AMMC-5618-W50 [AGILENT]

6 - 20 GHz Amplifier; 6 - 20 GHz的放大器
AMMC-5618-W50
型号: AMMC-5618-W50
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

6 - 20 GHz Amplifier
6 - 20 GHz的放大器

射频和微波 射频放大器 微波放大器
文件: 总8页 (文件大小:140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent AMMC-5618  
6 - 20 GHz Amplifier  
Data Sheet  
Chip Size:  
920 x 920 µm (36.2 x 36.2 mils)  
100 ± 10µm (4 ± 0.4 mils)  
Chip Size Tolerance:± 10µm (± 0.4 mils)  
Chip Thickness:  
Pad Dimensions: 80 x 80 µm (3.1 x 3.1 mils or larger)  
Description  
Agilent’s AMMC-5618 620 GHz  
MMIC is an efficient two-stage  
amplifier designed to be used as  
a cascadable intermediate gain  
block for EW applications. In  
communication systems, it can  
be used as a LO buffer, or as a  
transmit driver amplifier. It is  
fabricated using a PHEMT  
Features  
Applications  
Frequency Range: 6 20 GHz  
• High Gain: 14.5 dB Typical  
• Output Power: 19.5 dBm Typical  
• Driver/Buffer in microwave  
communication systems  
• Cascadable gain stage for EW  
systems  
• Input and Output Return Loss: < -12  
dB  
• Phased array radar and transmit  
amplifiers  
Flat Gain Response: ± 0.3 dB Typical  
integrated circuit structure that  
provides exceptional efficiency  
and flat gain performance.  
During typical operation with a  
single 5-V supply, each gain  
stage is biased for Class-A  
operation for optimal power  
output with minimal distortion.  
The RF input and output have  
matching circuitry for use in  
50-environments. The  
backside of the chip is both RF  
and DC ground. This helps  
simplify the assembly process  
and reduces assembly related  
performance variations and  
costs. The MMIC is a cost  
• Single Supply Bias: 5 V @ 107 mA  
[1]  
AMMC-5618 Absolute Maximum Ratings  
Symbol  
Parameters/Conditions  
Drain Supply Voltage  
Optional Gate Voltage  
Optional Gate Voltage  
Drain Supply Current  
Drain Supply Current  
RF Input Power  
Units  
V
Min.  
Max.  
7
V
V
V
,V  
D1 D2  
V
-5  
-5  
+1  
G1  
G2  
V
+1  
I
I
mA  
mA  
dBm  
°C  
70  
D1  
D2  
84  
P
20  
in  
T
Channel Temp.  
+150  
ch  
T
Operating Backside Temp.  
Storage Temp.  
°C  
-55  
-65  
b
T
°C  
+165  
+300  
stg  
effective alternative to hybrid  
(discrete FET) amplifiers that  
require complex tuning and  
assembly processes.  
T
Maximum Assembly Temp. (60 sec max) °C  
max  
Note:  
1. Operation in excess of any one of these conditions may result in permanent damage to this device.  
Note: These devices are ESD sensitive. The following precautions are strongly recommended:  
Ensure that an ESD approved carrier is used when dice are transported from one destination to another.  
Personal grounding is to be worn at all times when handling these devices.  
[1]  
AMMC-5618 DC Specifications / Physical Properties  
Symbol  
,V  
Parameters and Test Conditions  
Recommended Drain Supply Voltage  
First stage Drain Supply Current  
Unit  
V
Min.  
Typical Max.  
V
3
5
7
D1 D2  
I
I
I
mA  
48  
D1  
(V = 5V, V = Open or Ground)  
D1  
G1  
Second stage Drain Supply Current  
(V = 5V, V = Open or Ground)  
mA  
59  
D2  
D1  
D2  
G2  
+ I  
Total Drain Supply Current  
(V = V = Open or Ground, V = V = 5 V)  
mA  
107  
22  
140  
D2  
G1  
G2  
D1  
D2  
[2]  
θ
Thermal Resistance  
(Backside temperature (T ) = 25°C  
°C/W  
ch-b  
b
Notes:  
1. Backside temperature Tb = 25°C unless otherwise noted  
2. Channel-to-backside Thermal Resistance (θch-b) = 32°C/W at Tchannel (Tc) = 150°C as measured using infrared microscopy.  
Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data.  
[3]  
AMMC-5618 RF Specifications  
(Tb = 25°C, V = 5 V, I = 107 mA, Z = 50 .)  
DD  
DD  
0
Symbol  
Parameters and Test Conditions  
Small-signal Gain  
Unit  
dB  
Min.  
Typical Max.  
2
|S |  
12.5  
14.5  
± 0.3  
12  
21  
2
|S |  
Small-signal Gain Flatness  
dB  
21  
RL  
RL  
Input Return Loss  
dB  
9
in  
Output Return Loss  
dB  
9
12  
out  
2
|S |  
Isolation  
dB  
-40  
17.5  
19  
-45  
12  
P
P
Output Power at 1dB Gain Compression @ 20 GHz  
Saturated Output Power (3dB Gain Compression) @ 20 GHz  
Output 3rd Order Intercept Point @ 20 GHz  
dBm  
dBm  
dBm  
dB/°C  
dB  
19.5  
20.5  
26  
-1dB  
sat  
OIP3  
[2]  
S / T  
Temperature Coefficient of Gain  
-0.023  
21  
NF  
Noise Figure @ 20 GHz  
4.4  
6.5  
Notes:  
3. 100% on-wafer RF test is done at frequency = 6, 13 and 20 GHz, except as noted.  
4. Temperature Coefficient of Gain based on sample test  
2
AMMC-5618 Typical Performance (T  
=25°C, V =5V, I = 107 mA, Zo=50)  
DD DD  
chuck  
18  
15  
12  
9
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-5  
-10  
-15  
-20  
-25  
6
3
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 1. Gain  
Figure 2. Isolation  
Figure 3. Input Return Loss  
0
-5  
10  
8
24  
20  
16  
12  
8
-10  
-15  
-20  
-25  
-30  
6
4
2
4
0
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 4. Output Return Loss  
Figure 5. Noise Figure  
Figure 6. Output Power at 1 dB Gain Compres-  
sion  
AMMC-5618 Typical Performance vs. Supply Voltage (Tb=25°C, Zo=50)  
18  
15  
12  
9
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-5  
Vdd=4V  
Vdd=5V  
Vdd=6V  
-10  
-15  
Vdd=4V  
Vdd=5V  
Vdd=6V  
6
-20  
Vdd=4V  
Vdd=5V  
Vdd=6V  
3
-25  
-30  
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Gain and Voltage  
Figure 8. Isolation and Voltage  
Figure 9. Input Return Loss and Voltage  
3
AMMC-5618 Typical Performance vs. Supply Voltage (cont.) (Tb=25°C, Zo=50)  
0
-5  
25  
20  
15  
10  
5
Vdd=4V  
Vdd=5V  
Vdd=6V  
-10  
-15  
-20  
-25  
-30  
-35  
Vdd=4V  
Vdd=5V  
Vdd=6V  
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Output Return Loss and Voltage  
Figure 11. Output Power and Voltage  
AMMC-5618 Typical Performance vs. Temperature (V =5V, Zo=50)  
DD  
25  
20  
15  
10  
5
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40 C  
25 C  
85 C  
Vdd=4V  
Vdd=5V  
Vdd=6V  
-40 C  
25 C  
85 C  
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Gain and Temperature  
Figure 13. Isolation and Temperature  
Figure 14. Input Return Loss and Temperature  
0
8
7
6
5
4
3
2
25  
20  
15  
-40 C  
25 C  
85 C  
-5  
-10  
-15  
-20  
-25  
10  
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
5
0
1
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Output Return Loss and Temperature  
Figure 16. Noise Figure and Temperature  
Figure 17. Output Power and Temperature  
4
[1]  
AMMC-5618 Typical Scattering Parameters (Tb=25°C, V = 5 V, I = 107 mA)  
DD  
DD  
S11  
Mag  
0.76  
0.72  
0.69  
0.66  
0.63  
0.57  
0.43  
0.23  
0.1  
S21  
Mag  
0
S12  
Mag  
0
S22  
Mag  
0.95  
0.91  
0.84  
0.75  
0.64  
0.55  
0.45  
0.37  
0.31  
0.27  
0.23  
0.2  
Freq GHz  
dB  
Phase  
-125  
-147  
-166  
174  
152  
126  
94  
dB  
-52.0  
-35.4  
-19.0  
-7.4  
Phase  
74  
dB  
Phase  
-134  
-57  
-65  
-60  
-104  
-113  
-142  
-170  
161  
142  
127  
115  
103  
95  
dB  
Phase  
-77  
2.00  
-2.4  
-80.0  
-74.0  
-69.1  
-59.1  
-57.7  
-51.8  
-48.8  
-45.7  
-44.5  
-44.6  
-44.3  
-44.0  
-43.9  
-43.6  
-43.3  
-43.2  
-43.1  
-42.9  
-42.8  
-42.5  
-42.5  
-42.3  
-42.1  
-41.9  
-41.7  
-41.6  
-41.4  
-41.3  
-41.1  
-40.8  
-40.8  
-40.8  
-40.5  
-40.4  
-40.3  
-40.1  
-39.9  
-39.9  
-40.0  
-39.8  
-40.3  
-0.4  
2.50  
-2.9  
0.02  
0.11  
0.43  
1.09  
2.43  
4.2  
-119  
-102  
-120  
-147  
178  
138  
94  
0
-0.9  
-97  
3.00  
-3.2  
0
-1.6  
-118  
-138  
-156  
-173  
172  
160  
151  
141  
130  
120  
109  
98  
3.50  
-3.6  
0
-2.6  
4.00  
-4.0  
0.8  
0
-3.8  
4.50  
-4.9  
7.7  
0
-5.3  
5.00  
-7.3  
12.5  
14.7  
15.1  
15.1  
15.0  
15.0  
14.9  
14.9  
14.9  
14.8  
14.8  
14.7  
14.7  
14.7  
14.6  
14.6  
14.6  
14.6  
14.7  
14.7  
14.7  
14.8  
14.9  
14.9  
15.0  
15.1  
15.1  
15.2  
15.2  
15.2  
15.0  
14.8  
14.5  
14.1  
13.5  
0
-6.9  
5.50  
-12.7  
-19.8  
-23.6  
-24.7  
-26.4  
-28.2  
-26.3  
-22.8  
-19.9  
-17.7  
-16.1  
-14.8  
-13.9  
-13.2  
-12.6  
-12.2  
-11.9  
-11.6  
-11.5  
-11.4  
-11.4  
-11.5  
-11.7  
-11.9  
-12.2  
-12.4  
-12.4  
-12.2  
-11.5  
-10.5  
-9.2  
67  
5.41  
5.69  
5.69  
5.64  
5.61  
5.59  
5.57  
5.55  
5.52  
5.49  
5.45  
5.43  
5.41  
5.38  
5.37  
5.37  
5.38  
5.4  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
-8.6  
6.00  
66  
60  
-10.1  
-11.3  
-12.6  
-13.9  
-15.3  
-16.7  
-18.2  
-19.7  
-21.4  
-22.8  
-24.3  
-25.1  
-25.1  
-24.5  
-23.3  
-22.2  
-21.3  
-20.7  
-19.8  
-19.1  
-18.4  
-17.7  
-17.2  
-16.7  
-16.2  
-15.8  
-15.4  
-14.9  
-14.6  
-14.0  
-13.8  
-13.5  
-13.1  
6.50  
0.07  
0.06  
0.05  
0.04  
0.05  
0.07  
0.1  
85  
34  
7.00  
87  
13  
7.50  
68  
-5  
8.00  
28  
-22  
-37  
-51  
-65  
-77  
-90  
-101  
-113  
-124  
-134  
-145  
-155  
-166  
-176  
174  
163  
153  
142  
131  
120  
109  
97  
0.17  
0.15  
0.12  
0.1  
8.50  
-23  
-55  
-74  
-88  
-100  
-110  
-120  
-128  
-136  
-143  
-151  
-159  
-166  
-174  
177  
168  
157  
146  
132  
116  
98  
9.00  
86  
87  
9.50  
77  
74  
10.00  
10.50  
11.00  
11.50  
12.00  
12.50  
13.00  
13.50  
14.00  
14.50  
15.00  
15.50  
16.00  
16.50  
17.00  
17.50  
18.00  
18.50  
19.00  
19.50  
20.00  
20.50  
21.00  
21.50  
22.00  
Note:  
0.13  
0.16  
0.18  
0.2  
70  
0.09  
0.07  
0.06  
0.06  
0.06  
0.06  
0.07  
0.08  
0.09  
0.09  
0.1  
60  
63  
43  
57  
23  
52  
1
0.22  
0.23  
0.25  
0.26  
0.26  
0.27  
0.27  
0.27  
0.27  
0.26  
0.25  
0.25  
0.24  
0.24  
0.25  
0.27  
0.3  
45  
-22  
40  
-44  
34  
-60  
31  
-73  
24  
-85  
5.42  
5.46  
5.49  
5.54  
5.58  
5.63  
5.66  
5.71  
5.75  
5.75  
5.73  
5.65  
5.51  
5.31  
5.05  
4.72  
19  
-95  
15  
-105  
-113  
-121  
-126  
-132  
-138  
-143  
-148  
-154  
-158  
-163  
-166  
-172  
-176  
179  
9
0.11  
0.12  
0.13  
0.14  
0.15  
0.16  
0.16  
0.17  
0.18  
0.19  
0.2  
3
0
-7  
-12  
-16  
-23  
-29  
-35  
-42  
-48  
-55  
-63  
-72  
77  
85  
56  
73  
34  
60  
0.35  
0.4  
14  
46  
-7.9  
-5  
33  
0.2  
-6.7  
0.46  
0.52  
-21  
-36  
19  
0.21  
0.22  
-5.7  
5
1. Data obtained from on-wafer measurements  
5
Biasing and Operation  
Assembly Techniques  
76 ± 8 mS. A guided wedge at an  
ultrasonic power level of 64 dB  
can be used for the 0.7 mil wire.  
The recommended wire bond  
stage temperature is 150 ± 2° C.  
The AMMC-5618 is normally  
biased with a single positive  
drain supply connected to both  
The backside of the AMMC-5618  
chip is RF ground. For  
microstripline applications, the  
chip should be attached directly  
to the ground plane (e.g., circuit  
V
and V bond pads as  
D1  
D2  
shown in Figure 19(a). The  
recommended supply voltage is  
3 to 5 V.  
carrier or heatsink) using  
electrically conductive epoxy  
[1]  
Caution should be taken to not  
exceed the Absolute Maximum  
Rating for assembly temperature  
and time.  
.
No ground wires are required  
because all ground connections  
are made with plated through-  
holes to the backside of the  
device.  
For best performance, the  
topside of the MMIC should be  
brought up to the same height  
as the circuit surrounding it.  
This can be accomplished by  
mounting a gold plated metal  
shim (same length and width as  
the MMIC) under the chip,  
which is of the correct  
The chip is 100 µm thick and  
should be handled with care. This  
MMIC has exposed air bridges on  
the top surface and should be  
handled by the edges or with a  
custom collet (do not pick up die  
with vacuum on die center.)  
Gate bias pads (V & V ) are  
G1  
G2  
also provided to allow  
adjustments in gain, RF output  
power, and DC power  
thickness to make the chip and  
adjacent circuit coplanar.  
dissipation, if necessary. No  
connection to the gate pad is  
needed for single drain-bias  
operation. However, for custom  
applications, the DC current  
flowing through the input and/  
or output gain stage may be  
adjusted by applying a voltage  
This MMIC is also static  
sensitive and ESD handling  
precautions should be taken.  
The amount of epoxy used for  
chip and or shim attachment  
should be just enough to  
provide a thin fillet around the  
bottom perimeter of the chip or  
shim. The ground plane should  
Notes:  
1. Ablebond 84-1 LM1 silver epoxy is  
recommended.  
2. Buckbee-Mears Corporation, St. Paul, MN,  
800-262-3824  
to the gate bias pad(s) as shown be free of any residue that may  
in Figure 19(b). A negative gate- jeopardize electrical or  
pad voltage will decrease the  
drain current. The gate-pad  
voltage is approximately zero  
volt during operation with no  
DC gate supply. Refer to the  
Absolute Maximum Ratings  
table for allowed DC and  
thermal conditions.  
mechanical attachment.  
The location of the RF bond  
pads is shown in Figure 20.  
Note that all the RF input and  
output ports are in a Ground-  
Signal-Ground configuration.  
RF connections should be kept  
as short as reasonable to  
minimize performance  
degradation due to undesirable  
series inductance. A single bond  
wire is sufficient for signal  
connections, however double-  
bonding with 0.7 mil gold wire  
[2]  
or the use of gold mesh is  
recommended for best  
performance, especially near the  
high end of the frequency range.  
Thermosonic wedge bonding is  
the preferred method for wire  
attachment to the bond pads.  
Gold mesh can be attached using  
a 2 mil round tracking tool and a  
tool force of approximately 22  
grams with an ultrasonic power  
of roughly 55 dB for a duration of  
6
VD1  
VD2  
Feedback  
Network  
Matching  
Matching  
RF Output  
Matching  
RF Input  
VG1  
VG2  
Figure 18. AMMC-5618 Schematic  
To power supply  
To power supply  
100 pF chip capacitor  
100 pF chip capacitor  
gold plated shim  
gold plated shim  
RF Input  
RF Output  
RF Input  
RF Output  
Bonding island  
or small  
chip-capacitor  
To VG1 power supply  
To VG2 power supply  
(a)  
Figure 19. AMMC-5618 Assembly Diagram  
(b)  
7
0
143  
Vd1  
355  
GND  
573  
Vd2  
920  
530  
530  
RF  
RF  
0
0
Vg2  
593  
Vg1  
0
79  
920  
Figure 20. AMMC-5618 Bond pad locations (dimensions in microns)  
Ordering Information:  
AMMC-5618-W10 = waffle pack, 10 devices per tray  
AMMC-5618-W50 = waffle pack, 50 devices per tray  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
Data subject to change.  
Copyright 2003 Agilent Technologies, Inc.  
February 12, 2004  
5989-0532EN  

相关型号:

AMMC-5620

Agilent AMMC-5620 6 - 20 GHz High Gain Amplifier
AGILENT

AMMC-5620

6 - 20 GHz High Gain Amplifier
AVAGO

AMMC-5620-W10

Agilent AMMC-5620 6 - 20 GHz High Gain Amplifier
AGILENT

AMMC-5620-W10

6 - 20 GHz High Gain Amplifier
AVAGO

AMMC-5620-W50

Agilent AMMC-5620 6 - 20 GHz High Gain Amplifier
AGILENT

AMMC-5620-W50

6 - 20 GHz High Gain Amplifier
AVAGO

AMMC-6120

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6120-W10

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6120-W50

8000MHz - 20000MHz RF/MICROWAVE FREQUENCY DOUBLER, 0.064 X 0.040 INCH, DIE
AVAGO

AMMC-6120-W50

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6140

20–40 GHz Output x2 Active Frequency Multiplier
AVAGO

AMMC-6140

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM