AK7755EN [AKM]

Consumer Circuit, PQCC36, QFN-36;
AK7755EN
型号: AK7755EN
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Consumer Circuit, PQCC36, QFN-36

商用集成电路
文件: 总109页 (文件大小:2295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK7755]  
AK7755  
DSP with Mono ADC Stereo CODEC + Mic/Lineout Amp  
1. General Description  
The AK7755 is a highly integrated digital signal processor, including a mono ADC, a stereo audio CODEC, a  
MIC pre-amplifier, a line-out amplifier and digital audio I/F. The audio DSP has 2560step at fs = 48kHz  
parallel processing power. As the AK7755 is a RAM based DSP, it is programmable for user requirements  
such as high performance hands free function and acoustic effects. The AK7755 is available in a space saving  
small 36-pin QFN package.  
2. Features  
DSP  
- Word length: 24-bit (Data RAM 24-bit floating point)  
- Instruction cycle: 8.1ns (2560fs at fs=48kHz)  
- Multiplier 24 x 24 48-bit (double precision available)  
- Divider 20 / 20 → 20-bit (with floating point normalization function)  
- ALU: 52-bit arithmetic operation (with overflow margin 4-bit)  
- Program RAM: 4096 × 36-bit  
- Coefficient RAM: 2048 × 24-bit  
- Data RAM: 2048 × 24-bit (24-bit floating point)  
- Offset Register: 32 × 13-bit  
- Delay RAM: 8192 × 24-bit  
- Accelerator Coefficient RAM: 2048 × 20-bit  
- Accelerator Data RAM: 2048 × 16-bit  
- JX pins (Interrupt)  
- Master/Slave Operation  
- Master Clock: 2560fs  
(Internally Generated by PLL from 32, 48, 64, 128, 256 and 384fs clock)  
Two Digital Interfaces (I/F1, I/F2)  
- Digital Signal Input Port (4ch): MSB justified 24-bit, LSB justified 24/20/16-bit, I2S  
- Digital Signal Input Port (6ch): MSB justified 24-bit, LSB justified 24/20/16-bit, I2S  
- Short / Long Frame  
- 24-bit linear, 8-bit A-law, 8-bit μ-law  
- TDM 256fs (8ch) MSB justified and I2S formats  
Stereo 24-bit ADC:  
- Sampling Frequency: fs=8kHz ~ 96kHz  
- ADC Characteristics S/(N+D): 91dB, DR, S/N: 102dB  
- Two-Channel Analog Input Selector (Differential, Single-ended Input)  
- Channel Independent Mic Analog Gain Amplifier  
(0~18dB (2dB Step), 18~36dB (3dB Step))  
- Analog DRC (Dynamic Range Control)  
- Channel Independent Digital Volume (24~-103dB, 0.5dB Step Mute)  
- Digital HPF for DC Offset Cancelling  
Mono 24-bit ADC  
- Sampling Frequency: 8kHz ~ 96kHz  
- ADC Characteristics S/(N+D): 90dB; DR, S/N: 100dB  
- Line Amplifier: 21dB ~ -21dB, 3dB Step  
- Digital Volume (24dB ~ -103dB, 0.5dB step, Mute)  
- Digital HPF for DC Offset Cancelling  
014006643-E-00  
2014/10  
- 1 -  
[AK7755]  
Stereo 24-bit DAC  
- Sampling Frequency: fs=8kHz ~ 96kHz  
- Digital Volume (12dB ~ -115dB, 0.5step, Mute)  
- Digital De-emphasis Filter (tc=50/15us, fs=32kHz, 44.1kHz, 48kHz)  
Line Output  
- Single-ended Output  
- S/(N+D): 91dB, DR, S/N: 106dB  
- Stereo Analog Volume (+0dB ~ -28dB, 2.0dB step, Mute)  
Analog Mixer  
Digital Mixer  
4ch Digital Microphone Interface  
I2C Bootloader  
- EEPROM Mat Selectable  
μP Interface: SPI, I2C-bus (400kHz Fast Mode)  
Power supply  
Analog (AVDD): 3.0V ~ 3.6V (typ. 3.3V)  
Digital1 (DVDD): 1.14V ~ 1.3V (typ. 1.2V)  
(External Power Supply or Internal Regulator is selectable)  
I/F (TVDD): 1.7V ~ 3.6V (typ. 3.3V)  
Operating Temperature Range: -40C ~ 85C  
Package: 36-pin QFN (0.5mm pitch)  
014006643-E-00  
2014/10  
- 2 -  
[AK7755]  
3. Table of Contents  
1. General Description.................................................................................................................................................1  
2. Features....................................................................................................................................................................1  
3. Table of Contents.....................................................................................................................................................3  
4. Block Diagram and Functions.................................................................................................................................4  
Block Diagram ..........................................................................................................................................4  
DSP Block Diagram..................................................................................................................................5  
5. Pin Configurations and Functions ...........................................................................................................................6  
Ordering Guide..........................................................................................................................................6  
Pin Layout .................................................................................................................................................6  
Pin Functions.............................................................................................................................................9  
Handling of Unused Pin ..........................................................................................................................10  
6. Absolute Maximum Ratings..................................................................................................................................11  
7. Recommended Operating Conditions....................................................................................................................11  
8. Electrical Characteristics.......................................................................................................................................12  
Analog Characteristics ............................................................................................................................12  
DC Characteristics...................................................................................................................................17  
Power Consumptions...............................................................................................................................17  
Digital Filter Characteritics.....................................................................................................................18  
Switching Characteristics........................................................................................................................19  
9. Functional Description ..........................................................................................................................................26  
System Clock...........................................................................................................................................26  
Control Register Settings.........................................................................................................................30  
Power-up Sequence .................................................................................................................................52  
LDO (Internal Circuit Drive Regulator)..................................................................................................55  
Power-down Sequence ............................................................................................................................55  
Power-down and Reset............................................................................................................................56  
RAM Clear ..............................................................................................................................................58  
Serial Data Interface................................................................................................................................59  
μP Interface Setting and Pin Status .........................................................................................................66  
SPI Interface (I2CSEL pin = “L”)...........................................................................................................66  
I2C Bus Interface (I2CSEL pin= “H”).....................................................................................................79  
Analog Input Block .................................................................................................................................84  
ADC Block..............................................................................................................................................87  
DAC Blocks ............................................................................................................................................90  
Analog Output Block...............................................................................................................................92  
Simple Write Error Check.......................................................................................................................94  
EEPROM Interface..................................................................................................................................95  
Digital Microphone Interface..................................................................................................................99  
Digital Mixer.........................................................................................................................................100  
10. Recommended External Circuits.......................................................................................................................101  
Connection Diagram..............................................................................................................................101  
Peripheral Circuit ..................................................................................................................................105  
11. Package..............................................................................................................................................................107  
Outline Dimensions...............................................................................................................................107  
Package & Lead frame material ............................................................................................................107  
Marking .................................................................................................................................................108  
12. Revision History................................................................................................................................................109  
IMPORTANT NOTICE........................................................................................................................................109  
014006643-E-00  
2014/10  
- 3 -  
[AK7755]  
4. Block Diagram and Functions  
Block Diagram  
Figure 1. Block Diagram  
014006643-E-00  
2014/10  
- 4 -  
 
[AK7755]  
DSP Block Diagram  
OFREG  
32w x 13-Bit  
CP0, CP1  
DP0, DP1  
DLP0, DLP1  
Pointer  
Coefficient RAM  
Data RAM  
2048w x 24-Bit(20.4f)  
Delay RAM  
8192w x 24-Bit(20.4f)  
2048w×24-Bit  
CBUS(24-Bit)  
DBUS(28-Bit)  
Micon I/F  
MPX24  
X
MPX24  
Control  
Serial I/F  
PRAM  
DEC  
Y
4096w×36-Bit  
Multiply  
24 ×24 48-Bit  
PC  
Stack : 5level(max)  
TMP 12×24-Bit  
28-Bit  
48-Bit  
PTMP(LIFO) 6×24-Bit  
MUL  
DBUS  
SHIFT  
DIN4  
2×16/20/24-Bit  
52-Bit  
2×16/20/24-Bit DIN3  
2×16/20/24-Bit DIN2  
2×16/20/24-Bit DIN1  
48-Bit  
A
B
ALU  
DOUT4  
2×16/20/24-Bit  
2×16/20/24-Bit  
2×16/20/24-Bit  
2×16/20/24-Bit  
52-Bit  
DOUT3  
DOUT2  
DOUT1  
Overflow Margin: 4-Bit  
52-Bit  
DR0  
3
Accelerator  
Coefficient RAM  
52-Bit  
Data RAM  
(ACCRAM)  
2048w x 20-Bit  
(ACDRAM)  
2048w x 16-Bit  
Over Flow Data  
Generator  
Division 202020  
Peak Detector  
Figure 2. DSP Block Diagram  
014006643-E-00  
2014/10  
- 5 -  
[AK7755]  
5. Pin Configurations and Functions  
Ordering Guide  
AK7755EN/VN  
AKD7755  
-40 +85C  
36-pin QFN (0.5mm pitch)  
Evaluation Board for AK7755  
Pin Layout  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
SCLK/SCL  
SO/SDA  
OUT1  
AVDD  
SDOUT1/EEST  
AVSS  
SDOUT2/JX3/MAT0  
36pin QFN  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
LIN  
SDOUT3/JX2/MAT1  
(TOP VIEW)  
DVSS  
TVDD  
XTI  
XTO  
AVDD  
PIN  
Input  
Output  
I/O  
Power  
Figure 3. Pin Layout  
014006643-E-00  
2014/10  
- 6 -  
[AK7755]  
I2CSEL pin = “L”  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
SCLK  
OUT1  
AVDD  
SO  
SDOUT1/EEST  
SDOUT2/JX3  
SDOUT3/JX2  
DVSS  
AVSS  
36pin QFN  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
LIN  
(TOP VIEW)  
TVDD  
XTI  
XTO  
AVDD  
PIN  
Input  
Output  
I/O  
Power  
I2CSEL pin = “H”, EXTEEP pin = “L”  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
SCL  
OUT1  
AVDD  
17  
16  
15  
14  
13  
12  
11  
10  
SDA  
SDOUT1/EEST  
SDOUT2/JX3  
SDOUT3/JX2  
DVSS  
AVSS  
36pin QFN  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
LIN  
(TOP VIEW)  
TVDD  
XTI  
XTO  
AVDD  
PIN  
Input  
Output  
I/O  
Power  
014006643-E-00  
2014/10  
- 7 -  
[AK7755]  
I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “L”  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
SCL  
OUT1  
AVDD  
SDA  
SDOUT1/EEST  
SDOUT2/JX3  
SDOUT3/JX2  
DVSS  
AVSS  
36pin QFN  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
LIN  
(TOP VIEW)  
TVDD  
XTI  
XTO  
AVDD  
PIN  
Input  
Output  
I/O  
Power  
I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “H”  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
SCL  
OUT1  
AVDD  
SDA  
SDOUT1/EEST  
MAT0  
MAT1  
DVSS  
TVDD  
XTI  
AVSS  
36pin QFN  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
LIN  
(TOP VIEW)  
XTO  
AVDD  
PIN  
Input  
Output  
I/O  
Power  
014006643-E-00  
2014/10  
- 8 -  
[AK7755]  
Pin Functions  
No.  
1
Pin Name  
VCOM  
I/O  
O
-
Function  
Common Voltage Output Pin of Analog Block  
Connect a 2.2μF capacitor between AVSS.  
Do not connect to an external circuit.  
Analog Ground Pin 0V  
2
AVSS  
I2C-BUS Select Pin  
I2CSEL pin = “L”: SPI Interface  
I2CSEL pin = “H”: I2C-bus Interface  
The I2CSEL pin must be fixed to “L” (DVSS) or “H” (TVDD).  
Serial Data Input2 Pin  
External Conditional Jump1 Pin (JX1E bit = 1)  
Serial Data Input1 Pin  
External Conditional Jump0 Pin (JX0E bit = 1)  
Status Output Pin  
RDY Pin  
3
I2CSEL  
I
SDIN2  
JX1  
SDIN1  
JX0  
I
I
I
4
5
6
I
STO  
O
O
I/O  
RDY  
LRCK  
BICK  
CLKO  
7
8
9
LR Channel Select Pin (Internal pull-down)  
I/O Serial Bit Clock Output Pin (Internal pull-down)  
O
Clock Output Pin  
Crystal oscillator output pin  
10 XTO  
O
When a crystal oscillator is used, connect it between XTI and XTO.  
When a crystal oscillator is not used, leave this pin as open.  
Crystal oscillator input pin  
When a crystal oscillator is used, connect it between XTI and XTO.  
When a crystal oscillator is not used, connect this pin to the external clock  
or leave open.  
11 XTI  
I
12 TVDD  
13 DVSS  
-
I
Digital IO Power Supply Pin: 1.7~3.6V (typ. 3.3V)  
Ground Pin 0V  
SDOUT3  
O Serial Data Output3 Pin  
JX2  
I
External Conditional Jump2 Pin (JX2E bit = 1)  
I2CSEL pin = EXTEEP pin = MATSEL pin = H”  
EEPROM Download Mat Select Address1  
Serial Data Output2 Pin  
External Conditional Jump3 Pin (JX3E bit = 1)  
I2CSEL pin = EXTEEP pin = MATSEL pin = H”  
EEPROM Download Mat Select Address0  
Serial Data Output1 Pin  
14  
15  
MAT1  
I
SDOUT2  
JX3  
O
I
MAT0  
I
SDOUT1  
EEST  
SO  
O
O
O
16  
17  
EEPROM Interface Status  
SO Pin (I2CSEL pin = “L”)  
SDA  
I/O I2CBUS Interface (I2CSEL pin = “H”)  
Serial Data Clock Pin for SPI Interface (I2CSEL pin = “L”)  
SCLK  
SCL  
I
Set this pin to Hwhen there is no clock input.  
18  
19  
I2CBUS Interface Pin (I2CSEL pin = “H”)  
I/O  
EEPROM Download This becomes an output pin when EXTEEP pin = H.  
Serial Data Input Pin for SPI Interface (I2CSEL pin = “L”)  
Set this pin to Lwhen not used.  
SI  
I
EXTEEP  
I
EEPROM Download Control Pin (I2CSEL pin = “H”)  
014006643-E-00  
2014/10  
- 9 -  
[AK7755]  
ChipSelectN Pin for SPI Interface (I2CSEL pin = “L”)  
CSN  
I
Set this pin to Hwhen the AK7755 is in power-down mode or when the  
microprocessor I/F is not used.  
20  
CAD  
MATSEL  
21 AVDD  
I
I
-
I2CBUS Address Pin (I2CSEL pin = “H”)  
EEPROM Mat Select Pin (I2CSEL pin = EXTEEP pin = H)  
Analog Power Supply Pin: (typ. 3.3V)  
Power-down N Pin  
22 PDN  
I
The AK7755 can be powered-down by this pin.  
Set this pin to Lupon power-up the AK7755.  
LDO Select Pin  
LDOE pin = L”: 24 pin External 1.2V Power Supply  
LDOE pin = H”: 24 pin LDO Output (LDO Drive)  
The LDOE pin must be fixed to “L(DVSS)” or H(TVDD)”.  
Power Supply Pin for Digital Core: (typ. 1.2V)  
LDO Output (LDOE pin = H)  
23 LDOE  
DVDD  
I
I
24  
AVDRV  
O
Connect a 1uF capacitor between this pin and DVSS. This pin must not be  
connected to an external circuit.  
25 DVSS  
26 OUT2  
27 OUT3  
28 OUT1  
29 AVDD  
30 AVSS  
-
O
O
O
-
Ground Pin 0V  
Line Output 2 Pin  
Line Output 3 Pin  
Line Output 1 Pin  
Analog Power Supply Pin: 3.3V (typ)  
Analog Ground Pin 0V  
-
IN4/INN2  
DMCLK2  
I
ADC Input Pin (AINE bit = 1)  
31  
O Digital MIC Clock Output 2 Pin (DMIC2 bit = 1)  
IN3/INP2  
DMDAT2  
I
ADC Input Pin (AINE bit = 1)  
32  
I Digital MIC Clock Input 2 Pin (DMIC2 bit = 1)  
IN2/INN1  
DMCLK1  
IN1/INP1  
DMDAT1  
I
ADC Input Pin (AINE bit = 1)  
O Digital MIC Clock Output 1 Pin (DMIC1 bit = 1)  
ADC Input Pin (AINE bit = 1)  
I Digital MIC Clock Input 1 Pin (DMIC1 bit = 1)  
33  
I
34  
35 LIN  
36 AVDD  
I
-
Mono ADC Input Pin  
Analog Power Supply Pin: 3.3V (typ)  
Note 1. All digital input pins must not be allowed to float. If analog input pins are not used, leave them open.  
The I2CSEL pin, LDOE pin and CAD/MATSEL pin should be fixed to “L” (DVSS) or “H”  
(TVDD).  
Handling of Unused Pin  
The unused I/O pins must be processed appropriately as below.  
Classification Pin Name  
Setting  
LIN, IN1/INP1/DMDAT1, IN2/INN1/DMCLK1,  
Analog  
Digital  
IN3/INP2/DMDAT2, IN4/INN2/DMCLK2, OUT1, OUT2, These pins must be open.  
OUT3  
STO/RDY, CLKO, XTI, XTO, SDOUT3/ JX2/MAT1,  
SDOUT2/JX3/MAT0, SDOUT1/EEST, SO/SDA, LRCK, These pins must be open.  
BICK  
I2CSEL, SDIN2/JX1, SDIN1/JX0,  
SCLK/SCL, SI/EXTEEP, CSN/CAD/MATSEL, LDOE  
These pins must be  
connected to DVSS.  
014006643-E-00  
2014/10  
- 10 -  
[AK7755]  
Unit  
6. Absolute Maximum Ratings  
(AVSS=DVSS=0V; Note 2)  
Parameter  
Symbol  
min  
max  
Power Supplies  
Analog  
AVDD  
TVDD  
DVDD  
ΔGND  
IIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
-65  
4.3  
4.3  
1.6  
0.3  
±10  
V
V
V
V
mA  
Digital1(I/F)  
Digital2(Core)  
DVSS-AVSS  
(Note 2)  
Input Current, Any Pin Except Supplies  
Analog Input Voltage (Note 3)  
Digital Input Voltage (Note 4)  
Ambient Temperature  
VINA  
VIND  
Ta  
(AVDD+0.3)4.3  
(TVDD+0.3)4.3  
V
V
85  
Storage Temperature  
Tstg  
150  
Note 2. All voltages with respect to ground. AVSS and DVSS must be the same voltage.  
Note 3. The maximum analog input voltage is smaller value between (AVDD+0.3)V and 4.3V.  
Note 4. The maximum digital input voltage is smaller value between (DVDD+0.3)V and 4.3V.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
7. Recommended Operating Conditions  
(AVSS=DVSS=0V; Note 2)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Power Supplies  
Analog  
AVDD  
TVDD  
DVDD  
3.0  
1.7  
1.14  
3.3  
3.3  
1.2  
3.6  
3.6  
1.3  
V
V
V
Digital1(I/F)  
Digital2(Core)  
Note 5. AVDD and TVDD must be powered up first before DVDD when DVDD is supplied externally  
(LDOE pin = L). In this case, the power-up sequence between AVDD and TVDD is not critical.  
When using the internal regulator (LDOE pin = H), the power-up sequence between AVDD and  
TVDD is not critical. But all power supplies must be ON before starting operation of the AK7755  
by PDN pin = H.  
Note 6. Do not turn off the power supply of the AK7755 with the power supply of the surrounding device  
turned on. Pull-up of SDA and SCL pins must not exceed TVDD.  
* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
014006643-E-00  
2014/10  
- 11 -  
 
 
 
[AK7755]  
8. Electrical Characteristics  
Analog Characteristics  
1. MIC Amplifier Gain  
(Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V)  
Parameter  
Input Impedance  
min  
14  
typ  
20  
0
max  
Unit  
kΩ  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
MIC  
AMP  
MGNL[3:0]bits=0h, MGNR[3:0]bits=0h  
2
MGNL[3:0]bits=1h, MGNR[3:0]bits=1h  
MGNL[3:0]bits=2h, MGNR[3:0]bits=2h  
MGNL[3:0]bits=3h, MGNR[3:0]bits=3h  
MGNL[3:0]bits=4h, MGNR[3:0]bits=4h  
MGNL[3:0]bits=5h, MGNR[3:0]bits=5h  
MGNL[3:0]bits=6h, MGNR[3:0]bits=6h  
MGNL[3:0]bits=7h, MGNR[3:0]bits=7h  
MGNL[3:0]bits=8h, MGNR[3:0]bits=8h  
MGNL[3:0]bits=9h, MGNR[3:0]bits=9h  
MGNL[3:0]bits=Ah, MGNR[3:0]bits=Ah  
MGNL[3:0]bits=Bh, MGNR[3:0]bits=Bh  
MGNL[3:0]bits=Ch, MGNR[3:0]bits=Ch  
MGNL[3:0]bits=Dh, MGNR[3:0]bits=Dh  
MGNL[3:0]bits=Eh, MGNR[3:0]bits=Eh  
MGNL[3:0]bits=Fh, MGNR[3:0]bits=Fh  
4
6
8
10  
12  
14  
16  
18  
21  
24  
27  
30  
33  
36  
Gain  
2. Line-in Amplifier Gain  
(Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V)  
Parameter  
Line-in Input Impedance  
min  
14  
typ  
20  
0
-3  
-6  
max  
Unit  
kΩ  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
AMP  
LIGN[3:0]bits=0h  
LIGN[3:0]bits=1h  
LIGN[3:0]bits=2h  
LIGN[3:0]bits=3h  
LIGN[3:0]bits=4h  
LIGN[3:0]bits=5h  
LIGN[3:0]bits=6h  
LIGN[3:0]bits=7h  
LIGN[3:0]bits=8h  
LIGN[3:0]bits=9h  
LIGN[3:0]bits=Ah  
LIGN[3:0]bits=Bh  
LIGN[3:0]bits=Ch  
LIGN[3:0]bits=Dh  
LIGN[3:0]bits=Eh  
LIGN[3:0]bits=Fh  
-9  
-12  
-15  
-18  
-21  
N/A  
+3  
+6  
+9  
+12  
+15  
+18  
+21  
Gain  
(Note 7)  
Note 7. If the output signal of line-in amplifier is input to the analog mixer, +18dB gain is added to the  
signal at the mixer.  
014006643-E-00  
2014/10  
- 12 -  
 
[AK7755]  
3. MIC Amp + ADC  
Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V;  
Signal Frequency 1kHz; Sampling Rate fs=48kHz; Measurement Frequency =20Hz to 20kHz  
Sampling Rate fs=96kHz; Measurement Frequency =20Hz to 40kHz  
CKM mode0(CKM[2:0]= 000); BITFS[1:0]= 00(64fs); Differential Input Mode  
Parameter  
MIC Amp Resolution  
min  
80  
typ  
max  
24  
Unit  
Bit  
+ ADC  
Dynamic Characteristics (Differential Input mode)  
Fs=48kHz (Note 12)  
S/(N+D)  
(-1dBFS)  
91  
88  
89  
85  
102  
93  
95  
89  
102  
93  
95  
Fs=48kHz (Note 13)  
Fs=96kHz (Note 12)  
Fs=96kHz (Note 13)  
Fs=48kHz (A-weighted) (Note 12)  
Fs=48kHz (A-weighted) (Note 13)  
Fs=96kHz (Note 12)  
dB  
dB  
dB  
94  
94  
90  
Dynamic  
Range  
(Note 8)  
Fs=96kHz (Note 13)  
Fs=48kHz (A-weighted) (Note 12)  
Fs=48kHz (A-weighted) (Note 13)  
Fs=96kHz (Note 12)  
S/N  
Fs=96kHz (Note 13)  
89  
105  
Inter-Channel Isolation (Note 9)  
DC accuracy (Differential Input)  
Channel Gain Mismatch  
Analog Input  
Input Voltage  
(Differential Input) (Note 10)  
Input Voltage  
(Single-ended Input) (Note 11)  
dB  
dB  
0.0  
0.3  
±2.4  
2.4  
(Note 12)  
(Note 13)  
(Note 12)  
(Note 13)  
±2.0  
2.0  
±2.2  
±0.277  
2.2  
Vp-p  
Vp-p  
0.277  
Note 8. S/(N+D) when -60dB FS signal is applied.  
Note 9. Indicates inter-channel isolation between Lch and Rch when 1dBFS signal is input.  
Note 10. INP1/INN1 and INP2/INN2 pins.  
Note 11. IN1, IN2, IN3 and IN4 pins.  
Note 12. MGNL/R[3:0] bits = 0h (0dB)  
Note 13. MGNL/R[3:0] bits = 9h (18dB)  
014006643-E-00  
2014/10  
- 13 -  
 
 
 
 
 
 
[AK7755]  
4. Line-in Amp + ADC  
Ta=25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V;  
Signal Frequency 1kHz; Sampling Rate fs=48kHz; Measurement Frequency =20Hz to 20kHz  
Sampling Rate fs=96kHz; Measurement Frequency =20Hz to 40kHz  
CKM mode0(CKM[2:0]= 000); BITFS[1:0]= 00(64fs);  
Parameter  
Line-in Amp Resolution  
min  
typ  
max  
24  
Unit  
Bit  
+ ADC  
Dynamic Characteristics  
Fs=48kHz (Note 16)  
77  
90  
86  
Fs=48kHz (Note 17)  
Fs=96kHz (Note 16)  
Fs=96kHz (Note 17)  
Fs=48kHz (A-weighted) (Note 16)  
Fs=48kHz (A-weighted) (Note 17)  
Fs=96kHz (Note 16)  
S/(N+D)  
(-1dBFS)  
dB  
dB  
88  
85  
100  
90  
95  
86  
100  
90  
92  
92  
Dynamic  
Range  
(Note 14)  
Fs=96kHz (Note 17)  
Fs=48kHz (A-weighted) (Note 16)  
Fs=48kHz (A-weighted) (Note 17)  
Fs=96kHz (Note 16)  
S/N  
dB  
95  
Fs=96kHz (Note 17)  
86  
Analog Input  
Input Voltage (Note 15)  
(Note 16)  
(Note 17)  
2.00  
2.20  
0.277  
2.40  
Vp-p  
Note 14. S/(N+D) when -60dB FS signal is applied.  
Note 15. The Lin pin.  
Note 16. LIGN[3:0] bits = 0h (0dB)  
Note 17. LIGN[3:0] bits = Eh (+18 dB)  
014006643-E-00  
2014/10  
- 14 -  
 
 
 
 
[AK7755]  
5. Line-out AMP Gain  
Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V  
Parameter  
min  
typ  
max Unit  
dB  
LOVOL1[3:0]bits=0h, LOVOL2[3:0]bits=0h,  
LOVOL3[3:0]bits=0h  
mute  
LOVOL1[3:0]bits=1h, LOVOL2[3:0]bits=1h,  
LOVOL3[3:0]bits=1h  
LOVOL1[3:0]bits=2h, LOVOL2[3:0]bits=2h,  
LOVOL3[3:0]bits=2h  
LOVOL1[3:0]bits=3h, LOVOL2[3:0]bits=3h,  
LOVOL3[3:0]bits=3h  
LOVOL1[3:0]bits=4h, LOVOL2[3:0]bits=4h,  
LOVOL3[3:0]bits=4h  
LOVOL1[3:0]bits=5h, LOVOL2[3:0]bits=5h,  
LOVOL3[3:0]bits=5h  
LOVOL1[3:0]bits=6h, LOVOL2[3:0]bits=6h,  
LOVOL3[3:0]bits=6h  
LOVOL1[3:0]bits=7h, LOVOL2[3:0]bits=7h,  
LOVOL3[3:0]bits=7h  
LOVOL1[3:0]bits=8h, LOVOL2[3:0]bits=8h,  
LOVOL3[3:0]bits=8h  
LOVOL1[3:0]bits=9h, LOVOL2[3:0]bits=9h,  
LOVOL3[3:0]bits=9h  
LOVOL1[3:0]bits=Ah, LOVOL2[3:0]bits=Ah,  
LOVOL3[3:0]bits=Ah  
LOVOL1[3:0]bits=Bh, LOVOL2[3:0]bits=Bh,  
LOVOL3[3:0]bits=Bh  
LOVOL1[3:0]bits=Ch, LOVOL2[3:0]bits=Ch,  
LOVOL3[3:0]bits=Ch  
LOVOL1[3:0]bits=Dh, LOVOL2[3:0]bits=Dh,  
LOVOL3[3:0]bits=Dh  
LOVOL1[3:0]bits=Eh, LOVOL2[3:0]bits=Eh,  
LOVOL3[3:0]bits=Eh  
LOVOL1[3:0]bits=Fh, LOVOL2[3:0]bits=Fh,  
LOVOL3[3:0]bits=Fh  
-28  
-26  
-24  
-22  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Line  
-out  
Gain  
AMP  
-6  
-4  
-2  
0
014006643-E-00  
2014/10  
- 15 -  
[AK7755]  
6. DAC+Line-out Amp  
Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V;  
Signal Frequency 1kHz; Sampling Rate fs=48kHz; Measurement Frequency =20Hz to 20kHz  
Sampling Rate fs=96kHz; Measurement Frequency =20Hz to 40kHz  
CKM mode0(CKM[2:0]=000); BITFS[1:0] bits = “00”; LOVOL1/2/3[3:0] bits = Fh(0dB);  
Parameter  
Resolution  
min  
typ  
max  
24  
Unit  
Bit  
DAC  
Dynamic Characteristics 1 (OUT1, OUT2, OUT3)  
fs=48kHz  
fs=96kHz  
fs=48kHz (A-weighted)  
fs=96kHz  
fs=48kHz (A-weighted)  
fs=96kHz  
80  
100  
100  
90  
91  
89  
S/(N+D) (0 dBFS)  
dB  
dB  
106  
101  
106  
101  
110  
Dynamic Range (Note 18)  
S/N  
dB  
dB  
Inter-Channel Isolation (f=1kHz) (Note 19)  
DC accuracy  
Channel Gain Mismatch  
Analog Output  
Output Voltage  
Load Resistance  
Load Capacitance  
0.0  
0.5  
2.74  
30  
dB  
Vp-p  
kΩ  
pF  
(Note 20)  
2.28  
10  
2.51  
Note 18. S/(N+D) when -60dB FS signal is applied.  
Note 19. Indicates inter-channel isolation between Lch and Rch of DAC when 1dBFS signal is input.  
Note 20. Full-scale output voltage. The output voltage is proportional to AVDD (AVDD x 0.76).  
014006643-E-00  
2014/10  
- 16 -  
 
 
 
[AK7755]  
DC Characteristics  
(Ta= -40 to 85C, AVDD=3.3V, DVDD=1.2V, TVDD=1.7 to 3.6V, AVSS=DVSS=0V)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
VIH  
VIL  
VIH  
VIL  
80%TVDD  
V
V
V
V
20%TVDD  
30%TVDD  
SCL, SDA High Level Input Voltage  
SCL, SDA Low Level Input Voltage  
DMDAT1, DMDAT2 High Level Input Voltage  
(DMIC1, DMIC2 bit = 1)  
DMDAT1, DMDAT2 Low Level Input Voltage  
(DMIC1, DMIC2 bit = 1)  
High Level Output Voltage Iout= -100A (Note 21)  
Low Level Output Voltage Iout=100A (Note 22)  
SDA Low Level Output Voltage  
Iout=3mA  
DMCLK1, DMCLK2 High Level Output Voltage  
Iout = -80A  
70%TVDD  
VIH2 65%AVDD  
VIL2  
V
V
35%AVDD  
0.3  
TVDD-0.3  
V
V
VOH  
VOL  
VOL  
VOL  
TVDD≥2.0V  
TVDD<2.0V  
0.4  
20%TVDD  
V
V
V
VOH2 AVDD-0.4  
VOL2  
(DMIC1, DMIC2 bit = 1)  
DMCLK1, DMCLK2 Low Level Output Voltage  
Iout = 80A  
0.4  
(DMIC1, DMIC2 bit = 1)  
Input Leak Current (Note 23)  
Input Leak Current at Pulled-down Pins (Note 24)  
Input Leak Current at XTI pin  
Iin  
Iid  
lix  
±10  
A  
A  
A  
77  
17  
Note 21. Except XTO pin  
Note 22. Except SDA and XTO pins.  
Note 23. Internal Pulled-down pins, except the XTI pin  
Note 24. The LRCK, BICK, SDOUT2/JX3/MAT0 and SDOUT3/JX2/MAT1 pins are internal  
pulled-down pins (typ. 43 @3.3V).  
Power Consumptions  
(Ta=25C, AVDD=3.0 to 3.6V (typ=3.3V, max=3.6V), TVDD=1.7 to 3.6V (typ=3.3V, max=3.6V),  
DVDD=1.14 to 1.3V (typ=1.2V, max=1.3V), AVSS=DVSS=0V)  
Parameter  
AVDD  
TVDD  
DVDD  
AVDD  
TVDD  
AVDD  
TVDD  
DVDD  
AVDD  
TVDD  
min  
typ  
16  
3
25  
48  
3
10  
10  
200  
1
max  
24  
4.5  
40  
72  
4.5  
Unit  
mA  
mA  
mA  
mA  
mA  
uA  
uA  
uA  
uA  
uA  
Power consumptions in operation 1 (Note 25)  
(LDOE pin = L)  
Power consumptions in operation 2 (Note 25)  
(LDOE pin = H)  
Power consumptions in power-down  
(PDN pin= “L”, LDOE pin = L”)  
Power consumptions in power-down  
(PDN pin= “L”, LDOE pin = H”)  
1
Note 25. DVDD power consumption will be changed depending on DSP programs.  
(e.g. It will be 6mA when using AKMs Hands Free program.)  
014006643-E-00  
2014/10  
- 17 -  
 
 
 
 
 
[AK7755]  
Digital Filter Characteritics  
1. ADC  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
fs=48kHz (Note 26))  
Parameter  
Passband  
(Note 27)  
Symbol  
PB  
min  
0
typ  
max  
20.7  
Unit  
kHz  
kHz  
kHz  
kHz  
dB  
+0.14dB ~ 0.12dB  
-0.87dB  
21.6  
22.8  
-3.0dB  
Stoppband  
Passband Ripple  
SB  
PR  
28.4  
65  
(Note 27)  
±0.14  
Stopband Ripple (Note 28, Note 29)  
Group Delay Distorsion  
Group Daley  
SA  
GD  
GD  
dB  
μs  
Ts  
0
12.5  
(Ts=1/fs)  
Note 26. The passband and stopband frequencies scale with fs(system sampling rate). The characteristic  
of the high pass filter is not included.  
Note 27. The passband is from DC to 18.9kHz when fs=48kHz.  
Note 28. The stopband is 28kHz to 3.044MHz when fs=48kHz.  
Note 29. When fs = 48kHz, the analog modulator samples the input signal at 3.072MHz. There is no  
attenuation of an input signal in band (n x 3.072MHz ±21.99kHz; n=0, 1, 2, 3…) of integer times  
of the sampling frequency by the digital filter.  
2. DAC  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
fs=48kHz)  
Parameter  
Passband (Note 30) (±0.05dB)  
(-6.0dB)  
Stopband (Note 30)  
Passband Ripple  
Stopband Attenuation  
Group Delay (Ts=1/fs) (Note 31)  
Digital Filter + Analog Filter  
Symbol  
PB  
min  
0
Typ  
24  
max  
21.7  
Unit  
kHz  
kHz  
kHz  
dB  
SB  
PR  
SA  
GD  
26.2  
64  
±0.05  
dB  
Ts  
24  
Amplitude Characteristics  
20Hz to 20.0kHz  
±0.5  
dB  
Note 30. The passband and stopband frequencies are proportional to fs(system sampling rate), and  
represents PB=0.4535 × fs(@0.05dB) and SB=0.5465 × fs, respectively.  
Note 31. The digital filter delay is calculated as the time from setting data into the input register until an  
analog signal is output.  
014006643-E-00  
2014/10  
- 18 -  
 
 
 
 
 
 
[AK7755]  
Switching Characteristics  
1. System Clock  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
a) with a Crystal Oscillator:  
11.2896  
12.288  
16.9344  
18.432  
MHz  
CKM[2:0]bits=0h  
fXTI  
fXTI  
CKM[2:0]bits=1h  
MHz  
b) with an External Clock  
Duty Cycle  
40  
50  
60  
%
11.2896  
12.288  
16.9344  
18.432  
CKM[2:0]bits=0h,2h  
fXTI  
11.0  
12.4  
MHz  
CKM[2:0]bits=1h  
LRCK Frequency  
fXTI  
fs  
16.5  
8
18.6  
96  
MHz  
kHz  
(Note 32)  
48  
BICK Frequency  
TDM256 bit = 0”  
(Normal Interface)  
(Note 33)  
High Level Width  
Low Level Width  
Frequency  
High Level Width  
Low Level Width  
Frequency  
tBCLKH  
tBCLKL  
fBCLK  
tBCLKH  
tBCLKL  
fBCLK  
64  
64  
0.23  
32  
32  
1.8  
ns  
ns  
MHz  
ns  
ns  
MHz  
6.2  
3.072  
TDM256 bit = 1”  
(TDM Interface)  
12.3  
12.288  
Note 32. RCK frequency and sampling rate (fs) should be the same.  
Note 33. When BICK is the source of the master clock, it should be synchronized to LRCK and have stable  
frequency.  
1/fXTI  
1/fXTI  
tXTI=1/fXTI  
XTI  
VIH  
VIL  
1/fs  
ts=1/fs  
1/fs  
VIH  
LRCK  
VIL  
1/fBCLK  
1/fBCLK  
tBCLK=1/fBCLK  
VIH  
VIL  
BICK  
tBCLKH  
tBCLKL  
Figure 4. System Clock Timing  
014006643-E-00  
2014/10  
- 19 -  
 
 
[AK7755]  
2. Power Down  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
PDN Pulse Width (Note 34)  
tRST  
600  
ns  
Note 34. The PDN pin must be set Lwhen power up the AK7755.  
PDN  
tRST  
VIL  
Figure 5. Reset Timing  
3. Serial Data Interface  
SDIN1, SDIN2, SDOUT1, SDOUT2, SDOUT3  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
CL=20pF)  
Parameter  
Symbol min  
typ  
max Unit  
Slave Mode  
Delay Time from BICK “↑” to LRCK (Note 35)  
Delay Time from LRCK to BICK “↑” (Note 35)  
Serial Data Input Latch Setup Time  
Serial Data Input Latch Hold Time  
Delay Time from LRCK to Serial Data Output (Note 36)  
Delay Time from BICK “↓” to LRCK Output (Note 37)  
Master Mode  
tBLRD 20  
tLRBD 20  
tBSIDS 20  
tBSIDH 20  
tLRD  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
tBSOD  
32, 48  
64, 256  
50  
BICK Frequency  
fBCLK  
fs  
BICK Duty Cycle  
Delay Time from BICK “↓” to LRCK (Note 37)  
Serial Data Input Latch Setup Time  
%
ns  
ns  
ns  
ns  
ns  
12  
tMBL  
-12  
tBSIDS 20  
tBSIDH 20  
tLRD  
Serial Data Input Latch Hold Time  
Delay Time from LRCK to Serial Data Output (Note 36)  
Delay Time from BICK “↓” or “↑”to LRCK Output (Note 37)  
SDINn → SDOUTn (n=1, 2)  
20  
20  
tBSOD  
Delay Time from SDINn to SDOUTn Output  
tIOD  
60  
ns  
Note 35. BICK edge must not occur at the same time as LRCK edge.  
If BICK polarity was inverted, the counting edge of BICK will be “↓”.  
Note 36. Except I2S.  
Note 37. When the polarity of BICK1 is inverted, delay time is from BICK1 “↑”.  
SDOUT  
n=1,2,3  
50%TVDD  
tIOD  
VIH  
VIL  
SDINn  
n=1,2  
Figure 6. Serial Interface Delay Time from SDINn to SDOUTn Output  
014006643-E-00  
2014/10  
- 20 -  
 
 
 
 
[AK7755]  
3-1. Slave Mode  
LRCK  
VIH  
VIL  
tBLRD  
tLRBD  
VIH  
VIL  
BICK  
tBSIDS  
tBSIDH  
VIH  
VIL  
SDINn  
n=1,2  
Figure 7. Serial Interface Input Timing in Slave Mode  
VIH  
VIL  
LRCK  
BICK  
tLRD  
VIH  
VIL  
tBSOD  
tLRD  
tBSOD  
SDOUTn  
n=1,2,3  
50%TVDD  
Figure 8. Serial Interface Output Timing in Slave Mode  
3-2. Master Mode  
LRCK  
50%TVDD  
50%TVDD  
tMBL  
tMBL  
BICK  
tBSIDS  
tBSIDH  
VIH  
VIL  
SDINn  
n=1,2  
Figure 9. Serial Interface Input Timing in Master Mode  
50%TVDD  
LRCK  
BICK  
tLRD  
50%TVDD  
50%TVDD  
tBSOD  
tBSOD  
tLRD  
SDOUTn  
n=1,2,3  
Figure 10. Serial Interface Output Timing in Master Mode  
- 21 -  
014006643-E-00  
2014/10  
[AK7755]  
4. SPI Interface  
4-1. Clock Reset (CKRESTN bit = 0)  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
CL=20pF)  
Parameter  
Microcontroller Interface Signal  
SCLK Frequency  
Symbol  
min  
typ  
max  
3.5  
Unit  
fSCLK  
tSCLKL  
tSCLKH  
MHz  
ns  
ns  
SCLK Low Level Width  
SCLK High Level Width  
Microcontroller AK7755  
CSN High Level Width  
Time from CSN “↑” to PDN “↑”  
Time from PDN“↑” to CSN “↓”  
Time from RQN“↓” to SCLK“↓”  
Time from SCLK“↑” to CSN“↑”  
SI Latch Setup Time  
120  
120  
tWRQH  
tRST  
tIRRQ  
tWSC  
tSCW  
tSIS  
300  
360  
1
360  
480  
120  
120  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
SI Latch Hold Time  
tSIH  
AK7755 Microcontroller  
SO Output Delay Time from SCLK “↓”  
SO Output Hold Time from SCLK “↑”  
(Note 38)  
tSOS  
tSOH  
120  
ns  
ns  
120  
Note 38. Except when input the eighth bit of the command code.  
4-2. PLL Clock (CKRESTN bit = 1)  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
CL=20pF)  
Parameter  
Microcontroller Interface Signal  
SCLK Frequency  
Symbol  
min  
typ  
max  
7
Unit  
fSCLK  
tSCLKL  
tSCLKH  
MHz  
ns  
ns  
SCLK Low Level Width  
SCLK High Level Width  
Microcontroller AK7755  
CSN High Level Width  
Time from CSN “↑” to PDN “↑”  
Time from PDN“↑” to CSN “↓”  
Time from RQN“↓” to SCLK“↓”  
Time from SCLK“↑” to CSN“↑”  
SI Latch Setup Time  
60  
60  
tWRQH  
tRST  
tIRRQ  
tWSC  
tSCW  
tSIS  
150  
180  
1
150  
240  
60  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
SI Latch Hold Time  
tSIH  
60  
AK7755 Microcontroller  
SO Output Delay Time from SCLK “↓”  
SO Output Hold Time from SCLK “↑”  
(Note 38)  
tSOS  
tSOH  
60  
ns  
ns  
60  
Note 39. It takes 10ms at maximum until PLL is locked, after setting CKRESTN bit to 1from 0.  
014006643-E-00  
2014/10  
- 22 -  
 
[AK7755]  
VIH  
VIL  
SCLK  
tSCLKL  
1/fSCLK  
tSCLKH  
1/fSCLK  
VIH  
VIL  
PDN  
CSN  
VIH  
VIL  
tRST  
tIRRQ  
Figure 11. SPI Interface Timing 1  
VIH  
VIL  
tWRQH  
CSN  
SI  
VIH  
VIL  
tSIS  
tSIH  
VIH  
VIL  
SCLK  
tWSC  
tSCW  
tWSC  
tSCW  
Figure 12. SPI Interface Timing 2 (Microcontroller AK7755)  
VIH  
VIL  
SCLK  
VIH  
VIL  
SO  
tSOH  
tSOS  
Figure 13. SPI Interface Timing 3 (AK7755 Microcontroller)  
014006643-E-00  
2014/10  
- 23 -  
[AK7755]  
5. I2C-BUS Interface  
(Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V,  
CL=20pF)  
Parameter  
I2C Timing  
SCL clock frequency  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first Clock pulse)  
Clock Low Time  
Symbol  
min  
typ  
max  
400  
Unit  
fSCL  
tBUF  
kHz  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
Clock High Time  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
Pulse Width of Spike Noise Suppressed By Input Filter  
Capacitive load on bus  
0.9  
0.1  
0.3  
0.3  
tF  
tSU:STO  
tSP  
0.6  
0
50  
400  
Cb  
pF  
VIH  
SDA  
VIL  
tLOW tR  
tHIGH  
tBUF  
tF  
tSP  
VIH  
VIL  
SCL  
tHD:STA  
Stop Start  
tHD:DAT  
tSU:DAT tSU:STA  
Start  
tSU:STO  
Stop  
Figure 14. I2C BUS Interface Timing  
6. Digital Microphone Interface  
(AVDD=3.0~3.6V, TVDD=1.7~3.6V, DVDD=1.14~1.3V, AVSS=DVSS=0V, Ta= -40C~85C;  
CL=100pF)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
DMDAT1, DMDAT2  
Serial Data Input Latch Setup Time  
Serial Data Input Latch Hold Time  
DMCLK1, DMCLK2  
Clock Frequency (Note 40)  
Duty Cycle  
tDMDS  
tDMDH  
50  
0
ns  
ns  
fDMCK  
dDMCK  
tDMCKR  
tDMCKF  
0.5  
40  
64fs  
50  
6.2  
60  
10  
10  
MHz  
%
ns  
Rise Time  
Fall Time  
ns  
Note 40. Clock frequency is determined by the sampling rate (fs) selected by DFS[2:0] bits.  
014006643-E-00  
2014/10  
- 24 -  
 
[AK7755]  
tDMCK  
65%AVDD  
50%AVDD  
35%AVDD  
DMCLK1/2  
tDMCKL  
tDMCKF  
tDMCKR  
fDMCK = 1 / tDMCK  
dDMCK = 100 x tDMKL / tDMCK  
50%AVDD  
DMCLK1/2  
DMDAT1/2  
tDMDS  
tDMDH  
VIH2  
VIL2  
DCLKP1, DCLKP2 bit = “1”  
50%AVDD  
DMCLK1/2  
DMDAT1/2  
tDMDS  
tDMDH  
VIH2  
VIL2  
DCLKP1, DCLKP2 bit = 0”  
Figure 15. Digital Microphone Interface Timing Wave Form  
014006643-E-00  
2014/10  
- 25 -  
[AK7755]  
9. Functional Description  
System Clock  
Master/Slave mode switching, clock source pin select for internal master clock (MCLK) generating clock  
(ICLK), and ICLK frequency change are controlled by CKM [2:0] clock mode select bits. CKM[2:0] bits  
can only be set during clock reset.  
Use of  
CKM CKM Master  
ICLK  
Source  
Sampling Frequency  
fs (Note 41)  
Input pin(s) required for  
system clock  
crystal  
oscillator  
Available  
Available  
Not  
Available  
Not  
Available  
Not  
mode [2:0]  
Slave  
0
1
000  
001  
Master  
Master  
XTI  
XTI  
DFS[2:0]bits  
DFS[2:0]bits  
XTI(12.288MHz)  
XTI(18.432MHz)  
XTI(12.288MHz), BICK,  
LRCK  
2
3
5
010  
011  
101  
Slave  
Slave  
Slave  
XTI  
DFS[2:0]bits  
DFS[2:0]bits  
Fs=16kHz Fixed  
BICK  
BICK  
BICK, LRCK  
BICK, LRCK(fs=8kHz)  
Available  
Note 41. The sampling frequency is set by DFS[2:0] bits (CONT00). The BICK frequency is set by  
BITFS[1:0] bits.  
Note 42. In CKM mode 2, XTI, BICK and LRCK must be synchronized but the phase is not critical.  
Note 43. CKM mode5 is the mode that operates DSP, ADC and DAC by 16kHz sampling frequency when  
LRCK sampling frequency is 8kHz. The BICK sampling frequency for LRCK is set by  
BITFS[1:0] bits.  
1. Relationship between MCLK Generating Clock (ICLK) and MCLK  
ICLK  
REFCLK  
MCLK  
MCLK  
XTI Pin  
Divider  
Divider  
PLL  
PLL  
CKM mode 0/1/2  
CKM mode 3/5  
(MCLK Source)  
ICLK  
REFCLK  
BICK Pin  
(MCLK Source)  
Figure 16. Relation Ship between ICLK and MCLK  
2. Sampling Frequency Select  
FS mode DFS[2:0] fs: Sampling Frequency  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
8kHz  
12kHz (11.025kHz)  
16kHz  
24kHz (22.05kHz)  
32kHz  
48kHz (44.1kHz)  
96kHz (88.2kHz)  
N/A  
014006643-E-00  
2014/10  
- 26 -  
 
 
[AK7755]  
2-1. Master Mode (CKM mode 0, 1: Using XTI Input Clock)  
fs: Sampling Frequency  
XTI  
CKM  
mode  
CKM  
[2:0]  
Input Frequency Range  
(MHz)  
Use of Chrystal  
Oscillator  
fs:48kHz series fs:44.1kHz series  
0
1
000  
001  
12.288MHz  
18.432MHz  
11.2896MHz  
16.9344MHz  
11.0 to 12.4  
16.7 to 18.6  
Available  
Available  
Input system clock to the XTI pin by setting BITFS[1:0] bits. The internal counter which is synchronized to  
XTI generates LRCK(1fs) and BICK(64fs, 48fs, 32fs, 256fs). BICK frequency can be selected by  
BITFS[1:0] bits. The BICK output will be in two different frequencies if setting BITFS[1:0] bits = 1h  
(48kHz) when the sampling frequency is 12kHz, 24kHz, 48kHz or 96kHz (DFS[2:0]). LRCK and BICK are  
not output during system reset.  
XTI  
XTI  
External Clock  
AK7755  
AK7755  
XTO  
XTO  
Figure 17. Using Crystal Oscillator (CKM mode 0/1)  
Using External Clock (CKM mode 0/1)  
2-2. Slave Mode1 (CKM mode 2: XTI Input Clock  
fs: sampling frequency  
XTI  
fs:48kHz  
12.288MHz  
Input Frequency Range  
(MHz)  
11.2896MHz 11.0 to 12.4  
CKM  
mode  
CKM  
[2:0]  
Use of Chrystal  
Oscillator  
fs:44.1kHz  
2
010  
Not Available  
Required System Clocks are XTI, LRCK and BICK. XTI and LRCK must be synchronized, but the phase  
between these clocks is not important. The system sampling rate is controlled by DFS[2:0] bits. The  
sampling frequency of BICK is set by BITFS[1:0] bits.  
2-3. Slave Mode 2 (CKM mode 3: BICK Input Clock)  
In CKM mode 3, required system clocks are BICK and LRCK. In this mode, BICK is used for clock source  
instead of XTI. This clock is multiplied directly by a PLL to generate the master clock (MCLK). Therefore  
BICK with two different frequencies cannot be used. BICK and LRCK must be synchronized. Set BICK  
frequency for LRCK by BITFS[1:0] bits. The sampling rate is determined by DFS[2:0] bits setting. In  
applications which do not need the XTI pin of the AK7755, leave this pin open.  
014006643-E-00  
2014/10  
- 27 -  
[AK7755]  
2-4. Slave Mode 3 (CKM mode 5: BICK Input Clock)  
CKM mode5 is the mode that operates DSP, ADC and DAC by 16kHz sampling frequency when LRCK  
sampling frequency is 8kHz. Set BICK frequency against LRCK by BITFS[1:0] bits. Each sampling  
frequency is fixed (LRCK = 8kHz, DSP/ADC/DAC = 16kHz).  
AK7755  
SDIN2  
SDOUT2  
SDOUT3  
(fs=16kHz)  
DSP/ADC/DAC  
(fs=16kHz)  
LRCK  
BICK  
SDIN1  
16k/8k  
Converter  
SDOUT1  
(fs=8kHz)  
Figure 18. Slave Mode3 (CKM mode5) Sampling Frequency Setting  
fs: Sampling Frequency  
DFS  
[2:0]  
0h  
0h  
0h  
0h  
1h  
1h  
1h  
1h  
2h  
2h  
2h  
2h  
3h  
3h  
3h  
3h  
4h  
4h  
4h  
4h  
5h  
5h  
5h  
5h  
6h  
6h  
6h  
6h  
7h  
BITFS  
[1:0]  
0h  
1h  
2h  
3h  
0h  
1h  
2h  
3h  
0h  
1h  
2h  
3h  
0h  
1h  
2h  
3h  
0h  
1h  
2h  
3h  
0h  
1h  
2h  
3h  
0h  
1h  
2h  
3h  
BICK Frequency  
44.1kHz series 48kHz series  
fs  
8kHz  
8kHz  
8kHz  
BICK  
64fs  
48fs  
32fs  
256fs  
64fs  
48fs  
32fs  
256fs  
64fs  
48fs  
32fs  
256fs  
64fs  
48fs  
32fs  
256fs  
64fs  
48fs  
32fs  
256fs  
64fs  
48fs  
32fs  
256fs  
64fs  
48fs  
32fs  
256fs  
470.4kHz  
352.8kHz  
512kHz  
384kHz  
235.2kHz  
256kHz  
8kHz  
1881.6kHz  
705.6kHz  
2048kHz  
768kHz  
12kHz  
12kHz  
12kHz  
12kHz  
16kHz  
16kHz  
16kHz  
16kHz  
24kHz  
24kHz  
24kHz  
24kHz  
32kHz  
32kHz  
32kHz  
32kHz  
48kHz  
48kHz  
48kHz  
48kHz  
96kHz  
96kHz  
96kHz  
96kHz  
N/A  
N/A  
N/A  
352.8kHz  
384kHz  
2822.4kHz  
940.8kHz  
705.6kHz  
3072kHz  
1024kHz  
768kHz  
470.4kHz  
512kHz  
3763.2kHz  
1.4112MHz  
1058.4MHz  
705.6kHz  
4096kHz  
1.536MHz  
1.152MHz  
768kHz  
5.6448MHz  
1.8816MHz  
1.4112MHz  
0.9408MHz  
7.5264MHz  
2.8224MHz  
2.1168MHz  
1.4112MHz  
11.2896MHz  
5.6448MHz  
4.2336MHz  
2.8224MHz  
22.5792MHz  
6.144MHz  
2.048MHz  
1.536MHz  
1.024MHz  
8.192MHz  
3.072MHz  
2.304MHz  
1.536MHz  
12.288MHz  
6.144MHz  
4.608MHz  
3.072MHz  
24.576MHz  
(N/A: Not available)  
Table 1. Clock Select  
014006643-E-00  
2014/10  
- 28 -  
[AK7755]  
BITFS[1:0] bits = 0h @(LRIF[1:0] bits = 0h)  
Right ch  
LRCK  
Left ch  
BICK  
32×BICK  
32×BICK  
Figure 19. BITFS[1:0] bits = 0h(64fs) (LRIF[1:0]bits = 0h)  
BITFS[1:0] bits = 1h @(LRIF[1:0] bits = 0h)  
Right ch  
LRCK  
BICK  
Left ch  
24×BICK  
24×BICK  
Figure 20. BITFS[1:0] bit s= 1h(48fs) (LRIF[1:0]bits = 0h)  
BITFS[1:0] bits = 2h @(LRIF[1:0] bits = 0h)  
Right ch  
LRCK  
Left ch  
BICK  
16×BICK  
16×BICK  
Figure 21. BITFS[1:0] bits = 2h(32fs) (LRIF[1:0]bits = 0h)  
Refer to Figure 40 and Figure 42 when BITFS[1:0] bits = 3h (256fs).  
014006643-E-00  
2014/10  
- 29 -  
[AK7755]  
Control Register Settings  
Control registers are reset by a power down release (PDN pin = L” → “H). Since control registers  
CONT00-CONT01 are related to clock generation, they must be changed during clock reset (CKRSTN bit  
(CONT01: D0) = “0”). CONT12-CONT19 can be written during operation. The other control registers must  
be changed during clock reset or system reset (CRESETN bit (CONT0F: D3) and DSPRESETN bit  
(CONT0F: D2) = “0”) to avoid errors and noises.  
CONT0D: D6, CONT1A: D4, CONT26: D0 and CONT2A: D7 bits must be set to 1during system reset.  
Once these bits are set to 1, the value will be kept until power down the AK7755 (PDN pin = L). Do  
not write to the CONT1F-CONT25, CONT27-CONT29 and CONT2B-CONT3F registers.  
CONT00-CONT1E, CONT26, CONT2A  
Name  
D7  
D6  
D5  
D4  
D3  
AINE  
D2  
DFS[2]  
CLKS[1]  
D1  
D0  
DFS[0]  
CKRESETN  
JX0E  
BANK[0]  
WAVP[0]  
Default  
00h  
00h  
00h  
00h  
CONT00  
CONT01  
CONT02  
CONT03  
CONT04  
0
CKM[2]  
LRDOWN  
BCKP  
DIF2[0]  
DRMS[0]  
CKM[1]  
BITFS[1]  
LRIF[1]  
DOF2[1]  
DRAM[1]  
CKM[0]  
BITFS[0]  
LRIF[0]  
DOF2[0]  
DRAM[0]  
DFS[1]  
CLKS[0]  
JX1E  
BANK[1]  
WAVP[1]  
JX2E  
CLKS[2]  
TDMMODE[1] TDMMODE[0]  
BANK[3]  
POMODE  
TDM256  
DIF2[1]  
DRMS[1]  
ACCRAM  
CLRN  
BANK[2]  
0
00h  
CONT05  
JX3E  
FIRMODE1  
FIRMODE2  
SUBMODE1 SUBMODE2 MEMDIV[1] MEMDIV[0]  
00h  
CONT06  
CONT07  
CONT08  
CONT09  
CONT0A  
CONT0B  
CONT0C  
CONT0D  
CONT0E  
CONT0F  
CONT10  
CONT11  
CONT12  
CONT13  
DEM[1]  
DOF4[1]  
SELDAI[1]  
DIFR  
CLKOE  
0
DEM[0]  
DOF4[0]  
SELDAI[0]  
INR  
BICKE  
0
DIFDA[1]  
DOF3[1]  
SELDO3[1]  
DIFL  
DIFDA[0]  
DOF3[0]  
SELDO3[0]  
INL  
0
0
DIF1[2]  
DOF1[2]  
SELDO2[0]  
LO3SW2  
OUT3E  
DIF1[1]  
DOF1[1]  
SELMIX[1]  
LO3SW1  
OUT2E  
DIF1[0]  
DOF1[0]  
SELMIX[0]  
SELMIX[2]  
OUT1E  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
80h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
30h  
30h  
30h  
18h  
18h  
00h  
00h  
00h  
30h  
00h  
00h  
00h  
SELDO2[1]  
LO3SW3  
0
LRCKE  
0
0
0
0
0
0
0
0
0
DSM  
STO  
0
1
ATSPAD  
0
PMAD2L  
PML1  
PLLLOCKE  
CKADJ[5]  
MGNR[1]  
LIGN[1]  
LOVOL2[1]  
VOLADL[5]  
ATSPDA  
0
SELDO1[2]  
0
PMLO1  
DSPRESETN  
0
CKADJ[2]  
MGNL[2]  
LOVOL3[2]  
LOVOL1[2]  
VOLADL[2]  
SELDO1[1]  
0
PMDAR  
PMAD2R  
0
CKADJ[1]  
MGNL[1]  
LOVOL3[1]  
LOVOL1[1]  
VOLADL[1]  
SELDO1[0]  
DLS  
PMDAL  
PMADR  
0
WDTEN  
CKADJ[7]  
MGNR[3]  
LIGN[3]  
PMADL  
0
CRCE  
CKADJ[6]  
MGNR[2]  
LIGN[2]  
LOVOL2[2]  
VOLADL[6]  
PMLO3  
LRDETN  
SOCFG  
CKADJ[4]  
MGNR[0]  
LIGN[0]  
LOVOL2[0]  
VOLADL[4]  
PMLO2  
CRESETN  
SELSTO  
CKADJ[3]  
MGNL[3]  
LOVOL3[3]  
LOVOL1[3]  
VOLADL[3]  
DLRDY  
CKADJEN  
CKADJ[0]  
MGNL[0]  
LOVOL3[0]  
LOVOL1[0]  
VOLADL[0]  
CONT14 LOVOL2[3]  
CONT15 VOLADL[7]  
CONT16 VOLADR[7] VOLADR[6] VOLADR[5] VOLADR[4] VOLADR[3] VOLADR[2] VOLADR[1] VOLADR[0]  
CONT17 VOLAD2L[7] VOLAD2L[6] VOLAD2L[5] VOLAD2L[4] VOLAD2L[3] VOLAD2L[2] VOLAD2L[1] VOLAD2L[0]  
CONT18 VOLDAL[7]  
VOLDAL[6]  
VOLDAL[5]  
VOLDAL[4]  
VOLDAL[3]  
VOLDAL[2]  
VOLDAL[1]  
VOLDAL[0]  
CONT19 VOLDAR[7] VOLDAR[6] VOLDAR[5] VOLDAR[4] VOLDAR[3] VOLDAR[2] VOLDAR[1] VOLDAR[0]  
CONT1A  
CONT1B AMGNR[3]  
CONT1C  
ADMUTE  
AD2MUTE  
AMGNR[2]  
0
DAMUTE  
AMGNR[1]  
0
1
ADRCRE  
AMGNL[3]  
0
ADRCLE  
AMGNL[2]  
0
MICRZCE  
AMGNL[1]  
0
MICLZCE  
AMGNL[0]  
0
AMGNR[0]  
0
0
CONT1D VOLAD2R[7] VOLAD2R[6] VOLAD2R[5] VOLAD2R[4] VOLAD2R[3] VOLAD2R[2] VOLAD2R[1] VOLAD2R[0]  
CONT1E  
CONT26  
CONT2A  
DMIC1  
DMCLKP1  
DMCLKE1  
DMIC2  
DMCLKP2  
DMCLKE2  
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
014006643-E-00  
2014/10  
- 30 -  
[AK7755]  
Default  
CONT00: Clock Setting 1, Analog Input Setting  
Write during clock reset.  
W
R
Name  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
C0h 40h CONT00  
0
CKM[2] CKM[1] CKM[0] AINE DFS[2] DFS[1] DFS[0] 00h  
D6, D5, D4: CKM[2:0] Clock Mode Setting  
CKM  
mode  
CKM Master  
[2:0] Slave  
Main Clock  
fs  
System Clock  
0
1
2
3
000  
001  
010  
011  
Master XTI=12.288MHz fixed fs=8~96kHz  
Master XTI=18.432MHz fixed fs=8~96kHz  
XTI  
XTI  
(default)  
Slave  
Slave  
XTI=12.288MHz fixed fs=8~96kHz  
XTI, BICK, LRCK  
BICK, LRCK  
BICK,  
BICK  
fs=8~96kHz  
5
101  
Slave  
BICK  
fs=16kHz  
LRCK(fs=8kHz)  
TDM256 bit (CONT02: D7) = 1cannot be used in CKM mode5.  
D3: AINE Analog Input Setting (IN1/INP1, IN2/INN1, IN3/INP2, IN4/INN2 pin)  
0: Not Using Analog Input (default)  
1: Using Analog Input  
Set AINE bit to 1first before other control register settings when using the IN1/INP1, IN2/INN1,  
IN3/INP2 and IN4/INN2 pins as analog inputs. The AK7755 starts charging to a capacitor connected  
to each pin by this setting.  
Set AINE bit to 0when using digital microphones (DMIC1 or DMIC2 bit (CONT1E: D7, D4)=  
1).  
D2, D1, D0: DFS[2:0] Sampling Frequency  
fs  
8kHz  
DFS mode  
DFS[2:0]  
000  
0
1
2
3
4
5
6
7
(default)  
001  
010  
011  
100  
101  
110  
111  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
N/A  
Multiply 44.1/48 to calculate the values for multiple sampling frequencies of 44.1kHz.  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 31 -  
[AK7755]  
CONT01: Clock Setting 2 and JX2 Setting  
Write during clock reset.  
W
R
Name  
D7  
D6  
LR  
DOWN  
D5  
BITFS BITFS CLKS  
[1] [0] [2]  
D4  
D3  
D2  
CLKS  
[1]  
D1  
CLKS  
[0]  
D0  
CK  
RESETN  
Default  
00h  
C1h 41h CONT01 JX2E  
D7: JX2E External Conditional Jump 2 Enable  
0: JX2 is Disabled (default), No. 14-pin output (SDOUT3) when OUT3E bit (CONT0A:D2) = 1”  
1: JX2 is Enabled, No. 14-pin Input  
D6: LRDOWN LRCK Sampling Frequency Select  
0: LRCK Sampling frequency set by DFS[2:0] bits (CONT00: D2-D0). (default)  
1: LRCK Half frequency of the setting value by DFS[2:0] bits  
The AK7755 can output the LRCK which is half frequency of the setting value by DFS[2:0] bits  
in master mode (CKM mode 0, 1(CONT00: D6-D4)). This mode is used when  
LRCK/BICK/SDIN1/SDOUT1 is driven by fs= 8kHz while the AK7755 is driven by fs= 16kHz  
in master mode. LRDOWN bit = 1cannot be set when TDM256 bit (CONT02: D7) = 1.  
D5, D4: BITFS[1:0] BICK fs Select  
BITFS  
mode  
BITFS  
[1:0]  
00  
01  
10  
BICK Note  
0
1
2
3
64fs  
48fs  
512kHz(@fs=8kHz),3.072MHz(@fs=48kHz)  
(default)  
384kHz(@fs=8kHz),2.304MHz(@fs=48kHz)  
256kHz(@fs=8kHz),1.536MHz(@fs=48kHz)  
2.048MHz(@fs=8kHz),12.288MHz(@fs=48kHz)  
32fs  
256fs  
11  
This setting is valid in both slave and master modes.  
Set the BICK input sampling frequency against LRCK, in Slave mode (CKM2, 3 and 5).  
Set the BICK output sampling frequency against LRCK in Master mode (CKM0 and 1).  
The BICK output will be in two different frequencies if setting BITFS[1:0] bits = 1h (48kHz) when  
the sampling frequency is 12kHz, 24kHz, 48kHz or 96kHz (DFS[2:0]).  
D3, D2, D1: CLKS[2:0] CLKO Output Clock Select  
CLKS mode CLKS[2:0]  
fs=48kHz  
12.288MHz  
6.144MHz  
3.072MHz  
8.192MHz  
4.096MHz  
2.048MHz  
256fs  
fs=44.1kHz  
11.2896MHz  
5.6448MHz  
2.8224MHz  
7.5264MHz  
3.7632MHz  
1.8816MHz  
256fs  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
(default)  
XTI or BICK  
XTI or BICK  
D0: CKRESETN Clock Reset  
0: Clock Reset (default)  
1: Clock Reset Release  
014006643-E-00  
2014/10  
- 32 -  
[AK7755]  
CONT02: Serial Data Format, JX1, 0 Setting  
Name D7 D6 D5  
W
R
D4  
D3  
D2  
D1  
D0  
Default  
C2h 42h CONT02 TDM256 BCKP LRIF[1] LRIF[0] TDM  
TDM  
JX1E JX0E 00h  
MODE[1] MODE[0]  
D7: TDM256, TDM Select  
0: Normal Interface (default)  
1: TDM Interface  
BICK is fixed to 256fs. Set BITFS[1:0] bits = 3h (CONT01: D5, D4). Format is selected by  
LRIF[1:0] bits setting (CONT02: D5, D4). In this mode, CKM mode 5(CONT00: D6-D4) is not  
available. TDM256 bit cannot be set to 1when LRDOWN bit (CONT00: D6) = 1. In TDM  
mode, a 96kHz sampling frequency is not available. DFS[2:0] bits (CONT00: D2-D0) setting  
must be lower than 5h (48kHz).  
D6: BCKP BICK Edge Select  
BCKP bit BICK edge referenced to LRCK edge  
0
1
falling (FE)  
rising (RE)  
(default)  
D5, D4: LRIF[1:0] LRCK I/F Format  
Mode LRIF[1:0]bit  
Digital I/F Format  
0
1
2
3
00  
01  
10  
11  
Standard (MSB justified/ LSB justified) (default)  
I2S Compatible  
PCM Short Frame  
PCM Long Frame  
In standard format mode, MSB justified and 24/20/16 bit LSB justified formats are selectable by DIF1  
bits (CONT06: D2-D0), DIF2 bits (CONT03: D7, D6), DIFDA bits (CONT06: D5, D4), DOF1 bits  
(CONT07: D2-D0), DOF2 bits (CONT03: D5, D4), DOF3 bits (CONT07: D5, D4), and DOF4 bits  
(CONT07: D7, D6). In other modes, MSB justified format should be selected by DIF1-2 bits, DAF bit  
and DOF1-4 bits.  
D3, D2: TDMMODE[1:0] DSPDIN3, DSPDIN4 Input Source Select (Valid when TDM256bit = 1)  
TDMMODE  
Mode  
DSPDIN4 Lch  
DSPDIN4 Rch  
DSPDIN3 Lch  
DSPDIN3 Rch  
[1:0]  
00  
01  
10  
11  
0
1
2
3
SDIN1 SLOT7  
SDOUTAD Lch  
SDOUTAD Lch  
N/A  
SDIN1 SLOT8  
SDOUTAD Rch  
SDOUTAD Rch  
N/A  
SDIN1 SLOT5  
SDIN1 SLOT5  
SDOUTAD2 Lch  
N/A  
SDIN1 SLOT6  
SDIN1 SLOT6  
SDOUTAD2 Rch  
N/A  
(default)  
D1: JX1E External Conditional Jump1 Enable  
0: JX1 is invalid (default)  
1: JX1 is valid  
D0: JX0E External Conditional jump0 Enable  
0: JX0 is invalid (default)  
1: JX0 is valid  
014006643-E-00  
2014/10  
- 33 -  
[AK7755]  
Default  
CONT03: Delay RAM, DSP Input / Output Setting  
Name D7 D6 D5 D4 D3  
W
R
D2  
D1  
D0  
C3h 43h CONT03  
0
0
0
0
BANK[3] BANK[2] BANK[1] BANK[0] 00h  
D7, D6: DIF2[1:0] DSP DIN2 Input Format Select  
DIF2 Mode DIF2[1:0] Input Data Format  
0
1
2
3
00  
01  
10  
11  
MSB (24-bit)  
LSB 24-bit  
LSB 20-bit  
LSB 16-bit  
(default)  
Set 00for I2S compatible, PCM Short and PCM Long formats.  
Set 11when BITFS[1:0] bits (CONT01: D5, D4) = 2h (32fs).  
D5, D4: DOF2[1:0] DSP DOUT2 Output Format Select  
DOF2 Mode DOF2[1:0] Output Data Format  
0
1
2
3
00  
01  
10  
11  
MSB (24-bit)  
LSB 24-bit  
LSB 20-bit  
LSB 16-bit  
(default)  
Set 00for I2S compatible, PCM Short and PCM Long formats.  
Set 11when BITFS[1:0] bits = 2h (32fs).  
D3, D2, D1, D0: BANK[3:0] DLRAM mode Setting  
DLRAM  
Partition  
mode  
Delay RAM  
Bank1  
BANK  
[3:0]  
Bank0  
Linear 20.4f  
Ring 20.4f  
8192 words  
7168 words  
6144 words  
5120 words  
4096 words  
3072 words  
0
1
2
3
4
5
0000  
0001  
0010  
0011  
0100  
0101  
0
(default)  
1024 words  
2048 words  
3072 words  
4096 words  
5120 words  
6
7
8
0110  
0111  
1000  
1001  
1111  
6144 words  
7168 words  
8192 words  
2048 words  
1024 words  
0
9-15  
N/A  
014006643-E-00  
2014/10  
- 34 -  
[AK7755]  
Default  
CONT04: Data RAM, CRAM Setting  
W R Name D7 D6  
D5  
D4  
D3  
D2 D1  
D0  
C4h 44h CONT04 DRMS[1] DRMS[0] DRAM[1] DRAM[0] POMODE 0  
WAVP[1] WAVP[0] 00h  
D7, D6: DRMS[1:0] Data RAM Size Setting  
DSP Data RAM  
DRAM DRMS  
Bank1  
Memory  
size[words]  
512  
Bank0  
Memory  
size[words]  
1536  
mode  
[1:0]  
0
1
2
3
00  
01  
10  
11  
(default)  
1024  
1536  
N/A  
1024  
512  
D5, D4: DRAM[1:0] Data RAM Addressing mode Setting  
DSP Data RAM  
Addressing DRAM  
mode  
[1:0]  
Bank1 DP1  
Bnak0 DP0  
0
1
2
3
00  
01  
10  
11  
Ring  
Ring  
Linear  
Linear  
Ring  
Linear  
Ring  
Linear  
(default)  
D3: POMODE DLRAM Pointer 0 Select  
0: DBUS Immediate (default)  
1: OFREG  
D1, D0: WAVP[1:0] CRAM Memory Assignment  
WAVP mode WAVP[1:0]  
FFT Point Number  
0
1
2
3
00  
01  
10  
11  
33word  
65word  
129word  
257word  
128  
256  
512  
(default)  
1024  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 35 -  
[AK7755]  
CONT05: Accelerator Setting, JX3 Setting  
W
R
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
ACCRAM  
CLRN  
FIR  
FIR  
SUB  
MODE1 MODE2  
SUB  
MEM MEM  
DIV[1] DIV[0]  
C5h 45h CONT05  
JX3E  
00h  
MODE1 MODE2  
D7: ACCRAMCLRN Accelerator CRAM Clear Setting  
0: Accelerator CRAM is cleared by 0 data after releasing reset. (default)  
1: Accelerator CRAM is not cleared after releasing reset.  
D6: JX3E External Conditional Jump3 Enable  
0: JX3 Disable (default), No. 15 pin output (SDOUT2) when OUT2E bit (CONT0A:D1) = 1”  
1: JX3 Enable, No. 15 pin Input  
D5: FIRMODE1 Accelerator Ch1 Operation Select  
0: Adaptive Filter (default)  
1: FIR Filter  
D4: FIRMODE2 Accelerator Ch2 Operation Select  
0: Adaptive Filter (default)  
1: FIR Filter  
D3: SUBMODE1 Accelerator Ch1 Mode Select  
0: Fullband (default)  
1: Subband  
D2: SUBMODE2 Accelerator Ch2 Mode Select  
0: Fullband (default)  
1: Subband  
D1, D0: MEMDIV[1:0] Accelerator Memory Select  
MODE  
MEMDIV[1:0]  
ch1  
ch2  
0
1
2
3
00  
01  
10  
11  
2048  
1792  
1536  
1024  
-
(default)  
256  
512  
1024  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 36 -  
[AK7755]  
Default  
CONT06: DAC De-emphasis, DAC and DSP Input Format Settings  
Name D7 D6 D5 D4 D3 D2  
W
R
D1  
D0  
C6h 46h CONT06 DEM[1] DEM[0] DIFDA[1] DIFDA[0] 0  
DIF1[2] DIF1[1] DIF1[0] 00h  
D7, D6: DEM[1:0] DAC De-emphasis Setting (50/15μs)  
DEM mode  
DEM[1:0]  
Sampling Frequency fs  
0
1
2
3
00  
01  
10  
11  
OFF  
48kHz  
44.1kHz  
32kHz  
(default)  
D5, D4: DIFDA[1:0] DAC Input Format Select  
DIFDA mode DIFDA[1:0] Input Data Format  
MSB justified (24-bit)  
0
1
2
3
00  
01  
10  
11  
(default)  
LSB justified 24-bit  
LSB justified 20-bit  
LSB justified 16-bit  
Set 00for I2S Compatible, PCM Short and PCM Long formats.  
Set 11when BITFS[1:0] bits (CONT01: D5, D4) =2h (32fs).  
Set 00when connecting MIXOUT or DSP-DOUT4 to DAC input.  
D2, D1, D0: DIF1[2:0] DSP DIN1 Input Format Select  
DIF1 Mode DIF1[2:0] Input Data Format  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
MSB (24-bit)  
LSB 24-bit  
LSB 20-bit  
LSB 16-bit  
MSB 8-bit μ-Law  
MSB 8-bit A-Law  
N/A  
(default)  
N/A  
Set 000for I2S Compatible, PCM Short and PCM Long formats.  
Set 011when BITFS[1:0]=2h (32fs).  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 37 -  
[AK7755]  
Default  
CONT07: DSP Output Format Setting  
Name D7 D6  
W
R
D5  
D4  
D3 D2  
D1  
D0  
C7h 47h CONT07 DOF4[1] DOF4[0] DOF3[1] DOF3[0] 0 DOF1[2] DOF1[1] DOF1[0] 00h  
D7, D6: DOF4[1:0] DSP DOUT4 Output Format Select  
DOF4 mode  
DOF4[1:0]  
Output Data Format  
MSB justified (24-bit)  
LSB justified 24-bit  
LSB justified 20-bit  
LSB justified 16-bit  
0
1
2
3
00  
01  
10  
11  
(default)  
Set 00for I2S Compatible, PCM Short and PCM Long formats.  
Set 11when BITFS[1:0] bits (CONT01: D5, D4) =2h (32fs).  
Set 00when connecting to the DAC.  
D5, D4: DOF3[1:0] DSP DOUT3 Output Format Select  
DOF3 mode  
DOF3[1:0]  
Output Data Format  
MSB justified (24-bit)  
LSB justified 24-bit  
LSB justified 20-bit  
LSB justified 16-bit  
0
1
2
3
00  
01  
10  
11  
(default)  
Set 00for I2S Compatible, PCM Short and PCM Long formats.  
Set 11when BITFS[1:0] bits=2h (32fs).  
D2, D1, D0: DOF1[2:0] DSP DOUT1 Output Format Select  
DOF1 mode  
DOF1[2:0] Output Data Format  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
MSB (24-bit)  
LSB 24-bit  
LSB 20-bit  
LSB 16-bit  
MSB 8-bit μ-Law  
MSB 8-bit A-Law  
N/A  
(default)  
N/A  
Set 000for I2S Compatible, PCM Short and PCM Long formats.  
Set 011when BITFS[1:0] bits=2h (32fs).  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 38 -  
[AK7755]  
CONT08: DAC Input, SDOUT2/3 Output, Digital Mixer Input Setting  
W
R
Name  
D7  
D6  
[0]  
D5  
[1]  
D4  
D3  
[1]  
D2  
[0]  
D1  
[1]  
D0  
[0]  
Default  
00h  
SELDAI SELDAI SELDO3 SELDO3 SELDO2 SELDO2 SELMIX SELMIX  
[1]  
C8h 48h CONT08  
[0]  
D7, D6: SELDAI[1:0] DAC Input Select  
SELDAI mode  
SELDAI[1:0]  
Input Data  
0
1
2
3
00  
01  
10  
11  
DSP DOUT4 (default)  
MIXOUT  
SDIN2  
SDIN1  
Set DIFDA[1:0] bits (CONT06: D5, D4) = 0h when selecting DSP DOUT4 or MIXOUT.  
D5, D4: SELDO3[1:0] SDOUT3 pin Output Select  
SELDO3 mode SELDO3[1:0]  
Output Data  
DSP DOUT3  
MIXOUT  
DSP DOUT4  
SDOUTAD2  
0
1
2
3
00  
01  
10  
11  
(default)  
The output format is fixed to MSB 24-bit when selecting SDOUTAD2 or MIXOUT.  
D3, D2: SELDO2[1:0] SDOUT2 pin Output Select  
SELDO2 mode SELDO2[1:0]  
Output Data  
DSP DOUT2 (default)  
GP1  
SDIN2  
SDOUTAD2  
0
1
2
3
00  
01  
10  
11  
The output format is fixed to MSB 24-bit when selecting SDOUTAD2.  
(CONT09 D0), D1, D0: SELMIX[2:0] Digital Mixer Input Select  
SELMIX mode SELMIX[2:0] MIXOUT Lch  
MIXOUT Rch  
1
000  
SDOUTAD Lch  
SDOUTAD Rch  
(default)  
SDOUTAD Lch/2  
+ SDOUTAD2 Lch/2  
1
001  
SDOUTAD Rch  
SDOUTAD Rch /2  
+ SDOUTAD2 Rch/2  
SDOUTAD2 Rch  
SDOUTAD2 Rch  
DSP-DOUT4 Rch  
SDOUTAD Rch  
2
010  
SDOUTAD Lch  
SDOUTAD2 Lch  
DSP-DOUT4 Lch  
SDOUTAD2 Lch  
DSP-DOUT4 Lch  
SDOUTAD Lch  
3
4
5
6
7
011  
100  
101  
110  
111  
DSP-DOUT4 Rch  
014006643-E-00  
2014/10  
- 39 -  
[AK7755]  
Default  
CONT09: Analog Input / Output Setting  
Name D7 D6 D5 D4 D3  
W
R
D2  
D1  
D0  
C9h 49h CONT09 DIFR INR DIFL INL LO3SW3 LO3SW2 LO3SW1 SELMIX[2] 00h  
D7, D6: DIFR, INR ADC Rch Analog Input  
AK7755  
INL bit  
IN1/INP1 pin  
IN2/INN1 pin  
DIFR bit INR bit  
ADC Rch  
IN3  
IN4  
INP2/INN2  
ADC  
Lch  
0
0
1
0
1
X
(default)  
MIC-Amp  
MIC-Amp  
DIFL bit  
INR bit  
IN3/INP2 pin  
IN4/INN2 pin  
D5, D4: DIFL, INL ADC Lch Analog Input  
ADC  
Rch  
DIFL bit INL bit  
ADC Lch  
IN1  
IN2  
INP1/INN1  
0
0
1
0
1
X
(default)  
DIFR bit  
Figure 22. Analog Input Select  
D3: LO3SW3 OUT3 Mixing Select 3  
0: LIN off (default)  
1: LIN on  
D2: LO3SW2 OUT3 Mixing Select 2  
0: DAC Rch off (default)  
1: DAC Rch on  
D1: LO3SW1 OUT3 Mixing Select 1  
0: DAC Lch off (default)  
1: DAC Lch on  
AK7755  
Mono  
ADC  
Stereo  
DAC Lch  
OUT1 pin  
OUT2 pin  
LIN pin  
LOVOL1[3:0]  
LIGN[3:0]  
Stereo  
DAC Rch  
LO3SW1  
LO3SW2  
LO3SW3  
LOVOL2[3:0]  
LOVOL3[3:0]  
M
I
X
OUT3 pin  
Figure 23. OUT3 Output Select  
D0: SELMIX[2] Digital Mixer Input Select  
Refer to CONT08: D1, D0, SELMIX[2:0] bits  
014006643-E-00  
2014/10  
- 40 -  
[AK7755]  
Default  
CONT0A: CLK and SDOUT Output Setting  
W
R
Name  
D7  
D6  
D5  
D4 D3 D2  
D1  
D0  
CAh 4Ah  
CONT0A CLKOE BICKOE LRCKOE  
0
0
OUT3E OUT2E OUT1E 00h  
D7: CLKOE CLKO pin Setting  
0: CLKO= “L” (default)  
1: CLKO Output Enable  
D6: BICKOE BICK pin Output Setting  
0: BICKO= “L” (default)  
1: BICKO Output Enable  
This setting is invalid in Slave mode (CKM mode 2, 3, and 5 (CONT00: D6-D4)).  
D5: LRCKOE LRCK pin Output Setting (Master Mode)  
0: LRCKO= “L” (default)  
1: LRCKO Output Enable  
This setting is invalid in Slave mode (CKM mode2, 3 and 5).  
D2: OUT3E  
0: SDOUT3= “L” (default)  
1: SDOUT3 Output Enable Valid when JX2E bit (CONT01: D7) = 0”  
D1: OUT2E  
0: SDOUT2= “L” (default)  
1: SDOUT2 Output Enable Valid when JX3E bit (CONT05: D6) = 0”  
D0: OUT1E  
0: SDOUT1= “L” (default)  
1: SDOUT1 Output Enable  
Write “0” into the 0registers.  
CONT0B: TEST Setting  
W
R
Name  
D7 D6 D5 D4  
D3 D2  
D1  
0
D0  
0
Default  
00h  
CBh 4Bh CONT0B 0  
0
0
0
0
0
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 41 -  
[AK7755]  
Default  
CONT0C: ADC, DAC Volume Transition Time and SDOUT1 Output Settings  
Name D7 D6 D5 D4 D3 D2 D1 D0  
W
R
CCh 4Ch CONT0C DSM 0  
ATSPAD ATSPDA 0  
SELDO1[2] SELDO1[1] SELDO1[0] 00h  
D7: DSM Delta Sigma Module Sampling CLK Setting  
0: DSMCLK 256fs (default)  
1: DSMCLK 12.288MHz  
D5: ATSPAD ADC Volume Transition Time Setting  
0: 1/fs (default)  
1: 4/fs  
D4: ATSPDA DAC Volume Transition Time Setting  
0: 1/fs (default)  
1: 4/fs  
D2, D1, D0: SELDO1[2:0] SDOUT1 Pin Output Select  
SELDO1 mode SELDO1[2:0] Output Data  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
DSP DOUT1  
GP0  
SDIN1  
SDOUTAD  
EEST  
SDOUTAD2  
N/A  
(default)  
N/A  
The output format is fixed to MSB 24-bit when selecting SDOUTAD or SDOUTAD2.  
Write “0” into the 0registers.  
CONT0D: STO Status Read and EEPROM Download Setting  
W
R
Name  
D7  
STO  
D6  
1
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
DLS  
Default  
80h  
CDh 4Dh CONT0D  
D7: STO Status Output  
0: Internal Error Status  
1: Normal Operation (default)  
This is a read only register.  
D6: 1  
Thise bit should be set to 1during system reset (CRESETN bit (CONT0F:D3) = 0and  
DSPRESETN bit (CONT0F: D2) = 0).  
D0: DLS Start EEPROM Downloading  
0: Normal Operation (default)  
1: Start EEPROM Downloading  
This setting is valid when the I2CSEL pin= H. Register settings and DSP programs can be  
downloaded from an external EEPROM by setting the EXTEEP pin = Hor DLS bit = 1.  
However, when selecting memory mat (I2CSEL pin = MATSEL pin = H), downloading cannnot be  
executed by DLS bit.  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 42 -  
[AK7755]  
CONT0E: ADC, DAC, Lineout Power Management  
Name D7 D6 D5 D4  
W
R
D3  
D2  
D1  
D0  
Default  
00h  
CEh 4Eh CONT0E PMADR PMADL PMAD2L PMLO3 PMLO2 PMLO1 PMDAR PMDAL  
D7: PMADR Power Management (MIC-Amp Rch + ADC Rch)  
0: Power-down (default)  
1: Start Normal Operation after releasing CODEC Reset (CRESETN bit (CONT0F: D3) = “1”).  
D6: PMADL Power Management (MIC-Amp Lch + ADC Lch)  
0: Power- down (default)  
1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”).  
D5: PMAD2L Power Management (ADC2 Lch)  
0: Power- down (default)  
1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”).  
D4: PMLO3 Lineout 3 Power Management  
0: Power- down (default)  
1: Normal Operation  
D3: PMLO2 Lineout 2 Power Management  
0: Power- down (default)  
1: Normal Operation  
D2: PMLO1 Lineout 1 Power Management  
0: Power- down (default)  
1: Normal Operation  
D1: PMDAR Power Management (DAC Rch)  
0: Power- down (default)  
1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”).  
D0: PMDAL Power Management (DAC Lch)  
0: Power- down (default)  
1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”).  
014006643-E-00  
2014/10  
- 43 -  
[AK7755]  
Default  
CONT0F: Reset Settings, Lineout and Digital MIC2 Rch Power Managements  
W
R
Name  
D7 D6 D5  
D4  
D3  
D2  
D1  
D0  
CFh 4Fh CONT0F 0  
0
PML1 LRDETN CRESETN DSPRESETN  
DLRDY 00h  
PMAD2R  
D5: PMLI Line-in Power Management  
0: Power-down (default)  
1: Normal Operation  
D4: LRDETN Slave Mode Automatic System Reset Setting  
0: LRCK Detect ON (default)  
1: LRCK Detect OFF  
When this bit is 0, if the LRCK is stopped or the LRCK phase is shifted more than 1/4fs, the  
AK7755 enters system reset state automatically.  
D3: CRESETN CODEC Reset N  
0: CODEC Reset (default)  
1: CODEC Reset Release  
CODEC means the ADC and the DAC.  
D2: DSPRESETN DSP Reset N  
0: DSP Reset (default)  
1: DSP Reset Release  
The AK7755 is in system reset state when CRESETN bit = “0” and DSPRESETN bit = “0”.  
D1: PMAD2R Power Managements of ADC2 Rch (only when using digital microphone)  
0: Power-down (default)  
1: The AK7755 enters normal operation after releasing CODEC Reset (CRESETN bit = “1”).  
D0: DLRDY DSP Download Ready  
0: Normal Operation (default)  
1: Program Downloading  
DSP programs and coefficient data can be downloaded by setting this bit to “1” during clock reset  
(CKRESETN bit = 0) or when the main clock is stopped. This bit must be set to 0after finishing  
the downloading.  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 44 -  
[AK7755]  
Default  
CONT10: Function Settings  
Name D7  
W
R
D6  
D5  
D4  
D3  
D2 D1 D0  
D0h 50h CONT10 WDTEN CRCE PLLLOCKE SOCFG SELSTO 0  
0
CKADJEN 00h  
D7: WDTEN WDT (watchdog timer) Setting  
0: WDTE Enable (default)  
1: WDTE Disable  
D6: CRCE CRC (cyclic redundancy check) Setting  
0: CRC Disable (default)  
1: CRC Enable  
D5: PLLLOCKE PLL LOCK Detection  
0: PLL LOCK Disable (default)  
1: PLL LOCK Enable  
D4: SOCFG SO pin Hi-Z Select  
0: Hi-Z (default)  
1: CMOSL  
D3: SELSTO STO/RDY Pin Selecting Status Out  
0: STO (default)  
1: RDY  
D0: CKADJEN Clock Adjustment Enable  
0: CKADJ DISABLE (default)  
1: CKADJ ENABLE  
Write this bit to 1when setting CONT11 CKADJ[7:0] bits.  
Write “0” into the 0registers.  
CONT11: DSPMCLK Availability Ratio Setting  
W
R
Name D7  
CK  
D6  
CK  
D5  
CK  
D4  
CK  
D3  
CK  
D2  
CK  
D1  
CK  
D0  
CK  
Default  
00h  
D1h 51h CONT11  
ADJ[7]) ADJ[6]) ADJ[5]) ADJ[4]) ADJ[3]) ADJ[2]) ADJ[1]) ADJ[0])  
D7-D0: CKADJ [7:0] DSPMCLK Availability Ratio Setting  
Availability = (256-CKADJ) / 256  
0000_0000: 100% driving (Normal) (default)  
0000_0001: 99.6% driving  
• •  
1000_0000: 50% driving  
• •  
1111_1110: 0.8% driving  
1111_1111: 0.4% driving  
Set CONT10 CKADJEN bit to 1when using this register.  
DSPMCLK must always be more than 10 times of SCLK.  
For example, when SCLK is 2MHz, the setting should be lower than 0hD6 (214) since CKADJ[7:0] <  
256 (2 x 10 x 256) / 122.88 = 214.33.  
014006643-E-00  
2014/10  
- 45 -  
[AK7755]  
Default  
CONT12: Microphone Gain Setting  
W
R
Name  
D7  
D6  
[2]  
D5  
[1]  
D4  
[0]  
D3  
[3]  
D2  
D1  
[1]  
D0  
[0]  
MGNR MGNR MGNR MGNR MGNL MGNL MGNL MGNL  
D2h 52h CONT12  
00h  
[3]  
[2]  
D7, D6, D5, D4: MGNR[3:0] Microphone Input Rch Gain Setting  
MGNR mode  
MGNR[3:0]  
Microphone Input Rch  
Gain  
(default)  
0
1
2
3
4
5
6
7
8
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0dB  
2dB  
4dB  
6dB  
8dB  
10dB  
12dB  
14dB  
16dB  
18dB  
21dB  
24dB  
27dB  
30dB  
33dB  
36dB  
9
A
B
C
D
E
F
D3, D2, D1, D0: MGNL[3:0] Microphone Input Lch Gain  
MGNL mode  
MGNL[3:0]  
Microphone Input Lch  
Gain  
0dB  
(default)  
0
1
2
3
4
5
6
7
8
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
2dB  
4dB  
6dB  
8dB  
10dB  
12dB  
14dB  
16dB  
18dB  
21dB  
24dB  
27dB  
30dB  
33dB  
36dB  
9
A
B
C
D
E
F
014006643-E-00  
2014/10  
- 46 -  
[AK7755]  
CONT13: Line-in/Lineout 3 Volume Setting  
W
R
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
00h  
LOVOL3 LOVOL3 LOVOL3 LOVOL3  
[3]  
D3h 53h CONT13 LIGN[3] LIGN[2] LIGN[1] LIGN[0]  
[2]  
[1]  
[0]  
D7, D6, D5, D4: LIGN[3:0] Line-in Volume Setting  
LIGN mode  
LIGN[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Line-in Volume Setting  
0dB  
(default)  
0
1
2
3
4
5
6
7
8
-3dB  
-6dB  
-9dB  
-12dB  
-15dB  
-18dB  
-21dB  
N/A  
+3dB  
+6dB  
+9dB  
+12dB  
+15dB  
+18dB  
+21dB  
9
A
B
C
D
E
F
D3, D2, D1, D0: LOVOL3[3:0] Line-out 3 Volume Setting  
LOVOL3 mode LOVOL3[3:0] Line-out 3 Volume Setting  
(default)  
0
1
2
3
4
5
6
7
8
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Mute  
-28dB  
-26dB  
-24dB  
-22dB  
-20dB  
-18dB  
-16dB  
-14dB  
-12dB  
-10dB  
-8dB  
9
A
B
C
D
E
F
-6dB  
-4dB  
-2dB  
0dB  
014006643-E-00  
2014/10  
- 47 -  
[AK7755]  
CONT14: Line-out 1, Line-out 2 Volume Setting  
Name D7 D6 D5 D4  
LOVOL2 LOVOL2 LOVOL2 LOVOL2 LOVOL1 LOVOL1 LOVOL1 LOVOL1  
W
R
D3  
[3]  
D2  
[2]  
D1  
[1]  
D0  
[0]  
Default  
00h  
D4h 54h CONT14  
[3]  
[2]  
[1]  
[0]  
D7, D6, D5, D4: LOVOL2[3:0] Line-out 2 Volume Setting  
LOVOL2 mode  
LOVOL2[3:0]  
Lineout 2 Volume Setting  
(default)  
0
1
2
3
4
5
6
7
8
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
Mute  
-28dB  
-26dB  
-24dB  
-22dB  
-20dB  
-18dB  
-16dB  
-14dB  
-12dB  
-10dB  
-8dB  
9
A
B
C
D
E
F
-6dB  
-4dB  
-2dB  
0dB  
D3, D2, D1, D0: LOVOL1[3:0] Line-out 1 Volume Setting  
LOVOL1 mode  
LOVOL1[3:0]  
Lineout 1 Volume Setting  
(default)  
0
1
2
3
4
5
6
7
8
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
Mute  
-28dB  
-26dB  
-24dB  
-22dB  
-20dB  
-18dB  
-16dB  
-14dB  
-12dB  
-10dB  
-8dB  
9
A
B
C
D
E
F
-6dB  
-4dB  
-2dB  
0dB  
CONT15-16-17: ADC, ADC2 Lch Digital Volume Setting  
W
R
Name  
D7  
VOL  
D6  
VOL  
D5  
VOL  
D4  
VOL  
D3  
VOL  
D2  
VOL  
D1  
VOL  
D0  
VOL  
Default  
30h  
D5h 55h CONT15  
D6h 56h CONT16  
D7h 57h CONT17  
ADL[7] ADL[6] ADL[5] ADL[4] ADL[3] ADL[2] ADL[1] ADL[0]  
VOL VOL VOL VOL VOL VOL VOL VOL  
ADR[7] ADR[6] ADR[5] ADR[4] ADR[3] ADR[2] ADR[1] ADR[0]  
VOL VOL VOL VOL VOL VOL VOL VOL  
AD2L[7] AD2L[6] AD2L[5] AD2L[4] AD2L[3] AD2L[2] AD2L[1] AD2L[0]  
30h  
30h  
Refer to 2-3. ADC, ADC2 digital volume.  
014006643-E-00  
2014/10  
- 48 -  
[AK7755]  
CONT18-19: DAC Digital Volume Setting  
W
R
Name  
D7  
VOL  
D6  
VOL  
D5  
VOL  
D4  
VOL  
D3  
VOL  
D2  
VOL  
D1  
VOL  
D0  
VOL  
Default  
18h  
D8h 58h CONT18  
D9h 59h CONT19  
DAL[7] DAL[6] DAL[5] DAL[4] DAL[3] DAL[2] DAL[1] DAL[0]  
VOL VOL VOL VOL VOL VOL VOL VOL  
DAR[7] DAR[6] DAR[5] DAR[4] DAR[3] DAR[2] DAR[1] DAR[0]  
18h  
Refer to 2. DAC digital volume.  
CONT1A: ADC/DAC MUTE, ADRC and Zero-cross Settings  
W
R
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
AD  
AD2  
DA  
DAh 5Ah CONT1A  
1
ADRCRE ADRCLE MICRZCE MICLZCE 00h  
MUTE MUTE MUTE  
D7: ADMUTE ADC MUTE Setting  
0: Stereo ADC MUTE Release (default)  
1: Stereo ADC MUTE  
D6: ADMMUTE ADC2 MUTE Setting  
0: ADC2 MUTE Release (default)  
1: ADC2 MUTE  
D5: DAMUTE DAC MUTE Setting  
0: DAC MUTE Release (default)  
1: DAC MUTE  
D4: 1  
Thise bit should be set to 1during system reset (CRESETN bit (CONT0F: D3) = 0and  
DSPRESETN bit (CONT0F: D2) = 0).  
D3: ADRCRE Analog Dynamic Range Controller Rch Enable Setting  
0: ADRC Rch DISABLE (default)  
1: ADRC Rch ENABLE  
D2: ADRCLE Analog Dynamic Range Controller Lch Enable Setting  
0: ADRC Lch DISABLE (default)  
1: ADRC Lch ENABLE  
D1: MICRZCE MICGAIN Rch Zero-corss Enable  
0: Rch Zero-cross Detection ON (default)  
1: Rch Zero-cross Detection OFF  
D0: MICLZCE MICGAIN Lch Zero-cross Enable  
0: Lch Zero-cross Detection ON (default)  
1: Lch Zero-cross Detection OFF  
Write “0” into the 0registers.  
014006643-E-00  
2014/10  
- 49 -  
[AK7755]  
CONT1B: Microphone Gain Read Register when using ADRC  
W
-
R
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
00h  
AMGNR AMGNR AMGNR AMGNR AMGNL AMGNL AMGNL AMGNL  
[3] [2] [1] [0] [3] [2] [1] [0]  
5Bh CONT1B  
This register is a read only register.  
AMGNR[3:0] bits will be valid when ADRCRE bit (CONT1A: D3) = 1, and AMGNL[3:0] will be valid  
when ADRCLE bit (CONT1A: D2) = 1. The microphone gain value set by DSP can be readout.  
CONT1C: TEST Setting  
W
R
Name  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Default  
00h  
DCh 5Ch CONT1C  
Write “0” into the 0registers.  
CONT1D: ADC2 Rch Digital Volume Setting  
W
R
Name  
D7  
VOL  
D6  
VOL  
D5  
VOL  
D4  
VOL  
D3  
VOL  
D2  
VOL  
D1  
VOL  
D0  
VOL  
Default  
30h  
DDh 5Dh CONT1D  
AD2R[7] AD2R[6] AD2R[5] AD2R[4] AD2R[3] AD2R[2] AD2R[1] AD2R[0]  
Refer to 2-3. ADC2 Digital Volume.  
CONT1E: Digital Microphone Interface Setting  
W
R
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D0 Default  
DDh 5Dh CONT1D DMIC1 DMCLKP1 DMCLKE1 DMIC2 DMCLKP2 DMCLKE2 0  
0
00h  
D7: DMIC1 Digital Microphone 1 Select  
0: Not Using DMIC1 (default)  
1: Using DMIC1  
When DMIC1 bit = 1or DMIC2 bit = 1, pin number 31~ 34 become digital microphone interfaces,  
and analog inputs are not available.  
D6: DMCLKP1 Digital Microphone 1 Channel Setting  
DMCLKP1  
DMCLK1 pin = H”  
DMCLK1 pin = L”  
0
1
Rch  
Lch  
Lch  
Rch  
(default)  
D5: DMCLKE1 Digital Microphone 1 Clock Setting  
0: DMCLK1 pin = L(default)  
1: DMCLK1 64fs (Output Enable)  
D4: DMIC2 Digital Microphone 2 Select  
0: Not Using DMIC2 (default)  
1: Using DMIC2  
When DMIC1 bit = 1or DMIC2 bit = 1, pin number 31 ~ 34 become digital microphone  
interfaces, and analog inputs are not available.  
D3: DMCLKP2 Digital Microphone 2 Channel Setting  
DMCLKP2  
DMCLK2 pin = H”  
DMCLK2 pin = L”  
0
1
Rch  
Lch  
Lch  
Rch  
(default)  
D2: DMCLKE2 Digital Microphone 2 Clock Setting  
0: DMCLK2 pin = L(default)  
1: DMCLK1 64fs (Output Enable)  
014006643-E-00  
2014/10  
- 50 -  
[AK7755]  
Do not write data into CONT21 - CONT25.  
CONT26  
W
R
Name  
D7 D6 D5 D4 D3 D2 D1 D0 Default  
00h  
E6 66h CONT26 0  
0
0
0
0
0
0
1
D0: 1  
Thise bit should be set to 1during system reset (CRESETN bit (CONT0F: D3) = 0and  
DSPRESETN bit (CONT0F: D2) = 0).  
Write “0” into the 0registers.  
Do not write data into CONT27 - CONT29.  
CONT2A  
W
R
Name  
D7 D6 D5 D4 D3 D2 D1 D0 Default  
00h  
EA 6Ah CONT2A 1  
0
0
0
0
0
0
0
D7: 1  
Thise bit should be set to 1during system reset (CRESETN bit (CONT0F: D3) = 0and  
DSPRESETN bit (CONT0F: D2) = 0).  
Write “0” into the 0registers.  
Do not write data into CONT2B CONT2F.  
014006643-E-00  
2014/10  
- 51 -  
[AK7755]  
Power-up Sequence  
1. When not downloading settings and programs from EEPROM  
The AK7755 should be powered up when the PDN pin = “L”. AVDD and TVDD must be powered up first  
before DVDD when DVDD is supplied externally (LDOE pin = L). In this case, the power-up sequence  
between AVDD and TVDD is not critical. Control register settings are initialized by the PDN pin = L.  
Set the PDN pin to “H” to start the power supply circuits for REF (analog reference voltage source)  
generator and digital circuits (only when LDOE pin = H) after all power supplies are fed. Control register  
access must be made after 1ms from the PDN pin = H. Set AINE bit (CONT00: D3) to 1fist when  
using the IN1/INP1, IN2/INN1, IN3/INP2 and IN4/INN2 pins as analog inputs.  
The PLL starts operation by a clock reset release (CKRESETN bit (CONT01: D0) = “0” → “1”) and  
generates the internal master clock after setting control registers. Therefore, necessary system clock must be  
input and control register settings for CONT00 ~ CONT01 are must be finished before releasing the clock  
reset.  
Interfacing with the AK7755 except control register settings should be made when PLL oscillation is  
stabilized after clock reset release (take a 10ms interval or confirm “H” level output of PLLLOCK signal  
from the STO/RDY pin) (Figure 24). However, DSP program and coefficient data can be written even  
when the system clock is stopped. DSP programs and coefficient data can be written in 1ms by setting  
DLRDY bit =“0” → “1” (CONT0F, D0). DLRDY bit (CONT0F: D0) must be set to “0” after the download  
(Figure 25).  
When using a crystal oscillator in master mode, set the CKM[2:0] bits (CONT00: D6-D4) = 0h or 1h, and  
release the clock reset after crystal oscillation is stabilized. The stabilizing time of crystal oscillation is  
dependent on the crystal and external circuits.  
The system clock must not be stopped except during the clock reset and power-down mode.  
TVDD,AVDD  
DVDD  
PDN (pin)  
CONT Reg. Setting  
SI(SPI),SDA(I2C)  
DSP Program  
CKRESETN bit (Reg.)  
DSPRESETN bit(Reg.)  
CRESETN bit(Reg.)  
XTI,BICK (pin)  
Clock Stabilizataion  
Internal PLLCLK  
(Internal Master Clock)  
600ns(min) 1ms(min)  
Before PLL stable oscillation  
access is not permitted  
(10ms)  
Command code and DSP  
Program download  
Power OFF  
No time limitation)  
Figure 24. Power-up Sequence 1 (When not downloading from EEPROM)  
(With External Power Supply (LDOE pin = L), No downloading from EEPROM)  
014006643-E-00  
2014/10  
- 52 -  
 
[AK7755]  
TVDD, AVDD  
DVDD  
PDN(Pin)  
SI(spi), SDA(i2c)  
DLRDY=1  
DLRDY=0  
DSP Program  
CONT Reg.Setting  
CKRESETN bit (Reg.)  
DSPRESETN bit(Reg)  
CRESETN bit(Reg)  
XTI,BICK(Pin)  
Clock Stabilization  
Internal PLLCLK  
(Internal Master Clock)  
Before PLL stable oscillation  
access is not permitted  
(10ms)  
Power OFF  
600ns(min) 1ms(min)  
1ms(min)  
Figure 25. Power-up Sequence 2  
(With External Power Supply (LDOE pin = L), DLRDY Setting, No downloading from EEPROM)  
2. When downloading settings and programs from EEPROM  
When downloading programs from an EEPROM, I2C interface (I2CSEL pin = H) and a 12.288MHz  
clock input to the XTI pin are necessary, or a 12.288MHz crystal oscillator must be connected to the XTI  
and XTO pins. In this case, only CKM mode 0 and 2 (CONT00: D6-D4) are available. The AK7755 should  
be powered up when the PDN pin = “L”. AVDD and TVDD must be powered up first before DVDD when  
DVDD is supplied externally (LDOE pin = L). In this case, the power-up sequence between AVDD and  
TVDD is not critical. Set the PDN pin to “H” to start the power supply circuits for REF (analog reference  
voltage source) generator and internal digital circuit (only when the LDOE pin = H) after all power  
supplies are fed. There are three ways to start downloading control register settings, DSP programs and  
Coefficient RAM: by PDN pin (1) (Figure 26), by EXTEEP pin (2) (Figure 26) and by DLS bit (3) (Figure  
27).  
014006643-E-00  
2014/10  
- 53 -  
[AK7755]  
TVDD, AVDD  
DVDD  
PDN(pin)  
(1)  
XTI(pin)  
Clock Stabilization(12.288MHz)  
I2CSEL(pin)  
EXTEEP(pin)  
(2)  
SDA(pin) (EEPROMAK7755)  
EEST(pin)  
CONT Reg. Setting, DSP Program  
Success  
Error  
STO(pin)  
CKRESETN bit (Reg.)  
DSPRESETN bit(Reg.)  
CRESETN bit(Reg.)  
Power OFF  
600ns(min) 1ms(min)  
Figure 26. Power-up Sequence 3  
(With External Power Supply (LDOE pin = L), Downloading from EEPROM (1)(2))  
(1) Start Downloading by PDN pin  
Power ON (AVDD, TVDD), I2CSEL pin=H, EXTEEP pin=H”→ (DVDD), PDN pin=L”→“H”  
(2) Start Downloading EXTEEP pin (Dotted Line)  
Power ON (AVDD, TVDD), I2CSEL pin = H” → (DVDD), PDN pin = LH”  
EXTEEP pin = L“H”  
TVDD, AVDD  
DVDD  
PDN(pin)  
(1)  
XTI(pin)  
Clock Stabilization(12.288MHz)  
(3)  
I2CSEL(pin)  
DLS bit  
(uPAK7755)  
(EEPROMAK7755)  
SDA(pin)  
DLS=1  
CONT Reg. Setting, DSP Program  
EEST(pin)  
Success  
Error  
STO(pin)  
CKRESETN bit (Reg.)  
DSPRESETN bit(Reg.)  
CRESETN bit(Reg.)  
Power OFF  
600ns(min) 1ms(min)  
Figure 27. Power-up Sequence 4  
(With External Power Supply (LDOE pin = L), Downloading from EEPROM (3))  
(3) Start Downloading DLS bit  
Power ON (AVDD, TVDD), I2CSEL pin=H”→(DVDD), PDN pin=LH” →DLS bit = 01”  
014006643-E-00  
2014/10  
- 54 -  
[AK7755]  
LDO (Internal Circuit Drive Regulator)  
The AK7755 has a regulator for driving internal digital circuits (LDO). When using the LDO, the LDOE  
pin must be fixed to Hand connect a 1μF (±30%) capacitor between the AVDRV pin and the VSS pin.  
The LDO starts operation by releasing power-down mode, and control register write/read can be made 1ms  
after the power-down release.  
The AK7755 has an overcurrent protection circuit to avoid abnormal heat of the device that is caused by a  
short of the AVDRV pin to VSS and etc., and an overvoltage protection circuit to protect from exceeded  
voltage when the voltage to the AVDRV pin gets too high. When these protection circuits perform, internal  
circuits are powered down and the STO pin outputs “L”. The internal circuit will not return to a normal  
operation until being reset by the PDN pin after removing the problems.  
TVDD,AVDD  
LDOE (pin)  
AVDRV (pin)  
PDN (pin)  
STO (pin)  
CONT Reg. Setting  
SI(SPI),SDA(I2C)  
DSP Program  
CKRESETN bit (Reg.)  
DSPRESETN bit(Reg.)  
CRESETN bit(Reg.)  
XTI,BICK (pin)  
Clock Stabilization  
Internal PLLCLK  
(Internal Master Clock)  
Power OFF  
600ns(min) 1ms(min)  
Before PLL stable oscillation  
access is not permitted  
(10ms)  
Command code and DSP  
Program download  
No time limitation)  
Figure 28. Power-up Sequence 5  
(With LDO (LDOE pin = H), No downloading from EEPROM)  
Power-down Sequence  
The AK7755 should be powered down when the PDN pin = “L”. Stop external clocks during this  
power-down state and then OFF the power supplies. Do not input external clocks when the power supplies  
are off (a current will flow through protection diodes). AVDD and TVDD must be powered down after  
DVDD when DVDD is supplied externally (LDOE pin = L). In this case, the power-down sequence  
between AVDD and TVDD is not critical.  
TVDD,AVDD  
DVDD  
PDN(pin)  
Power OFF  
Figure 29. Power-down Sequence  
014006643-E-00  
2014/10  
- 55 -  
 
[AK7755]  
Power-down and Reset  
1. Power-down, Reset and Power Management of the AK7755  
The AK7755 has four types of power-down and reset functions that are power-down (PDN pin), Clock  
reset (CLKRESETN bit (CONT01:D0)), CODEC reset (CRESETN bit(CONT0F:D3)) and DSP reset  
(DSPRESETN bit(CONT0F:D2)). Each block can be powered-down by power management registers.  
2. Power-down  
The AK7755 is powered down by setting the PDN pin = “L”. The PDN pin must be set to Lwhen  
power up the AK7755. The statuses of output pins in power-down mode are shown below.  
LDOE pin = “L” (External 1.2V supply mode)  
Power-down Mode Status  
No  
1
6
7
8
9
10  
11  
14  
15  
16  
Pin Name  
I/O Power-down Mode Status No  
Pin Name  
SO/SDA  
SCLK/SCL  
OUT3  
I/O  
I/O  
I/O  
O
O
O
I/O  
I
I/O  
I
VCOM  
STO/RDY  
LRCK  
BICK  
CLKO  
O
O
L
H
L
L
L
H
H
L
L
L
17  
18  
26  
27  
28  
31  
32  
33  
34  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
I/O  
I/O  
O
O
I
OUT2  
OUT1  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
XTO  
XTI  
JX2/SDOUT3/JX2/MAT1  
I/O  
I/O  
O
SDOUT2/JX3/MAT1  
SDOUT1  
Note 44. [I/O] indicates Input / Output attribute of each pin.  
LDOE pin = H(LDO mode)  
Power-down Mode Status  
Power-down Mode Status  
I/O  
No  
1
6
7
8
Pin Name  
VCOM  
STO/RDY  
LRCK  
BICK  
CLKO  
XTO  
I/O  
O
O
I/O  
I/O  
O
O
I
I/O  
I/O  
O
No  
17  
18  
24  
26  
27  
28  
31  
32  
33  
34  
Pin Name  
SO/SDA  
SCLK/SCL  
AVDRV  
L
L
L
L
L
H
H
L
L
L
I/O  
I/O  
O
Hi-Z  
Hi-Z  
L
OUT3  
OUT2  
OUT1  
O
O
O
I/O  
I
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
9
10  
11  
14  
15  
16  
IN4/INN2/DMCLK2  
IN3/INP2/DMDAT2  
IN2/INN1/DMCLK1  
IN1/INP1/DMDAT1  
XTI  
JX2/SDOUT3/JX2/MAT1  
SDOUT2/JX3/MAT1  
I/O  
I
SDOUT1  
3. Power-down Release  
3-1. LDOE = “L” (External 1.2V supply mode)  
DVDD, TVDD and AVDD should be supplied when the PDN pin = L. By bringing the PDN pin “H”  
600ns (min) after all power supplies are fed (DVDD, TVDD and AVDD), REF voltage circuit (Analog  
reference voltage) starts operation. Control register write / read should be made 1ms after bringing the  
PDN pin = H(Figure 24). AVDD and TVDD must be powered up first before DVDD. In this case,  
the power-up sequence between AVDD and TVDD is not critical.  
3-2. LDOE = “H” (LDO mode)  
TVDD and AVDD should be supplied when the PDN pin = L. By bringing the PDN pin “H600ns  
(min) after TVDD and AVDD are fed, the power supply circuits for REF generator and internal digital  
circuit start operation. Control register write / read should be made 1ms after bringing the PDN pin =  
H(Figure 28).  
014006643-E-00  
2014/10  
- 56 -  
[AK7755]  
4. Clock Reset  
Clock reset is defined as when CKRESERN bit (CONT01: D0) = 0after power-down release (PDN  
pin = H). The AK7755 is in the clock reset state after releasing power-down. At this time, all internal  
blocks of the AK7755, except the REF circuit and the power supply circuit for digital block, are in  
power-down mode. Even the PLL for internal master clock generation is not in operation.  
Control register write/read should be made 1ms (min.) after power-down release. Clock generating  
control registers (CONT00 ~ CONT01) must be set during clock reset. AINE bit (CONT00: D3) should  
be set to 1first when using the IN1/INP1, IN2/INN1, IN3/INP2 and IN4/INN2 pins as analog inputs.  
DSP program and coefficient RAM data writing to the DSP become available in 1ms by setting  
DLRDY bit (CONT0F: D0) = 0” → “1during clock reset (CKRESETN bit = 0). DLRDY bit must  
be set to 0when finishing downloading. Necessary system clock (XTI@CKM mode0-2 or  
BICK@CKM mode 3, 5(CONT00: D6-D4)) must be input before releasing the clock reset (Figure 16).  
The PLL for internal master clock starts operation and generating master clock when the clock reset  
state is released (CKRESETN bit = “1”). Do not send DSP programs, coefficient data or a command  
code for system reset release from a microcontroller to the AK7755 until the PLL oscillation is  
stabilized (for 10ms or during Low output period of the PLLLOCK signal from the STO pin).  
System clocks must be changed during a clock reset or in power-down mode (PDN pin = “L”). The  
AK7755 enters clock reset state by setting CKRESETN bit to “0” after system reset. The PLL and the  
internal clock are stopped by this clock reset and the clock change can be done safely. Change register  
settings and system clock frequencies during the clock reset. After a system clock is stabilized, the PLL  
starts operation by setting CKRESETN bit to “1”.  
CKM mode0  
CKM mode3  
XTI  
BICK  
CSN  
SCLK (Simplified)  
SI  
0xCF 0x00  
0xC1 0x00  
0xC0 0x3x  
0xC1 0x01  
0xCF 0x0C  
CRESETN / DSPRESETN  
CKRESETN  
PLL Stable  
Oscillation  
Input Clock Changeable Period  
Command Code &  
DSP Program Transmitting Period  
Figure 30. Clock Reset Sequence (e.g. CKM mode0 → CKM mode 3)  
014006643-E-00  
2014/10  
- 57 -  
[AK7755]  
5. System Reset  
System reset is defined as when CRESETN bit (CONT0F: D3) = 0” and DSPRESETN bit (CONT0F:  
D2) = “0” after clock reset is released (CKRESETN bit (CONT01: D0) = 1”). PRAM and CRAM  
downloading should be executed in this state. PRAM and CRAM accessing of the AK7755 should be  
made when PLL oscillation is stabilized after clock reset release (take a 10ms interval or confirm “H”  
level output of PLLLOCK signal from the STO pin).  
System reset is released when either CODEC reset (CRESETN bit) or DSP reset (DSPRESETN bit) is  
released (0” → “1) after DSP programs and coefficient data are transmitted. Then the AK7755 starts  
generating necessary clocks for ADC, DAC and DSP operations. A system reset image is shown below.  
CRESETN bit  
SRESETN  
DSPRESETN bit  
Figure 31. System Reset Structure  
In slave mode, the AK7755 starts operation in synchronization of an LRCK rising edge (falling edge in  
I2S mode) when system reset is released. If the LRCK is stopped or the LRCK phase is shifted more  
than 1/4fs, the AK7755 becomes the system reset state automatically. In this case, the system reset state  
is released if the LRCK is input again.  
RAM Clear  
The AK7755 has a RAM clear function. After system reset release (during RUN), data RAM and delay  
RAM are cleared by “0” (RAM clear). The internal PLL must have a stable oscillation before system  
reset release. The required time to clear RAM is 400µs.  
In the RAM clear sequence, it is possible to send commands to the DSP. (DSP is stopped during RAM  
clear sequence. The sent command is accepted automatically after this sequence is completed.)  
PDN (pin)  
DSPRESETN bit  
RAM Clear  
DSP Start  
RAM Clear Period  
DSP Program  
Operation Start  
Figure 32. RAM Clear Sequence  
014006643-E-00  
2014/10  
- 58 -  
[AK7755]  
Serial Data Interface  
Serial audio data pins; the SDIN1, SDIN2, SDOUT1, SDOUT2 and SDOUT3 pins are interfaced with  
an external system by LRCK and BICK. Control register settings are needed to use these interfaces  
(Refer to ■ Block Diagram (Figure 1) and Control register setting).  
The data format is 2's compliment MSB first. I/O format supports MSB justified, LSB justified, I2S  
compatible and PCM format. (In I2S compatible/PCM mode, all audio data input and output pins are in  
I2S compatible/PCM format, respectively.)  
The input (SDIN1 and SDIN2) format is 24-bit MSB justified at default. 24-bit/20-bit/16-bit LSB  
justified, I2S and PCM formats are also selectable by control register DIF[1:0] bits. The output  
(SDOUT1, ADOUT2 and SDOUT3) format is 24-bit MSB justified at default. 24-bit/20-bit/16-bit LSB  
justified, I2S and PCM formats are selectable by setting DOF[1:0] bits. The SDOUT1 also supports 8-bit  
MSB justified μ-Law and 8-bit MSB justifid A-Law formats. The output data of the ADC (SDOUTAD  
and SDOUTAD2) is fixed to 24-bit MSB justified.  
DIFDIF2, DIFDA[1:0]  
DIF1[2:0]  
mode LRIF[1:0]  
or  
DOF2, 3, 4[1:0]  
000h  
or  
BITFS[1:0] Format  
DOF1[2:0]  
MSB 24-bit 64fs  
0
1
2
3
4
5
6
7
8
0h  
1h  
2h  
3h  
4h  
5h  
0h  
0h  
0h  
0h  
0h/1h  
0h/1h  
0h/1h/2h  
0h  
000h  
000h  
000h  
000h  
0h  
LSB 24-bit 64fs/48fs  
LSB 20-bit 64fs/48fs  
LSB 16-bit 64fs/48fs/32fs  
MSB 8-bit μ-Law  
011h  
102h  
113h  
N/A  
N/A  
000h  
000h  
000h  
MSB 8-bit A-Law  
0h  
0h  
0h  
I2S Compatible  
011h  
102h  
113h  
PCM Short Frame 64fs/256fs  
PCM Long Frame 64fs/256fs  
0h/3h  
0h/3h  
Serial Data Format Examples  
1. MSB justified (mode 0)  
LRCK  
Left ch  
Right ch  
BICK  
31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1 0  
M: MSB, L: LSB  
SDIN1, 2  
DIF Mode 0  
M 22 2120 19  
2
2
1 L  
1 L  
M 22 21 20 19  
M 22 21 20 19  
2
1 L  
SDOUT1, 2, 3  
DOF Mode 0  
M: MSB, L: LSB  
M 22 2120 19  
2
1 L  
Figure 33. MSB Justified BICK 64fs  
014006643-E-00  
2014/10  
- 59 -  
[AK7755]  
2. LSB justified (mode1, 2, 3)  
LRCK  
Left ch  
Right ch  
BICK  
31 30  
23 22 21 20 19 18 17 16 15 14  
1 0 31 30  
23 22 21 20 19 18 17 16 15 14  
1 0  
1 L  
SDIN1, 2  
DIF Mode 1  
Don’t care M 22 21 20 19 18 17 16 15 14  
1 L Don’t care M 22 21 20 19 18 17 16 15 14  
SDIN1, 2  
DIF Mode 2  
Don’t care  
Don’t care  
M 18 17 16 15 14  
M 14  
1 L Don’t care  
1 L Don’t care  
M 18 17 16 15 14  
1 L  
1 L  
SDIN1, 2  
DIF Mode 3  
M 14  
M: MSB, L: LSB  
SDOUT1, 2, 3  
DOF Mode 1  
MSB  
MSB  
MSB  
22 21 20 19 18 17 16 15 14  
1 L  
1 L  
1 L  
MSB  
MSB  
MSB  
22 21 20 19 18 17 16 15 14  
1 L  
1 L  
1 L  
SDOUT1, 2, 3  
DOF Mode 2  
18 17 16 15 14  
14  
18 17 16 15 14  
14  
SDOUT1, 2, 3  
DOF Mode 3  
Figure 34. LSB Justified BICK 64fs  
LRCK  
BICK  
Left ch  
Right ch  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
M 22 21 20 19 18 17 16 15 14 13 12 11 10  
L
1 0  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
M 22 21 20 19 18 17 16 15 14 13 12 11 10  
1 0  
SDIN1,2  
DIF mode1  
1
L
1
SDIN1,2  
DIF mode2  
Don’t care M 18 17 16 15 14 13 12 11 10  
1
1
L Don’t care M 18 17 16 15 14 13 12 11 10  
1
1
L
L
SDIN1,2  
DIF mode3  
Don’t care  
M 14 13 12 11 10  
L Don’t care  
M 14 13 12 11 10  
M:MSB,L:LSB  
SDOUT1,2,3  
DOF mode1  
M 22 21 20 19 18 17 16 15 14 13 12 11 10  
L
1
1
1
L
L
L
M 22 21 20 19 18 17 16 15 14 13 12 11 10  
1
1
1
SDOUT1,2,3  
DOF mode2  
MSB  
MSB  
18 17 16 15 14 13 12 11 10  
14 13 12 11 10  
L MSB  
L MSB  
18 17 16 15 14 13 12 11 10  
14 13 12 11 10  
SDOUT1,2,3  
DOF mode3  
Figure 35. LSB Justified BICK 48fs  
014006643-E-00  
2014/10  
- 60 -  
[AK7755]  
LRCK  
BICK  
Left ch  
Right ch  
1
0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
15 14 13 12 11 10 9 8 7 6 5 4 3  
2
0
L
SDIN1,2  
DIF mode3  
M 14 13 12 11 10 9 8 7  
6
5 4 3 2 1 L  
M 14 13 12 11 10 9 8 7  
6
5 4 3 2  
1
1
SDOUT1,2,3  
DOF mode3  
L
M 14 13 12 11 10 9 8 7 6 5 4 3 2  
1
L
M 14 13 12 11 10 9 8 7 6 5 4 3 2  
Figure 36. LSB Justified BICK 32fs  
3. MSB 8-bit μ-LawMSB 8-bit A-Law (mode 4,5)  
LRCK  
BICK  
Left ch  
Right ch  
31 30 29 28 27 26 25 24  
M 6 5 4 3 2 1 L  
7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24  
7 6 5 4 3 2 1 0  
SDIN1  
DIF mode4/5  
M:MSB,L:LSB  
M 6 5 4 3 2 1 L  
M 6 5 4 3 2 1 L  
M 22 21 20 19 18 17 16  
M 22 21 20 19 18 17 16  
SDOUT1  
DOF mode4/5  
M:MSB,L:LSB  
M 6 5 4 3 2 1 L  
M 22 2120 19 18 17 16  
M 22 2120 19 18 17 16  
SDIN2  
DIF mode0  
M:MSB,L:LSB  
1 L  
1 L  
1 L  
SDOUT2,3  
M:MSB,L:LSB  
1 L  
DOF mode0  
Figure 37. MSB Justified 8-bit μ-Law, 8-bit A-Law BICK 64fs  
4. I²S (mode6)  
LRCK  
BICK  
Left ch  
Right ch  
31 30 29 28 27  
M 22 21 20  
10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1 0  
M: MSB, L: LSB  
SDIN1, 2  
3 2 1 L  
M 22 21 20  
M 22 21 20  
3 2 1 L  
3 2 1 L  
M: MSB, L: LSB  
SDOUT1, 2, 3  
M 22 21 20  
3 2 1 L  
Figure 38. I²S BICK 64fs  
014006643-E-00  
2014/10  
- 61 -  
[AK7755]  
5. PCM Short Frame (mode7)  
tBCLK  
LRCK  
SF  
BICK  
63 62 61 60 59  
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1  
0
SDIN1, 2  
M 22 21 20 19  
2
2
1 L  
1 L  
M 22 21 20 19  
2
2
1 L  
1 L  
SDOUT1, 2, 3  
M: MSB, L: LSB  
M 22 21 20 19  
M 22 21 20 19  
Right ch  
Left ch  
Figure 39. 64fs PCM Short Frame  
tBCLK  
LRCK  
SF  
BICK  
255 254 253 252 251  
234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219  
202 201 200 199 198  
3 2 1 0  
SDIN1,2  
M 22 21 20 19  
2 1 L  
2 1 L  
M 22 21 20 19  
2 1 L  
SDOUT1,2,3  
M:MSB,L:LSB  
M 22 21 20 19  
M 22 21 20 19  
2 1 L  
Left ch  
Right ch  
tBCLK × 32  
tBCLK × 256  
Figure 40. PCM Short Frame 256fs  
6. PCM Long Frame (mode8)  
tBCLK t ts-tBCLK  
LRCK  
BICK  
LF  
63 62 61 60 59  
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1  
0
SDIN1, 2  
tBCLK  
M 22 21 20 19  
2
1 L  
M 22 21 20 19  
M 22 21 20 19  
2
2
1 L  
SDOUT1, 2, 3  
M: MSB, L: LSB  
M 22 21 20 19  
2
1 L  
1 L  
Left ch  
tBCLK × 32  
Right ch  
tBCLK × 32  
Figure 41. 64fs PCM Long Frame  
014006643-E-00  
2014/10  
- 62 -  
[AK7755]  
LRCK  
BICK  
LF  
255 254 253 252 251  
234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219  
202 201 200 199 198  
4 3 2 1 0  
SDIN1, 2  
tBCLK  
M:MSB,L:LSB  
M 22 21 20 19  
2 1 L  
M 22 21 20 19  
M 22 21 20 19  
2 1 L  
SDOUT1, 2, 3  
M 22 21 20 19  
2 1 L  
2 1 L  
Left ch  
Right ch  
tBCLK × 32  
tBCLK × 256  
Figure 42. PCM Long Frame 256fs  
7. TDM Mode  
TDM interface formats shown below are available by setting TDM256 bit = 1. BITFS[1:0] bits should  
be set to 3h since BICK is fixed to 256fs.  
Mode LRIF[1:0] TDMMODE[1:0]  
Format  
Note  
0
1
2
3
4
5
6
7
8
0h  
0h  
0h  
1h  
1h  
1h  
2h  
2h  
2h  
3h  
3h  
3h  
0h  
1h  
2h  
0h  
1h  
2h  
0h  
1h  
2h  
0h  
1h  
2h  
MSB 24-bit  
MSB 24-bit  
MSB 24-bit  
SLOT7 and 8 Inputs Not Available  
SLOT5, 6, 7 and 8 Inputs Not Available  
I2S Compatible  
I2S Compatible  
I2S Compatible  
PCM Short Frame  
SLOT7 and 8 Inputs Not Available  
SLOT5, 6, 7 and 8 Inputs Not Available  
PCM Short Frame SLOT7 and 8 Inputs Not Available  
PCM Short Frame SLOT5, 6, 7 and 8 Inputs Not Available  
PCM Long Frame  
PCM Long Frame SLOT7 and 8 Inputs Not Available  
PCM Long Frame SLOT5, 6, 7 and 8 Inputs Not Available  
9
10  
11  
014006643-E-00  
2014/10  
- 63 -  
[AK7755]  
256BICK  
LRCK(master)  
LRCK(slave)  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
BICK(256fs)  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23  
22  
0
23 22  
0
23  
23  
22  
22  
0
23 22  
0
23  
22  
0
23 22  
0
23  
22  
0
23 22  
0
SDOUT1  
DOUT1L  
DOUT1R  
DOUT2L  
DOUT2R  
DOUT3L  
DOUT3R  
DOUT4L  
DOUT4R  
SDIN1(TDM mode0) 23  
23 22  
23 22  
23 22  
22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23  
22  
0
23 22  
0
DIN1R  
DIN2R  
DIN3L  
DIN3R  
DIN4L  
DIN4R  
DIN1L  
DIN2L  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
SDIN1(TDM mode1)  
SDIN1(TDM mode2)  
SDOUTAD  
Rch  
SDOUTAD  
Lch  
DIN3R  
DIN1L  
DIN1R  
DIN2L  
DIN2R  
DIN3L  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
22  
0
23  
SDOUTAD2  
Lch  
SDOUTAD  
Rch  
SDOUTAD2  
Rch  
SDOUTAD  
Lch  
DIN1R  
DIN2R  
DIN1L  
DIN2L  
(dont care)  
SDIN2  
Figure 43. TDM mode MSB Justified 24-bit (Internal signals are indicated by dotted lines)  
256BICK  
LRCK(master)  
LRCK(slave)  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
BICK(256fs)  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23  
0
23  
0
23  
0
23  
0
23  
23  
23  
23  
23  
0
23  
0
23  
0
23  
0
SDOUT1  
DOUT1L  
DOUT1R  
DOUT2L  
DOUT2R  
DOUT3L  
DOUT3R  
DOUT4L  
DOUT4R  
SDIN1(TDM mode3)  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
DIN1R  
DIN2R  
DIN3L  
DIN3R  
DIN4L  
DIN4R  
DIN1L  
DIN2L  
SDIN1(TDM mode4)  
SDIN1(TDM mode5)  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDOUTAD  
Rch  
SDOUTAD  
Lch  
DIN1R  
DIN2R  
DIN3L  
DIN3R  
DIN1L  
DIN2L  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDOUTAD2 SDOUTAD2  
Lch Rch  
SDOUTAD  
Rch  
SDOUTAD  
Lch  
DIN1R  
DIN2R  
DIN1L  
DIN2L  
(dont care)  
SDIN2  
Figure 44. TDM mode I2S Compatible (Internal signals are indicated by dotted lines)  
014006643-E-00  
2014/10  
- 64 -  
[AK7755]  
256BICK  
LRCK  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
BICK(256fs)  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23  
0
23  
0
23  
0
23  
0
23  
23  
23  
23  
23  
0
23  
0
23  
0
23  
0
SDOUT1  
DOUT1L  
DOUT1R  
DOUT2L  
DOUT2R  
DOUT3L  
DOUT3R  
DOUT4L  
DOUT4R  
SDIN1(TDM mode6)  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
DIN1R  
DIN2R  
DIN3L  
DIN3R  
DIN4L  
DIN4R  
DIN1L  
DIN2L  
SDIN1(TDM mode7)  
SDIN1(TDM mode8)  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDOUTAD  
Rch  
SDOUTAD  
Lch  
DIN1R  
DIN2R  
DIN3L  
DIN3R  
DIN1L  
DIN2L  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDOUTAD2 SDOUTAD2  
Lch Rch  
SDOUTAD  
Rch  
SDOUTAD  
Lch  
DIN1R  
DIN2R  
DIN1L  
DIN2L  
(dont care)  
SDIN2  
Figure 45. TDM mode PCM Short Frame (Internal signals are indicated by dotted lines)  
256BICK  
LRCK  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
BICK(256fs)  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
0
23 22  
0
23 22  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
SDOUT1  
DOUT1L  
DOUT1R  
DOUT2L  
DOUT2R  
DOUT3L  
DOUT3R  
DOUT4L  
DOUT4R  
SDIN1(TDM mode9) 23  
22  
0
23 22  
0
23  
23  
23 22  
23 22  
23 22  
22  
0
23 22  
0
23  
23  
22  
0
23 22  
0
23  
22  
0
23 22  
0
DIN1R  
DIN2R  
DIN3L  
DIN3R  
DIN4L  
DIN4R  
DIN1L  
DIN2L  
23 22  
0
23 22  
0
22  
0
23 22  
0
23  
22  
0
23 22  
0
22  
0
SDIN1(TDM mode10)  
23 22  
0
SDOUTAD  
Rch  
SDOUTAD  
Lch  
DIN3R  
DIN1R  
DIN2R  
DIN3L  
DIN1L  
DIN2L  
SDIN1(TDM mode11)  
23 22  
0
23  
23 22  
0
23  
22  
23  
0
23 22  
0
22  
0
23 22  
0
23  
22  
0
22  
0
SDOUTAD2  
Lch  
SDOUTAD  
Rch  
SDOUTAD2  
Rch  
SDOUTAD  
Lch  
DIN1R  
DIN2R  
DIN1L  
(dont care)  
DIN2L  
SDIN2  
Figure 46. TDM mode PCM Long Frame (Internal signals are indicated by dotted lines)  
014006643-E-00  
2014/10  
- 65 -  
[AK7755]  
μP Interface Setting and Pin Status  
SPI or I2C bus interface mode can be selected by the I2CSEL pin. Pin statuses that are changed by I2CSEL  
pin setting are shown below.  
I2CSEL  
L
PDN  
L
SO/SDA  
SCLK/SCL  
Input  
Hi-Z (CSN pin = H)  
Hi-Z (CSN pin = H)  
function(CSN pin = L)  
“Hi-Z”→ pull-up  
function  
SPI Interface  
I2C BUS  
L
H
Input  
H
H
L
H
“Hi-Z”→ pull-up  
function  
Note 45. The CSN pin must be set to Hwhen not interfacing to a micro controller or the AK7755 is in  
power-down mode in SPI interface mode.  
SPI Interface (I2CSEL pin = “L”)  
1. Configuration  
The access format is: Command code (8bits) + Address + Data (MSB First).  
Bit Length  
Command Code  
8
MSB bit is R/W flag. The following 7-bits indicate access area such  
as PRAM/ CRAM/Registers.  
Address  
16 or 0  
Valid only for those cases where accessed areas have addresses such  
as PRAM /CRAM/OFREG. When no address is assigned, there is no  
data.  
Data  
Later Section Write or Read data  
SOPCFG bit selects SO output (Hi-z or Low) during CSN = H.  
Write operation  
CSN  
SCLK  
SI  
don’tcare  
(L/H)  
X (L/H)  
Data (write)  
Command Code (8bit)  
Address (16bit or 0bit)  
Hi-Z  
Low  
Hi-Z  
Low  
SO  
Echo Back  
Figure 47. SPI Interface Write  
Read operation  
CSN  
SCLK  
SI  
don’tcare  
(L/H)  
X (L/H)  
Command Code (8bit)  
Address (16bit or 0bit)  
Echo Back  
Hi-Z  
Low  
Hi-Z  
Low  
SO  
Data (read)  
Figure 48. SPI Interface Read  
014006643-E-00  
2014/10  
- 66 -  
[AK7755]  
2. Command Code  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
R/W flag  
Area to be accessed  
Accompanying data to the access area  
R/W Flag: Write at “1”, Read at “0”.  
Access data and accompanying data  
BIT6 BIT5 BIT4 BIT3~0  
0
0
0
0
0
1
0
1
0
Number of Write  
Number of Write  
0100  
Write preparation to CRAM during RUN  
Write preparation to OFREG during RUN  
Write operation to CRAM during RUN  
Write operation to OFREG during RUN  
0010  
0
1
1
1000  
0100  
0010  
Write/Read operation to PRAM during system reset  
Write/Read operation to CRAM during system reset  
Write/Read operation to OFREG during system reset  
Write/Read operation to ACRAM (Accelerator  
Coefficient RAM) during system reset  
Internal control registers 00h~0Fh  
Internal control registers 10h~1Fh  
Device Identification (Read only)  
Internal control registers 26h  
1011  
1
1
1
0
0
1
0
1
0
Register Address  
Register Address  
0000  
0110  
1010  
Internal control registers 2Ah  
1
1
1
0000  
Error Status Read  
0010  
CRC Write/Read  
0100  
Write operation of JX code  
0110  
Read operation from MIR1  
1000  
Read operation from MIR2  
1010  
Read operation from MIR3  
1100  
Read operation from MIR4  
3. Address  
The address description is always LSB justified. Accessing command code BIT[6:4]= “000” to “011”  
requires a 16-bit address. Accessing command code BIT[6:4]= “100” to “111” requires no address.  
014006643-E-00  
2014/10  
- 67 -  
[AK7755]  
4. Data  
The length of write data depends on the write area size. When accessing RAM, data may be written to  
sequential address locations by writing data continuously.  
Write  
Address  
Command  
Data Length Description  
Write preparation to CRAM during RUN.  
Command code BIT3~BIT0 bits determines the amount of write  
operation. (0x80 # of write: 1, 0x81 # of write: 2, ----, 0x8F # of  
write: 16) If the actual amount of write operations exceeds the  
defined amount, that data will be ignored.  
0x80~0x8F 16bit  
0x90~0x9F 16bit  
24bit×n  
Write preparation to OFREG during RUN  
Command code BIT3~BIT0 bits determines the amount of write  
operation. (0x90 # of write: 1, 0x91 # of write: 2, ----, 0x9F # of  
write: 16) If the actual amount of write operations exceeds the  
defined amount, that data will be ignored.  
Write operation to OFREG during RUN. 0 address should be  
written.  
24bit×n  
None  
0xA2  
16bit  
0xA4  
0xB2  
0xB4  
0xB8  
0xBB  
16bit  
16bit  
16bit  
16bit  
16bit  
None  
24bit×n  
24bit×n  
40bit×n  
24bit×n  
8bit  
Write operation to CRAM during RUN. 0 address should be written.  
Write operation to OFREG during system reset  
Write operation to CRAM during system reset  
Write operation to PRAM during system reset  
Write operation to ACRAM during system reset  
Write operation to Control Registers 00~1Fh  
0xC0~0xDF None  
0xE6  
0xEA  
0xF2  
0xF4  
None  
None  
None  
None  
8bit  
8bit  
16bit  
8bit  
Write operation to Control Register 26h  
Write operation to Control Register 2Ah  
CRC Write  
Write operation of External Conditional Jump Code  
Data length is defined by the command code which specifies the area to be accessed. When accessing  
RAM, data may be read from sequential address locations by reading data continuously. Writing other  
than this command code is prohibited.  
014006643-E-00  
2014/10  
- 68 -  
[AK7755]  
Read  
Command Address Data Length Description  
0x24  
0x32  
0x34  
0x38  
0x3B  
16bit  
16bit  
16bit  
16bit  
16bit  
24bit×n  
24bit×n  
24bit×n  
40bit×n  
24bit×n  
8bit  
8bit  
8bit  
8bit  
8bit  
CRAM/OFREG Preparation Data Read during RUN  
Read operation form OFREG during system reset  
Read operation from CRAM during system reset  
Read operation from PRAM during system reset  
Read operation from ACRAM during system reset  
Write operation to Control Registers 00~1Fh  
Device Identification  
Write operation to Control Register 26h  
Write operation to Control Register 2Ah  
DSP Error Status Read  
CRC result Read  
Read operation from MIR1  
28-bit is upper-bit justified. Lower 4-bits are for validity flags.  
Read operation from MIR2  
28-bit is upper-bit justified. Lower 4-bits are for validity flags.  
Read operation from MIR3  
28-bit is upper-bit justified. Lower 4-bits are for validity flags.  
Read operation from MIR4  
28-bit is upper-bit justified. Lower 4-bits are for validity flags.  
0x40~0x5F None  
0x60  
0x66  
0x6A  
0x70  
0x72  
None  
None  
None  
None  
None  
None  
16bit  
0x76  
0x78  
0x7A  
0x7C  
32bit  
32bit  
32bit  
32bit  
None  
None  
None  
Reading other than this command code is prohibited.  
5. Echo-Back Mode  
The AK7755 has an echo-back mode that the device outputs write data sequentially from the SO pin.  
5-1. Write Sequence  
CSN  
don’tcare  
(L/H)  
COMMAND  
ADDRESS1  
COMMAND  
ADDRESS2  
ADDRESS1  
DATA1  
DATA2  
DATA1  
COMMAND  
ADDRESS1  
COMMAND  
SI  
SO  
ADDRESS2  
Hi-Z or Low  
Figure 49. Echo-Back Writing 1 (SPI)  
The input data of the SI pin is echoed back on the SO pin by shifting 8-bit to the right.  
CSN  
n=3~5  
0xB4  
0x00  
0x00  
DATA1  
DATAn  
DATA1  
Dummy 8bit  
DATAn  
SI  
SO  
X (Hi-Z or low)  
X (Hi-Z or Low)  
COMMAND  
ADDRESS1  
ADDRESS2  
Figure 50. Echo-Back Writing 2 (SPI)  
It is possible to verify the written data by inputting an extra 8-bit clock. If the dummy data is more than  
the data length, this dummy data is written on the next address. (40 bits for PRAM, 24 bits for CRAM  
and 24 bits for OFREG writings)  
014006643-E-00  
2014/10  
- 69 -  
[AK7755]  
5-2. Read Sequence1 (with PRAM, CRAM, OFREG addresses)  
CSN  
don’tcare  
(L/H)  
COMMAND  
ADDRESS1  
COMMAND  
ADDRESS2  
ADDRESS1  
COMMAND  
ADDRESS1  
SI  
SO  
Hi-Z or Low  
READ DATA  
READ DATA  
COMMAND  
Figure 51. Read Sequence1 in Echo-Back Mode (SPI)  
Data of the address2 field is not echoed back in read operation. The read data on the SO pin is output  
after writing to the address2 field.  
5-3. Read Sequence2 (No Register address  
CSN  
don’tcare  
don’tcare  
(L/H)  
(L/H)  
COMMAND  
COMMAND  
SI  
SO  
Hi-Z or Low  
Hi-Z or Low  
READ DATA  
READ DATA  
Figure 52. Read Sequence2 in Echo Back Mode (SPI)  
Data output has priority in read sequence.  
6. Format  
6-1. Write Operation during System Reset  
1. Program RAM (PRAM) Write (during system reset)  
Field  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0xB8  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 D35 D34 D33 D32  
D31~D24  
(5) DATA2  
(6) DATA3  
D23~D16  
(7) DATA4  
D15~D8  
(8) DATA5  
D7~D0  
Five bytes of data may be written continuously for each address.  
2. Coefficient RAM (CRAM) Write (during system reset)  
Field  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0xB4  
0 0 0 0 0 A10 A9 A8  
A7 A6 A5 A4 A3 A2 A1 A0  
D23~D16  
(5) DATA2  
D15~D8  
(6) DATA3  
D7~D0  
Three bytes of data may be written continuously for each address.  
014006643-E-00  
2014/10  
- 70 -  
[AK7755]  
3. Offset REG (OFREG) Write (during system reset)  
Field  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
(5) DATA2  
(6) DATA3  
0xB2  
0 0 0 0 0 0 0 0  
0 0 A5 A4 A3 A2 A1 A0  
0 0 0 0 0 0 0 0  
0 0 0 D12 D11 D10 D9 D8  
D7~D0  
Three bytes of data may be written continuously for each address.  
4. Accelerator Coefficient RAM (ACRAM) Write (during system reset)  
Field  
Write data  
0xBB  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0
0 0 0 0 A10 A9 A8  
A7 A6 A5 A4 A3 A2 A1 A0  
D19~D12  
(5) DATA2  
D11~D4  
(6) DATA3  
D3~D0 0 0 0 0  
Three bytes of data may be written continuously for each address.  
6-2. Write Operation during System Reset / RUN  
1. Control Register Write (during system reset / RUN)  
Field  
Write data  
(1) COMMAND Code  
(2) DATA  
0xC0~0xDF, 0xE6, 0xEA  
D7~D0  
2. External Conditional Jump Code Write (during system reset / RUN)  
Field  
Write data  
(1) COMMAND Code  
(2) DATA  
0xF4  
D7~D0  
3. CRC Code Write (during system reset / RUN)  
Field  
Write data  
(1) COMMAND Code  
(2) DATA  
(3) DATA  
0xF2  
D15~D8  
D7~D0  
6-3. Write Operation during RUN  
1. Coefficient RAM (CRAM) Write Preparation (during RUN)  
Preparation  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0x80~0x8F (one data at 80h, sixteen data at 8Fh)  
0 0 0 0 0 A10 A9 A8  
A7 ~ A0  
D23~D16  
(5) DATA2  
D15~D8  
(6) DATA3  
D7~D0  
014006643-E-00  
2014/10  
- 71 -  
[AK7755]  
2. Coefficient RAM (CRAM) Write Operation (RUN)  
Execute  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
0xA4  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Note 46. The COMMAND determines the length of the data. If the written data exceeds the allotted  
amount, the excess data is ignored.  
3. Offset REG (OFREG) Write Preparation (during RUN)  
Preparation  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0x90~0x9F (one data at 0x90, sixteen data at 0x9F)  
0 0 0 0 0 0 0 0  
0 0 0 A4 A3 A2 A1 A0  
0 0 0 0 0 0 0 0  
(5) DATA2  
(6) DATA3  
0 0 0 D12 D11 D10 D9 D8  
D7~D0  
4. Offset REG (OFREG) Write Operation (during RUN)  
Execute  
Write data  
(1) COMMAND Code  
(2) ADDRESS1  
(3) ADDRESS2  
0xA2  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Note 47. The COMMAND determines the length of the data. If the written data exceeds the allotted  
amount, the excess data is ignored.  
6-4. Read Operation during System Reset  
1. Program RAM (PRAM) Read (during system reset)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x38  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0 0 0 0 D35 D34 D33 D32  
D31~D24  
(5) DATA2  
(6) DATA3  
D23~D16  
(7) DATA4  
D15~D8  
(8) DATA5  
D7~D0  
Five bytes of data may be written continuously for each address.  
2. Coefficient RAM (CRAM) Read (during system reset)  
Field Write data  
(1) COMMAND Code 0x34  
Readout data  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
(5) DATA2  
(6) DATA3  
0 0 0 0 0 A10 A9 A8  
A7 ~ A0  
D23~D16  
D15~D8  
D7~D0  
Three bytes of data may be written continuously for each address.  
014006643-E-00  
2014/10  
- 72 -  
[AK7755]  
3. Offset REG (OFREG) Read (during system reset)  
Field Write data  
(1) COMMAND Code 0x32  
Readout data  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0 0 0 0 0 0 0 0  
0 0 0 A4 A3 A2 A1 A0  
0 0 0 0 0 0 0 0  
D15~D8  
(5) DATA2  
(6) DATA3  
D7~D0  
Three bytes of data may be written continuously for each address.  
4. Accelerator Coefficient RAM (CRAM) Read (during system reset)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x3B  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
0 0 0 0 0 A10 A9 A8  
A7 ~ A0  
D19~D12  
(5) DATA2  
D11~D4  
(6) DATA3  
D3~D0 0 0 0 0  
Three bytes of data may be written continuously for each address.  
6-5. Read Operation during System Rest / RUN  
1. Control Register Read (during system reset / RUN)  
Field  
Write data  
Readout data  
D7~D0  
(1) COMMAND Code 0x40~0x5F, 0x66, 0x6A  
(2) DATA  
2. Device Identification (during system rest / RUN)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x60  
(2) DATA  
D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
5
1
0
1
0
5
1
3. CRC Result Reading (during system reset / RUN)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x72  
(2) DATA1  
(3) DATA2  
D15~D8  
D7~D0  
4. DSP Error Status Read (during system reset / RUN)  
Field Write data Output  
(1) COMMAND Code 0x70  
(2) DATA  
Active low output  
D7: CRCERRN: 0: CRC error  
D6: WDTERRN : 0: Watch Dog Timer error  
D5: GP0  
D4: GP1  
D3: PLLLOCK  
D2: N/A  
0:clear 1: set  
0:clear 1: set  
0:unlock 1:lock  
D1: N/A  
D0: N/A  
014006643-E-00  
2014/10  
- 73 -  
[AK7755]  
6-6. Read Operation during RUN  
1. CRAM Write Preparation Read (during RUN)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x24  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
(5) DATA2  
(6) DATA3  
A15~A8  
A8~A0  
D23~D16  
D15~D8  
D7~D0  
2. OFREG Write Preparation Read (during RUN)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x24  
(2) ADDRESS1  
(3) ADDRESS2  
(4) DATA1  
(5) DATA2  
(6) DATA3  
A15~A8  
A8~A0  
0 0 0 0 0 0 0 0  
D15~D8  
D7~D0  
3. MIR1/2/3/4 Read (during RUN)  
Field  
Write data  
Readout data  
(1) COMMAND Code 0x76(MIR1)  
0x78(MIR2)  
0x7A(MIR3)  
0x7C(MIR4)  
(2) DATA1  
D27~D20  
(3) DATA2  
D19~D12  
(4) DATA3  
D11~D4  
(5) DATA4  
D3 D2 D1 D0 (flag3) (flag2) (flag1) (flag0)  
Note 48. Data is valid only when all flags are zero.  
7. Timing  
7-1. RAM Writing Timing during System Reset  
Write to Program RAM (PRAM), Coefficient RAM (CRAM), Offset REG (OFREG) and Accelerator  
Coefficient RAM (CRAM) during system reset in the order of command code, address and data. The  
PRAM start address is fixed to 0h. When writing the data to consecutive address locations, continue to  
input data only. PRAM address is incremented by 1 automatically.  
DSPRESETN bit  
CSN  
SCLK  
don’t care  
(L/H)  
don’t care  
(L/H)  
Command  
Address  
DATA  
DATA  
DATA  
DATA  
DATA  
SI  
RDY = H”  
Figure 53. Writing to RAM at Consecutive Address Locations (SPI)  
014006643-E-00  
2014/10  
- 74 -  
[AK7755]  
DSPRESETN bit  
CSN  
SCLK  
don’tcare  
(L/H)  
don’tcare  
(L/H)  
don’tcare  
(L/H)  
Command Address DATA  
Command Address DATA  
SI  
RDY = H”  
Figure 54. Writing to RAM at Random Address Locations (SPI)  
7-2. RAM Writing Timing during RUN  
These operations are to rewrite the Coefficient RAM (CRAM) and Offset REG (OFREG) during  
RUN. Data writing is executed in two steps; write preparation and write execution. The written data  
can be confirmed by reading the write preparation data.  
1. Write Preparation  
After inputting the assigned command code (8 bits) to select the number of data from 1 to 16, input the  
starting address of write (16 bits all “0”) and the number of data assigned by command code in this  
order. In slave mode, a write preparation command is prohibited for 2 LRCKcycles (2/fs) after  
releasing DSP reset (DSPRESETN bit).  
2. Write Preparation Data Confirmation  
After write preparation, prepared data for writing can be confirmed. Address and Data are read in this  
order by write preparation data confirmation command “24h”. The data will be “0x000001” when  
reading more than write preparation data. Execute write preparation again when the address and data  
are disturbed by external noise.  
3. Write Execution  
Upon completion of this operation, execute a RAM write during RUN by inputting the corresponding  
command code and address (16 bits, all “0”) in this order.  
Note 49. Execute write preparation, write preparation read and write execution in this order. When  
writing to RAM without a write preparation sequence, a malfunction occurs. Access operation  
by a microcontroller is prohibited until RDY changes to “H”.  
Write modification of the RAM content is executed whenever the RAM address for modification is  
assigned. For example, when 5 data are written, from RAM address “10”, it is executed as shown  
below.  
RAM execution address  
Write execution position  
7
8
9
10 11 13 16 11 12 13 14 15  
Note 50. Address “13” is not executed until rewriting address “12”.  
014006643-E-00  
2014/10  
- 75 -  
[AK7755]  
DSPRESETN bit= 1”  
CSN  
(Ex.) When # of DATA is 4  
CRAM Command Code 0x83  
OFREG Command Code 0x93  
SCLK  
don’tcare  
(L/H)  
don’tcare  
(L/H)  
Command  
Code  
Address DATA0  
DATA1  
DATAn-1 DATAn  
SI  
RDY = H”  
CRAM 0x80(# of DATA: 1)~0x8F(# of DATA: 16)  
OFREG 0x90(# of DATA: 1)~0x9F(# of DATA: 16)  
Figure 55. CRAM/OFREG Write Preparation (SPI)  
DSPRESTN bit= 1”  
CSN  
SCLK  
don’t care  
(L/H)  
don’t care  
(L/H)  
0x24  
SI  
Hi-Z or Low  
SO  
Address  
DATA  
DATA  
DATA  
DATA  
DATA  
RDY= H”  
Figure 56. CRAM/OFREG Write Preparation Confirm (SPI)  
DSPRESETN bit= “1”  
CSN  
SCLK  
don’tcare  
(L/H)  
Command  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
SI  
CRAM0xA4, OFREG0xA2  
max 400ns  
RDY  
RDYLG (Note 52)  
Figure 57. CRAM/OFREG Write (SPI)  
Note 51. If the DSP program is designed to refer all coefficients which may be changed by an external  
microcontroller, RDY signal rises to high within 2LRCK after a writing command. No further  
access to DSP is permitted until this write operation is completed. However, while the CSN pin is  
“L” level, RDY signal keeps “L” level.  
014006643-E-00  
2014/10  
- 76 -  
[AK7755]  
7-3. External Conditional Jump  
External Conditional Jump Code Writing (during System Reset and RUN)  
(1) COMMAND  
(2) DATA  
0xF4  
D7~D0  
External Conditional Jump code can be input during both DSP Reset and RUN. Input data is set to the  
designated register on the rising edge of LRCKO. The RDY pin changes to “L” when the command code  
is transferred, and it changes to “H” when write operations are completed. When any single bit of “1”  
data in 8-bit External Jump code matches an “1” bit data in the IFCON field, a Jump instruction is  
executed. Then, the RDY pin changes to “H” when the rise of LRCKO is captured. Access operation by  
microcontroller is prohibited until the RDY pin changes to “H”. IFCON field is the area where the  
external conditions are written. This Jump code is reset to 00h by setting the IRSTN pin to “L”, but it is  
not reset by System Reset.  
7
6
5
4
3
2
1
0
External Conditional Jump Code  
Check if “1” of IFCON field corresponds with External Conditional Jump including Jump pins  
by at least one at the same location.  
7
0
IFCON Field  
External Conditional Jump Code  
DSPRESETN bit  
SCLK  
don’tcare  
(L/H)  
don’tcare  
(L/H)  
F4h  
D7…D0  
SI  
CSN  
LRCK  
RDY  
Next command write is available  
Figure 58. External Conditional Timing in System Reset (SPI)  
DSPRESETN bit  
SCLK  
SI  
don’tcare  
(L/H)  
don’tcare  
(L/H)  
F4h  
D7 … D0  
CSN  
LRCK  
RDY  
Figure 59. External Conditional Jump Timing during RUN (SPI)  
014006643-E-00  
2014/10  
- 77 -  
[AK7755]  
7-4. RAM Reading Timing during System Reset  
Read Program RAM (PRAM), Coefficient RAM (CRAM), Offset REG (OFREG) and Accelerator  
Coefficient RAM (ACRAM) during System Reset in the order of the input Command code and the  
Address. After writing the Command, the data comes out from the SO pin synchronous with falling  
edge of SCLK. (The SI pin input data is “Don’t care”) When reading Data at consecutive address  
locations, continue to input SCLK as is.  
DSPRESETN bit  
CSN  
SCLK  
don’t care  
(L/H)  
don’t care  
(L/H)  
Command  
Address  
SI  
Hi-Z or Low  
Echo Back Output  
SO  
RDY = H”  
DATA  
DATA  
DATA  
DATA  
DATA  
Figure 60. RAM Reading at Consecutive Address (SPI)  
7-5. RAM Reading Timing during System Reset and RUN  
Write a command code, to read control registers, device identification code, CRC result and error  
status during RUN time or system reset state. After completing a Command code write, the data comes  
out from the SO pin synchronous with falling edge of SCLK. (The SI pin input data is “Don’t care”)  
DSPRSTN bit  
CSN  
SCLK  
SI  
don’tcare  
(L/H)  
don’tcare  
(L/H)  
Command  
Address  
Hi-Z or Low  
SO  
Echo Back Output  
DATA  
RDY = H”  
Figure 61. AM Reading during System Reset/RUN (SPI)  
014006643-E-00  
2014/10  
- 78 -  
[AK7755]  
I2C Bus Interface (I2CSEL pin= “H”)  
Access to the AK7755 registers and RAM is controlled by an I²C bus. The AK7755 supports fast-mode  
I2C-bus (max: 400kHz) only.  
1. Data Transfer  
In order to access any IC devices on the I2C bus, input a start condition first, followed by a single Slave  
address which includes the Devices Address. IC devices on the BUS compare this Slave address with  
their own addresses and the IC device which has an identical address with the Slave address generates an  
acknowledgement. An IC device with the identical address then executes either a read or a write  
operation. After the command execution, input a Stop condition.  
1-1. Data Change  
Change the data on the SDA line while the SCL line is “L”. The SDA line condition must be stable  
and fixed while the clock is “H”. Change the Data line condition between “H” and “L” only when the  
clock signal on the SCL line is “L”. Change the SDA line condition while the SCL line is “H” only  
when the start condition or stop condition is input.  
SCL  
SDA  
DATA LINE  
STABLE :  
DATA VALID  
CHANGE  
OF DATA  
ALLOWED  
Figure 62. Data Change (I2C)  
1-2. Start Condition and Stop Condition  
A start condition is generated by the transition of “H” to “L” on the SDA line while the SCL line is  
“H”. All instructions are initiated by a Start condition. A stop condition is generated by the transition  
of “L” to “H” on the SDA line while the SCL line is “H”. All instructions end by a Stop condition.  
SCL  
SDA  
START CONDITION  
STOP CONDITION  
Figure 63. Start Condition and Stop Condition (I2C)  
014006643-E-00  
2014/10  
- 79 -  
[AK7755]  
1-3. Repeated Start Condition  
When a Start condition is received again instead of a Stop condition, the bus changes to a Repeated  
Start condition. A Repeated Start condition is functionally the same as a Start condition.  
SCL  
SDA  
START CONDITION  
Repeated Start CONDITION  
Figure 64. Repeated Start Conditions (I2C)  
1-4. Acknowledge  
An external device that is sending data to the AK7755 releases the SDA line (“H”) after receiving one  
byte of data. An external device that receives data from the AK7755 then sets the SDA line to “L” at  
the next clock. This operation is called “acknowledgement”, and it enables verification that the data  
transfer has been properly executed. The AK7755 generates an acknowledgement upon receipt of a  
Start condition and a Slave address. For a write instruction, an acknowledgement is generated  
whenever receipt of each byte is completed. For a read instruction, succeeded by generation of an  
acknowledgement, the AK7755 releases the SDA line after outputting data at the designated address,  
and it monitors the SDA line condition. When the Master side generates an acknowledgement without  
sending a Stop condition, the AK7755 outputs data at the next address location. When no  
acknowledgement is generated, the AK7755 ends data output (not acknowledged).  
Clock pulse  
for acknowledge  
SCL FROM  
MASTER  
1
8
9
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
START  
CONDITION  
Figure 65. Generation of Acknowledgement (I2C)  
014006643-E-00  
2014/10  
- 80 -  
[AK7755]  
1-5. The First Byte  
The First Byte, which includes the Slave-address, is input after the Start condition is set, and a target IC  
device that will be accessed on the bus is selected by the Slave-address. The Slave-address is configured  
with the upper 7-bits. When the I2CSEL pin = Hand the EXTEEP pin = L, data of the upper 6-bits is  
“001100”. The next 1 bit is the address bits that select the desired IC which are set by the CAD pin. The  
slave address will be 0011000when the I2CSEL pin =Hand the EXTEEP pin = L. However, the  
CAD pin should be set to Lif the MATSEL pin = Lto set the slave address to 0011000when  
downloading from EEPROM by DLS bit even if the I2CSEL pin =Hand the EXTEEP pin = L.  
When the Slave-address is inputted, an external device that has the identical device address generates an  
acknowledgement and instructions are then executed. The 8th bit of the First Byte (lowest bit) is allocated  
as the R/W Bit. When the R/W Bit is “1”, the read instruction is executed, and when it is “0”, the write  
instruction is executed.  
Note 52. In this document, there is a case that describes a “Write Slave-address assignment” when both  
address bits match and a Slave-address at R/W Bit = “0” is received. There is a case that  
describes “Read Slave-address assignment” when both address bits matches and a Slave-address  
at R/W Bit = “1” is received.  
0
0
0
1
1
0
0
CAD  
R/W  
When I2CSEL pin = Hand EXTEEP pin = L”  
0
1
1
0
0
0
R/W  
When I2CSEL pin = Hand EXTEEP pin = H, or using DLS bit  
Figure 66. First Byte Configuration (I2C)  
1-6. The Second and Succeeding Bytes  
The data format of the second and succeeding bytes of the AK7755 Transfer / Receive Serial data  
(command code, address and data in microcontroller interface format) on the I2C BUS are all  
configured with a multiple of 8-bits. When transferring or receiving those data on the I2C BUS, they  
are divided into an 8-bit data stream segment and they are transferred / received with the MSB side  
data first with an acknowledgement in-between.  
Example)  
When transferring / receiving A1B2C3 (hex) 24-bit serial data in microprocessor interface format:  
2
(1) Microcontroller Interface Format  
(2) I C Format  
A1  
B2  
C3  
A1  
B2  
C3  
A
A
24BIT  
8BIT  
8BIT  
8BIT  
Acknowledge  
A
Figure 67. Division of Data (I2C)  
Note 53. In this document, there is a case that describes a write instruction command code which is  
received at the second byte as “Write Command”. There is a case that describes a read  
instruction command code which is received at the second byte as “Read Command”.  
014006643-E-00  
2014/10  
- 81 -  
[AK7755]  
2. Write Sequence  
In the AK7755, when a “Write-Slave-address assignment” is received at the first byte, the write  
command at the second byte and data at the third and succeeding bytes are received. At the data block,  
address and write data are received in a single-byte unit each in accordance with a command code. The  
number of write data bytes is fixed by the received command code.  
S
S
T
O
P
T
A
R
T
R/W="0"  
Slave  
Address  
Command  
Code  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 68. Write Sequence (I2C)  
3. Read Sequence  
In the AK7755, when a “write- slave-address assignment” is received at the first byte, the read command  
at the second byte and the data at the third and succeeding bytes are received. At the data block, the  
address is received in a single byte unit in accordance with a read command code. When the last address  
byte (or command code if no address assignment is specified) is received and an acknowledgement is  
transferred, the read command waits for the next restart condition. When a “read slave-address  
assignment” is received at the first byte, data is transferred at the second and succeeding bytes. The  
number of readable data bytes is fixed by the received read command.  
After reading the last byte, assure that a “not acknowledged” signal is received. If this “not  
acknowledged” signal is not received, the AK7755 continues to send data regardless whether data is  
present or not, and since it does not release the BUS, the stop condition cannot be properly received.  
R
E
S
T
A
R
T
S
T
A
R
T
S
T
R/W="0"  
R/W="1"  
O
P
Slave  
Address  
Command  
code  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
Data(n)  
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
A
C
K
Figure 69. Read Sequence (I2C)  
014006643-E-00  
2014/10  
- 82 -  
[AK7755]  
4. Acknowledgement Polling  
The AK7755 cannot receive instructions while the RDY pin (Data Write Ready pin) is at low level.  
The maximum transition time of the RDY pin from low level to high level is 2/fs (fs: sampling  
frequency), but it is possible to confirm in a faster cycle that the RDY pin has become high by  
checking the AK7755 internal condition, which is made by verifying the acknowledgement.  
4-1. Generation of “Not Acknowledged”  
The AK7755 does not accept command codes until the RDY pin is set to a high level, when a  
command is received to set the RDY pin to a low level. In order to confirm the RDY pin condition, a  
“Write Slave-Address assignment” should be sent after a Start condition. If the RDY pin is then at a  
low level, “Acknowledgement” is not generated at the succeeding clock (generation of “Not  
Acknowledged”). After sending “Not Acknowledged”, the BUS is released and all receiving data are  
ignored until the next start condition (behaves as if it received Slave address of other device).  
4-2. When Read Slave-address assignment is received without receiving read command code  
Data read in the AK7755 can be made only in the previously documented Read sequence. Data cannot  
be read out without receiving a read command code. The AK7755 generates a “Not Acknowledged”  
when a “Read Slave-address Assignment” is received without proper receipt of read command.  
5. Limitation in use of I2C Interface  
The I2C interface does not support the following features.  
No operation in Hs Mode (max:3.4MHz). The AK7755 Supports FAST mode (max:400KHz).  
Note 54. Do not turn off the power of the AK7755 whenever the power supplies of other devices of the  
same system are turned on. The source of the pull-up of SDA and SCL of I2C BUS must not  
exceed the TVDD. (The diode exists for TVDD in the SDA and SCL pins.)  
014006643-E-00  
2014/10  
- 83 -  
[AK7755]  
Analog Input Block  
1. Microphone Input Selector  
Either analog input or digital microphone interface can be chosen for the AK7755. Set AINE bit  
(CONT00: D3) to 1when using #31-34 pins as analog input pins, and set DMIC1(CONT1E: D7) or  
DMIC2 bit (CONT1E: D4) to 1when using these pins as digital microphone interface. ADC input  
signals can be switched by DIFL bit (CONT09: D5), DIFR bit (CONT09: D7), INL bit (CONT09: D4)  
and INTR bit (CONT09: D6) for analog inputs. When DIFL bit = 0and DIFR bit = 0, input signals  
of IN1, IN2, IN3 and IN4 pins for microphone amplifiers can be selected by INL and INR bits. When  
DIFL bit = 1and DIFR bit = 1, a differential input is acceptable as input pins becomes INP1/INN1  
pins and INP2/INN2 pins.  
AK7755  
INL bit  
IN1/INP1/DMDAT1 pin  
IN2/INN1/DMCLK1 pin  
ADC  
Lch  
MIC-Amp  
DIFL bit  
INR bit  
IN3/INP2/DMDAT2 pin  
IN4/INN2/DMCLK2 pin  
ADC  
Rch  
MIC-Amp  
DIFR bit  
Figure 70. Microphone Input Selector  
ADC Lch Microphone Input Selector ADC Rch Microphone Input Selector  
DIFL bit INL bit  
ADC Lch  
IN1  
DIFR bit INR bit  
ADC Rch  
IN3  
0
0
1
(default)  
0
0
1
(default)  
0
IN2  
0
IN4  
1
X
INP1/INN1  
1
X
INP2/INN2  
(x: Do not care)  
(x: Do not care)  
014006643-E-00  
2014/10  
- 84 -  
[AK7755]  
2. Microphone Input Gain  
The AK7755 has a microphone gain amplifier. L and R channel gains can be set independently by  
MGNL[3:0] bits (CONT12: D3-D0) and MGNR[3:0] bits (CONT12: D7-D4). Input impedance is typ.  
20k. This gain amplifier executes zero cross detection when changing the gain by setting MICLZCE bit  
(CONT1A: D0) = 1/ MICRZCE bit (CONT1A: D1) = 1. Zero cross detection is executed on L and  
R channels independently. Timeout period of the zero cross detection is 16ms. When MICLZCE bit =  
0/ MICRZCE bit = 0, zero cross detection is not performed and the volume is changed immediately  
when register is written.  
When writing to MGNL3-0/MGNR3-0 bits continually, take an interval of zero crossing timeout periods  
or more. If the MGNL3-0/MGNR3-0 bits are changed before zero crossing, the volume of Lch and Rch  
may differ. When the volume that is same as the present is set, the zero crossing counter is not reset and  
timeout according to the previous writing timing.  
Zero Crossing Timeout  
When MICLZCE bit = 1/ MICRZCE bit = 1, the Lch/Rch volume level are changed independently  
by zero crossing detection or zero crossing timeout.  
fs  
48kHz  
Zero cross Timeout Period  
16ms  
MGNL[3] MGNL[2] MGNL[1] MGNL[0]  
MGNR[3] MGNR[2] MGNR[1] MGNR[0]  
Mode  
Input Gain  
0
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0dB  
2dB  
4dB  
6dB  
8dB  
10dB  
12dB  
14dB  
16dB  
18dB  
21dB  
24dB  
27dB  
30dB  
33dB  
36dB  
(default)  
9
A
B
C
D
E
F
Table 2. Microphone Input Gain  
3. Analog DRC (ADRC)  
The microphone input gain can be set by DSP programs with the AK7755. This function is enabled by  
setting ADRCRE bit = 1/ADRCLE bit = 1(CONT1A: D3/D2). In this setting, control registers  
MGNL[3:0] and MDNR[3:0] bits (CONT12) are not valid. By reading AMGNL[3:0] (CONT1B:  
D3-D0) / AMGNR[3:0] (CONT1B: D7-D4) bits, gain settings can be downloaded externally.  
When MICLZCE bit = 1/MICRZCE bit = 1”, the Lch/Rch volume level are changed independently  
by zero crossing detection or zero crossing timeout. Please refer to the AK7755 programing manual for  
DSP programs.  
014006643-E-00  
2014/10  
- 85 -  
[AK7755]  
4. LINE Input Gain Amplifier  
The AK7755 has a gain amplifier for line inputs. It is enabled by setting PMLI bit (CONT0F: D5) =  
1, and it outputs a signal to the L channel of the ADC2. LIGN[3:0] bits (CONT13: D7-D4) controls  
the gain. The typical input impedance is 20k(typ). A pop noise occurs if the input gain is changed  
during operation.  
The AK7755 becomes digital microphone interface mode when DMIC2 bit (CONT1E: D4) = 1.  
Digital microphone input data to the DMDAT2 pin is input to the Lch/Rch of the ADC2.  
ADC2 Input Setting  
DMIC2 bit  
ADC2 Lch Input  
LIN  
Digital Microphone  
ADC2 Rch Input  
No  
Digital Microphone  
0
1
(default)  
Mode LIGN[3] LIGN[2] LIGN[1]  
LIGN[0]  
Input Gain  
0dB (default)  
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-3dB  
-6dB  
-9dB  
2
3
4
5
6
7
8
9
A
B
C
D
E
F
-12dB  
-15dB  
-18dB  
-21dB  
N/A  
+3dB  
+6dB  
+9dB  
+12dB  
+15dB  
+18dB  
+21dB  
Table 3. Line Input Gain  
014006643-E-00  
2014/10  
- 86 -  
[AK7755]  
ADC Block  
1. ADC High Pass Filter  
A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the ADC input. The cut-off  
frequency of the HPF is approximately 1Hz (at fs=48kHz).  
fs  
48kHz  
3.73Hz  
44.1kHz  
3.43Hz  
8kHz  
0.62Hz  
Cut-off frequency  
2. ADC Soft Mute  
2-1. Description  
The ADC block has a digital soft mute circuit. The soft mute operation is performed in the digital  
domain. The output signal is attenuated to -∞ in “ADC Digital Volume Level x ATT transition time”  
from the current ADC Digital Volume Setting Level by setting ADMUTE and AD2MUTE bits to “1”.  
When the ADMUTE (CONT1A: D7) and AD2MUTE (CONT1A: D6) bits are returned to “0”, the  
mute is cancelled and the output attenuation gradually changes to ADC Digital Volume Setting Level  
in “ADC Digital Volume Level x ATT transition time”. If the soft mute is cancelled before attenuating  
to -∞ after starting the operation, the attenuation is discontinued and returned to ADC Digital Volume  
Setting Level by the same cycle. The soft mute is effective for changing the signal source without  
stopping the signal transmission. The transition time from 0dB to -and vice versa is 828 LRCK  
cycles.  
The soft mute function works when the ADC is in operation. The attenuation value is initialized by the  
PDN pin = L.  
SMUTE Register Value  
Group Delay (GD)  
Group Delay (GD)  
0dB  
Attenuation  
828/fs  
-dB  
828/fs  
Output Image  
Figure 71. ADC Soft Mute  
2-2. Input Selector Switching Sequence  
The input selector should be changed after soft muting to avoid the switching noise of the input  
selector.  
· Input Selector Switching Sequence  
1. Enable soft mute before changing the channel.  
2. Change the Channel.  
3. Disable softer mute.  
ADMUTE  
(2)  
(1)  
(1)  
DATT Level  
Attenuation  
(3)  
-  
Channel  
IN1/IN3  
IN2/IN4  
Figure 72. ADC Input Channel Switching Sequence Example  
- 87 -  
014006643-E-00  
2014/10  
[AK7755]  
The period of (1) varies by the setting value of DATT bit. The transition time of attenuation amount  
from 0dB to -and vice versa is shown below.  
ATSPAD  
(1)Period (max)  
fs=48kHz  
17.25ms  
LRCK Cycle  
828/fs  
828/fs x 4  
fs=44.1kHz  
18.82ms  
75.27ms  
fs=8kHz  
103.5ms  
414ms  
0
1
69ms  
When changing channels, the input channel should be changed during (2). The period of (2) should be  
around 200ms because there is some DC difference between the channels (3).  
2-3. ADC Digital Volume  
The ADC of the AK7755 has channel-independent digital volume control (256 levels, 0.5dB step).  
VOLADL [7:0] bits (CONT15:D7-D0), VOLADR [7:0] bits (CONT16:D7-D0), VOLAD2L [7:0] bits  
(CONT17:D7-D0) and VOLAD2R [7:0] bits (CONT1D:D7-D0) control these volume values  
independently.  
ADC Stereo Lch ADC Stereo Rch  
ADC2 Lch  
ADC2 Rch  
Attenuation Level  
VOLADL [7:0]  
VOLADR [7:0]  
VOLAD2L [7:0] VOLAD2R [7:0]  
00h  
01h  
02h  
:
00h  
01h  
02h  
:
00h  
01h  
02h  
:
00h  
01h  
02h  
:
+24.0dB  
+23.5dB  
+23.0dB  
:
2Fh  
30h  
31h  
:
2Fh  
30h  
31h  
:
2Fh  
30h  
31h  
:
2Fh  
30h  
31h  
:
+0.5dB  
0.0dB  
-0.5dB  
:
(default)  
FDh  
FEh  
FFh  
FDh  
FEh  
FFh  
FDh  
FEh  
FFh  
FDh  
FEh  
FFh  
-102.5dB  
-103.0dB  
Mute (-∞)  
Table 4. ADC Digital Volume Level Setting  
Transition time between set values can be selected by ATSPAD bit (CONT0C: D5).  
MODE  
ATSPAD  
ATT speed  
1/fs  
0
1
0
1
4/fs  
Table 5. ADC Volume Transition Time Setting  
The transition between set values is soft transition of 1021 levels in Mode 0. It takes 1021/fs  
(21.3ms@fs=48kHz) from 00h to FFh(MUTE). If the PDN pin is set to “L”, the VOLADL/R[7:0] bits  
are initialized to 30h.  
014006643-E-00  
2014/10  
- 88 -  
[AK7755]  
code  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
dB  
code  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
dB  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
code  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
dB  
-8.0  
-8.5  
-9.0  
code  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
dB  
code  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
dB  
code  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
dB  
code  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
dB  
code  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
dB  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
-24.0  
-24.5  
-25.0  
-25.5  
-26.0  
-26.5  
-27.0  
-27.5  
-28.0  
-28.5  
-29.0  
-29.5  
-30.0  
-30.5  
-31.0  
-31.5  
-32.0  
-32.5  
-33.0  
-33.5  
-34.0  
-34.5  
-35.0  
-35.5  
-36.0  
-36.5  
-37.0  
-37.5  
-38.0  
-38.5  
-39.0  
-39.5  
-40.0  
-40.5  
-41.0  
-41.5  
-42.0  
-42.5  
-43.0  
-43.5  
-44.0  
-44.5  
-45.0  
-45.5  
-46.0  
-46.5  
-47.0  
-47.5  
-48.0  
-48.5  
-49.0  
-49.5  
-50.0  
-50.5  
-51.0  
-51.5  
-52.0  
-52.5  
-53.0  
-53.5  
-54.0  
-54.5  
-55.0  
-55.5  
-56.0  
-56.5  
-57.0  
-57.5  
-58.0  
-58.5  
-59.0  
-59.5  
-60.0  
-60.5  
-61.0  
-61.5  
-62.0  
-62.5  
-63.0  
-63.5  
-64.0  
-64.5  
-65.0  
-65.5  
-66.0  
-66.5  
-67.0  
-67.5  
-68.0  
-68.5  
-69.0  
-69.5  
-70.0  
-70.5  
-71.0  
-71.5  
-72.0  
-72.5  
-73.0  
-73.5  
-74.0  
-74.5  
-75.0  
-75.5  
-76.0  
-76.5  
-77.0  
-77.5  
-78.0  
-78.5  
-79.0  
-79.5  
-80.0  
-80.5  
-81.0  
-81.5  
-82.0  
-82.5  
-83.0  
-83.5  
-84.0  
-84.5  
-85.0  
-85.5  
-86.0  
-86.5  
-87.0  
-87.5  
-88.0  
-88.5  
-89.0  
-89.5  
-90.0  
-90.5  
-91.0  
-91.5  
-92.0  
-92.5  
-93.0  
-93.5  
-94.0  
-94.5  
-95.0  
-95.5  
-96.0  
-96.5  
-97.0  
-97.5  
-98.0  
-98.5  
-99.0  
-99.5  
-9.5  
-10.0  
-10.5  
-11.0  
-11.5  
-12.0  
-12.5  
-13.0  
-13.5  
-14.0  
-14.5  
-15.0  
-15.5  
-16.0  
-16.5  
-17.0  
-17.5  
-18.0  
-18.5  
-19.0  
-19.5  
-20.0  
-20.5  
-21.0  
-21.5  
-22.0  
-22.5  
-23.0  
-23.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
-5.5  
-.6.0  
-6.5  
-7.0  
-7.5  
F8h -100.0  
F9h -100.5  
FAh -101.0  
FBh -101.5  
FCh -102.0  
FDh -102.5  
FEh -103.0  
9.0  
8.5  
FFh  
Mute  
Table 6. ADC Digital Volume Setting List  
014006643-E-00  
2014/10  
- 89 -  
[AK7755]  
DAC Blocks  
1. De-emphasis Filter  
The AK7755 has a digital de-emphasis filter (tc=50/15µs) by IIR filter, corresponding to 48kHz  
sampling frequency. DEM[1:0] bits control the de-emphasis filter.  
DEM mode  
DEM[1:0]  
Sampling Frequency (fs)  
0
1
2
3
00  
01  
10  
11  
OFF  
48kHz  
44.1kHz  
32kHz  
(default)  
Table 7. De-emphasis Control  
2. DAC Digital Volume Control  
The DACs of the AK7755 have channel independent volume control (256 levels, 0.5 step). The  
VOLDAL/R[7:0] bits (CONT18: D7-D0 / CONT19: D7-D0), set the attenuation level of each DAC  
channel.  
DAC Lch VOLDAL  
DAC Rch VOLDAR [7:0]  
Attenuation Level  
[7:0]  
00h  
01h  
02h  
:
00h  
01h  
02h  
:
+12.0dB  
+11.5dB  
+11.0dB  
:
17h  
18h  
19h  
:
17h  
18h  
19h  
:
+0.5dB  
0.0dB  
-0.5dB  
:
(default)  
FDh  
FEh  
FFh  
FDh  
FEh  
FFh  
-114.5dB  
-115.0dB  
Mute (-∞)  
Table 8. DAC Digital Volume Setting  
Transition time between set values can be selected by ATSPDA bit (CONT0C: D5).  
MODE  
ATSPDA  
ATT speed  
1/fs  
0
1
0
1
4/fs  
Table 9. DAC Volume Transition Time Setting  
The transition between set values is soft transition of 1021 levels in Mode 0. It takes 1021/fs  
(21.3ms@fs=48kHz) from 00h to FFh (MUTE) in Mode 0. If the PDN pin is set to “L”, the  
VOLDAL/R[7:0] bits are initialized to 18h.  
014006643-E-00  
2014/10  
- 90 -  
[AK7755]  
code dB  
code dB  
code dB  
code dB  
code dB  
code dB  
code DB  
code dB  
00h 12.0 20h -4.0  
01h 11.5 21h -4.5  
02h 11.0 22h -5.0  
03h 10.5 23h -5.5  
40h -20.0 60h -36.0 80h -52.0 A0h -68.0 C0h -84.0 E0h -100.0  
41h -20.5 61h -36.5 81h -52.5 A1h -68.5 C1h -84.5 E1h -100.5  
42h -21.0 62h -37.0 82h -53.0 A2h -69.0 C2h -85.0 E2h -101.0  
43h -21.5 63h -37.5 83h -53.5 A3h -69.5 C3h -85.5 E3h -101.5  
04h 10.0 24h -.6.0 44h -22.0 64h -38.0 84h -54.0 A4h -70.0 C4h -86.0 E4h -102.0  
05h 9.5  
06h 9.0  
07h 8.5  
08h 8.0  
09h 7.5  
0Ah 7.0  
0Bh 6.5  
0Ch 6.0  
0Dh 5.5  
0Eh 5.0  
0Fh 4.5  
10h 4.0  
11h 3.5  
12h 3.0  
13h 2.5  
14h 2.0  
15h 1.5  
16h 1.0  
17h 0.5  
18h 0.0  
25h -6.5  
26h -7.0  
27h -7.5  
28h -8.0  
29h -8.5  
2Ah -9.0  
2Bh -9.5  
45h -22.5 65h -38.5 85h -54.5 A5h -70.5 C5h -86.5 E5h -102.5  
46h -23.0 66h -39.0 86h -55.0 A6h -71.0 C6h -87.0 E6h -103.0  
47h -23.5 67h -39.5 87h -55.5 A7h -71.5 C7h -87.5 E7h -103.5  
48h -24.0 68h -40.0 88h -56.0 A8h -72.0 C8h -88.0 E8h -104.0  
49h -24.5 69h -40.5 89h -56.5 A9h -72.5 C9h -88.5 E9h -104.5  
4Ah -25.0 6Ah -41.0 8Ah -57.0 AAh -73.0 CAh -89.0 EAh -105.0  
4Bh -25.5 6Bh -41.5 8Bh -57.5 ABh -73.5 CBh -89.5 EBh -105.5  
2Ch -10.0 4Ch -26.0 6Ch -42.0 8Ch -58.0 ACh -74.0 CCh -90.0 ECh -106.0  
2Dh -10.5 4Dh -26.5 6Dh -42.5 8Dh -58.5 ADh -74.5 CDh -90.5 EDh -106.5  
2Eh -11.0 4Eh -27.0 6Eh -43.0 8Eh -59.0 AEh -75.0 CEh -91.0 EEh -107.0  
2Fh -11.5 4Fh -27.5 6Fh -43.5 8Fh -59.5 AFh -75.5 CFh -91.5 EFh -107.5  
30h -12.0 50h -28.0 70h -44.0 90h -60.0 B0h -76.0 D0h -92.0 F0h -108.0  
31h -12.5 51h -28.5 71h -44.5 91h -60.5 B1h -76.5 D1h -92.5 F1h -108.5  
32h -13.0 52h -29.0 72h -45.0 92h -61.0 B2h -77.0 D2h -93.0 F2h -109.0  
33h -13.5 53h -29.5 73h -45.5 93h -61.5 B3h -77.5 D3h -93.5 F3h -109.5  
34h -14.0 54h -30.0 74h -46.0 94h -62.0 B4h -78.0 D4h -94.0 F4h -110.0  
35h -14.5 55h -30.5 75h -46.5 95h -62.5 B5h -78.5 D5h -94.5 F5h -110.5  
36h -15.0 56h -31.0 76h -47.0 96h -63.0 B6h -79.0 D6h -95.0 F6h -111.0  
37h -15.5 57h -31.5 77h -47.5 97h -63.5 B7h -79.5 D7h -95.5 F7h -111.5  
38h -16.0 58h -32.0 78h -48.0 98h -64.0 B8h -80.0 D8h -96.0 F8h -112.0  
19h -0.5 39h -16.5 59h -32.5 79h -48.5 99h -64.5 B9h -80.5 D9h -96.5 F9h -112.5  
1Ah -1.0 3Ah -17.0 5Ah -33.0 7Ah -49.0 9Ah -65.0 BAh -81.0 DAh -97.0 FAh -113.0  
1Bh -1.5 3Bh -17.5 5Bh -33.5 7Bh -49.5 9Bh -65.5 BBh -81.5 DBh -97.5 FBh -113.5  
1Ch -2.0 3Ch -18.0 5Ch -34.0 7Ch -50.0 9Ch -66.0 BCh -82.0 DCh -98.0 FCh -114.0  
1Dh -2.5 3Dh -18.5 5Dh -34.5 7Dh -50.5 9Dh -66.5 BDh -82.5 DDh -98.5 FDh -114.5  
1Eh -3.0 3Eh -19.0 5Eh -35.0 7Eh -51.0 9Eh -67.0 BEh -83.0 DEh -99.0 FEh -115.0  
1Fh -3.5 3Fh -19.5 5Fh -35.5 7Fh -51.5 9Fh -67.5 BFh -83.5 DFh -99.5 FFh Mute  
Table 10. DAC Digital Volume Setting List  
3. DAC Soft Mute  
The DAC block has a digital soft mute circuit. The soft mute operation is performed in the digital  
domain. The input signal is attenuated to -∞ in “DAC Digital Volume Level x ATT transition time”  
from the current DAC Digital Volume Setting Level by setting DAMUTE bit (CONT1A: D5) to “1”.  
When the DAMUTE bit is returned to “0”, the mute is cancelled and the input attenuation gradually  
changes to DAC Digital Volume Setting Level in “DAC Digital Volume Level x ATT transition  
time”. If the soft mute is cancelled before attenuating to -∞ after starting the operation, the attenuation  
is discontinued and returned to DAC Digital Volume Setting Level by the same cycle. The soft mute is  
effective for changing the signal source without stopping the signal transmission. The soft mute  
function works when the DAC is in operation. Since the DAC block is in reset state, there is a  
possibility that a click noise occurs by a reset and a reset release when CRESETN bit (CONT0F: D3)  
= 0and PMDAL/R bit (CONT0E: D0/D1) = 0. This click noise should be muted externally. The  
attenuation value is initialized by the PDN pin = L.  
(Setting+2)/fs(max)  
DAMUTE Register  
(Setting+2)/fs(max)  
0dB  
Attenuation  
-∞dB  
GD  
GD  
Output Image  
Soft Mute Operation  
Figure 73. DAC Soft Mute Operation  
- 91 -  
014006643-E-00  
2014/10  
[AK7755]  
Analog Output Block  
The AK7755 can output an analog mixing signal of DAC and line-in amplifier outputs from the OUT3  
pin. AD conversion is available by setting PMAD2L bit (CONT0E: D5) to 1even when the analog  
mixing output is ON.  
AK7755  
Mono  
ADC  
Stereo  
DAC Lch  
OUT1 pin  
OUT2 pin  
LIN pin  
LOVOL1[3:0]  
LOVOL2[3:0]  
LIGN[3:0]  
Stereo  
DAC Rch  
LO3SW1(SW1)  
M
I
X
LO3SW2(SW2)  
LO3SW3(SW3)  
OUT3 pin  
LOVOL3[3:0]  
Figure 74. Analog Output Circuit  
1. Line Output Amplifier  
The AK7755 has a line output amplifier. The maximum amplitude is 0.76 × AVDD (2.51[Vpp]  
@AVDD=3.3V) and load resistance is 10k(min). LOVOL1/2/3[3:0] bits (CONT14: D3-D0/  
CONT14: D7-D4/ CONT13: D3-D0) control the stereo line output volume. A pop noise occurs if the  
output gain is changed during operation.  
LOVOL1,L2,L3[3:0]  
Attenuation  
Mute(default)  
-28dB  
LOVOL1, L2, L3[3:0]  
Attenuation  
-14dB  
-12dB  
-10dB  
-8dB  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
-26dB  
-24dB  
-22dB  
-20dB  
-18dB  
-16dB  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
-6dB  
-4dB  
-2dB  
0dB  
Table 11. Line Output Volume  
2. Output1 and Output2  
The OUT1 and OUT2 pins are connected to the L and R channels of the internal stereo DAC,  
respectively. The relationship of each control bit and the OUT1 and OUT2 pins are shown below.  
The OUT1 and OUT2 pins output settings are controlled by PMLO1/2 bit (CONT0E: D2/D3),  
PMDAL/R bit (CONT0E: D0 /D1) and LOVOL1/2[3:0] bits (CONT014: D3-D0/D7-D4).  
PMLO1 bit PMDAL bit  
LOVOL1[3:0] bits  
OUT1 pin Output  
Hi-Z  
1/2 x AVDD  
1/2 x AVDD  
DAC Lch Output  
0
1
1
1
X
0
1
X
X
0h(mute)  
1h-Fh  
1
PMLO2 bit PMDAR bit  
LOVOL2[3:0] bits  
OUT2 pin Output  
Hi-Z  
1/2 x AVDD  
1/2 x AVDD  
DAC Rch Output  
0
1
1
1
X
0
1
X
X
0h(mute)  
1h-Fh  
1
014006643-E-00  
2014/10  
- 92 -  
[AK7755]  
3. OUT3 (Analog Mixer)  
The AK7755 can output an analog mixing signal of DAC and line-in amplifier outputs from the OUT3  
pin by setting LO3SW1 bit (CONT09: D1), LO3SW2 bit (CONT09: D2) and LO3SW3 bit (CONT09:  
D3).  
The line-out amplifier is powered up by setting PMLO3 bit = 1. Each switch is disconnected and the  
OUT3 pin outputs 1/2 × AVDD when LOVOL3[3:0] bits (CONT13: D3-D0) = 0h. L and R channel  
signals of the DAC are input to the mixer by setting LO3SW1 bit and LO3SW2 bit to 1while the  
setting of LOVOL3[3:0] bits is not 0h. L and R channel signals of the DAC are not gained by the mixer  
block.  
The output signal of line-in amplifier is input to the mixer by setting LO3SW3 bit to 1while the  
setting of LOVOL3[3:0] bits is not 0h. Adjust the input voltage and line-in amplifier gain (LIGN[3:0]  
bits (CONT13: D7-D4)) to prevent the mixing output exceeds 0.67 × AVDD[Vpp] since the line-in  
amplifier output is gained +18dB by the mixer block.  
The maximum amplitude of the line-out output is 0.76 × AVDD[Vpp]. VOLDAL[7:0] bits (CONT18:  
D7-D0), VOLDAR[7:0] bits (CONT19: D7-D0), LIGN[3:0] bits and LOVOL3[3:0] bits should be  
adjusted to not exceed this maximum level.  
PMLO3  
LOVOL3[3:0]  
X
LO3SW1  
LO3SW2  
LO3SW3  
SW1  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
SW2  
OFF  
OFF  
OFF  
OFF  
ON  
SW3  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
0
1
1
1
1
1
1
1
1
1
X
X
0
0
0
0
1
1
1
1
X
X
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
0h(mute)  
1h-Fh  
1h-Fh  
1h-Fh  
1h-Fh  
1h-Fh  
1h-Fh  
1h-Fh  
1h-Fh  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
Table 12. OUT3 pin Output Switching Setting  
014006643-E-00  
2014/10  
- 93 -  
[AK7755]  
Simple Write Error Check  
RAM and register data can be checked by cyclic redundancy check (CRC). It realizes a simple error  
check of a written data.  
1. Checked Data  
1-1. SPI Interface  
The serial input data of the AK7755 can be checked from a falling edge of the CSN signal to rising  
edge of the CSN signal.  
· Serial Data D (x): Input data from a falling edge to a rising edge of the CSN.  
· Generating Polynomial: G(x)=x16+x12+x5+1 (default=0)  
· R(x) is defined as the remainder when D(x) is divided by G(x).  
CSN  
SCLK  
don’tcare  
X (L/H)  
SI  
Data (write)  
Command Code (8bit)  
Address (16bit or 0bit)  
1-2. I2C Interface  
The data after second byte: command code, address and data are checked. (Acknowledge is not  
included in the checked data. Therefore, if the command code, address and data are the same as when  
SPI interface is used, the CRC error result will also be the same.) The first byte which includes slave  
address is excluded. The first byte can be checked with Acknowledge.  
· Serial Data D(x): Command Code, Address and Data (Expect slave address)  
· Generating Polynomial: G(x)=x16+x12+x5+1 (default=0)  
· R (x) is defined as the remainder when D(x) is divided by G(x).  
2. Simple Write Error Check Sequence  
There are two ways to execute a simple write error check.  
2-1. CRC Result Reading  
(1) Write serial data D(x) that need to be checked.  
(2) Read CRC result (the remainder R(x)) by the command code 72h.  
(3) Check the result by a microcomputer.  
(4) Repeat (1) ~ (3) when checking another serial data.  
Note 55. The internal CRC result is not reflected by the command code  
2-2. Checking by the STO pin  
(1) Set control register CRCE bit to 1.  
(2) Write serial data D(x) that need to be checked.  
(3) Write the remainder R(x) of D(x) ti registers by the command code F2H.  
(4) The SDO pin outputs Hwhen the calculated remainder of D(x) divided by G(x) equals to the  
R(x) value. If not, the STO pin outputs L.  
(5) Repeat (2) ~ (4) when checking another serial data.  
Note 56. The STO pin keeps Loutput until an appropriate remainder R(x) is written to the registers.  
014006643-E-00  
2014/10  
- 94 -  
[AK7755]  
EEPROM Interface  
1. Data Download  
The AK7755 has EEPROM boot mode to read out necessary data from an external EEPROM to the  
internal memory via I2C bus. A hands-free function is easily realized in the system using EEPROM  
without extra overloads on the microprocessor. The external EEPROM should be connected to the I2C  
interface of the AK7755 (I2CSEL pin= H). A SPI interface type EEPROM cannot be connected. Write  
data as shown in 2. Program Mapto the EEPROM.  
Control registers can shift the WRITE command code and data in 2 BYTE unit. However, the data  
location from the PRAM WRITE command code (0034h) to OFREG address 31LSB (689Ch) is fixed.  
Set 1010000to I2C slave address of the EEPROM when 256K bit, and set 101000+A16when 1M  
bit.  
The AK7755 starts downloading the data from the EEPROM when setting the EXTEEP pin to Hor  
DLS bit (CONT0D: D0) to 1while the EXTEEP pin = Lafter inputting a 12.288MHz clock to the  
XTI pin or connecting a 12.288MHz crystal oscillator to the XTI pin and the XTO pin. The EEST  
(SDOUT1) pin goes to Hwhile downloading data and the AK7755 becomes an I2C master. Do not  
write/read to the other devices that are connected to the same I2C bus during downloading. The EEST  
pin returns to Lafter downloading data and the AK7755 will be in I2C slave mode. Interfacing to a  
microcontroller becomes available when the EEST pin = L.  
When accessing the AK7755 after downloading data by CRC function, set CRCE bit (CONT10: D6) to  
0before access the AK7755. The EEPROM download period is 0.8s (max). Set the EXTEEP pin H”  
→ “L” → “Hor DLS bit (CONT0D, D0) 1” → “0” → “1to start a data downloading again.  
However, data downloading cannnot be executed by DLS bit when selecting memory mat (I2CSEL pin  
= MATSEL pin = H).  
μP  
STO  
STO  
GPI1  
GPI2  
Control  
Control  
EEST (SDOUT1)  
EEST (SDOUT1)  
SCL  
SDA  
EEPROM  
μP/  
EEPROM  
Interface  
μP/  
EEPROM  
Interface  
EEPROM  
SCL  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SDA  
EXTEEP  
EXTEEP  
I2CSEL = H”  
I2CSEL= H”  
PDN  
PDN  
Figure 75. EEPROM Connection (Left: EEPROM only, Right: CPU and EEPROM)  
014006643-E-00  
2014/10  
- 95 -  
[AK7755]  
2. Program Map  
EEPROM Address DATA  
Note  
C0h  
DATA  
C1h  
DATA  
C2h  
DATA  
C3h  
DATA  
C4h  
DATA  
C5h  
DATA  
C6h  
DATA  
C7h  
DATA  
C8h  
DATA  
C9h  
DATA  
CAh  
DATA  
CCh  
DATA  
D0h  
DATA  
D1h  
DATA  
D2h  
DATA  
D3h  
DATA  
D4h  
DATA  
D5h  
DATA  
D6h  
DATA  
D7h  
DATA  
D8h  
DATA  
D9h  
DATA  
DAh  
DATA  
00h  
CONT00 Write Command Code  
CONT00 Data  
CONT01 Write Command Code  
CONT01 Data  
CONT02 Write Command Code  
CONT02 Data  
CONT03 Write Command Code  
CONT03 Data  
CONT04 Write Command Code  
CONT04 Data  
CONT05 Write Command Code  
CONT05 Data  
CONT06 Write Command Code  
CONT06 Data  
CONT07 Write Command Code  
CONT07 Data  
CONT08 Write Command Code  
CONT08 Data  
CONT09 Write Command Code  
CONT09 Data  
CONT0A Write Command Code  
CONT0A Data  
CONT0CWrite Command Code  
CONT0C Data  
CONT10 Write Command Code  
CONT10 Data  
CONT11 Write Command Code  
CONT11 Data  
CONT12 Write Command Code  
CONT12 Data  
CONT13 Write Command Code  
CONT13 Data  
CONT14 Write Command Code  
CONT14 Data  
CONT15 Write Command Code  
CONT15 Data  
CONT16 Write Command Code  
CONT16 Data  
CONT17 Write Command Code  
CONT17 Data  
CONT18 Write Command Code  
CONT18 Data  
CONT19 Write Command Code  
CONT19 Data  
CONT1A Write Command Code  
CONT1A Data  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
001Fh  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
0026h  
0027h  
0028h  
0029h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
002Fh  
0030h  
0031h  
0032h  
0033h  
Dummy Data0 0 (Note 58)  
00h  
00h  
00h  
00h  
Dummy Data0  
Dummy Data1  
Dummy Data1  
1
0
1
Dummy Data2 0 (Note 57)  
00h  
Dummy Data2  
1
014006643-E-00  
2014/10  
- 96 -  
[AK7755]  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
0040h  
0041h  
B8h  
00h  
00h  
PRAM WRITE Command Code  
PRAM Address MSB side  
PRAM Address LSB side  
PRAM Address0 MSB 8-bit Data  
PRAM Address0 MSB-1 8-bit Data  
PRAM Address0 MSB-2 8-bit Data  
PRAM Address0 MSB-3 8-bit Data  
PRAM0 DATA39-32  
PRAM0 DATA31-24  
PRAM0 DATA23-16  
PRAM0:DATA15-8  
PRAM0 DATA7-0  
PRAM1 DATA39-32  
PRAM1 DATA31-24  
PRAM1 DATA23-16  
PRAM1:DATA15-8  
PRAM1 DATA7-0  
PRAM2 DATA39-32  
• • •  
PRAM Address0 LSB  
8-bit Data  
PRAM Address1 MSB 8-bit Data  
PRAM Address1 MSB-1 8-bit Data  
PRAM Address1 MSB-2 8-bit Data  
PRAM Address1 MSB-3 8-bit Data  
PRAM Address1 LSB 8-bit Data  
PRAM Address2 MSB-1 8-bit Data  
• • •  
5031h  
5032h  
5033h  
5034h  
5035h  
5036h  
5037h  
5038h  
5039h  
503Ah  
503Bh  
503Ch  
503Dh  
PRAM4094 DATA7-0  
PRAM4095 DATA39-32  
PRAM4095 DATA31-24  
PRAM4095 DATA23-16  
PRAM4095 DATA15-8  
PRAM4095 DATA7-0  
B4h  
PRAM Address4094 LSB  
8-bit Data  
PRAM Address4095 MSB 8-bit Data  
PRAM Address4095 MSB-1 8-bit Data  
PRAM Address4095 MSB-2 8-bit Data  
PRAM Address4095 MSB-3 8-bit Data  
PRAM Address4095 LSB 8-bit Data  
CRAM WRITE Command Code  
CRAM Address MSB side  
00h  
00h  
CRAM Address LSB side  
CRAM0 DATA23-16  
CRAM0 DATA15-8  
CRAM0 DATA7-0  
CRAM1 DATA23-16  
• • •  
CRAM Address0 MSB  
CRAM Address0 MSB-1  
CRAM Address0 LSB  
CRAM Address1 MSB  
8-bit Data  
8-bit Data  
8-bit Data  
8-bit Data  
• • •  
6836h  
6837h  
6838h  
6839h  
683Ah  
683Bh  
683Ch  
683Dh  
683Eh  
683Fh  
6840h  
CRAM2046 DATA7-0  
CRAM2047 DATA23-16  
CRAM2047 DATA15-8  
CRAM2047 DATA7-0  
B2h  
CRAM Address2046 LSB  
CRAM Address2047 MSB  
CRAM Address2047 MSB-1 8-bit Data  
CRAM Address2047 LSB 8-bit Data  
OFREG WRITE Command Code  
OFREG Address MSB side  
OFREG Address LSB side  
OFREG Address0 MSB  
OFREG Address0 MSB-1  
OFREG Address0 LSB  
OFREG Address1 MSB  
8-bit Data  
8-bit Data  
00h  
00h  
OFREG0 DATA23-16  
OFREG0 DATA15-8  
OFREG0 DATA7-0  
OFREG1 DATA23-16  
• • •  
8-bit Data  
8-bit Data  
8-bit Data  
8-bit Data  
• • •  
6899h  
689Ah  
689Bh  
689Ch  
OFREG30 DATA7-0  
OFREG31 DATA23-16  
OFREG31 DATA15-8  
OFREG Address30 LSB  
OFREG Address31 MSB  
OFREG Address31 MSB-1  
OFREG Address31 LSB  
8-bit Data  
8-bit Data  
8-bit Data  
8-bit Data  
OFREG31 DATA7-0  
689Dh  
689Eh  
689Fh  
68A0h  
68A1h  
68A2h  
68A3h  
CDh  
CONT0D Write Command Code  
40h  
CONT0D Data  
E6h  
01h  
EAh  
80h  
CONT26 Write Command Code  
CONT26 Data  
CONT2A Write Command Code  
CONT2A Data  
CEh  
CONT0E WRITE Command Code  
68A4h  
68A5h  
68A6h  
68A7h  
68A8h  
68A9h  
68AAh  
DATA  
CFh  
DATA  
00h  
00h  
CONT0E Data  
CONT0F WRITE Command Code  
CONT0F Data  
Dummy Data0_0  
Dummy Data0_1  
Dummy Data1_0  
Dummy Data1_1  
00h  
00h  
014006643-E-00  
2014/10  
- 97 -  
[AK7755]  
68ABh  
68ACh  
68ADh  
68AEh  
68AFh  
68B0h  
68B1h  
68B2h  
68B3h  
68B4h  
68B5h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
F2h  
Dummy Data2_0  
Dummy Data2_1  
Dummy Data3_0  
Dummy Data3_1  
Dummy Data4_0  
Dummy Data4_1  
Dummy Data5_0  
Dummy Data5_1  
Dummy Data6_0  
Dummy Data6_1  
CRC WRITE Command Code  
68B6h  
68B7h  
68B8h  
• • •  
CRC DATA15-8  
CRC DATA7-0  
00h  
• • •  
00h  
CRC MSB 8-bit Data  
CRC LSB 8-bit Data  
Reserve  
7FFFh  
Reserve  
Note 57. DSPRESETN bit (CONT0F: D2) must be 0when downloading a DSP program. Especially this  
setting is necessary when changing the DSP program during operation by selecting EEPROM  
mat.  
Note 58. A WRITE command for arbitrary control register can be written to Dummy data *_0, and write  
register setting for the control register to Dummy data*_1 in the table above.  
Data transffer from EEPROM can be confirmed by writing R(x) (16-bit) data to CRCDATA (addr:  
787Ch, 787Dh) which is the remainder of serial data D(x) from addres 0000h to 68B7h devided by a  
generating polynominal; G(x)=x16+x12+x5+1 (Initial Value= 0).  
3. EEPROM Automatic Re-downloading  
When a programmed WDT or CRC error is detected, automatic re-downloading of the EEPROM data is  
available up to 4 times by setting the EXPEEP pin = “H”. When an error occurs after re-downloading  
more than 4 times, “L” level is output on the STO pin and the device stops. The device status can be  
checked by reading STO bit (CONT0D: D7). The CRC function is enabled by setting CRCE bit  
(CONT10: D6) to 1. The default setting of CRCE bit is 0(disabled).  
This setting is initialized (error count: 0) by the PDN pin = “L”. It is not initialized by a clock reset.  
4. EEPROM Mat Select  
The pin number 20 becomes the MATSEL pin that enables EEPROM program mat selecting when the  
EXTEEP pin = H.  
Connect a 256K-bit EEPROM and bring the MATSEL pin = Lwhen not selecting the EEPROM mat.  
Connect a 1M-bit EEPROM and bring the MATSEL pin = Hwhen selecting the EEPROM mat. In  
this case, the pin number 14 (MAT1) and 15 (MAT0) are address pins of the mat select.  
Single program is stored in every 256K bits as a program map. The EEPROM can store four programs  
in total. The MAT1 and MAT0 pins select a program to download to the AK7755. OUT3E bit  
(CONT0A, D2) and OUT2E bit (CONT0A, D1) must not set to 1when selecting an EEPROM mat  
(MATSEL pin = H).  
MAT1  
(14pin)  
MAT0  
(15pin)  
EEPROM Storing  
Beginning Address  
17h00000  
17h08000  
17h10000  
I2C 1st Byte  
Program No.  
1
2
3
4
0
0
1
1
0
1
0
1
1 0 1 0 0 0 0 R/Wn  
1 0 1 0 0 0 0 R/Wn  
1 0 1 0 0 0 1 R/Wn”  
1 0 1 0 0 0 1 R/Wn”  
17h18000  
014006643-E-00  
2014/10  
- 98 -  
[AK7755]  
Digital Microphone Interface  
1. Digital MIC Connection  
Four digital microphones can be connected to the AK7755 at the maximum. When DMIC1 (CONT1E:  
D7) or DMIC2 (CONT1E: D4) bit is set to “1”, the #34 pin becomes DMDAT1 (digital microphone data  
input), the #33 pin becomes DMCLK1 (digital microphone clock supply) pins, the #32 pin becomes  
DMDAT2 pin and the #31 pin becomes DMCLK2 pin.  
The DMCLK1/2 clock is an input to a digital microphone from the AK7755. The digital microphone  
outputs 1bit data, which is generated by Modulator using DMCLK1/2 clock, to the DMDAT1/2 pin.  
DMIC1/2 bit controls power up/down of the digital block (Decimation Filter and Digital Filter).  
DCLKE1/2 bit (CONT1E: D5/D2) controls ON/OFF of the output clock from the DMCLK1/2 pin. When  
the AK7755 is powered down (PDN pin= L), the DMCLK1/2 and DMDAT1/2 pins become floating  
state. Pull-down resistors must be connected to DMCLK and DMDAT pins externally to avoid this  
floating state. Figure 76 shows a stereo 4ch connection example.  
AVDD  
AK7755  
VDD  
DMCLK1(64fs)  
DMIC1 or DMIC2 bit = 1”  
100k  
  
AMP  
Modulator  
SDOUTAD  
Decimation Digital  
DMDAT1  
Filter  
Filter  
Lch  
100k  
DMIC1 bit = 1”  
VDD  
  
Modulator  
AMP  
Rch  
VDD  
DMCLK2(64fs)  
DMIC1 or DMIC2 bit = 1”  
100k  
  
AMP  
Modulator  
Decimation Digital  
SDOUTAD2  
DMDAT2  
Filter  
Filter  
Lch  
100k  
DMIC2 bit = 1”  
VDD  
  
AMP  
Modulator  
Rch  
Figure 76. Connection Example for 4ch Stereo Digital Microphone  
014006643-E-00  
2014/10  
- 99 -  
 
[AK7755]  
2. Interface  
The input data channel of the DMDAT1/2 pin is set by DCLKP1/2 bit (CONT1E: D6/D3). When  
DCLKP1/2 bit = “1”, L channel data is input to the decimation filter if the DMCLK1/2 pin= “H”, and R  
channel data is input if the DMCLK1/2 = “L”. When DCLKP1/2 bit = “0”, R channel data is input to the  
decimation filter while DMCLK1/2 pin= “H”, and L channel data is input while DMCLK1/2 pin= “L”.  
The DMCLK1/2 pin only supports 64fs. It outputs “L” when DCLKE1/2 bit = “0”, and outputs 64fs clock  
when DCLKE1/2 bit = “1”. The output data through “the Decimation and Digital Filters” is 24bit full  
scale when the 1bit data density is 0%~100%.  
DCLKP1 bit  
DMCLK1 pin = “H” DMCLK1 pin = “L”  
0
1
Rch  
Lch  
Lch  
Rch  
(default)  
DCLKP2 bit DMCLK2 pin = “H” DMCLK2 pin = “L”  
0
1
Rch  
Lch  
Lch  
Rch  
(default)  
Table 13. Data Input/Output Timing with Digital MIC  
DMCLK1/2(64fs)  
DMDAT1/2(Lch)  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
DMDAT1/2(Rch)  
Figure 77. Data Input/Output Timing with Digital MIC (DCLKP1/2 bit = “1”)  
DMCLK1/2(64fs)  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
DMDAT1/2(Lch)  
DMDAT1/2(Rch)  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Figure 78. Data Input/Output Timing with Digital MIC (DCLKP1/2 bit = “0”)  
Digital Mixer  
ADC output (SDATAD), ADC2 output (SDATAD2) and DSP-DOUT4 data can be mixed into a signle  
serial data by a mixer circuit. SELMIX[2:0] bits (CONT09: D0, CONT08: D1, D0) control mixing  
setting. Delay time of the mixer circuit is 4Ts (4/fs).  
SELMIX SELMIX  
MIXOUT Lch  
MIXOUT Rch  
mode  
[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
SDOUTAD Lch  
SDOUTAD Lch/2 + SDOUTAD2 Lch/2  
SDOUTAD Rch  
SDOUTAD Rch  
(default)  
SDOUTAD Lch/2 + SDOUTAD2 Lch/2  
SDOUTAD2 Rch  
SDOUTAD2 Rch  
DSP-DOUT4 Rch  
SDOUTAD Rch  
SDOUTAD Lch  
SDOUTAD2 Lch  
DSP-DOUT4 Lch  
SDOUTAD2 Lch  
DSP-DOUT4 Lch  
SDOUTAD Lch  
DSP-DOUT4 Rch  
Table 14. Digital Mixer Output Setting  
014006643-E-00  
2014/10  
- 100 -  
[AK7755]  
10. Recommended External Circuits  
Connection Diagram  
1. I2CSEL pin = “L”, LDOE pin = “L”  
3
L”  
L”  
I2CSEL  
LDOE  
CSN  
23  
20  
19  
18  
17  
6
CLOCK  
&
9
CLKO  
8
BICK  
7
LRCK  
16  
15  
14  
5
SI  
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
uP  
Audio I/F  
SCLK  
SO  
4
STO/RDY  
22  
PDN  
RESET  
CONTROL  
1  
1  
31  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
28  
26  
27  
1  
1  
32  
33  
34  
35  
OUT1  
OUT2  
OUT3  
1  
1  
1  
1  
1
AK7755  
VCOM  
2.2  
Digital Core 1.2V  
24  
DVDD  
10  
0.1  
0.1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 79. Serial Interface Connection with External Power Supply  
2. I2CSEL pin = “L”, LDOE pin = H”  
3
L”  
I2CSEL  
LDOE  
CSN  
23  
20  
19  
18  
17  
6
H”  
CLOCK  
&
9
CLKO  
8
BICK  
7
LRCK  
16  
15  
14  
5
SI  
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
uP  
Audio I/F  
SCLK  
SO  
4
STO/RDY  
22  
PDN  
RESET  
CONTROL  
1  
1  
31  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
28  
26  
27  
1  
1  
32  
33  
34  
35  
OUT1  
OUT2  
OUT3  
1  
1  
1  
1  
1
AK7755  
VCOM  
2.2  
24  
AVDRV  
1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
0.1  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 80. Serial Interface Connection with Internal LDO  
014006643-E-00  
2014/10  
- 101 -  
[AK7755]  
3. I2CSEL pin = H, EXTEEP pin = L, LDOE pin = L”  
3
H”  
L”  
I2CSEL  
LDOE  
23  
19  
CLOCK  
&
9
CLKO  
8
L”  
BICK  
EXTEEP  
7
LRCK  
16  
15  
14  
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
20  
18  
17  
6
CAD  
SCL  
Audio I/F  
uP  
5
4
SDA  
STO/RDY  
22  
RESET  
1  
1  
31  
PDN  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
CONTROL  
32  
33  
34  
35  
1  
1  
1  
28  
26  
27  
1  
1  
OUT1  
OUT2  
OUT3  
1  
1
AK7755  
VCOM  
2.2  
Digital Core 1.2V  
24  
DVDD  
10  
0.1  
0.1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 81. I2C Interface Connection with External Power Supply  
4. I2CSEL pin = H, EXTEEP pin = L, LDOE pin = H”  
3
H”  
H”  
L”  
I2CSEL  
LDOE  
23  
19  
CLOCK  
&
9
CLKO  
8
BICK  
EXTEEP  
7
LRCK  
16  
15  
14  
5
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
20  
18  
17  
6
CAD  
SCL  
Audio I/F  
uP  
4
SDA  
STO/RDY  
22  
RESET  
1  
1  
31  
PDN  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
CONTROL  
32  
33  
34  
35  
1  
1  
1  
28  
26  
27  
1  
1  
OUT1  
OUT2  
OUT3  
1  
1
AK7755  
VCOM  
2.2  
24  
AVDRV  
1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
0.1  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 82. I2C Interface Connection with Internal LDO  
014006643-E-00  
2014/10  
- 102 -  
[AK7755]  
5. I2CSEL pin = H, EXTEEP pin = H, MATSEL pin = L, LDOE pin = L”  
3
H”  
L”  
I2CSEL  
LDOE  
23  
19  
20  
CLOCK  
&
9
CLKO  
8
H”  
L”  
BICK  
EXTEEP  
MATSEL  
7
LRCK  
16  
15  
14  
5
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
Audio I/F  
uP  
18  
17  
6
4
SCL  
SDA  
EEPROM  
256Kbit  
STO/RDY  
1  
1  
31  
22  
RESET  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
PDN  
CONTROL  
32  
33  
34  
35  
1  
1  
1  
28  
26  
27  
1  
1  
OUT1  
OUT2  
OUT3  
1  
1
AK7755  
VCOM  
2.2  
Digital Core 1.2V  
24  
DVDD  
10  
0.1  
0.1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 83. I2C Interface Connection with External Power Supply and EEPROM  
6. I2CSEL pin = H, EXTEEP pin = H, MATSEL pin = L, LDOE pin = H”  
3
H”  
H”  
I2CSEL  
LDOE  
23  
19  
20  
CLOCK  
&
9
CLKO  
8
H”  
L”  
BICK  
EXTEEP  
MATSEL  
7
LRCK  
16  
15  
14  
5
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
Audio I/F  
uP  
18  
17  
6
4
SCL  
SDA  
EEPROM  
256Kbit  
STO/RDY  
1  
1  
31  
22  
RESET  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
PDN  
CONTROL  
32  
33  
34  
35  
1  
1  
1  
28  
26  
27  
1  
1  
OUT1  
OUT2  
OUT3  
1  
1
AK7755  
VCOM  
2.2  
24  
AVDRV  
1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
0.1  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 84. I2C Interface Connection with Internal LDO and EEPROM  
014006643-E-00  
2014/10  
- 103 -  
[AK7755]  
7. I2CSEL pin = H, EXTEEP pin = H, MATSEL pin = H, LDOE pin = L”  
3
H”  
L”  
I2CSEL  
LDOE  
23  
19  
20  
CLOCK  
&
9
CLKO  
BICK  
8
H”  
H”  
EXTEEP  
MATSEL  
7
16  
LRCK  
SDOUT1  
Audio I/F  
5
4
uP  
SDIN1  
SDIN2  
18  
17  
6
SCL  
SDA  
EEPROM  
1Mbit  
STO/RDY  
MAT0  
15  
14  
MAT1  
1  
1  
31  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
RESET  
CONTROL  
22  
32  
33  
34  
35  
PDN  
1  
1  
1  
28  
26  
27  
1  
1  
OUT1  
OUT2  
OUT3  
1  
1
AK7755  
VCOM  
2.2  
Digital Core 1.2V  
24  
DVDD  
10  
0.1  
0.1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 85. I2C Interface Connection with External Power Supply and EEPROM (Mat Select ON)  
8. I2CSEL pin = H, EXTEEP pin = H, MATSEL pin = H, LDOE pin = H”  
3
H”  
H”  
I2CSEL  
LDOE  
23  
19  
20  
CLOCK  
&
9
CLKO  
BICK  
8
H”  
H”  
EXTEEP  
MATSEL  
7
16  
LRCK  
SDOUT1  
Audio I/F  
5
4
uP  
SDIN1  
SDIN2  
18  
17  
6
SCL  
SDA  
EEPROM  
1Mbit  
STO/RDY  
MAT0  
15  
14  
MAT1  
1  
1  
31  
IN4/INN2  
IN3/INP2  
IN2/INN1  
IN1/INP1  
LIN  
22  
RESET  
CONTROL  
32  
33  
34  
35  
PDN  
1  
1  
1  
28  
26  
27  
1  
1  
OUT1  
OUT2  
OUT3  
1  
1
AK7755  
VCOM  
2.2  
24  
AVDRV  
1  
Analog +3.3V  
21,29,36  
Digital IO 1.83.3V  
10  
AVDD  
AVSS  
12  
10  
0.1  
TVDD  
DVSS  
0.1  
2,30  
13,25  
Rd  
10  
11  
XTO  
XTI  
CL=22pF/15pF  
CL=22pF/15pF  
Figure 86. I2C Interface Connection with Internal LDO and EEPROM (Mat Select ON)  
014006643-E-00  
2014/10  
- 104 -  
[AK7755]  
Peripheral Circuit  
1. Ground  
AVSS and DVSS must be connected to the same analog ground plane. Decoupling capacitors,  
particularly small capacity capacitors, should be connected as close as possible to the AK7755.  
2. Reference Voltage  
The AVDD voltage controls analog signal range. VCOM is a common voltage of this chip and the  
VCOM pin outputs AVDD/2. A 2.2µF ceramic capacitor connected between the VCOM and AVSS pins  
eliminates the effects of high frequency noise. The ceramic capacitor should be connected as close as  
possible to the VCOM pin. The VCOM pin must not be connected to external circuits. Digital signal  
lines, especially clock signal line should be kept away as far as possible from the VCOM pin in order to  
avoid unwanted coupling into the AK7755.  
3. Analog Input  
Analog input signals are applied to the modulator through the input pin of each channel. Input voltage is  
±FS = ±(AVDD-AVSS) x 2.2/3.3 for differential pin and FS = (AVDD-AVSS) x 2.2/3.3 for single-end  
pin. When AVDD = 3.3V and AVSS=0.0V, the differential input range is ±2.20Vpp (typ) and it is  
2.20Vpp (typ) for single-ended input. The digital output code format is 2's complements. DC offset can  
be cancelled by an internal HPF.  
The AK7755 samples the analog inputs in 3.072MHz at fs = 48kHz. The digital filter removes noise in  
the range from 30kHz to 3.042MHz. The AK7755 includes an anti-aliasing filter (RC filter) to attenuate  
a noise around the range from 3.042MHz to 3.072MHz witch is not removed by the HPF. An external  
Low Pass Filter is not necessary since most of audio signals do not have large noise in the band around  
3.072MHz. However, it is recommended to connect a Low Pass Filter before the ADC when a signal  
with large out-of-band noises is input.  
The analog source voltage to the AK7755 is +3.3V (typ). Voltage of AVDD + 0.3V or more, voltage of  
AVSS 0.3V or less, and current of 10mA or more must not be applied to analog input pins. Excessive  
current will damage the internal protection circuit and will cause latch-up, damaging the IC. If the  
external analog circuit voltage is ±15V, the analog input pins must be protected from signals which are in  
absolute maximum rating level or more.  
10k  
10k  
68p  
68p  
22μ  
2.20Vpp  
10k  
+
10k  
-
+
Signal  
+
-
INP*  
+
1μ  
+
INN*  
1μ  
2.20Vpp  
Figure 87. Input Buffer Circuit Example (Differential Input)  
014006643-E-00  
2014/10  
- 105 -  
[AK7755]  
4. Analog Output  
The analog line-outputs are single-ended. The output signal range is 0.76 × AVDD Vpp (typ.) centered  
around VCOM voltage. The input code format is in 2’s complement. The output voltage is a positive full  
scale for 7FFFFFH (@24bit) and a negative full scale for 800000H (@24bit). The ideal voltage at 000000H  
is VCOM. The VCOM voltage is AVDD/2 (typ). The internal switched-capacitor filter (SCF) and  
continuous-time filter (CTF) attenuate the noise generated by the delta-sigma modulator beyond the audio  
passband.  
5. Connection to Digital Circuit  
To minimize the noise from digital circuits, the digital output of the AK7755 must be connected to CMOS  
or low voltage logic ICs such as 74HC and 74AC for CMOS and 74LV, 74LV-A, 74ALVC and 74AVC for  
low voltage logic ICs.  
6. Cristal Oscillator  
The resistor and capacitor values for the oscillator RC circuit are shown blow.  
TVDD = 3.0 - 3.6V  
XTAL  
Oscillator  
12.288MHz  
18.432MHz  
XTI, XTO pin  
Connection Capacity  
22pF  
CKM mode  
R1_max  
C0_max  
0
1
120Ω  
80Ω  
2.5pF  
2.5pF  
15pF  
TVDD = 1.7 - 3.0V  
CKM mode  
XTAL  
XTI, XTO pin  
Connection Capacity  
10pF  
R1_max  
C0_max  
Oscillator  
12.288MHz  
18.432MHz  
1.2pF  
1.2pF  
0
1
50Ω  
25Ω  
10pF  
Table 15. Crystal Oscillator  
014006643-E-00  
2014/10  
- 106 -  
[AK7755]  
11. Package  
Outline Dimensions  
Package & Lead frame material  
Package molding compound: Epoxy  
Lead frame material: Cu  
Lead frame surface treatment: Solder (Pb free) plate  
014006643-E-00  
2014/10  
- 107 -  
[AK7755]  
Marking  
AKM  
7755EN  
XXXX  
36  
1
1) Pin #1 indication  
2) Date Code: XXXX(4 digits)  
3) Marking Code: 7755EN  
AKM  
7755VN  
XXXX  
36  
1
1) Pin #1 indication  
2) Date Code: XXXX(4 digits)  
3) Marking Code: 7755VN  
014006643-E-00  
2014/10  
- 108 -  
[AK7755]  
12. Revision History  
Date (Y/M/D) Revision Reason  
14/10/20 00 First Edition  
Page Contents  
IMPORTANT NOTICE  
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the  
information contained in this document without notice. When you consider any use or application  
of AKM product stipulated in this document (Product), please make inquiries the sales office of  
AKM or authorized distributors as to current status of the Products.  
1. All information included in this document are provided only to illustrate the operation and  
application examples of AKM Products. AKM neither makes warranties or representations with  
respect to the accuracy or completeness of the information contained in this document nor grants  
any license to any intellectual property rights or any other rights of AKM or any third party with  
respect to the information in this document. You are fully responsible for use of such information  
contained in this document in your product design or applications. AKM ASSUMES NO  
LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM  
THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.  
2. The Product is neither intended nor warranted for use in equipment or systems that require  
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which  
may cause loss of human life, bodily injury, serious property damage or serious public impact,  
including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace  
industry, medical equipment, equipment used for automobiles, trains, ships and other  
transportation, traffic signaling equipment, equipment used to control combustions or explosions,  
safety devices, elevators and escalators, devices related to electric power, and equipment used in  
finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in  
writing.  
3. Though AKM works continually to improve the Product’s quality and reliability, you are  
responsible for complying with safety standards and for providing adequate designs and safeguards  
for your hardware, software and systems which minimize risk and avoid situations in which a  
malfunction or failure of the Product could cause loss of human life, bodily injury or damage to  
property, including data loss or corruption.  
4. Do not use or otherwise make available the Product or related technology or any information  
contained in this document for any military purposes, including without limitation, for the design,  
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or  
missile technology products (mass destruction weapons). When exporting the Products or related  
technology or any information contained in this document, you should comply with the applicable  
export control laws and regulations and follow the procedures required by such laws and  
regulations. The Products and related technology may not be used for or incorporated into any  
products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or  
foreign laws or regulations.  
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS  
compatibility of the Product. Please use the Product in compliance with all applicable laws and  
regulations that regulate the inclusion or use of controlled substances, including without limitation,  
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of  
noncompliance with applicable laws and regulations.  
6. Resale of the Product with provisions different from the statement and/or technical features set  
forth in this document shall immediately void any warranty granted by AKM for the Product and  
shall not create or extend in any manner whatsoever, any liability of AKM.  
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior  
written consent of AKM.  
014006643-E-00  
2014/10  
- 109 -  

相关型号:

AK7755EN_16

DSP with Mono ADC Stereo CODEC Mic/Lineout Amp
AKM

AK7756

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7756EN

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7756VF

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7757VQ

24bit 3ch ADC 4ch DAC Mic Amp 内蔵 Audio DSP
AKM

AK7758

DSP with Stereo CODEC Mic/Lineout Amp
AKM

AK7758VN

DSP with Stereo CODEC Mic/Lineout Amp
AKM

AK7770EQ

Audio DSP with Multi-Channel Audio CODEC
AKM

AK7780

24bit 5ch ADC & SRC + Audio DSP
AKM

AK7780VQ

24bit 5ch ADC & SRC + Audio DSP
AKM

AK7782

Dual Audio DSP with 24bit 5ch ADC & SRC
AKM

AK7782VQ

Dual Audio DSP with 24bit 5ch ADC & SRC
AKM