  
FILTCON0  
0x28  
GAIN0  
0x38  
OFFSET0  
0x30  
0x10  
0x20  
CH1  
CH2  
CH3  
SETUPCON1  
SETUPCON2  
SETUPCON3  
FILTCON1  
FILTCON2  
FILTCON3  
GAIN1  
GAIN2  
GAIN3  
OFFSET1  
0x31  
0x21  
0x22  
0x23  
0x29  
0x2A  
0x2B  
0x39  
0x3A  
0x3B  
0x11  
0x12  
0x13  
OFFSET2  
0x32  
OFFSET3  
0x33  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
AND OUTPUT DATA RATE  
GAIN CORRECTION  
OPTIONALLY  
PROGRAMMED  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
DATA OUTPUT CODING  
REFERENCE SOURCE  
INPUT BUFFERS  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 51. Two Fully Differential Inputs with a Setup per Channel  
Rev. B | Page 26 of 62  
Data Sheet  
AD7175-2  
Figure 52 shows an example of how the channel registers span  
between the analog input pins and the setup configurations  
downstream. In this example, one differential input and two single-  
ended inputs are required. The single-ended inputs are the AIN2/  
AIN4 and AIN3/AIN4 combinations. The differential input pairs  
is AIN0/AIN1and uses Setup 0. The two single-ended input pairs  
are set up as diagnostics; therefore, use a separate setup from the  
differential input but share a setup between them, Setup 1.  
Given that two setups are selected for use, the SETUPCON0  
and SETUPCON1 registers are programmed as required, and the  
FILTCON0 and FILTCON1 registers are also programmed as  
desired. Optional gain and offset correction can be employed  
on a per setup basis by programming the GAIN0 and GAIN1  
registers and the OFFSET0 and OFFSET1 registers.  
In the example shown in Figure 52, the CH0 to CH2 registers  
are used. Setting the MSB in each of these registers, the CH_EN0  
to CH_EN2 bits enable the three combinations via the crosspoint  
mux. When the AD7175-2 converts, the sequencer transitions  
in ascending sequential order from CH0 to CH1 to CH2 before  
looping back to CH0 to repeat the sequence.  
CHANNEL  
REGISTERS  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
CH0  
SETUPCON0  
FILTCON0  
GAIN0  
0x38  
OFFSET0  
0x30  
0x10  
0x20  
0x28  
0x29  
0x2A  
0x2B  
CH1  
CH2  
CH3  
SETUPCON1  
SETUPCON2  
SETUPCON3  
FILTCON1  
FILTCON2  
FILTCON3  
GAIN1  
GAIN2  
GAIN3  
OFFSET1  
0x31  
0x21  
0x22  
0x23  
0x39  
0x3A  
0x3B  
0x11  
0x12  
0x13  
OFFSET2  
0x32  
OFFSET3  
0x33  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
AND OUTPUT DATA RATE  
GAIN CORRECTION  
OPTIONALLY  
PROGRAMMED  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
DATA OUTPUT CODING  
REFERENCE SOURCE  
INPUT BUFFERS  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 52. Mixed Differential and Single-Ended Configuration Using Multiple Shared Setups  
Rev. B | Page 27 of 62  
AD7175-2  
Data Sheet  
CIRCUIT DESCRIPTION  
BUFFERED ANALOG INPUT  
AVDD1  
AIN0  
AIN1  
The AD7175-2 has true rail-to-rail, integrated, precision unity  
gain buffers on both ADC analog inputs. The buffers provide  
the benefit of giving the user high input impedance with only  
30 nA typical input current, allowing high impedance sources  
to be connected directly to the analog inputs. The buffers fully  
drive the internal ADC switch capacitor sampling network,  
simplifying the analog front-end circuit requirements while  
consuming a very efficient 2.9 mA typical per buffer. Each analog  
input buffer amplifier is fully chopped, meaning that it minimizes  
the offset error drift and 1/f noise of the buffer. The 1/f noise  
profile of the ADC and buffer combined is shown in Figure 53.  
0
AVSS  
AVDD1  
Ø1  
+IN  
CS1  
CS2  
AVSS  
Ø2  
Ø2  
AVDD1  
AIN2  
AVSS  
–IN  
AVDD1  
Ø1  
AIN3  
AIN4  
AVSS  
AVDD1  
–50  
–100  
–150  
–200  
–250  
AVSS  
Figure 54. Simplified Analog Input Circuit  
The CS1 and CS2 capacitors have a magnitude in the order of a  
number of picofarads each. This capacitance is the combination  
of both the sampling capacitance and the parasitic capacitance.  
Fully Differential Inputs  
Because the AIN0 to AIN4 analog inputs are connected to a  
crosspoint multiplexer, any combination of signals can create an  
analog input pair. This allows the user to select two fully  
differential inputs or four single-ended inputs.  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 53. Shorted Input FFT (Analog Input Buffers Enabled)  
The analog input buffers do not suffer from linearity  
degradation when operating at the rails, unlike many discrete  
amplifiers. When operating at or close to the AVDD1 and AVSS  
supply rails, there is an increase in input current. This increase  
is most notable at higher temperatures. Figure 42 and Figure 43  
show the input current for various conditions. With the analog  
input buffers disabled, the average input current to the AD7175-2  
changes linearly with the differential input voltage at a rate of  
48 µA/V.  
If two fully differential input paths are connected to the AD7175-2,  
using AIN0/AIN1 as one differential input pair and AIN2/AIN3  
as the second differential input pair is recommended. This is  
due to the relative locations of these pins to each other. Decouple all  
analog inputs to AVSS.  
Single-Ended Inputs  
The user can also choose to measure four different single-ended  
analog inputs. In this case, each of the analog inputs is converted  
as the difference between the single-ended input to be  
CROSSPOINT MULTIPLEXER  
measured and a set analog input common pin. Because there is  
a crosspoint multiplexer, the user can set any of the analog inputs  
as the common pin. An example of such a scenario is to connect  
the AIN4 pin to AVSS or to the REFOUT voltage (that is, AVSS  
+ 2.5 V) and select this input when configuring the crosspoint  
multiplexer. When using the AD7175-2 with single-ended  
inputs, the INL specification is degraded.  
There are five analog input pins: AIN0, AIN1, AIN2, AIN3, and  
AIN4. Each of these pins connects to the internal crosspoint  
multiplexer. The crosspoint multiplexer enables any of these inputs  
to be configured as an input pair, either single-ended or fully  
differential. The AD7175-2 can have up to four active channels.  
When more than one channel is enabled, the channels are  
automatically sequenced in order from the lowest enabled channel  
number to the highest enabled channel number. The output of  
the multiplexer is connected to the input of the integrated true  
rail-to-rail buffers. These can be bypassed and the multiplexer  
output can be directly connected to the switched-capacitor input  
of the ADC. The simplified analog input circuit is shown in  
Figure 54.  
Rev. B | Page 28 of 62  
Data Sheet  
AD7175-2  
The output is then connected to a 4.7 µF capacitor, which acts  
as a reservoir for any dynamic charge required by the ADC, and  
followed by a 0.1 µF decoupling capacitor at the REF+ input.  
This capacitor is placed as close as possible to the REF+ and  
REF− pins. The REF− pin is connected directly to the AVSS  
potential. On power-up of the AD7175-2, the internal reference  
is enabled by default and is output on the REFOUT pin. When  
an external reference is used instead of the internal reference to  
supply the AD7175-2, attention must be paid to the output of  
the REFOUT pin. If the internal reference is not being used  
elsewhere in the application, ensure that the REFOUT pin is not  
hardwired to AVSS because this draws a large current on power-  
up. On power-up, if the internal reference is not being used,  
write to the ADC mode register, disabling the internal  
AD7175-2 REFERENCE  
The AD7175-2 offers the user the option of either supplying an  
external reference to the REF+ and REF− pins of the device or  
allowing the use of the internal 2.5 V, low noise, low drift reference.  
Select the reference source to be used by the analog input by setting  
the REF_SELx bits (Bits[5:4]) in the setup configuration registers  
appropriately. The structure of the Setup Configuration 0 register  
is shown in Table 17. The AD7175-2 defaults on power-up to  
use the internal 2.5 V reference.  
External Reference  
The AD7175-2 has a fully differential reference input applied  
through the REF+ and REF− pins. Standard low noise, low drift  
voltage references, such as the ADR445, ADR444, and ADR441,  
are recommended for use. Apply the external reference to the  
AD7175-2 reference pins as shown in Figure 55. Decouple the  
output of any external reference to AVSS. As shown in Figure 55,  
the ADR445 output is decoupled with a 0.1 µF capacitor at the  
output for stability purposes.  
reference. This is controlled by the REF_EN bit (Bit 15) in the  
ADC mode register, which is shown in Table 18.  
AD7175-2  
5.5V TO 18V  
ADR4452  
3
2
REF+  
REF–  
0.1µF  
1
5V VREF  
1
0.1µF  
4.7µF  
0.1µF  
1
1
1
1
2
ALL DECOUPLING IS TO AVSS.  
ANY OF THE ADR44x FAMILY OF REFERENCES CAN BE USED.  
THE ADR444 AND ADR441 BOTH ENABLE REUSE OF THE 5V ANALOG SUPPLY  
NEEDED FOR AVDD1 TO POWER THE REFERENCE VIN.  
Figure 55. External Reference ADR445 Connected to AD7175-2 Reference Pins  
Table 17. Setup Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
BI_UNIPOLAR0 REFBUF0+ REFBUF0− AINBUF0+ AINBUF0− 0x1320 RW  
REF_SEL0 Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x20 SETUPCON0 [15:8]  
[7:0]  
Reserved  
BURNOUT_EN0 Reserved  
Table 18. ADC Mode Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
CLOCKSEL  
Bit 1  
Delay  
Reserved  
Bit 0  
Reset  
RW  
0x01 ADCMODE [15:8]  
[7:0]  
REF_EN  
Reserved  
HIDE_DELAY  
SING_CYC  
Mode  
Reserved  
0x8000  
RW  
Rev. B | Page 29 of 62  
AD7175-2  
Data Sheet  
Internal Reference  
the IOVDD logic level. Use of this option can affect the dc  
performance of the AD7175-2 due to the disturbance introduced  
by the output driver. The extent to which the performance is  
affected depends on the IOVDD voltage supply. Higher IOVDD  
voltages create a wider logic output swing from the driver and  
affect performance to a greater extent. This effect is further  
exaggerated if the IOSTRENGTH bit is set at higher IOVDD  
levels (see Table 28 for more information).  
The AD7175-2 includes a low noise, low drift voltage reference.  
The internal reference has a 2.5 V output. The internal reference is  
output on the REFOUT pin after the REF_EN bit in the ADC  
mode register is set and is decoupled to AVSS with a 0.1 µF  
capacitor. The AD7175-2 internal reference is enabled by default on  
power-up and is selected as the reference source for the ADC.  
When using the internal reference, the INL performance is  
degraded as shown in Figure 23.  
External Crystal  
The REFOUT signal is buffered before being output to the pin.  
The signal can be used externally in the circuit as a common-mode  
source for external amplifier configurations.  
If higher precision, lower jitter clock sources are required, the  
AD7175-2 can use an external crystal to generate the master  
clock. The crystal is connected to the XTAL1 and  
XTAL2/CLKIO pins. A recommended crystal for use is the FA-  
20H—a 16 MHz, 10 ppm, 9 pF crystal from Epson-Toyocom—  
which is available in a surface-mount package. As shown in  
Figure 56, insert two capacitors from the traces connecting the  
crystal to the XTAL1 and XTAL2/CLKIO pins. These capacitors  
allow for circuit tuning. Connect these capacitors to the DGND  
pin. The value for these capacitors depends on the length and  
capacitance of the trace connections between the crystal and the  
XTAL1 and XTAL2/CLKIO pins. Therefore, the values of these  
capacitors differ depending on the printed circuit board (PCB)  
layout and the crystal employed.  
BUFFERED REFERENCE INPUT  
The AD7175-2 has true rail-to-rail, integrated, precision unity  
gain buffers on both ADC reference inputs. The buffers provide  
the benefit of giving the user high input impedance and allow  
high impedance external sources to be directly connected to the  
reference inputs. The integrated reference buffers can fully drive  
the internal reference switch capacitor sampling network,  
simplifying the reference circuit requirements while consuming  
a very efficient 2.9 mA typical per buffer. Each reference input  
buffer amplifier is fully chopped, meaning that it minimizes the  
offset error drift and 1/f noise of the buffer. When using an  
external reference, such as the ADR445, ADR444, and ADR441,  
these buffers are not required because these references, with  
proper decoupling, can drive the reference inputs directly.  
AD7175-2  
Cx1  
*
9
XTAL1  
XTAL2/CLKIO 10  
CLOCK SOURCE  
Cx2  
The AD7175-2 uses a nominal master clock of 16 MHz. The  
AD7175-2 can source the sampling clock from one of three  
sources:  
*
*DECOUPLE TO DGND.  
Figure 56. External Crystal Connections  
x
x
x
Internal oscillator  
External crystal  
The external crystal circuitry can be sensitive to the SCLK  
edges, depending on SCLK frequency, IOVDD voltage, crystal  
circuitry layout, and the crystal used. During crystal startup, any  
disturbances caused by the SCLK edges may cause double edges  
on the crystal input, resulting in invalid conversions until the  
crystal voltage has reached a high enough level such that any  
interference from the SCLK edges is insufficient to cause double  
clocking. This double clocking can be avoided by ensuring that  
the crystal circuitry has reached a sufficient voltage level after  
startup before applying any SCLK.  
External clock source  
All output data rates listed in the data sheet relate to a master  
clock rate of 16 MHz. Using a lower clock frequency from, for  
instance, an external source scales any listed data rate  
proportionally. To achieve the specified data rates, particularly  
rates for rejection of 50 Hz and 60 Hz, use a 16 MHz clock. The  
source of the master clock is selected by setting the CLOCKSEL  
bits (Bits[3:2]) in the ADC mode register as shown in Table 18.  
The default operation on power-up and reset of the AD7175-2  
is to operate with the internal oscillator. It is possible to fine  
tune the output data rate and filter notch at low output data  
rates using the SINC3_MAPx bit. See the Sinc3 Filter section  
for more information.  
Due to the nature of the crystal circuitry, it is therefore  
recommended that empirical testing of the circuit b performed  
under the required conditions, with the final PCB layout and  
crystal, to ensure correct operation.  
External Clock  
Internal Oscillator  
The AD7175-2 can also use an externally supplied clock. In  
systems where this is desirable, the external clock is routed to  
the XTAL2/CLKIO pin. In this configuration, the  
The internal oscillator runs at 16 MHz and can be used as the  
ADC master clock. It is the default clock source for the AD7175-2  
and is specified with an accuracy of 2.5%.  
XTAL2/CLKIO pin accepts the externally sourced clock and  
routes it to the modulator. The logic level of this clock input is  
defined by the voltage applied to the IOVDD pin.  
There is an option to allow the internal clock oscillator to be  
output on the XTAL2/CLKIO pin. The clock output is driven to  
Rev. B | Page 30 of 62  
Data Sheet  
AD7175-2  
DIGITAL FILTERS  
The AD7175-2 has three flexible filter options to allow  
SINC3 FILTER  
optimization of noise, settling time, and rejection:  
The sinc3 filter achieves the best single-channel noise performance  
at lower rates and is, therefore, most suitable for single-channel  
applications. The sinc3 filter always has a settling time equal to  
x
x
x
Sinc5 + sinc1 filter  
Sinc3 filter  
Enhanced 50 Hz and 60 Hz rejection filters  
tSETTLE = 3/Output Data Rate  
Figure 59 shows the frequency domain filter response for the  
sinc3 filter. The sinc3 filter has good roll-off over frequency and  
has wide notches for good notch frequency rejection.  
50Hz AND 60Hz  
POSTFILTER  
SINC1  
SINC5  
SINC3  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
Figure 57. Digital Filter Block Diagram  
The filter and output data rate are configured by setting the  
appropriate bits in the filter configuration register for the  
selected setup. Each channel can use a different setup and  
therefore, a different filter and output data rate. See the Register  
Details section for more information.  
SINC5 + SINC1 FILTER  
The sinc5 + sinc1 filter is targeted at multiplexed applications and  
achieves single cycle settling at output data rates of 10 kSPS and  
lower. The sinc5 block output is fixed at the maximum rate of  
250 kSPS, and the sinc1 block output data rate can be varied to  
control the final ADC output data rate. Figure 58 shows the  
frequency domain response of the sinc5 + sinc1 filter at a 50 SPS  
output data rate. The sinc5 + sinc1 filter has a slow roll-off over  
frequency and narrow notches.  
–120  
0
50  
100  
FREQUENCY (Hz)  
150  
Figure 59. Sinc3 Filter Response  
The output data rates with the accompanying settling time and  
rms noise for the sinc3 filter are shown in Table 21 and Table 22. It  
is possible to finely tune the output data rate for the sinc3 filter by  
setting the SINC3_MAPx bit in the filter configuration registers.  
If this bit is set, the mapping of the filter register changes to directly  
program the decimation rate of the sinc3 filter. All other options  
are eliminated. The data rate when on a single channel can be  
calculated using the following equation:  
0
–20  
–40  
f MOD  
Output Data Rate   
–60  
32uFILTCONx[14:0]  
–80  
where:  
fMOD is the modulator rate (MCLK/2) and is 8 MHz for a  
16 MHz MCLK.  
–100  
–120  
FILTCONx[14:0] are the contents on the filter configuration  
registers excluding the MSB.  
0
50  
100  
FREQUENCY (Hz)  
150  
For example, an output data rate of 50 SPS can be achieved with  
SINC3_MAPx enabled by setting the FILTCONx[14:0] bits to a  
value of 5000.  
Figure 58. Sinc5 + Sinc1 Filter Response at 50 SPS ODR  
The output data rates with the accompanying settling time and  
rms noise for the sinc5 + sinc1 filter are shown in Table 19 and  
Table 20.  
Rev. B | Page 31 of 62  
AD7175-2  
Data Sheet  
Figure 61 shows the same step on the analog input but with  
SINGLE CYCLE SETTLING  
single cycle settling enabled. The analog input requires at least a  
single cycle for the output to be fully settled. The output data  
The AD7175-2 can be configured by setting the SING_CYC bit  
in the ADC mode register so that only fully settled data is output,  
thus effectively putting the ADC into a single cycle settling mode.  
This mode achieves single cycle settling by reducing the output  
data rate to be equal to the settling time of the ADC for the selected  
output data rate. This bit has no effect with the sinc5 + sinc1  
filter at output data rates of 10 kSPS and lower.  
RDY  
rate, as indicated by the  
signal, is now reduced to equal the  
settling time of the filter at the selected output data rate.  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
Figure 60 shows a step on the analog input with this mode  
disabled and the sinc3 filter selected. The analog input requires  
at least three cycles after the step change for the output to reach  
the final settled value.  
tSETTLE  
Figure 61. Step Input with Single Cycle Settling  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
1/ODR  
Figure 60. Step Input Without Single Cycle Settling  
Table 19. Output Data Rate, Settling Time, and Noise Using the Sinc5 + Sinc1 Filter with Input Buffers Disabled  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Default Output  
Data Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
(µV p-p)2  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
50,000  
41,667  
31,250  
27,778  
20,833  
17,857  
12,500  
10,000  
5000  
20 µs  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
11,905  
5435  
8.7  
20.1  
20.4  
20.8  
20.9  
21.3  
21.4  
21.7  
21.9  
22.5  
23.0  
23.6  
24  
65  
17.2  
17.3  
17.8  
17.9  
18.3  
18.4  
18.8  
19.1  
19.7  
20.2  
20.9  
21.6  
21.7  
22.3  
22.9  
23.1  
23.3  
24  
24 µs  
7.2  
60  
32 µs  
5.5  
43  
36 µs  
5
41  
48 µs  
4
32  
56 µs  
3.6  
29  
80 µs  
2.9  
22  
100 µs  
200 µs  
400 µs  
1.0 ms  
2.0 ms  
2.516 ms  
5.0 ms  
10 ms  
2.5  
18.3  
12  
1.7  
2500  
2604  
1.2  
8.2  
5.2  
3.2  
3
1000  
1016  
0.77  
0.57  
0.5  
500.0  
397.5  
200.0  
100  
504  
397.5  
200  
400.00  
200.64  
100.16  
59.98  
24  
0.36  
0.25  
0.19  
0.18  
0.11  
0.1  
24  
2
100  
24  
1.3  
1.1  
0.95  
0.6  
0.45  
0.4  
0.34  
59.92  
49.96  
20  
59.92  
49.96  
20.00  
16.66  
10.00  
5.00  
16.67 ms  
20.016 ms  
50.0 ms  
60.02 ms  
100 ms  
200 ms  
24  
50.00  
24  
20.01  
24  
16.66  
10  
16.66  
24  
24  
10.00  
0.08  
0.07  
24  
24  
5
5.00  
24  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate =1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 32 of 62  
Data Sheet  
AD7175-2  
Table 20. Output Data Rate, Settling Time, and Noise Using the Sinc5 + Sinc1 Filter with Input Buffers Enabled  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or  
with Multiple  
Default Output Data  
Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
(µV p-p)2  
Channels Enabled1  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
50,000  
41,667  
31,250  
27,778  
20,833  
17,857  
12,500  
10,000  
5000  
20 µs  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
11,905  
5435  
9.8  
20  
85  
16.8  
17.2  
17.5  
17.6  
18.0  
18.2  
18.6  
18.7  
19.3  
19.9  
20.7  
21.3  
21.4  
22.1  
22.5  
23  
24 µs  
8.4  
20.2  
20.6  
20.7  
21  
66  
32 µs  
6.4  
55  
36 µs  
5.9  
49  
48 µs  
4.8  
39  
56 µs  
4.3  
21.1  
21.5  
21.7  
22.2  
22.7  
23.4  
23.8  
24  
33  
80 µs  
3.4  
26  
100 µs  
200 µs  
400 µs  
1.0 ms  
2.0 ms  
2.516 ms  
5.0 ms  
10 ms  
16.67 ms  
3
23  
2.1  
16  
2500  
2604  
1.5  
10  
1000  
1016  
0.92  
0.68  
0.6  
5.7  
3.9  
3.7  
2.2  
1.7  
1.2  
1
500.0  
397.5  
200.0  
100  
504  
397.5  
200  
400.00  
200.64  
100.16  
59.98  
0.43  
0.32  
0.23  
0.2  
24  
100  
24  
59.92  
49.96  
20  
59.92  
49.96  
20.00  
16.66  
10.00  
5.00  
24  
20.016 ms 50.00  
24  
23.3  
23.7  
23.9  
24  
50.0 ms  
60.02 ms  
100 ms  
200 ms  
20.01  
16.66  
10.00  
5.00  
0.14  
0.13  
0.1  
24  
0.75  
0.66  
0.47  
0.32  
16.66  
10  
24  
24  
5
0.07  
24  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 33 of 62  
AD7175-2  
Data Sheet  
Table 21. Output Data Rate, Settling Time, and Noise Using the Sinc3 Filter with Input Buffers Disabled  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Default Output  
Data Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
(µV p-p)2  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
83,333  
41,667  
20,833  
16,667  
10,417  
8333  
5208  
3333  
1667  
833  
12 µs  
24 µs  
48 µs  
60 µs  
96 µs  
120 µs  
192 µs  
300 µs  
600 µs  
1.2 ms  
3 ms  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
210  
28  
15.5  
18.4  
20.9  
21.2  
21.6  
21.7  
22.1  
22.4  
22.9  
23.4  
24  
1600  
200  
40  
12.6  
15.6  
17.9  
18.2  
18.6  
18.7  
19.2  
19.4  
20  
5.2  
4.2  
34  
3.2  
26  
2.9  
23  
2.2  
17  
1.8  
14  
1.3  
9.5  
6
2500  
0.91  
0.56  
0.44  
0.4  
20.7  
21.3  
21.9  
22.1  
22.8  
23.3  
23.6  
23.8  
24  
333.3  
166.7  
133.3  
66.7  
1000  
3.9  
2.5  
2.3  
1.4  
1
6 ms  
500  
24  
400  
7.5 ms  
15 ms  
30 ms  
400  
24  
200  
200  
0.25  
0.2  
24  
100  
33.33  
19.99  
16.67  
6.67  
100  
24  
60  
50.02 ms 59.98  
0.13  
0.13  
0.08  
0.07  
0.06  
0.05  
24  
0.8  
0.7  
0.42  
0.37  
0.28  
0.21  
50  
60 ms  
50  
24  
20  
150 ms  
180 ms  
300 ms  
600 ms  
20  
24  
16.67  
10  
5.56  
16.67  
10  
24  
24  
3.33  
24  
24  
5
1.67  
5
24  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate =1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 34 of 62  
Data Sheet  
AD7175-2  
Table 22. Output Data Rate, Settling Time, and Noise Using the Sinc3 Filter with Input Buffers Enabled  
Output Data Rate  
(SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Default Output  
Data Rate (SPS);  
SING_CYC = 0 and  
Single Channel  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
(µV p-p)2  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
83,333  
41,667  
20,833  
16,667  
10,417  
8333  
5208  
3333  
1667  
833  
12 µs  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
210  
28  
15.5  
18.4  
20.7  
21  
1600  
210  
48  
12.6  
15.5  
17.7  
17.9  
18.3  
18.6  
19.1  
19.3  
19.8  
20.4  
21.1  
21.7  
21.8  
22.4  
23  
24 µs  
48 µs  
5.8  
60 µs  
4.9  
41  
96 µs  
3.8  
21.3  
21.5  
21.9  
22.2  
22.7  
23.1  
23.7  
24  
30  
120 µs  
192 µs  
300 µs  
600 µs  
1.2 ms  
3 ms  
3.4  
26  
2.6  
18  
2.1  
16  
1.5  
11  
1.1  
7
333.3  
166.7  
133.3  
66.7  
0.71  
0.52  
0.41  
0.32  
0.2  
4.5  
3
6 ms  
400  
7.5 ms  
15 ms  
30 ms  
50.02ms  
60 ms  
150 ms  
180 ms  
300 ms  
600 ms  
400  
24  
2.7  
1.8  
1.2  
1.1  
0.83  
0.61  
0.6  
0.55  
0.35  
200  
200  
24  
100  
33.33  
19.99  
16.67  
6.67  
100  
24  
60  
59.98  
50  
0.17  
0.15  
0.13  
0.12  
0.1  
24  
23.1  
23.5  
24  
50  
24  
20  
20  
24  
16.67  
10  
5.56  
16.67  
10  
24  
24  
3.33  
24  
24  
5
1.67  
5
0.08  
24  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate =1 ÷ settling time.  
2 1000 samples.  
Rev. B | Page 35 of 62  
AD7175-2  
Data Sheet  
sinc1 filter must be selected when using the enhanced filters to  
achieve the specified settling time and noise performance. Table 23  
shows the output data rates with the accompanying settling  
time, rejection, and rms noise. Figure 62 to Figure 69 show the  
frequency domain plots of the responses from the enhanced filters.  
ENHANCED 50 HZ AND 60 HZ REJECTION FILTERS  
The enhanced filters are designed to provide rejection of 50 Hz  
and 60 Hz simultaneously and to allow the user to trade off  
settling time and rejection. These filters can operate up to  
27.27 SPS or can reject up to 90 dB of 50 Hz 1 Hz and 60 Hz  
1 Hz interference. These filters are realized by postfiltering  
the output of the sinc5 + sinc1 filter. For this reason, the sinc5 +  
Table 23. Enhanced Filters Output Data Rate, Noise, Settling Time, and Rejection Using the Enhanced Filters  
Output Data Rate  
(SPS)  
Settling  
Simultaneous Rejection of  
Noise  
Peak-to-Peak  
Time (ms) 50 Hz 1 Hz and 60 Hz 1 Hz(dB)1 (µV rms) Resolution (Bits) Comments  
Input Buffers Disabled  
27.27  
36.67  
40.0  
50.0  
60.0  
47  
62  
85  
90  
0.22  
0.2  
22.7  
22.9  
22.9  
23  
See Figure 62 and Figure 65  
See Figure 63 and Figure 66  
See Figure 64 and Figure 67  
See Figure 68 and Figure 69  
25  
20  
0.2  
16.667  
0.17  
Input Buffers Enabled  
27.27  
25  
36.67  
40.0  
50.0  
60.0  
47  
62  
85  
90  
0.22  
0.22  
0.21  
0.21  
22.7  
22.7  
22.8  
22.8  
See Figure 62 and Figure 65  
See Figure 63 and Figure 66  
See Figure 64 and Figure 67  
See Figure 68 and Figure 69  
20  
16.667  
1 Master clock = 16.00 MHz.  
Rev. B | Page 36 of 62  
Data Sheet  
AD7175-2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
40  
45  
50  
55  
60  
65  
70  
70  
70  
0
0
0
100  
200  
300  
400  
500  
600  
600  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 65. 27.27 SPS ODR, 36.67 ms Settling Time  
Figure 62. 27.27 SPS ODR, 36.67 ms Settling Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
40  
45  
50  
55  
60  
65  
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 66. 25 SPS ODR, 40 ms Settling Time  
Figure 63. 25 SPS ODR, 40 ms Settling Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
40  
45  
50  
55  
60  
65  
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 67. 20 SPS ODR, 50 ms Settling Time  
Figure 64. 20 SPS ODR, 50 ms Settling Time  
Rev. B | Page 37 of 62  
AD7175-2  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 68. 16.667 SPS ODR, 60 ms Settling Time  
Figure 69. 16.667 SPS ODR, 60 ms Settling Time  
Rev. B | Page 38 of 62  
Data Sheet  
AD7175-2  
OPERATING MODES  
The AD7175-2 has a number of operating modes that can be set  
from the ADC mode register and interface mode register (see  
Table 27 and Table 28). These modes are as follows and are  
described in the following paragraphs:  
When the data-word has been read from the data register, the  
RDY  
DOUT/  
pin goes high. The user can read this register  
additional times, if required. However, the user must ensure that  
the data register is not being accessed at the completion of the  
next conversion; otherwise, the new conversion word is lost.  
x
x
x
x
x
x
Continuous conversion mode  
Continuous read mode  
Single conversion mode  
Standby mode  
When several channels are enabled, the ADC automatically  
sequences through the enabled channels, performing one  
conversion on each channel. When all channels have been  
converted, the sequence starts again with the first channel. The  
channels are converted in order from lowest enabled channel to  
highest enabled channel. The data register is updated as soon as  
Power-down mode  
Calibration modes (three)  
CONTINUOUS CONVERSION MODE  
RDY  
each conversion is available. The  
output pulses low each  
time a conversion is available. The user can then read the  
conversion while the ADC converts the next enabled channel.  
Continuous conversion is the default power-up mode. The  
RDY  
AD7175-2 converts continuously, and the  
register goes low each time a conversion is complete. If  
RDY  
bit in the status  
CS  
is low,  
output also goes low when a conversion is complete. To  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion data,  
are output each time the data register is read. The status register  
indicates the channel to which the conversion corresponds.  
the  
read a conversion, the user writes to the communications  
register, indicating that the next operation is a read of the data  
register.  
CS  
0x44  
0x44  
DIN  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 70. Continuous Conversion Mode  
Rev. B | Page 39 of 62  
AD7175-2  
Data Sheet  
To enable continuous read mode, set the CONTREAD bit in the  
interface mode register. When this bit is set, the only serial interface  
operations possible are reads from the data register. To exit con-  
tinuous read mode, issue a dummy read of the ADC data register  
CONTINUOUS READ MODE  
In continuous read mode, it is not required to write to the  
communications register before reading ADC data; apply only  
RDY  
the required number of SCLKs after  
goes low to indicate  
RDY  
RDY  
command (0x44) while the  
output is low. Alternatively, apply  
CS  
the end of a conversion. When the conversion is read,  
a software reset, that is, 64 SCLKs with  
= 0 and DIN = 1.  
returns high until the next conversion is available. In this mode,  
the data can be read only once. The user must also ensure that  
the data-word is read before the next conversion is complete. If  
the user has not read the conversion before the completion of  
the next conversion or if insufficient serial clocks are applied to  
the AD7175-2 to read the data word, the serial output register is  
reset shortly before the next conversion is complete, and the  
new conversion is placed in the output serial register. The ADC  
must be configured for continuous conversion mode to use  
continuous read mode.  
This resets the ADC and all register contents. These are the only  
commands that the interface recognizes after it is placed in  
continuous read mode. Hold DIN low in continuous read mode  
until an instruction is to be written to the device.  
If multiple ADC channels are enabled, each channel is output  
in turn, with the status bits being appended to the data if  
DATA_STAT is set in the interface mode register. The status  
register indicates the channel to which the conversion corresponds.  
CS  
0x02  
0x0080  
DIN  
DATA  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 71. Continuous Read Mode  
Rev. B | Page 40 of 62  
Data Sheet  
AD7175-2  
RDY  
As soon as the conversion is available, the  
output goes low.  
SINGLE CONVERSION MODE  
The ADC then selects the next channel and begins a conversion.  
The user can read the present conversion while the next  
conversion is being performed. As soon as the next conversion is  
complete, the data register is updated; therefore, the user has a  
limited period in which to read the conversion. When the ADC  
has performed a single conversion on each of the selected  
channels, it returns to standby mode.  
In single conversion mode, the AD7175-2 performs a single  
conversion and is placed in standby mode after the conversion  
RDY  
is complete. The  
of a conversion. When the data-word has been read from the  
RDY  
output goes low to indicate the completion  
data register, DOUT/  
pin goes high. The data register can  
RDY  
be read several times, if required, even when DOUT/  
pin has  
gone high.  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion, are  
output each time the data register is read. The two LSBs of the  
status register indicate the channel to which the conversion  
corresponds.  
If several channels are enabled, the ADC automatically  
sequences through the enabled channels and performs a  
conversion on each channel. When a conversion is started, the  
RDY  
DOUT/  
pin goes high and remains high until a valid  
CS  
conversion is available and is low.  
CS  
0x01  
0x8010  
0x44  
DIN  
DATA  
DOUT/RDY  
SCLK  
Figure 72. Single Conversion Mode  
Rev. B | Page 41 of 62  
AD7175-2  
Data Sheet  
STANDBY AND POWER-DOWN MODES  
ª
«
º
0.75uVIN  
Gain  
»
Data   
u2 23 ( Offset  0x800000) u  
 0x800000  
In standby mode, most blocks are powered down. The LDOs  
remain active so that registers maintain their contents. The  
internal reference remains active if enabled, and the crystal  
oscillator remains active if selected. To power down the  
reference in standby mode, set the REF_EN bit in the ADC  
mode regsiter to 0. To power down the clock in standby mode,  
set the CLOCKSEL bits in the ADC mode register to 00  
(internal oscillator).  
«
»
VREF  
0x 400000  
¬
¼
To start a calibration, write the relevant value to the mode bits  
RDY RDY  
in the ADC mode register. The DOUT/  
pin and the  
bit in the status register go high when the calibration initiates.  
When the calibration is complete, the contents of the corre-  
RDY  
sponding offset or gain register are updated, the  
bit in the  
CS  
output pin returns low (if  
RDY  
status register is reset and the  
is low), and the AD7175-2 reverts to standby mode.  
In power-down mode, all blocks are powered down, including  
the LDOs. All registers lose their contents, and the GPIO outputs  
are placed in three-state. To prevent accidental entry to power-  
down mode, the ADC must first be placed in standby mode.  
During an internal offset calibration, the selected positive analog  
input pin is disconnected, and both modulator inputs are  
connected internally to the selected negative analog input pin.  
For this reason, it is necessary to ensure that the voltage on the  
selected negative analog input pin does not exceed the allowed  
limits and is free from excessive noise and interference.  
CS  
Exiting power-down mode requires 64 SCLKs with  
= 0 and  
DIN = 1, that is, a serial interface reset. A delay of 500 µs is  
recommended before issuing a subsequent serial interface  
command to allow the LDO to power up.  
System calibrations, however, expect the system zero-scale  
(offset) and system full-scale (gain) voltages to be applied to the  
ADC pins before initiating the calibration modes. As a result,  
errors external to the ADC are removed.  
Figure 19 shows the internal reference settling time after  
returning from standby mode (setting REF_EN = 0 and then 1)  
and returning from power down.  
From an operational point of view, treat a calibration like  
another ADC conversion. An offset calibration, if required,  
must always be performed before a full-scale calibration. Set the  
CALIBRATION  
The AD7175-2 allows a two-point calibration to be performed  
to eliminate any offset and gain errors. Three calibration modes  
eliminate these offset and gain errors on a per setup basis:  
RDY  
system software to monitor the  
bit in the status register or  
output to determine the end of a calibration via a  
RDY  
the  
x
x
x
Internal zero-scale calibration mode  
System zero-scale calibration mode  
System full-scale calibration mode  
polling sequence or an interrupt-driven routine. All calibrations  
require a time equal to the settling time of the selected filter and  
output data rate to be completed.  
There is no internal full-scale calibration mode bcause this is  
calibrated in the factory at the time of production.  
An internal offset calibration, system zero-scale calibration, and  
system full-scale calibration can be performed at any output data  
rate. Using lower output data rates results in better calibration  
accuracy and is accurate for all output data rates. A new offset  
calibration is required for a given channel if the reference source  
for that channel is changed.  
Only one channel can be active during calibration. After each  
conversion, the ADC conversion result is scaled using the ADC  
calibration registers before being written to the data register.  
The default value of the offset register is 0x800000, and the  
nominal value of the gain register is 0x555555. The calibration  
range of the ADC gain is from 0.4 × VREF to 1.05 × VREF. The  
following equations show the calculations that are used. In  
unipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
The offset error is typically 40 µV and an offset calibration  
reduces the offset error to the order of the noise. The gain error  
is factory calibrated at ambient temperature. Following this  
calibration, the gain error is typically 35 ppm of FSR.  
The AD7175-2 provides the user with access to the on-chip  
calibration registers, allowing the microprocessor to read the  
calibration coefficients of the device and to write a calibration  
coefficients. A read or write of the offset and gain registers can be  
performed at any time except during an internal or self calibration.  
ª
«
º
0.75uV IN  
Gain  
»
Data   
u 2 23  (Offset  0x800000 ) u  
u 2  
«
»
V REF  
0x 400000  
¬
¼
In bipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
Rev. B | Page 42 of 62  
Data Sheet  
AD7175-2  
DIGITAL INTERFACE  
The programmable functions of the AD7175-2 are controlled via  
the SPI serial interface. The serial interface of the AD7175-2  
For CRC checksum calculations during a write operation, the  
following polynomial is always used:  
CS  
consists of four signals: , DIN, SCLK, and DOUT/  
RDY  
. The  
x8 + x2 + x + 1  
DIN input transfers data into the on-chip registers, and DOUT  
output accesses data from the on-chip registers. SCLK is the serial  
clock input for the device, and all data transfers (either on DIN  
input or on DOUT output) occur with respect to the SCLK  
signal.  
During read operations, the user can select between this  
polynomial and a simpler XOR function. The XOR function  
requires less time to process on the host microcontroller than  
the polynomial-based checksum. The CRC_EN bits in the  
interface mode register enable and disable the checksum and  
allow the user to select between the polynomial check and the  
simple XOR check.  
RDY  
The DOUT/  
the output going low if  
available in the data register. The  
a read operation from the data register is complete. The  
pin also functions as a data ready signal, with  
CS  
is low when a new data-word is  
RDY  
output is reset high when  
RDY  
The checksum is appended to the end of each read and write  
transaction. The checksum calculation for the write transaction  
is calculated using the 8-bit command word and the 8-bit to  
24-bit data. For a read transaction, the checksum is calculated  
using the command word and the 8-bit to 32-bit data output.  
Figure 73 and Figure 74 show SPI write and read transactions,  
respectively.  
output also goes high before updating the data register to  
indicate when not to read from the device to ensure that a data  
read is not attempted while the register is being updated. Take  
RDY  
care to avoid reading from the data register when the  
output is about to go low. The best method to ensure that no data  
RDY  
read occurs is to always monitor the  
output; start reading  
output goes low; and  
ensure a sufficient SCLK rate, such that the read is completed  
8-BIT COMMAND  
UP TO 24-BIT INPUT  
8-BIT CRC  
RDY  
the data register as soon as the  
CS  
CS  
before the next conversion result. selects a device. It can decode  
CS  
DATA  
CRC  
DIN  
the AD7175-2 in systems where several components are  
connected to the serial bus.  
SCLK  
Figure 2 and Figure 3 show timing diagrams for interfacing to  
CS  
the AD7175-2 using  
to decode the device. Figure 2 shows  
Figure 73. SPI Write Transaction with CRC  
the timing for a read operation from the AD7175-2, and Figure 3  
shows the timing for a write operation to the AD7175-2. It is  
possible to read from the data register several times even though  
8-BIT COMMAND  
UP TO 32-BIT INPUT  
8-BIT CRC  
CS  
RDY  
the  
output returns high after the first read operation.  
However, care must be taken to ensure that the read operations are  
completed before the next output update occurs. In continuous  
read mode, the data register can be read only once.  
CMD  
DIN  
DOUT/  
RDY  
DATA  
CRC  
CS  
The serial interface can operate in 3-wire mode by tying  
low.  
RDY  
In this case, the SCLK, DIN, and DOUT/  
with the AD7175-2. The end of the conversion can also be  
RDY  
pins communicate  
SCLK  
monitored using the  
bit in the status register.  
Figure 74. SPI Read Transaction with CRC  
CS  
The AD7175-2 can be reset by writing 64 SCLKs with  
= 0  
and DIN = 1. A reset returns the interface to the state in which it  
expects a write to the communications register. This operation  
resets the contents of all registers to their power-on values.  
Following a reset, allow a period of 500 µs before addressing the  
serial interface.  
If checksum protection is enabled when continuous read mode  
is active, an implied read data command of 0x44 before every  
data transmission must be accounted for when calculating the  
checksum value. This implied read data command ensures a  
nonzero checksum value even if the ADC data equals 0x000000.  
CHECKSUM PROTECTION  
The AD7175-2 has a checksum mode that can improve  
interface robustness. Using the checksum ensures that only  
valid data is written to a register and allows data read from a  
register to be validated. If an error occurs during a register  
write, the CRC_ERROR bit is set in the status register. However,  
to ensure that the register write was successful, read back the  
register and verify the checksum.  
Rev. B | Page 43 of 62  
AD7175-2  
Data Sheet  
An XOR (exclusive OR) function is applied to the data to  
CRC CALCULATION  
produce a new, shorter number. The polynomial is again aligned  
so that the MSB is adjacent to the leftmost Logic 1 of the new result,  
and the procedure is repeated. This process repeats until the  
original data is reduced to a value less than the polynomial.  
This is the 8-bit checksum.  
Polynomial  
The checksum, which is eight bits wide, is generated using the  
polynomial  
x8 + x2 + x + 1  
To generate the checksum, the data is left shifted by eight bits to  
create a number ending in eight Logic 0s. The polynomial is  
aligned so that the MSB is adjacent to the leftmost Logic 1 of the  
data.  
Example of a Polynomial CRC Calculation—24-Bit Word: 0x654321 (Eight Command Bits and 16-Bit Data)  
An example of generating the 8-bit checksum using the polynomial based checksum is as follows:  
Initial value  
011001010100001100100001  
01100101010000110010000100000000  
left shifted eight bits  
polynomial  
x8 + x2 + x + 1  
=
100000111  
100100100000110010000100000000  
100000111  
XOR result  
polynomial  
XOR result  
polynomial  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
checksum = 0x86  
100011000110010000100000000  
100000111  
11111110010000100000000  
100000111  
1111101110000100000000  
100000111  
111100000000100000000  
100000111  
11100111000100000000  
100000111  
1100100100100000000  
100000111  
100101010100000000  
100000111  
101101100000000  
100000111  
1101011000000  
100000111  
101010110000  
100000111  
1010001000  
100000111  
10000110  
Rev. B | Page 44 of 62  
Data Sheet  
AD7175-2  
XOR Calculation  
The checksum, which is 8 bits wide, is generated by splitting the data into bytes and then performing an XOR of the bytes.  
Example of an XOR Calculation—24-Bit Word: 0x654321 (Eight Command Bits and 16-Bit Data)  
Using the previous example, divide into three bytes: 0x65, 0x43, and 0x21  
01100101  
01000011  
00100110  
00100001  
00000111  
0x65  
0x43  
XOR result  
0x21  
CRC  
Rev. B | Page 45 of 62  
AD7175-2  
Data Sheet  
INTEGRATED FUNCTIONS  
The AD7175-2 has integrated functions that improve the  
usefulness of a number of applications as well as serve  
diagnostic purposes in safety conscious applications.  
The effect on the noise performance depends on the delay time  
compared to the conversion time. It is possible to absorb the delay  
only for output data rates less than 10 kSPS with the exception  
of the following four rates, which cannot absorb any delay:  
397.5 SPS, 59.92 SPS, 49.96 SPS, and 16.66 SPS.  
GENERAL-PURPOSE INPUT/OUTPUT  
The AD7175-2 has two general-purpose digital input/output pins:  
GPIO0 and GPIO1. They are enabled using the IP_EN0/IP_EN1  
bits or the OP_EN0/OP_EN1 bits in the GPIOCON register. When  
the GPIO0 or GPIO1 pin is enabled as an input, the logic level at  
the pin is contained in the GP_DATA0 or GP_DATA1 bit,  
respectively. When the GPIO0 or GPIO1 pin is enabled as an  
output, the GP_ DATA0 or GP_DATA1 bits, respectively,  
determine the logic level output at the pin. The logic levels for  
these pins are referenced to AVDD1 and AVSS; therefore, outputs  
have an amplitude of 5 V.  
16-BIT/24-BIT CONVERSIONS  
By default, the AD7175-2 generates 24-bit conversions.  
However, the width of the conversions can be reduced to 16 bits.  
Setting the WL16 bit in the interface mode register to 1 rounds  
all data conversions to 16 bits. Clearing this bit sets the width of  
the data conversions to 24 bits.  
DOUT_RESET  
RDY  
The serial interface uses a shared DOUT/  
pin. By default,  
signal. During a data read, this pin  
outputs the data from the register being read. After the read is  
RDY  
RDY  
this pin outputs the  
SYNC ERROR  
pin can also be used as a general-purpose  
The  
output. When ERR_EN bits in the GPIOCON register are set to  
SYNC ERROR  
pin operates as a general-purpose output.  
/
complete, the pin reverts to outputting the  
signal after a  
11, the  
/
short fixed period of time (t7). However, this time may be too  
short for some microcontrollers and can be extended until the  
In this configuration, the ERR_DAT bit in the GPIOCON register  
determines the logic level output at the pin. The logic level for the  
pin is referenced to IOVDD and DGND.  
CS  
pin is brought high by setting the DOUT_RESET bit in the  
CS  
interface mode register to 1. This means that  
must frame  
SYNC ERROR  
pin, when set as general-  
Both GPIOs and the  
/
each read operation and compete the serial interface transaction.  
purpose outputs, have an active pull-up.  
SYNCHRONIZATION  
EXTERNAL MULTIPLEXER CONTROL  
Normal Synchronization  
If an external multiplexer increases the channel count, the  
multiplexer logic pins can be controlled via the AD7175-2  
GPIOx pins. With the MUX_IO bit, the GPIOx timing is  
controlled by the ADC; therefore, the channel change is  
synchronized with the ADC, eliminating any need for external  
synchronization.  
When the SYNC_EN bit in the GPIOCON register is set to 1,  
SYNC ERROR  
/
the  
pin functions as a synchronization input.  
SYNC  
The  
input lets the user reset the modulator and the  
digital filter without affecting any of the setup conditions on the  
device. This feature lets the user start to gather samples of the  
SYNC  
analog input from a known point, the rising edge of the  
SYNC  
DELAY  
input. The  
input must be low for at least one master  
It is possible to insert a programmable delay before the AD7175-2  
begins to take samples. This delay allows an external amplifier  
or multiplexer to settle and can also alleviate the specification  
requirements for the external amplifier or multiplexer. Eight  
programmable settings, ranging from 0 µs to 1 ms, can be set  
using the delay bits in the ADC mode register (Register 0x01,  
Bits[10:8]).  
clock cycle to ensure that synchronization occurs.  
If multiple AD7175-2 devices are operated from a common  
master clock, they can be synchronized so that their analog  
inputs are sampled simultaneously. This synchronization is  
normally done after each AD7175-2 device performs a calibration  
or has calibration coefficients loaded into the calibration registers.  
SYNC  
A falling edge on the  
analog modulator and places the AD7175-2 into a consistent  
SYNC  
input resets the digital filter and the  
If a delay greater than 0 µs is selected and the HIDE_DELAY bit  
in the ADC mode register is set to 0, this delay is added to the  
conversion time, regardless of selected output data rate.  
known state. While the  
input is low, the AD7175-2 is  
SYNC  
maintained in this known state. On the  
input rising edge,  
the modulator and filter are taken out of this reset state, and on  
the next master clock edge, the device starts to gather input  
samples again.  
When using the sinc5 + sinc1 filter, it is possible to hide this  
delay such that the output data rate remains the same as the output  
data rate without the delay enabled. If the HIDE_DELAY bit is  
set to 1 and the selected delay is less than half of the conversion  
time, the delay can be absorbed by reducing the number of  
averages the digital filter performs, which keeps the conversion  
time the same but can affect the noise performance.  
Rev. B | Page 46 of 62  
Data Sheet  
AD7175-2  
The device is taken out of reset on the master clock falling edge  
CRC_ERROR  
SYNC  
following the  
input low to high transition. Therefore,  
SYNC  
If the CRC value that accompanies a write operation does not  
correspond with the information sent, the CRC_ERROR flag is  
set. The flag is reset as soon as the status register is explicitly read.  
when multiple devices are being synchronized, take the  
input high on the master clock rising edge to ensure that all  
devices are released on the master clock falling edge. If the  
REG_ERROR  
SYNC  
input is not taken high in sufficient time, a difference of  
The RE_ERROR flag is used in conjunction with the  
one master clock cycle between the devices is possible; that is,  
the instant at which conversions are available differs from  
device to device by a maximum of one master clock cycle.  
REG_CHECK bit in the interface mode register. When the  
REG_CHECK bit is set, the AD7175-2 monitors the values in  
the on-chip registers. If a bit changes, the REG_ERROR bit is  
set. Therefore, for writes to the on-chip registers, set REG_CHECK  
to 0. When the registers have been updated, the REG_CHECK  
bit can be set to 1. The AD7175-2 calculates a checksum of the  
on-chip registers. If one of the register values has changed, the  
REG_ERROR bit is set. If an error is flagged, the REG_CHECK  
bit must be set to 0 to clear the REG_ERROR bit in the status  
register. The register check function does not monitor the data  
register, status register, or interface mode register.  
SYNC  
The  
input can also be used as a start conversion  
command for a single channel when in normal synchronization  
SYNC  
mode. In this mode, the rising edge of  
input starts a  
RDY  
conversion, and the falling edge of the  
output indicates when  
the conversion is complete. The settling time of the filter is  
required for each data register update. After the conversion is  
SYNC  
complete, bring the  
input low in preparation for the next  
conversion start signal.  
ERROR  
Alternate Synchronization  
Input/Output  
When the SYNC_EN bit in the GPIOCON register is set to 0,  
SYNC ERROR  
pin functions as an error input/output pin or  
SYNC  
In alternate synchronization mode, the  
input operates as  
a start conversion command when several channels of the  
AD7175-2 are enabled. Setting the ALT_SYNC bit in the interface  
mode register to 1 enables an alternate synchronization scheme.  
the  
/
a general-purpose output pin. The ERR_EN bits in the GPIOCON  
register determine the function of the pin.  
SYNC  
When the  
input is taken low, the ADC completes the  
SYNC ERROR  
/
With ERR_EN is set to 10,the  
pin functions as  
conversion on the current channel, selects the next channel in  
ERROR  
an open-drain error output,  
. The three error bits in the  
SYNC  
the sequence, and then waits until the  
to commence the conversion. The  
input is taken high  
status register (ADC_ERROR, CRC_ERROR, and REG_ERROR)  
ERROR  
RDY  
output goes low when  
are ORed, inverted, and mapped to the  
output. Therefore,  
output indicates that an error has occurred. The  
status register must be read to identify the error source.  
SYNC ERROR  
the conversion is complete on the current channel, and the data  
register is updated with the corresponding conversion.  
ERROR  
the  
SYNC  
Therefore, the  
input does not interfere with the sampling  
When ERR_EN is set to 01, the  
/
pin functions as  
. The error output of another component  
ERROR  
on the currently selected channel but allows the user to control  
the instant at which the conversion begins on the next channel  
in the sequence.  
ERROR  
an error input,  
can be connected to the AD7175-2  
AD7175-2 indicates when an error occurs on either itself or the  
ERROR  
input so that the  
Alternate synchronization mode can be used only when several  
channels are enabled. It is not recommended to use this mode  
when a single channel is enabled.  
external component. The value on the  
input is inverted  
and ORed with the errors from the ADC conversion, and the  
result is indicated via the ADC_ERROR bit in the status register.  
ERROR FLAGS  
ERROR  
The value of the  
input is reflected in the ERR_DAT bit  
The status register contains three error bits—ADC_ERROR,  
CRC_ERROR, and REG_ERROR—that flag errors with the  
ADC conversion, errors with the CRC check, and errors caused  
in the status register.  
ERROR  
The  
input/output is disabled when ERR_EN is set to 00.  
SYNC ERROR  
pin  
When the ERR_EN bits are set to 11, the  
operates as a general-purpose output.  
/
ERROR  
by changes in the registers, respectively. In addition, the  
output can indicate that an error has occurred.  
DATA_STAT  
ADC_ERROR  
The contents of the status register can be appended to each con-  
version on the AD7175-2. This function is useful if several  
channels are enabled. Each time a conversion is output, the  
contents of the status register are appended. The two LSBs of  
the status register indicate to which channel the conversion  
corresponds. In addition, the user can determine if any errors  
are being flagged by the error bits.  
The ADC_ERROR bit in the status register flags any errors that  
occur during the conversion process. The flag is set when an over-  
range or underrange result is output from the ADC. The ADC  
also outputs all 0s or all 1s when an undervoltage or overvoltage  
occurs. This flag is reset only when the overvoltage or undervoltage  
is removed. It is not reset by a read of the data register.  
Rev. B | Page 47 of 62  
AD7175-2  
Data Sheet  
The temperature sensor requires the analog input buffers be  
enabled on both analog inputs. It is recommend that the input  
buffers are enabled, but this is not necessary for the  
measurement.  
IOSTRENGTH  
The serial interface can operate with a power supply as low as  
RDY  
2 V. However, at this low voltage, the DOUT/  
pin may not  
have sufficient drive strength if there is moderate parasitic  
capacitance on the board or the SCLK frequency is high. The  
IOSTRENGTH bit in the interface mode register increases the  
To use the temperature sensor, the first step is to calibrate the  
device in a known temperature (25°C) and take a conversion as  
a reference point. The temperature sensor has a nominal  
sensitivity of 470 µV/K; the difference in this ideal slope and the  
slope measured can calibrate the temperature sensor. The  
temperature sensor is specified with a 2°C typical accuracy  
after calibration at 25°C. The temperature can be calculated as  
follows:  
RDY  
drive strength of the DOUT/  
pin.  
INTERNAL TEMPERATURE SENSOR  
The AD7175-2 has an integrated temperature sensor. The  
temperature sensor can be used as a guide for the ambient  
temperature at which the part is operating. This can be used for  
diagnostic purposes or as an indicator of when the application  
circuit must rerun a calibration routine to take into account a  
shift in operating temperature. The temperature sensor is  
selected using the crosspoint multiplexer and is selected the  
same as an analog input channel.  
§
¨
¨
©
·
¸
¸
¹
Conversion Result  
Temperature(qC )   
– 273.15  
477 ȝ9  
Rev. B | Page 48 of 62  
Data Sheet  
AD7175-2  
GROUNDING AND LAYOUT  
The analog inputs and reference inputs are differential and,  
therefore, most of the voltages in the analog modulator are  
common-mode voltages. The high common-mode rejection of  
the device removes common-mode noise on these inputs. The  
analog and digital supplies to the AD7175-2 are independent  
and connected to separate pins to minimize coupling between the  
analog and digital sections of the device. The digital filter provides  
rejection of broadband noise on the power supplies, except at  
integer multiples of the master clock frequency.  
possible to provide low impedance paths and reduce glitches on  
the power supply line. Shield fast switching signals like clocks  
with digital ground to prevent radiating noise to other sections  
of the board and never run clock signals near the analog inputs.  
Avoid crossover of digital and analog signals. Run traces on  
opposite sides of the board at right angles to each other. This  
technique reduces the effects of feed through on the board. A  
microstrip technique is by far the best but is not always possible  
with a double-sided board.  
The digital filter also removes noise from the analog and  
reference inputs, provided that these noise sources do not  
saturate the analog modulator. As a result, the AD7175-2 is  
more immune to noise interference than a conventional high  
resolution converter. However, because the resolution of the  
AD7175-2 is high and the noise levels from the converter are so  
low, take care with regard to grounding and layout.  
Good decoupling is important when using high resolution ADCs.  
The AD7175-2 has three power supply pins—AVDD1, AVDD2,  
and IOVDD. The AVDD1 and AVDD2 pins are referenced to  
AVSS, and the IOVDD pin is referenced to DGND. Decouple  
AVDD1 and AVDD2 with a 10 µF capacitor in parallel with a  
0.1 µF capacitor to AVSS on each pin. Place the 0.1 µF capacitor  
as close as possible to the device on each supply, ideally right up  
against the device. Decouple IOVDD with a 10 µF capacitor in  
parallel with a 0.1 µF capacitor to DGND. Decouple all analog  
inputs to AVSS. If an external reference is used, decouple the  
REF+ and REF− pins to AVSS.  
The PCB that houses the ADC must be designed such that the  
analog and digital sections are separated and confined to  
certain areas of the board. A minimum etch technique is  
generally best for ground planes because it results in the best  
shielding.  
The AD7175-2 also has two on-board LDO regulators—one  
that regulates the AVDD2 supply and one that regulates the  
IOVDD supply. For the REGCAPA pin, it is recommended that  
1 µF and 0.1 µF capacitors to AVSS be used. Similarly, for the  
REGCAPD pin, it is recommended that 1 µF and 0.1 µF  
capacitors to DGND be used.  
In any layout, the user must consider the flow of currents in the  
system, ensuring that the paths for all return currents are as close as  
possible to the paths the currents took to reach their destinations.  
Avoid running digital lines under the device because this  
couples noise onto the die and allow the analog ground plane to  
run under the AD7175-2 to prevent noise coupling. The power  
supply lines to the AD7175-2 must use as wide a trace as  
If using the AD7175-2 for split supply operation, a separate  
plane must be used for AVSS.  
Rev. B | Page 49 of 62  
AD7175-2  
Data Sheet  
REGISTER SUMMARY  
Table 24. Register Summary  
Reg. Name  
0x00 COMMS  
0x00 STATUS  
Bits  
[7:0]  
[7:0]  
Bit 7  
WEN  
RDY  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
RA  
Bit 1  
Bit 0  
Reset  
0x00  
0x80  
RW  
W
W
R/  
ADC_ERROR  
HIDE_DELAY  
CRC_ERROR  
REG_ERROR  
RESERVED  
CHANNEL  
R
0x01 ADCMODE  
[15:8]  
[7:0]  
REF_EN  
SING_CYC  
MODE  
RESERVED  
DELAY  
RESERVED  
0x8000  
RW  
RW  
R
RESERVED  
CLOCKSEL  
0x02 IFMODE  
[15:8]  
[7:0]  
RESERVED  
ALT_SYNC  
REG_CHECK RESERVED  
REGISTER_CHECK[23:16]  
IOSTRENGTH  
RESERVED  
DOUT_RESET 0x0000  
WL16  
CONTREAD  
DATA_STAT  
CRC_EN  
RESERVED  
0x03 REGCHECK  
[23:16]  
[15:8]  
[7:0]  
0x000000  
REGISTER_CHECK[15:8]  
REGISTER_CHECK[7:0]  
DATA[23:16]  
0x04 DATA  
[23:16]  
[15:8]  
[7:0]  
0x000000  
R
DATA[15:8]  
DATA[7:0]  
0x06 GPIOCON  
0x07 ID  
[15:8]  
[7:0]  
RESERVED  
MUX_IO  
SYNC_EN  
OP_EN1  
ERR_EN  
GP_DATA1  
ERR_DAT  
0x0800  
0x0CDX  
0x8001  
0x0001  
0x0001  
0x0001  
RW  
R
RESERVED  
IP_EN1  
IP_EN0  
OP_EN0  
GP_DATA0  
[15:8]  
[7:0]  
ID[15:8]  
ID[7:0]  
0x10 CH0  
[15:8]  
[7:0]  
CH_EN0  
CH_EN1  
CH_EN2  
CH_EN3  
RESERVED  
AINPOS0[2:0]  
RESERVED  
AINPOS1[2:0]  
RESERVED  
AINPOS2[2:0]  
RESERVED  
AINPOS3[2:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SETUP_SEL0  
SETUP_SEL1  
SETUP_SEL2  
SETUP_SEL3  
RESERVED  
AINNEG0  
RESERVED  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
REFBUF0-  
RESERVED  
REFBUF1− AINBUF1+  
RESERVED  
REFBUF2− AINBUF2+  
RESERVED  
REFBUF3− AINBUF3+  
RESERVED  
ENHFILT0  
AINPOS0[4:3]  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x11 CH1  
[15:8]  
[7:0]  
AINPOS1[4:3]  
AINPOS2[4:3]  
AINPOS3[4:3]  
0x12 CH2  
[15:8]  
[7:0]  
0x13 CH3  
[15:8]  
[7:0]  
0x20 SETUPCON0  
0x21 SETUPCON1  
0x22 SETUPCON2  
0x23 SETUPCON3  
0x28 FILTCON0  
0x29 FILTCON1  
0x2A FILTCON2  
0x2B FILTCON3  
[15:8]  
[7:0]  
BI_UNIPOLAR0  
REF_SEL0  
BI_UNIPOLAR1  
REF_SEL1  
BI_UNIPOLAR2  
REF_SEL2  
BI_UNIPOLAR3  
REF_SEL3  
RESERVED  
REFBUF0+  
REFBUF1+  
REFBUF2+  
REFBUF3+  
AINBUF0+  
AINBUF0− 0x1320  
AINBUF1− 0x1320  
AINBUF2− 0x1320  
AINBUF3− 0x1320  
0x0500  
BURNOUT_EN0  
BURNOUT_EN1  
BURNOUT_EN2  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
BURNOUT_EN3  
SINC3_MAP0  
RESERVED  
[15:8]  
[7:0]  
ENHFILTEN0  
ENHFILTEN1  
ENHFILTEN2  
ENHFILTEN3  
ORDER0  
ODR0  
ODR1  
ODR2  
ODR3  
[15:8]  
[7:0]  
SINC3_MAP1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ENHFILT1  
ENHFILT2  
ENHFILT3  
0x0500  
ORDER1  
ORDER2  
ORDER3  
[15:8]  
[7:0]  
SINC3_MAP2  
RESERVED  
0x0500  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
0x0500  
0x30 OFFSET0  
0x31 OFFSET1  
0x32 OFFSET2  
0x33 OFFSET3  
0x38 GAIN0  
0x39 GAIN1  
0x3A GAIN2  
0x3B GAIN3  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
OFFSET0[23:0]  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
GAIN0[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
Rev. B | Page 50 of 62  
Data Sheet  
AD7175-2  
REGISTER DETAILS  
COMMUNICATIONS REGISTER  
Address: 0x00, Reset: 0x00, Name: COMMS  
All access to the on-chip registers must start with a write to the communications register. This write determines what register is next  
accessed and whether that operation is a write or a read.  
Table 25. Bit Descriptions for COMMS  
Bits  
7
Bit Name  
WEN  
Settings  
Description  
Reset  
0x0  
Access  
W
This bit must be low to begin communications with the ADC.  
6
R/W  
This bit determines if the command is a read or write operation.  
0x0  
W
0
1
Write command.  
Read command.  
[5:0]  
RA  
The register address bits determine which register is to be read from or  
written to as part of the current communication.  
0x00  
W
000000 Status register.  
000001 ADC mode register.  
000010 Interface mode register.  
000011 Register checksum register.  
000100 Data register.  
000110 GPIO configuration register.  
000111 ID register.  
010000 Channel 0 register.  
010001 Channel 1 register.  
010010 Channel 2 register.  
010011 Channel 3 register.  
100000 Setup Configuration 0 register.  
100001 Setup Configuration 1 register.  
100010 Setup Configuration 2 register.  
100011 Setup Configuration 3 register.  
101000 Filter Configuration 0 register.  
101001 Filter Configuration 1 register.  
101010 Filter Configuration 2 register.  
101011 Filter Configuration 3 register.  
110000 Offset 0 register.  
110001 Offset 1 register.  
110010 Offset 2 register.  
110011 Offset 3 register.  
111000 Gain 0 register.  
111001 Gain 1 register.  
111010 Gain 2 register.  
111011 Gain 3 register.  
Rev. B | Page 51 of 62  
AD7175-2  
Data Sheet  
STATUS REGISTER  
Address: 0x00, Reset: 0x80, Name: STATUS  
The status register is an 8-bit register that contains ADC and serial interface status information. It can optionally be appended to the data  
register by setting the DATA_STAT bit in the interface mode register.  
Table 26. Bit Descriptions for STATUS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
RDY  
The status of RDY is output to the DOUT/RDYpin whenever CS is low and a 0x1  
register is not being read. This bit goes low when the ADC has written a  
new result to the data register. In ADC calibration modes, this bit goes low  
when the ADC has written the calibration result. RDY is brought high  
automatically by a read of the data register.  
R
0
1
New data result available.  
Awaiting new data result.  
6
ADC_ERROR  
This bit by default indicates if an ADC overrange or underrange has  
occurred. The ADC result is clamped to 0xFFFFFF for overrange errors and  
0x000000 for underrange errors. This bit is updated when the ADC result is  
written and is cleared at the next update after removing the overrange or  
underrange condition.  
0x0  
R
0
1
No error.  
Error.  
5
4
CRC_ERROR  
REG_ERROR  
This bit indicates if a CRC error has taken place during a register write. For  
register reads, the host microcontroller determines if a CRC error has  
occurred. This bit is cleared by a read of this register.  
0x0  
0x0  
R
R
0
1
No error.  
CRC error.  
This bit indicates if the content of one of the internal registers has  
changed from the value calculated when the register integrity check was  
activated. The check is activated by setting the REG_CHECK bit in the  
interface mode register. This bit is cleared by clearing the REG_CHECK bit.  
0
1
No error.  
Error.  
[3:2]  
[1:0]  
RESERVED  
CHANNEL  
These bits are reserved.  
0x0  
0x0  
R
R
These bits indicate which channel was active for the ADC conversion  
whose result is currently in the data register. This may be different from  
the channel currently being converted. The mapping is a direct map from  
the channel register; therefore, Channel 0 results in 0x0 and Channel 3  
results in 0x3.  
00 Channel 0.  
01 Channel 1.  
10 Channel 2.  
11 Channel 3.  
Rev. B | Page 52 of 62  
Data Sheet  
AD7175-2  
ADC MODE REGISTER  
Address: 0x01, Reset: 0x8000, Name: ADCMODE  
The ADC mode register controls the operating mode of the ADC and the master clock selection. A write to the ADC mode register resets  
the filter and the bits and starts a new conversion or calibration.  
RDY  
Table 27. Bit Descriptions for ADCMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
REF_EN  
Enables internal reference and outputs a buffered 2.5 V to the REFOUT pin. 0x1  
RW  
0
1
Disabled.  
Enabled.  
14  
13  
HIDE_DELAY  
SING_CYC  
If a programmable delay has been set using the DELAY bits, this bit allows  
the delay to be hidden by absorbing the delay into the conversion time  
for selected data rates with the sinc5 + sinc1 filter. See the Delay section  
for more information.  
0x0  
RW  
RW  
0
1
Enabled.  
Disabled.  
This bit can be used when only a single channel is active to set the ADC to 0x0  
only output at the settled filter data rate.  
0
1
Disabled.  
Enabled.  
[12:11] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
R
[10:8]  
DELAY  
These bits allow a programmable delay to be added after a channel switch 0x0  
to allow settling of external circuitry before the ADC starts processing the  
input.  
RW  
000 0 µs.  
001 4 µs.  
010 16 µs.  
011 40 µs.  
100 100 µs.  
101 200 µs.  
110 500 µs.  
111 1 ms.  
7
RESERVED  
MODE  
This bit is reserved; set this bit to 0.  
0x0  
0x0  
R
[6:4]  
These bits control the operating mode of the ADC. See the Operating  
Modes section for more information.  
RW  
000 Continuous conversion mode.  
001 Single conversion mode.  
010 Standby mode.  
011 Power-down mode.  
100 Internal offset calibration.  
110 System offset calibration.  
111 System gain calibration.  
[3:2]  
[1:0]  
CLOCKSEL  
RESERVED  
This bit selects the ADC clock source. Selecting internal oscillator also  
enables the internal oscillator.  
0x0  
0x0  
RW  
00 Internal oscillator.  
01 Internal oscillator output on XTAL2/CLKIO pin.  
10 External clock input on XTAL2/CLKIO pin.  
11 External crystal on XTAL1 and XTAL2/CLKIO pins.  
These bits are reserved; set these bits to 0.  
R
Rev. B | Page 53 of 62  
AD7175-2  
Data Sheet  
INTERFACE MODE REGISTER  
Address: 0x02, Reset: 0x0000, Name: IFMODE  
The interface mode register configures various serial interface options.  
Table 28. Bit Descriptions for IFMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
These bits are reserved; set these bits to 0.  
12  
11  
ALT_SYNC  
This bit enables a different behavior of the SYNC/ERROR pin to allow the  
use of SYNC/ERROR as a control for conversions when cycling channels  
(see the description of the SYNC_EN bit in the GPIO Configuration Register  
section for details).  
0x0  
RW  
0
1
Disabled.  
Enabled.  
IOSTRENGTH  
This bit controls the drive strength of the DOUT/RDY pin. Set this bit when 0x0  
reading from the serial interface at high speed with a low IOVDD supply  
and moderate capacitance.  
RW  
0
1
Disabled (default).  
Enabled.  
[10:9]  
8
RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
DOUT_RESET  
See DOUT_RESET section for more information.  
RW  
0
1
Disabled.  
Enabled.  
7
6
CONTREAD  
DATA_STAT  
This enables continuous read of the ADC data register. The ADC must be  
configured in continuous conversion mode to use continuous read. For  
more details, see the Operating Modes section.  
0x0  
0x0  
RW  
RW  
0
1
Disabled.  
Enabled.  
This enables the status register to be appended to the data register when  
read so that channel and status information are transmitted with the data.  
This is the only way to be sure that the channel bits read from the status  
register correspond to the data in the data register.  
0
1
Disabled.  
Enabled.  
5
REG_CHECK  
This bit enables a register integrity checker, which can monitor any  
change in the value of the user registers. To use this feature, configure all  
other registers as desired, with this bit cleared.Then write to this register to set  
the REG_CHECK bit to 1. If the contents of any of the registers change, the  
REG_ERROR bit is set in the status register. To clear the error, set the  
REG_CHECK bit to 0. Neither the interface mode register nor the ADC data  
or status registers are included in the registers that are checked. If a  
register must have a new value written, this bit must first be cleared;  
otherwise, an error is flagged when the new register contents are written.  
0x0  
RW  
0
1
Disabled.  
Enabled.  
4
RESERVED  
CRC_EN  
This bit is reserved; set this bit to 0.  
0x0  
R
[3:2]  
Enables CRC protection of register reads/writes. CRC increases the  
number of bytes in a serial interface transfer by one. See the CRC  
Calculation section for more details.  
0x00  
RW  
00 Disabled.  
01 XOR checksum enabled for register read transactions; register writes still  
use CRC with these bits set.  
10 CRC checksum enabled for read and write transactions.  
This bit is reserved; set this bit to 0.  
1
RESERVED  
0x0  
R
Rev. B | Page 54 of 62  
Data Sheet  
AD7175-2  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
0
WL16  
Changes the ADC data register to 16 bits. The ADC is not reset by a write  
to the interface mode register; therefore, the ADC result is not rounded to  
the correct word length immediately after writing to these bits. The first  
new ADC result is correct.  
RW  
0
1
24-bit data.  
16-bit data.  
REGISTER CHECK  
Address: 0x03, Reset: 0x000000, Name: REGCHECK  
The register check register is a 24-bit checksum calculated by exclusively OR'ing the contents of the user registers. The REG_CHECK bit  
in the interface mode register must be set for this to operate; otherwise, the register reads 0.  
Table 29. Bit Descriptions for REGCHECK  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
REGISTER_CHECK  
This register contains the 24-bit checksum of user registers when the  
REG_CHECK bit is set in the interface mode register.  
0x000000  
R
DATA REGISTER  
Address: 0x04, Reset: 0x000000, Name: DATA  
The data register contains the ADC conversion result. The encoding is offset binary, or it can be changed to unipolar by the  
RDY RDY  
output high if it had  
BI_UNIPOLARx bit in the setup configuration registers. Reading the data register brings the  
bit and the  
output has been brought high, it is not possible to know  
RDY  
been low. The ADC result can be read multiple times; however, because the  
if another ADC result is imminent. After the command to read the ADC register is received, the ADC does not write a new result into the  
data register.  
Table 30. Bit Descriptions for DATA  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
DATA  
This register contains the ADC conversion result. If DATA_STAT is set in  
the interface mode register, the status register is appended to this  
register when read, making this a 32-bit register. If WL16 is set in the  
interface mode register, this register is reduced to 16 bits.  
0x000000  
R
Rev. B | Page 55 of 62  
AD7175-2  
Data Sheet  
GPIO CONFIGURATION REGISTER  
Address: 0x06, Reset: 0x0800, Name: GPIOCON  
The GPIO configuration register controls the general-purpose input/output pins of the ADC.  
Table 31. Bit Descriptions for GPIOCON  
Bits  
Bit Name  
Settings Description  
These bits are reserved; set these bits to 0.  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
12  
11  
MUX_IO  
This bit allows the ADC to control an external multiplexer, using GPIO0/GPIO1 in sync  
with the internal channel sequencing. The analog input pins used for a channel  
can still be selected on a per channel basis. Therefore, it is possible to have a  
4-channel multiplexer in front of AIN0/AIN1 and another in front of AIN2/AIN3, giving a  
total of eight differential channels with the AD7175-2. However, only four channels at a  
time can be automatically sequenced. A delay can be inserted after switching an  
external multiplexer (see the DELAY bits in the ADC Mode Register section).  
0x0  
RW  
SYNC_EN  
This bit enables the SYNC/ERROR pin as a sync input. When the pin is low, this  
holds the ADC and filter in reset until SYNC/ERROR pin goes high. An alternative  
operation of the SYNC/ERROR pin is available when the ALT_SYNC bit in the  
interface mode register is set. This mode only works when multiple channels are  
enabled. In this case, a low on the SYNC/ERROR pin does not immediately reset the  
filter/modulator. Instead, if the SYNC/ERROR pin is low when the channel is due to  
be switched, the modulator and filter are prevented from starting a new  
conversion. Bringing SYNC/ERROR high begins the next conversion. This  
alternative sync mode allows SYNC/ERROR to be used while cycling through channels.  
0x1  
RW  
0
1
Disabled.  
Enabled.  
[10:9]  
ERR_EN  
These bits enable the SYNC/ERROR pin as an error input/output.  
0x0  
RW  
00 Disabled.  
01 SYNC/ERROR is an error input. The (inverted) readback state is OR'ed with other  
error sources and is available in the ADC_ERROR bit in the status register. The SYNC/  
ERROR pin state can also be read from the ERR_DAT bit in this register.  
10 SYNC/ERROR is an open-drain error output. The status register error bits are OR'ed,  
inverted, and mapped to the SYNC/ERROR pin. The SYNC/ERROR pins of multiple  
devices can be wired together to a common pull-up resistor so that an error on  
any device can be observed.  
11 SYNC/ERROR is a general-purpose output. The status of the pin is controlled by the  
ERR_DAT bit in this register. This output is referenced between IOVDD and DGND,  
as opposed to the AVDD1 and AVSS levels used by the general-purpose input/  
output pins. The SYNC/ERROR pin has an active pull-up in this case.  
8
ERR_DAT  
This bit determines the logic level at the SYNC/ERROR pin if the pin is enabled as a  
general-purpose output. This bit reflects the readback status of the pin if the pin is  
enabled as an input.  
0x0  
RW  
[7:6]  
5
RESERVED  
IP_EN1  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
This bit turns GPIO1 into an input. Inputs are referenced to AVDD1 or AVSS.  
RW  
0
1
Disabled.  
Enabled.  
4
3
2
IP_EN0  
This bit turns GPIO0 into an input. Inputs are referenced to AVDD1 or AVSS.  
0x0  
RW  
RW  
RW  
0
1
Disabled.  
Enabled.  
OP_EN1  
OP_EN0  
This bit turns GPIO1 into an output. Outputs are referenced between AVDD1 and AVSS. 0x0  
0
1
Disabled.  
Enabled.  
This bit turns GPIO0 into an output. Outputs are referenced between AVDD1 and AVSS. 0x0  
0
1
Disabled.  
Enabled.  
1
0
GP_DATA1  
GP_DATA0  
This bit is the readback or write data for GPIO1.  
This bit is the readback or write data for GPIO0.  
0x0  
0x0  
RW  
RW  
Rev. B | Page 56 of 62  
Data Sheet  
AD7175-2  
ID REGISTER  
Address: 0x07, Reset: 0x0CDX, Name: ID  
The ID register returns a 16-bit ID. For the AD7175-2, this must be 0x0CDX.  
Table 32. Bit Descriptions for ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0CDX  
Access  
[15:0]  
ID  
The ID register returns a 16-bit ID code that is specific to the ADC.  
R
0x0CDX AD7175-2.  
CHANNEL REGISTER 0  
Address: 0x10, Reset: 0x8001, Name: CH0  
The channel registers are 16-bit registers that select which channels are currently active, which inputs are selected for each channel, and  
which setup configures the ADC for that channel.  
Table 33. Bit Descriptions for CH0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
CH_EN0  
This bit enables Channel 0. If more than one channel is enabled, the ADC  
automatically sequences between them.  
0x1  
RW  
0
1
Disabled.  
Enabled (default).  
14  
RESERVED  
This bit is reserved; set this bit to 0.  
0x0  
0x0  
R
[13:12] SETUP_SEL0  
These bits identify which of the four setups configure the ADC for this  
channel. A setup comprises a set of four registers: setup configuration register,  
filter configuration register, offset register, and gain register. All channels  
can use the same setup, in which case the same 2-bit value must be written  
to these bits on all active channels, or up to four channels can be  
configured differently.  
RW  
00 Setup 0.  
01 Setup 1.  
10 Setup 2.  
11 Setup 3.  
[11:10] RESERVED  
[9:5] AINPOS0  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
These bits select which input is connected to the positive input of the  
ADC for this channel.  
RW  
00000 AIN0 (default).  
00001 AIN1.  
00010 AIN2.  
00011 AIN3.  
00100 AIN4.  
10001 Temperature sensor+.  
10010 Temperature sensor−.  
10011 ((AVDD1 − AVSS)/5)+ (analog input buffers must be enabled).  
10100 ((AVDD1 − AVSS)/5)− (analog input buffers must be enabled).  
10101 REF+.  
10110 REF−.  
Rev. B | Page 57 of 62  
AD7175-2  
Data Sheet  
Bits  
Bit Name  
AINNEG0  
Settings  
Description  
Reset  
Access  
[4:0]  
These bits select which input is connected to the negative input of the  
ADC for this channel.  
0x1  
RW  
00000 AIN0.  
00001 AIN1 (default).  
00010 AIN2.  
00011 AIN3.  
00100 AIN4.  
10001 Temperature sensor+.  
10010 Temperature sensor−.  
10011 ((AVDD1 − AVSS)/5)+.  
10100 ((AVDD1 − AVSS)/5)−.  
10101 REF+.  
10110 REF−.  
CHANNEL REGISTER 1 TO CHANNEL REGISTER 3  
Address: 0x11 to 0x13, Reset: 0x0001, Name: CH1 to CH3  
The remaining three channel registers share the same layout as Channel Register 0.  
Table 34. CH1 to CH3 Register Map  
Bits  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x11  
CH1  
[15:8]  
[7:0]  
CH_EN1  
RESERVED  
AINPOS1[2:0]  
SETUP_SEL1  
RESERVED  
AINPOS1[4:3]  
0x0001  
0x0001  
0x0001  
RW  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
0x12  
0x13  
CH2  
CH3  
[15:8]  
[7:0]  
CH_EN2  
CH_EN3  
RESERVED  
SETUP_SEL2  
SETUP_SEL3  
AINPOS2[4:3]  
AINPOS3[4:3]  
RW  
RW  
AINPOS2[2:0]  
[15:8]  
[7:0]  
RESERVED  
AINPOS3[2:0]  
Rev. B | Page 58 of 62  
Data Sheet  
AD7175-2  
SETUP CONFIGURATION REGISTER 0  
Address: 0x20, Reset: 0x1320, Name: SETUPCON0  
óhe setup configuration registers are 16-bit registers that configure the reference selection, input buffers, and output coding of the ADC.  
Table 35. Bit Descriptions for SETUPCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
These bits are reserved; set these bits to 0.  
This bit sets the output coding of the ADC for Setup 0.  
Unipolar coded output.  
12  
11  
10  
9
BI_UNIPOLAR0  
0x1  
RW  
0
1
Bipolar coded output (offset binary).  
This bit enables or disables the REF+ input buffer.  
REF+ buffer disabled.  
REFBUF0+  
REFBUF0−  
AINBUF0+  
0x0  
0x0  
0x1  
RW  
RW  
RW  
0
1
REF+ buffer enabled.  
This bit enables or disables the REF− input buffer.  
REF− buffer disabled.  
0
1
REF− buffer enabled.  
This bit enables or disables the AIN+ input buffer.  
AIN+ buffer disabled.  
0
1
AIN+ buffer enabled.  
8
7
AINBUF0−  
This bit enables or disables the AIN− input buffer.  
AIN− buffer disabled.  
0x1  
RW  
R
0
1
AIN− buffer enabled.  
BURNOUT_EN0  
This bit enables a 10 µA current source on the positive analog input  
selected and a 10 µA current sink on the negative analog input selected.  
The burnout currents are useful in diagnosis of an open wire, whereby the  
ADC result goes to full scale. Enabling the burnout currents during  
measurement results in an offset voltage on the ADC. This means the  
strategy for diagnosing an open wire operates best by turning on the  
burnout currents at intervals, before or after precision measurements.  
0x00  
6
RESERVED  
REF_SEL0  
These bits are reserved; set these bits to 0.  
0x00  
0x2  
R
[5:4]  
These bits allow you to select the reference source for ADC conversion on  
Setup 0.  
RW  
00 External Reference.  
10 Internal 2.5 V Reference. This must also be enabled in the ADC mode register.  
11 AVDD1 − AVSS. This can be used as a diagnostic to validate other  
reference values.  
[3:0]  
RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
R
SETUP CONFIGURATION REGISTER 1 TO SETUP CONFIGURATION REGISTER 3  
Address: 0x21 to 0x23, Reset: 0x1320, Name: SETUPCON1 to SETUPCON3  
The remaining three setup configuration registers share the same layout as Setup Configuration Register 0.  
Table 36. SETUPCON1 to SETUPCON3 Register Map  
Bits  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x21  
SETUPCON1  
[15:8]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BI_UNIPOLAR1  
REFBUF1+  
REFBUF1−  
AINBUF1+  
AINBUF1−  
AINBUF2−  
AINBUF3−  
0x1320  
0x1320  
0x1320  
RW  
BURNOUT_EN1  
BURNOUT_EN2  
BURNOUT_EN3  
REF_SEL1  
BI_UNIPOLAR2  
REF_SEL2  
BI_UNIPOLAR3  
REF_SEL3  
RESERVED  
0x22  
0x23  
SETUPCON2  
SETUPCON3  
[15:8]  
[7:0]  
REFBUF2+  
REFBUF3+  
REFBUF2−  
AINBUF2+  
RW  
RW  
RESERVED  
[15:8]  
[7:0]  
REFBUF3−  
AINBUF3+  
RESERVED  
Rev. B | Page 59 of 62  
AD7175-2  
Data Sheet  
FILTER CONFIGURATION REGISTER 0  
Address: 0x28, Reset: 0x0500, Name: FILTCON0  
The filter configuration registers are 16-bit registers that configure the ADC data rate and filter options. Writing to any of these registers  
resets any active ADC conversion and restarts converting at the first channel in the sequence.  
Table 37. Bit Descriptions for FILTCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
SINC3_MAP0  
If this bit is set, the mapping of the filter register changes to directly  
program the decimation rate of the sinc3 filter for Setup 0. All other  
options are eliminated. This allows fine tuning of the output data rate and  
filter notch for rejection of specific frequencies. The data rate when on a  
single channel equals fMOD/(32 × FILTCON0[14:0]).  
0x0  
RW  
[14:12] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
11  
ENHFILTEN0  
This bit enables various postfilters for enhanced 50 Hz/60 Hz rejection for  
Setup 0. The ORDER0 bits must be set to 00 to select the sinc5 + sinc1  
filter for this to work.  
RW  
0
1
Disabled.  
Enabled.  
[10:8]  
ENHFILT0  
These bits select between various postfilters for enhanced 50 Hz/60 Hz  
rejection for Setup 0.  
0x5  
RW  
010 27 SPS, 47 dB rejection, 36.7 ms settling.  
011 25 SPS, 62 dB rejection, 40 ms settling.  
101 20 SPS, 86 dB rejection, 50 ms settling.  
110 16.67 SPS, 92 dB rejection, 60 ms settling.  
This bit is reserved; set this bit to 0.  
7
RESERVED  
ORDER0  
0x0  
0x0  
R
[6:5]  
These bits control the order of the digital filter that processes the  
modulator data for Setup 0.  
RW  
00 Sinc5 + sinc1 (default).  
11 Sinc3.  
[4:0]  
ODR0  
These bits control the output data rate of the ADC and, therefore, the  
settling time and noise for Setup 0. Rates shown as for sinc5 + sinc 1 filter.  
See Table 19 to Table 22.  
0x0  
RW  
00000 250,000.  
00001 125,000.  
00010 62,500.  
00011 50,000.  
00100 31,250.  
00101 25,000.  
00110 15,625.  
00111 10,000.  
01000 5000.  
01001 2500.  
01010 1000.  
01011 500.  
01100 397.5.  
01101 200.  
01110 100.  
01111 59.92.  
10000 49.96.  
10001 20.  
10010 16.66.  
10011 10.  
10100 5.  
Rev. B | Page 60 of 62  
Data Sheet  
AD7175-2  
FILTER CONFIGURATION REGISTER 1 TO FILTER CONFIGURATION REGISTER 3  
Address: 0x29 to 0x2B, Reset: 0x0500, Name: FILTCON1 to FILTCON3  
The remaining three filter configuration registers share the same layout as Filter Configuration Register 0.  
Table 38. FILTCON1 to FILTCON3 Register Map  
Bits  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ENHFILT1  
Bit 0  
Reset  
RW  
0x29  
FILTCON1  
[15:8]  
[7:0]  
SINC3_MAP1  
RESERVED  
RESERVED  
ENHFILTEN1  
0x0500  
RW  
ORDER1  
RESERVED  
ORDER2  
RESERVED  
ORDER3  
ODR1  
0x2A  
0x2B  
FILTCON2  
FILTCON3  
[15:8]  
[7:0]  
SINC3_MAP2  
RESERVED  
ENHFILTEN2  
ENHFILTEN3  
ENHFILT2  
ENHFILT3  
0x0500  
0x0500  
RW  
RW  
ODR2  
ODR3  
[15:8]  
[7:0]  
SINC3_MAP3  
RESERVED  
OFFSET REGISTER 0  
Address: 0x30, Reset: 0x800000, Name: OFFSET0  
The offset (zero-scale) registers are 24-bit registers that can compensate for any offset error in the ADC or in the system.  
Table 39. Bit Descriptions for OFFSET0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
OFFSET0  
Offset calibration coefficient for Setup 0.  
0x800000 RW  
OFFSET REGISTER 1 TO OFFSET REGISTER 3  
Address: 0x31 to 0x33, Reset: 0x800000, Name: OFFSET1 to OFFSET3  
The remaining three offset registers share the same layout as Offset Register 0.  
Table 40. OFFSET1 to OFFSET3 Register Map  
Reg. Name  
Bits  
Reset  
RW  
0x31 OFFSET1 [23:0]  
0x32 OFFSET2 [23:0]  
0x33 OFFSET3 [23:0]  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
0x800000 RW  
0x800000 RW  
0x800000 RW  
GAIN REGISTER 0  
Address: 0x38, Reset: 0x5XXXX0, Name: GAIN0  
The gain (full-scale) registers are 24-bit registers that can compensate for any gain error in the ADC or in the system.  
Table 41. Bit Descriptions for GAIN0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
GAIN0  
Gain calibration coefficient for Setup 0.  
0x5XXXX0 RW  
GAIN REGISTER 1 TO GAIN REGISTER 3  
Address: 0x39 to 0x3B, Reset: 0x5XXXX0, Name: GAIN1 to GAIN3  
The remaining three gain registers share the same layout as Gain Register 0.  
Table 42. GAIN1 to GAIN3 Register Map  
Reg. Name  
0x39 GAIN1  
0x3A GAIN2  
0x3B GAIN3  
Bits  
Reset  
RW  
[23:0]  
[23:0]  
[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
Rev. B | Page 61 of 62  
AD7175-2  
Data Sheet  
OUTLINE DIMENSIONS  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 75. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Models1  
Temperature Range  
Package Description  
Package Option  
AD7175-2BRUZ  
AD7175-2BRUZ-RL  
AD7175-2BRUZ-RL7  
EVAL-AD7175-2SDZ  
EVAL-SDP-CB1Z  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
RU-24  
RU-24  
RU-24  
Evaluation Controller Board  
1 Z = RoHS Compliant Part.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12468-0-5/16(B)  
Rev. B | Page 62 of 62  

相关型号:

AD7175-2BRUZ-RL7

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2_17

24-Bit, 250 kSPS, Sigma-Delta ADC Settling and True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ-RL

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ-RL7

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7176-2

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7176-2BRUZ

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7176-2BRUZ-RL

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7177-2

32-Bit, 10 kSPS, Sigma-Delta ADC with Settling and True Rail-to-Rail Buffers
ADI

AD7177-2BRUZ

32-Bit, 10 kSPS, Sigma-Delta ADC with 100 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7177-2BRUZ-RL7

32-Bit, 10 kSPS, Sigma-Delta ADC with 100 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7177-2_17

32-Bit, 10 kSPS, Sigma-Delta ADC with Settling and True Rail-to-Rail Buffers
ADI