HMMC-3040 [AGILENT]

20-43 GHz Double-Balanced Mixer and LO-Amplifier; 20-43 GHz的双平衡混频器和LO放大器
HMMC-3040
型号: HMMC-3040
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

20-43 GHz Double-Balanced Mixer and LO-Amplifier
20-43 GHz的双平衡混频器和LO放大器

放大器
文件: 总7页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HMMC-3040  
2043 GHz Double-Balanced Mixer  
and LO-Amplifier  
Data Sheet  
Features  
• Both up and downconverting  
functions  
• Harmonic LO mixing capability  
• Large bandwidth:  
RFport:2043GHz  
LOportmatch:DC43GHz  
LOamplifier:2043GHz  
Chip Size:  
2520 x 730 µm (99.2 x 28.7 mils)  
IFport:DC5GHz  
Chip Size Tolerance:  
Chip Thickness:  
±10 µm (±0.4 mils)  
127 ± 15 µm (5.0 ± 0.6 mils)  
• Repeatable conversion loss:  
9.5dBtypicalat30GHz  
• Low LO drive required  
• 50port matching networks  
Description  
Absolute Maximum Ratings[1]  
The HMMC-3040 is a broadband  
MMIC Double-Balanced Mixer  
(DBM) with an integrated high-  
gain LO amplifier. It can be used  
as either an up-converter or as a  
down-converter in microwave/  
millimeter-wave transceivers. If  
desired, the LO amplifier can be  
biased to function as a frequency  
multiplier to enable harmonic  
mixing of a LO source.  
Symbol  
Parameters/Conditions  
Units  
Min.  
Max.  
VD1,2  
VG1,2  
IDD  
Drain Supply Voltages  
Gate Supply Voltages  
Total Drain Current  
V
5
V
-3.0  
0.5  
mA  
dBm  
°C  
°C  
°C  
°C  
400  
21  
Pin  
RF Input Power  
Tch  
Channel Temperature[2]  
Backside Ambient Temperature  
Storage Temperature  
Max. Assembly Temperature  
160  
+75  
+165  
300  
TA  
-55  
-65  
Tst  
Tmax  
This three-port device has input  
and output matching circuitry for  
use in 50 ohm environments. The  
MMIC provides repeatable  
conversion loss (requiring no  
tuning), thereby making it  
suitable for automated assembly  
processes.  
Notes:  
1. Absolute maximum ratings for continuous operation unless otherwise noted.  
2. Refer to DC Specifications/Physical Properties table for deratinginformation.  
HMMC-3040 DC Specifications/Physical Properties[1]  
Symbol  
Parameters and Test Conditions  
Units  
Min.  
Typ.  
Max.  
VD1,2  
ID1  
Drain Supply Operating Voltages  
V
2
4.5  
27  
5
First Stage Drain Supply Current (VDD = 4.5 V, VG1 -0.8 V)  
Total Drain Supply Current for Stage 2 (VDD = 4.5 V, VGG -0.8 V)  
Gate Supply Operating Voltages (IDD 150mA)  
mA  
ID2  
mA  
123  
-0.8  
-1.2  
62  
VG1,2  
VP  
V
Pinch-off Voltage (VDD = 4.5 V, VDD 10 mA)  
V
-2  
-0.8  
θch-bs  
Tch  
Thermal Resistance (Channel-to-Backside at Tch = 160°C)[2]  
Channel Temperature (TA = 75°C, MTTF > 106 hrs VDD = 4.5V, IDD = 300 mA)[3]  
°C/Watt  
°C  
160  
Notes:  
1. Backside ambient operating temperature TA = 25°C, unless otherwise noted.  
2. Thermal resistance (°C/Watt) at a channel temperature T(°C) can be estimated using the equation: θ(T) 62x [T(°C)+273]/[160°C+273].  
3. Derate MTTF by a factor of two for every 8°C above Tch  
.
RF Specifications (TA = 25°C, ZO = 50 , VDD = 4.5 V, IDD = 150 mA)  
Symbol  
Parameters and Test Conditions  
Units  
Min.  
Typ.  
Max.  
BW  
Operating Bandwidth  
RF and LO  
IF  
GHz  
GHz  
20  
DC  
20–43  
DC–5  
43  
5
C.L.  
Conversion Loss  
LO Drive Level  
dB  
9.5  
2
12  
PLO  
dBm  
dB  
LO/RF Isolation  
P-1dB  
LO-to-RF Isolation[1]  
18  
Input Power  
(@ 1 dB increase in C.L.)  
Down-Convert (RF/IF)  
Up-Convert (IF/RF)  
dBm  
dBm  
15  
8
Note:  
1. Reference: LO input. Does not include LO amplifier gain (-20dB).  
2
Applications  
The LO amplifier has effectively  
two gain stages as indicated in  
Figure 1. One wire connection is  
needed to each DC drain bias  
supply pad, VD1 and VD2, and one to DC voltages.  
to each DC gate bias pad, VG1 and  
The microwave/millimeter-wave  
ports are not AC-coupled. A DC  
blocking capacitor is required on  
any RF port that may be exposed  
The HMMC-3040 MMIC is a  
broadband double-balanced  
mixer (DBM) with an integrated  
LO amplifier. It can be used as  
either a frequency up-converter  
or down-converter. This mixer  
was designed specifically for  
microwave/millimeter-wave  
point-to-point and point-to-  
multipoint (including LMDS/  
LMCS/MVDS) communication  
systems that operated in the  
20–43 GHz frequency range.  
VG2.  
No ground wires are needed be-  
cause ground connections are  
made with plated through-holes  
to the backside of the device.  
Harmonic LO mixing is possible  
in some limited cases. The inte-  
grated LO amplifier’s stages can  
be individually biased to provide  
optimum harmonic output. When  
considering the HMMC-3040 as a  
harmonic mixer, it is important  
to realize that the integrated dou-  
ble balanced mixer diodes need  
Assembly Techniques  
It is recommended that the elec-  
trical connections to the bonding  
pads be made using 0.7-1.0 mil  
diameter gold wire. The micro-  
wave/millimeter-wave connec-  
tions should be kept as short as  
possible to minimize inductance.  
For assemblies requiring long  
bond wires, multiple wires can  
be attached to the RF bonding  
pads.  
The LO amplifier can also be  
biased to provide frequency  
multiplication of the LO source  
(Figure 2). The integrated LO  
amplifier will provide a good  
impedance match to low  
frequency input signals. Frequen-  
cies below approximately 18 GHz  
will not be passed by the LO  
network, enhancing LO rejection.  
18 dBm (15 to 22 dBm) to  
~
obtain optimum mixer conver-  
sion. Agilent product note #15,  
“HMMC-3040 Multiplier  
Operation” provides two  
examples of harmonic mixing.  
Also, Agilent application note  
#50, “HMMC-5040 As a 20 to  
40 GHz Multiplier” provides  
additional information on  
multiplier operation and is a  
good reference when considering  
the HMMC-3040 as a harmonic  
mixer; the HMMC-3040 inte-  
grated LO amplifier is similar to  
the HMMC-5040. No impedance  
matching network is needed  
because the LO port provides a  
good match to signals having  
frequency from DC to approxi-  
mately 43 GHz.  
GaAs MMICs are ESD sensitive.  
ESD preventive measures must  
be employed in all aspects of  
storage, handling, and assembly.  
MMIC ESD precautions, handling  
considerations, die attach and  
bonding methods are critical fac-  
tors in successful GaAs MMIC  
performance and reliability.  
Biasing and Operation  
The recommended DC bias  
condition is with all drains  
connected to a single 3.5–4.5 volt  
supply and all gates connected to  
an adjustable negative voltage  
supply. The gate voltage is  
adjusted for a total drain supply  
current of typically 150230 mA.  
An assembly diagram is shown in  
Figure 4.  
Agilent application note #54,  
“GaAs MMIC ESD, Die Attach  
and Bonding Guidelines” pro-  
vides basic information on these  
subjects.  
Additional References  
DBM  
DBM  
PN #15, “HMMC-5040 Multiplier  
Operation,” and AN # 50,  
“HMMC-5040 As a 20-40 GHz  
Multiplier.”  
IF  
RF  
IF  
RF  
V
V
V
V
D2  
D1  
G2  
G1  
2
1
V
V
V
V
D2  
D1  
G2  
G1  
LO  
LO  
Figure 1. HMMC-3040 Simplified Block  
Diagram.  
Figure 2. HMMC-3040 Harmonic Mixing Block  
Diagram.  
3
0
70  
330  
860 1190  
2020  
760  
480  
660  
430  
250  
80  
0
0
0
90  
1210  
Note:  
1. Numbers relate to (X,Y) reference. (Demensions are micrometers)  
Figure 3. HMMC-3040 Bonding Pad Positions.  
V
DD  
>0.1 µF  
IF  
>100 pF  
V
V
D1  
D2  
LO  
RF  
V
V
G2  
G1  
>100 pF  
Optional I.F., wire support pads.  
(Stitch bond connect IF pad, support pad,  
and trans line)  
V
GG  
>0.1 µF  
Figure 4. HMMC-3040 Common Assembly Diagram.  
4
Additional HMMC-3040 Performance Characteristics  
(Data refer to Figure 1)  
VDD = 4.5 V, IDD = 230 mA  
13  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
VDD = 3.0 V, IDD = 150 mA  
VDD = 3.5 V, IDD = 230 mA  
VDD = 4.5 V, IDD = 230 mA  
VDD = 3.0 V, IDD = 150 mA  
VDD = 3.5 V, IDD = 230 mA  
VDD = 4.5 V, IDD = 230 mA  
8
7
8
6
8
7
IF = 3 GHz  
LO = 25 GHz, 0 dBm  
5
RF = 28 GHz, 0 dBm  
LO = 25 GHz, 0 dBm  
7
-30  
4
6
-12  
-20  
-10  
0
10  
20  
-20 -15 -10 -5  
0
5
10 15 20  
-8  
-4  
0
4
8
RF-INPUT POWER (dBm)  
IF-INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
Figure 6. Down-Conversion Loss vs. RF Input  
Power.  
Figure 5. Up-Conversion Loss vs. IF Input  
Power for Various LO Amplifier Bias  
Conditions.  
Figure 7. Conversion Loss vs. LO Input Power.  
12  
IDD = 150 mA  
IDD = 230 mA  
IDD = 290 mA  
10  
11  
9
8
7
6
RF = 28 GHz, 0 dBm  
5
LO = 25 GHz, 0 dBm  
4
2
2.5  
3
3.5  
4
4.5  
5
V
DD  
(Volt)  
Figure 8. Conversion Loss vs. VDD for Various  
LO Amplifier Drain Currents.  
Note:  
All data measured on individual devices  
mounted in a 50 GHz test package TA = 25°C  
and under Figure 1 condition (except where  
noted).  
5
6
This data sheet contains a variety of typical and guaranteed performance data. The information supplied should  
not be interpreted as a complete list of circuit specifications. In this data sheet the term typical refers to the 50th  
percentile performance. For additional information contact your local Agilent Technologies’ sales representative.  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
Obsoletes 5988-1906EN  
May 20, 2002  
5988-6895EN  

相关型号:

HMMC-3102

DC - 16 GHz Packaged Divide-by-2 Prescaler
AGILENT

HMMC-3102-BLK

DC - 16 GHz Packaged Divide-by-2 Prescaler
AGILENT

HMMC-3102-TR1

DC - 16 GHz Packaged Divide-by-2 Prescaler
AGILENT

HMMC-3104

DC-16 GHz Packaged Divide-by-4 Prescaler
AGILENT

HMMC-3104-BLK

DC-16 GHz Packaged Divide-by-4 Prescaler
AGILENT

HMMC-3104-TR1

DC-16 GHz Packaged Divide-by-4 Prescaler
AGILENT

HMMC-3108

DC-16 GHz Packaged Divide-by-8
AGILENT

HMMC-3108-BLK

DC-16 GHz Packaged Divide-by-8
AGILENT

HMMC-3108-TR1

DC-16 GHz Packaged Divide-by-8
AGILENT

HMMC-3122

3122 SERIES, PRESCALER, PDSO8, 4.90 X 3.90 MM, 1.55 MM HEIGHT, 1.25 MM PITCH, PLASTIC, MS-012, SOIC-8
AVAGO

HMMC-3122-BLK

Prescaler, 3122 Series, 1-Func, GAAS, PDSO8, 4.90 X 3.90 MM, 1.55 MM HEIGHT, 1.25 MM PITCH, PLASTIC, MS-012, SOIC-8
AGILENT

HMMC-3122-TR1

3122 SERIES, PRESCALER, PDSO8, 4.90 X 3.90 MM, 1.55 MM HEIGHT, 1.25 MM PITCH, PLASTIC, MS-012, SOIC-8
AVAGO