AKD4626 [AKM]

High Performance Multi-channel Audio CODEC; 高性能多通道音频编解码器
AKD4626
型号: AKD4626
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

High Performance Multi-channel Audio CODEC
高性能多通道音频编解码器

解码器 编解码器
文件: 总40页 (文件大小:560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASAHI KASEI  
[AK4626A]  
AK4626A  
High Performance Multi-channel Audio CODEC  
GENERAL DESCRIPTION  
The AK4626A is a single chip CODEC that includes two channels of ADC and six channels of DAC. The  
ADC outputs 24bit data and the DAC accepts up to 24bit input data. The ADC has the Enhanced Dual Bit  
architecture with wide dynamic range. The DAC introduces the newly developed Advanced Multi-Bit  
architecture, and achieves wider dynamic range and lower outband noise. An auxiliary digital audio input  
interface maybe used instead of the ADC for passing audio data to the primary audio output port. Control  
may be set directly by pins or programmed through a separate serial interface.  
The AK4626A has a dynamic range of 102dB for ADC, 106dB for DAC and is well suited for digital  
surround for home theater and car audio. An AC-3 system can be built with a IEC60958(SPDIF) receiver  
such as the AK4112B. The AK4626A is available in a small 44pin LQFP package which will reduce  
system space.  
*AC-3 is a trademark of Dolby Laboratories.  
FEATURES  
† 2ch 24bit ADC  
- 64x Oversampling  
- Sampling Rate up to 96kHz  
- Linear Phase Digital Anti-Alias Filter  
- Single-Ended Input  
- S/(N+D): 92dB  
- Dynamic Range, S/N: 102dB  
- Digital HPF for offset cancellation  
- I/F format: MSB justified, I2S or TDM  
- Overflow flag  
† 6ch 24bit DAC  
- 128x Oversampling  
- Sampling Rate up to 192kHz  
- 24bit 8 times Digital Filter  
- Single-Ended Outputs  
- On-chip Switched-Capacitor Filter  
- S/(N+D): 90dB  
- Dynamic Range, S/N: 106dB  
- I/F format: MSB justified, LSB justified(20bit,24bit), I2S or TDM  
- Individual channel digital volume with 128 levels and 0.5dB step  
- Soft mute  
- De-emphasis for 32kHz, 44.1kHz and 48kHz  
- Zero Detect Function  
† High Jitter Tolerance  
† TTL Level Digital I/F  
† 3-wire Serial and I2C Bus µP I/F for mode setting  
† Master clock:256fs, 384fs or 512fs for fs=32kHz to 48kHz  
128fs, 192fs or 256fs for fs=64kHz to 96kHz  
128fs for fs=120kHz to 192kHz  
† Power Supply: 4.5 to 5.5V  
† Power Supply for output buffer: 2.7 to 5.5V  
† Small 44pin LQFP  
† AK4626 Pin Compatible  
MS0397-E-00  
2005/06  
- 1 -  
ASAHI KASEI  
[AK4626A]  
„ Block Diagram  
Audio  
I/F  
LIN  
ADC  
ADC  
HPF  
HPF  
RIN  
RX1  
XTI  
RX2  
RX3 RX4  
XTO  
DIR  
MCLK  
LRCK  
BICK  
LOUT1  
ROUT1  
LPF  
LPF  
DAC  
DAC  
DATT  
DATT  
MCLK  
MCKO  
LRCK  
BICK  
AK4112B  
LRCK  
BICK  
DAUX  
SDTO  
LOUT2  
ROUT2  
LPF  
LPF  
LPF  
LPF  
DAC  
DAC  
DAC  
DAC  
DATT  
DATT  
DATT  
DATT  
Format  
Converter  
LRCK  
BICK  
SDOUT  
AC3  
SDOS  
SDTO  
LOUT3  
ROUT3  
SDIN  
SDTI1  
SDTI2  
SDTI3  
SDOUT1  
SDOUT2  
SDOUT3  
SDIN1  
SDIN2  
SDIN3  
AK4626A  
Block Diagram (DIR and AC-3 DSP are external parts)  
MS0397-E-00  
2005/06  
- 2 -  
ASAHI KASEI  
[AK4626A]  
„ Ordering Guide  
AK4626AVQ  
AKD4626  
-40 +85°C  
44pin LQFP(0.8mm pitch)  
Evaluation Board for AK4626A  
„ Pin Layout  
SDOS  
I2C  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
DZF2/OVF  
RIN  
2
SMUTE  
BICK  
3
LIN  
4
NC  
AK4626AVQ  
LRCK  
SDTI1  
SDTI2  
SDTI3  
SDTO  
DAUX  
DFS0  
5
TST5  
6
ROUT1  
LOUT1  
ROUT2  
LOUT2  
ROUT3  
LOUT3  
7
Top View  
8
9
10  
11  
MS0397-E-00  
2005/06  
- 3 -  
ASAHI KASEI  
[AK4626A]  
„ Compatibility with AK4527B  
1. Functions  
Functions  
AK4527B  
Up to 96kHz  
Not available  
256 levels  
Soft mute function is independent of  
Digital attenuator.  
Differential input  
AK4626A  
Up to 192kHz  
Available  
128 levels  
Soft mute function is not independent of  
Digital attenuator.  
DAC Sampling frequency  
TDM128 (96kHz)  
Digital Attenuator  
Soft Mute  
Analog Input (ADC)  
Single-ended Input  
2. Pin Configuration  
pin#  
11  
12  
18  
19  
20  
21  
22  
29  
30  
31  
32  
44  
AK4527B  
DFS  
NC  
TEST  
NC  
ADIF  
CAD1  
CAD0  
LIN-  
LIN+  
RIN-  
RIN+  
LOOP1  
AK4626A  
DFS0  
TST1  
TST2  
CAD1  
CAD0  
TST3  
TST4  
TST5  
NC  
LIN  
RIN  
TDM0  
3. Register  
Addr  
AK4527B  
AK4626A  
TDM0  
TDM1  
00H  
00H  
01H  
Not available  
Not available  
DFS  
DFS0  
01H  
09H  
0AH  
Not available  
Not available  
Not available  
DFS1  
ATS1, ATS0  
DZFM3  
MS0397-E-00  
2005/06  
- 4 -  
ASAHI KASEI  
No. Pin Name  
[AK4626A]  
PIN/FUNCTION  
I/O  
I
Function  
(Note 1)  
1
SDOS  
SDTO Source Select Pin  
“L”: Internal ADC output, “H”: DAUX input  
SDOS pin should be set to “L” when TDM= “1”.  
Control Mode Select Pin  
2
3
I2C  
I
I
“L”: 3-wire Serial, “H”: I2C Bus  
SMUTE  
Soft Mute Pin  
(Note 1)  
When this pin goes to “H”, soft mute cycle is initialized.  
When returning to “L”, the output mute releases.  
Audio Serial Data Clock Pin  
4
5
6
7
8
9
BICK  
I
I
I
I
I
O
I
I
LRCK  
SDTI1  
SDTI2  
SDTI3  
SDTO  
Input Channel Clock Pin  
DAC1 Audio Serial Data Input Pin  
DAC2 Audio Serial Data Input Pin  
DAC3 Audio Serial Data Input Pin  
Audio Serial Data Output Pin  
10 DAUX  
11 DFS0  
AUX Audio Serial Data Input Pin  
Double Speed Sampling Mode Pin (Note 1)  
“L”: Normal Speed, “H”: Double Speed  
Test Pin  
This pin should be connected to DVSS.  
Zero Input Detect Enable Pin  
12 TST1  
13 DZFE  
I
I
“L”: mode 7 (disable) at parallel mode,  
zero detect mode is selectable by DZFM3-0 bits at serial mode  
“H”: mode 0 (DZF1 is AND of all six channels)  
14 TVDD  
15 DVDD  
16 DVSS  
17 PDN  
-
-
-
I
Output Buffer Power Supply Pin, 2.7V5.5V  
Digital Power Supply Pin, 4.5V5.5V  
Digital Ground Pin, 0V  
Power-Down & Reset Pin  
When “L”, the AK4626A is powered-down and the control registers are reset to default  
state. If the state of P/S or CAD1-0 changes, then the AK4626A must be reset by PDN.  
18 TST2  
I
Test Pin  
This pin should be connected to DVSS.  
19 CAD1  
20 CAD0  
21 TST3  
I
I
O
Chip Address 1 Pin  
Chip Address 0 Pin  
Test Pin  
This pin should be left floating.  
22 TST4  
O
Test Pin  
This pin should be left floating.  
MS0397-E-00  
2005/06  
- 5 -  
ASAHI KASEI  
[AK4626A]  
No. Pin Name  
23 LOUT3  
24 ROUT3  
25 LOUT2  
26 ROUT2  
27 LOUT1  
28 ROUT1  
29 TST5  
I/O  
O
O
O
O
O
O
I
Function  
DAC3 Lch Analog Output Pin  
DAC3 Rch Analog Output Pin  
DAC2 Lch Analog Output Pin  
DAC2 Rch Analog Output Pin  
DAC1 Lch Analog Output Pin  
DAC1 Rch Analog Output Pin  
Test pin (Internal pull-down pin)  
This pin should be left floating or connected to AVSS.  
30 NC  
-
No Connect  
No internal bonding.  
31 LIN  
32 RIN  
33 DZF2  
I
I
O
Lch Analog Input Pin  
Rch Analog Input Pin  
Zero Input Detect 2 Pin  
(Note 2)  
When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data,  
this pin goes to “H”. And when RSTN bit is “0”, PWDAN pin is “0”, this pin goes to  
“H”. It always is in “L” when P/S is “H”.  
OVF  
O
O
Analog Input Overflow Detect Pin (Note 3)  
This pin goes to “H” if the analog input of Lch or Rch overflows.  
Common Voltage Output Pin, AVDD/2  
34 VCOM  
Large external capacitor around 2.2µF is used to reduce power-supply noise.  
Positive Voltage Reference Input Pin, AVDD  
Analog Power Supply Pin, 4.5V5.5V  
35 VREFH  
36 AVDD  
37 AVSS  
38 DZF1  
I
-
-
Analog Ground Pin, 0V  
O
Zero Input Detect 1 Pin  
(Note 2)  
When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data,  
this pin goes to “H”. And when RSTN bit is “0”, PWDAN pin is “0”, this pin goes to  
“H”. Output is selected by setting DZFE pin when P/S is “H”.  
Master Clock Input Pin  
39 MCLK  
40 P/S  
I
I
Parallel/Serial Select Pin  
“L”: Serial control mode, “H”: Parallel control mode  
Audio Data Interface Format 0 Pin in parallel control mode  
Chip Select Pin in 3-wire serial control mode  
41 DIF0  
CSN  
I
I
This pin should be connected to DVDD at I2C bus control mode  
Audio Data Interface Format 1 Pin in parallel control mode  
Control Data Clock Pin in serial control mode  
42 DIF1  
SCL/CCLK  
I
I
I2C = “L”: CCLK (3-wire Serial), I2C = “H”: SCL (I2C Bus)  
Loopback Mode 0 Pin in parallel control mode  
Enables digital loop-back from ADC to 3 DACs.  
43 LOOP0  
SDA/CDTI  
44 TDM0  
I
I/O Control Data Input Pin in serial control mode  
I2C = “L”: CDTI (3-wire Serial), I2C = “H”: SDA (I2C Bus)  
I
TDM I/F Format Mode Pin (Note 1)  
“L”: Normal mode, “H”: TDM mode  
Notes: 1. SDOS, SMUTE, DFS0, and TDM0 pins are ORed with register data if P/S = “L”.  
2. The group 1 and 2 can be selected by DZFM3-0 bits if P/S = “L” and DZFE = “L”.  
3. This pin becomes OVF pin if OVFE bit is set to “1” at serial control mode.  
4. All digital input pins except for pull-down should not be left floating.  
MS0397-E-00  
2005/06  
- 6 -  
ASAHI KASEI  
[AK4626A]  
ABSOLUTE MAXIMUM RATINGS  
(AVSS, DVSS=0V; Note 5)  
Parameter  
Power Supplies  
Symbol  
AVDD  
DVDD  
TVDD  
GND  
IIN  
min  
-0.3  
-0.3  
-0.3  
-
max  
6.0  
6.0  
6.0  
0.3  
Units  
V
V
V
V
mA  
V
Analog  
Digital  
Output buffer  
|AVSS-DVSS|  
(Note 6)  
Input Current (any pins except for supplies)  
Analog Input Voltage  
-
±10  
AVDD+0.3  
VINA  
-0.3  
Digital Input Voltage  
(Expect LRCK, BICK pins)  
(LRCK, BICK pins)  
Ambient Temperature (power applied)  
VIND1  
VIND2  
Ta  
-0.3  
-0.3  
-40  
-65  
DVDD+0.3  
TVDD+0.3  
85  
V
V
°C  
°C  
Storage Temperature  
Tstg  
150  
Notes: 5. All voltages with respect to ground.  
6. AVSS and DVSS must be connected to the same analog ground plane.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(AVSS, DVSS=0V; Note 5)  
Parameter  
Power Supplies  
(Note 7)  
Symbol  
AVDD  
DVDD  
TVDD  
min  
4.5  
4.5  
2.7  
typ  
5.0  
5.0  
5.0  
max  
5.5  
5.5  
Units  
V
V
Analog  
Digital  
Output buffer  
5.5  
V
Notes: 5. All voltages with respect to ground.  
7. The power up sequence between AVDD, DVDD and TVDD is not critical.  
Do not turn off only the AK4626A under the condition that a surrounding device is powered on and the I2C bus  
is in use.  
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0397-E-00  
2005/06  
- 7 -  
ASAHI KASEI  
[AK4626A]  
ANALOG CHARACTERISTICS  
(Ta=25°C; AVDD, DVDD, TVDD=5V; AVSS, DVSS=0V; VREFH=AVDD; fs=48kHz; BICK=64fs;  
Signal Frequency=1kHz; 24bit Data; Measurement Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at fs=96kHz,  
20Hz~40kHz at fs=192kHz; unless otherwise specified)  
Parameter  
min  
typ  
max  
Units  
ADC Analog Input Characteristics  
Resolution  
24  
Bits  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S/(N+D)  
(-0.5dBFS)  
fs=48kHz  
84  
-
92  
86  
102  
96  
102  
102  
96  
fs=96kHz  
DR  
(-60dBFS)  
fs=48kHz, A-weighted  
fs=96kHz  
94  
88  
93  
94  
88  
93  
90  
fs=96kHz, A-weighted  
fs=48kHz, A-weighted  
fs=96kHz  
S/N  
(Note 8)  
fs=96kHz, A-weighted  
102  
110  
Interchannel Isolation  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Drift  
0.2  
20  
3.10  
25  
50  
0.3  
-
3.30  
dB  
ppm/°C  
Vpp  
Input Voltage  
AIN=0.62xVREFH  
2.90  
15  
Input Resistance  
Power Supply Rejection  
(Note 9)  
(Note 10)  
kΩ  
dB  
DAC Analog Output Characteristics  
Resolution  
24  
Bits  
90  
88  
88  
S/(N+D)  
fs=48kHz  
fs=96kHz  
fs=192kHz  
fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
fs=192kHz  
fs=192kHz, A-weighted  
80  
78  
-
95  
88  
94  
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
106  
100  
106  
100  
106  
DR  
(-60dBFS)  
-
106  
100  
106  
100  
106  
S/N  
(Note 11)  
fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
fs=192kHz  
95  
88  
94  
-
-
90  
fs=192kHz, A-weighted  
Interchannel Isolation  
110  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Drift  
0.2  
20  
3.0  
0.5  
-
3.25  
dB  
ppm/°C  
Vpp  
Output Voltage  
AOUT=0.6xVREFH  
2.75  
5
Load Resistance  
kΩ  
Power Supply Rejection  
(Note 10)  
50  
dB  
Notes: 8. S/N measured by CCIR-ARM is 98dB(@fs=48kHz).  
9. Input resistance is 16ktypically at fs=96kHz.  
10. PSR is applied to AVDD, DVDD and TVDD with 1kHz, 50mVpp. VREFH pin is held a constant voltage.  
11. S/N measured by CCIR-ARM is 102dB(@fs=48kHz).  
MS0397-E-00  
2005/06  
- 8 -  
ASAHI KASEI  
[AK4626A]  
Parameter  
min  
typ  
max  
Units  
Power Supplies  
Power Supply Current (AVDD+DVDD+TVDD)  
Normal Operation (PDN = “H”)  
AVDD  
fs=48kHz,96kHz  
fs=192kHz  
45  
34  
18  
24  
27  
80  
67  
51  
27  
36  
40  
mA  
mA  
mA  
mA  
mA  
µA  
DVDD+TVDD fs=48kHz  
fs=96kHz  
(Note 12)  
(Note 13)  
fs=192kHz  
Power-down mode (PDN = “L”) TST=”L”  
200  
Notes: 12. TVDD=0.1mA(typ).  
13. In the power-down mode. All digital input pins including clock pins (MCLK, BICK, LRCK) are held DVSS.  
MS0397-E-00  
2005/06  
- 9 -  
ASAHI KASEI  
[AK4626A]  
FILTER CHARACTERISTICS  
(Ta=25°C; AVDD, DVDD=4.55.5V; TVDD=2.75.5V; fs=48kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 14)  
PB  
0
-
-
18.9  
-
-
kHz  
kHz  
kHz  
±0.1dB  
-0.2dB  
-3.0dB  
20.0  
23.0  
Stopband  
SB  
PR  
SA  
GD  
GD  
28  
68  
kHz  
dB  
dB  
1/fs  
µs  
Passband Ripple  
Stopband Attenuation  
Group Delay  
±0.04  
(Note 15)  
16  
0
Group Delay Distortion  
ADC Digital Filter (HPF):  
Frequency Response  
(Note 14) -3dB  
FR  
1.0  
6.5  
Hz  
Hz  
-0.1dB  
DAC Digital Filter:  
Passband  
(Note 14) -0.1dB  
-6.0dB  
PB  
0
-
26.2  
21.8  
-
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
24.0  
Stopband  
SB  
PR  
SA  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay  
±0.02  
54  
(Note 15)  
19.2  
DAC Digital Filter + Analog Filter:  
±0.2  
±0.3  
±1.0  
FR  
FR  
FR  
dB  
dB  
dB  
Frequency Response: 0 20.0kHz  
40.0kHz (Note 16)  
80.0kHz (Note 16)  
Notes:  
14. The passband and stopband frequencies scale with fs.  
For example, 21.8kHz at –0.1dB is 0.454 x fs.  
15. The calculating delay time which occurred by digital filtering. This time is from setting the input of analog signal to  
setting the 24bit data of both channels to the output register for ADC.  
For DAC, this time is from setting the 20/24bit data of both channels on input register to the output of analog  
signal.  
16. 40.0kHz; fs=96kHz , 80.0kHz; fs=192kHz.  
DC CHARACTERISTICS  
(Ta=25°C; AVDD, DVDD=4.55.5V; TVDD=2.75.5V)  
Parameter  
Symbol  
VIH  
VIL  
min  
2.2  
-
typ  
-
-
max  
-
0.8  
Units  
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Voltage  
(SDTO, LRCK, BICK pin:  
(DZF1, DZF2/OVF pins:  
Low-Level Output Voltage  
(SDTO, DZF1, DZF2/OVF pins: Iout= 100µA)  
Iout=-100µA)  
Iout=-100µA)  
VOH  
VOH  
TVDD-0.5  
AVDD-0.5  
-
-
-
-
V
V
VOL  
VOL  
Iin  
-
-
-
-
-
-
0.5  
0.4  
±10  
V
V
µA  
(SDA, LRCK, BICK pin:  
Iout= 3mA)  
Input Leakage Current  
(Note 17)  
Note 17: TST2 pin has an internal pull-down device, nominally 100kohm.  
MS0397-E-00  
2005/06  
- 10 -  
ASAHI KASEI  
[AK4626A]  
SWITCHING CHARACTERISTICS  
(Ta=-40°C85°C; AVDD, DVDD=4.55.5V; TVDD=2.75.5V; CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Master Clock Timing  
256fsn, 128fsd:  
fCLK  
8.192  
27  
27  
12.288  
20  
20  
16.384  
15  
15  
12.288  
MHz  
ns  
ns  
MHz  
ns  
ns  
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
384fsn, 192fsd:  
Pulse Width Low  
Pulse Width High  
512fsn, 256fsd:  
Pulse Width Low  
Pulse Width High  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fCLK  
18.432  
24.576  
tCLKL  
tCLKH  
LRCK Timing  
Normal mode (TDM0= “0”, TDM1= “0”)  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
Duty Cycle  
fsn  
fsd  
fsq  
Duty  
32  
64  
120  
45  
48  
96  
192  
55  
kHz  
kHz  
kHz  
%
TDM256 mode (TDM0= “1”, TDM1= “0”)  
LRCK frequency  
“H” time  
fsn  
tLRH  
tLRL  
32  
1/256fs  
1/256fs  
48  
kHz  
ns  
ns  
“L” time  
TDM128 mode (TDM0= “1”, TDM1= “1”)  
LRCK frequency  
“H” time  
fsd  
tLRH  
tLRL  
64  
1/128fs  
1/128fs  
96  
kHz  
ns  
ns  
“L” time  
Audio Interface Timing  
Normal mode (TDM0= “0”, TDM1= “0”)  
BICK Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tLRS  
tBSD  
tSDH  
tSDS  
81  
32  
32  
20  
20  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
LRCK to SDTO(MSB)  
BICK “” to SDTO  
(Note 18)  
(Note 18)  
40  
40  
SDTI1-3,DAUX Hold Time  
SDTI1-3,DAUX Setup Time  
TDM256 mode (TDM0= “1”, TDM1= “0”)  
BICK Period  
BICK Pulse Width Low  
Pulse Width High  
20  
20  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSD  
tSDH  
tSDS  
81  
32  
32  
20  
20  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
BICK “” to SDTO  
SDTI1 Hold Time  
(Note 18)  
(Note 18)  
20  
10  
10  
SDTI1 Setup Time  
TDM128 mode (TDM0= “1”, TDM1= “1”)  
BICK Period  
BICK Pulse Width Low  
Pulse Width High  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSD  
tSDH  
tSDS  
81  
32  
32  
20  
20  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
BICK “” to SDTO  
(Note 18)  
(Note 18)  
20  
SDTI1-2 Hold Time  
10  
10  
SDTI1-2 Setup Time  
Notes: 18. BICK rising edge must not occur at the same time as LRCK edge.  
MS0397-E-00  
2005/06  
- 11 -  
ASAHI KASEI  
[AK4626A]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing (3-wire Serial mode):  
CCLK Period  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
200  
80  
80  
40  
40  
150  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Setup Time  
CDTI Hold Time  
CSN “H” Time  
CSN “” to CCLK “”  
CCLK “” to CSN “”  
tCSH  
Control Interface Timing (I2C Bus mode):  
SCL Clock Frequency  
fSCL  
tBUF  
-
4.7  
4.0  
4.7  
4.0  
4.7  
0
0.25  
-
-
100  
-
-
-
-
-
-
-
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
Clock High Time  
Setup Time for Repeated Start Condition  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
SDA Hold Time from SCL Falling  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
(Note 19)  
1.0  
0.3  
-
tF  
tSU:STO  
tSP  
4.0  
0
Pulse Width of Spike Noise Suppressed by Input Filter  
50  
Power-down & Reset Timing  
PDN Pulse Width  
PDN “” to SDTO valid  
(Note 20)  
(Note 21)  
tPD  
tPDV  
150  
ns  
1/fs  
522  
Notes: 19. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.  
20. The AK4626A can be reset by bringing PDN “L” to “H” upon power-up.  
21. These cycles are the number of LRCK rising from PDN rising.  
22. I2C is a registered trademark of Philips Semiconductors.  
MS0397-E-00  
2005/06  
- 12 -  
ASAHI KASEI  
[AK4626A]  
„ Timing Diagram  
1/fCLK  
VIH  
VIL  
MCLK  
LRCK  
BICK  
tCLKH  
tCLKL  
1/fsn, 1/fsd  
VIH  
VIL  
tBCK  
VIH  
VIL  
tBCKH  
tBCKL  
Clock Timing (TDM= “0”)  
1/fCLK  
VIH  
VIL  
MCLK  
LRCK  
BICK  
tCLKH  
tCLKL  
1/fs  
VIH  
VIL  
tLRH  
tLRL  
tBCK  
VIH  
VIL  
tBCKH  
tBCKL  
Clock Timing (TDM= “1”)  
MS0397-E-00  
2005/06  
- 13 -  
ASAHI KASEI  
[AK4626A]  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRS  
tLRB  
VIH  
VIL  
tBSD  
SDTO  
50%TVDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing (TDM= “0”)  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRB  
VIH  
VIL  
tBSD  
SDTO  
50%TVDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing (TDM= “1”)  
MS0397-E-00  
2005/06  
- 14 -  
ASAHI KASEI  
[AK4626A]  
VIH  
VIL  
CSN  
tCSS  
tCCKL tCCKH  
VIH  
VIL  
CCLK  
CDTI  
tCDS tCDH  
C0  
VIH  
VIL  
C1  
R/W  
A4  
WRITE Command Input Timing (3-wire Serial mode)  
tCSW  
VIH  
CSN  
VIL  
tCSH  
VIH  
VIL  
CCLK  
CDTI  
VIH  
VIL  
D3  
D2  
D1  
D0  
WRITE Data Input Timing (3-wire Serial mode)  
VIH  
SDA  
SCL  
VIL  
tLOW tR  
tHIGH  
tBUF  
tF  
tSP  
VIH  
VIL  
tHD:STA  
Stop Start  
tHD:DAT  
tPD  
tSU:DAT tSU:STA  
tSU:STO  
Stop  
Start  
I2C Bus mode Timing  
VIH  
VIL  
PDN  
tPDV  
SDTO  
50%TVDD  
Power-down & Reset Timing  
MS0397-E-00  
2005/06  
- 15 -  
ASAHI KASEI  
[AK4626A]  
OPERATION OVERVIEW  
„ System Clock  
The external clocks, which are required to operate the AK4626A, are MCLK, LRCK and BICK. MCLK should be  
synchronized with LRCK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting  
Mode (ACKS = “0”: Default), the sampling speed is set by DFS0, DFS1 (Table 1). The frequency of MCLK at each  
sampling speed is set automatically. (Table 2, 3, 4). In Auto Setting Mode (ACKS = “1”), as MCLK frequency is detected  
automatically (Table 5), and the internal master clock becomes the appropriate frequency (Table 6), it is not necessary to  
set DFS.  
External clocks (MCLK, BICK) should always be present whenever the AK4626A is in normal operation mode (PDN =  
“H”). If these clocks are not provided, the AK4626A may draw excess current because the device utilizes dynamic  
refreshed logic internally. If the external clocks are not present, the AK4626A should be in the power-down mode (PDN  
= “L”) or in the reset mode (RSTN = “0”). After exiting reset at power-up etc., the AK4626A is in the power-down mode  
until MCLK and LRCK are input.  
DFS1  
DFS0  
Sampling Speed (fs)  
Default  
0
0
1
0
1
0
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
32kHz~48kHz  
64kHz~96kHz  
120kHz~192kHz  
Table 1. Sampling Speed (Manual Setting Mode)  
LRCK  
fs  
32.0kHz  
44.1kHz  
48.0kHz  
MCLK (MHz)  
384fs  
BICK (MHz)  
64fs  
256fs  
8.1920  
11.2896  
12.2880  
512fs  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
2.0480  
2.8224  
3.0720  
Table 2. System Clock Example (Normal Speed Mode @Manual Setting Mode)  
LRCK  
fs  
MCLK (MHz)  
192fs  
BICK (MHz)  
64fs  
128fs  
256fs  
88.2kHz  
96.0kHz  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
5.6448  
6.1440  
Table 3. System Clock Example (Double Speed Mode @Manual Setting Mode)  
(Note: At Double speed mode(DFS1= “0”, DFS0 = “1”), 128fs and 192fs are not available for ADC.)  
LRCK  
fs  
MCLK (MHz)  
BICK (MHz)  
64fs  
128fs  
192fs  
256fs  
176.4kHz  
192.0kHz  
22.5792  
24.5760  
-
-
-
-
11.2896  
12.2880  
Table 4. System Clock Example (Quad Speed Mode @Manual Setting Mode)  
(Note: At Quad speed mode(DFS1= “1”, DFS0 = “0”) are not available for ADC.)  
MS0397-E-00  
2005/06  
- 16 -  
ASAHI KASEI  
[AK4626A]  
MCLK  
512fs  
256fs  
128fs  
Sampling Speed  
Normal  
Double  
Quad  
Table 5. Sampling Speed (Auto Setting Mode)  
LRCK  
fs  
MCLK (MHz)  
Sampling  
Speed  
128fs  
256fs  
512fs  
32.0kHz  
44.1kHz  
48.0kHz  
88.2kHz  
96.0kHz  
176.4kHz  
192.0kHz  
-
-
-
-
-
-
-
16.3840  
22.5792  
24.5760  
Normal  
22.5792  
24.5760  
-
-
-
-
Double  
Quad  
-
22.5792  
24.5760  
-
-
Table 6. System Clock Example (Auto Setting Mode)  
„ De-emphasis Filter  
The AK4626A includes the digital de-emphasis filter (tc=50/15µs) by IIR filter. De-emphasis filter is not available in  
Double Speed Mode and Quad Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz,  
48kHz). De-emphasis of each DAC can be set individually by register data of DEMA1-C0 (DAC1: DEMA1-0, DAC2:  
DEMB1-0, DAC3: DEMC1-0, see “Register Definitions”).  
Mode  
Sampling Speed  
Normal Speed  
Normal Speed  
Normal Speed  
Normal Speed  
DEM1  
DEM0  
DEM  
44.1kHz  
OFF  
48kHz  
32kHz  
0
1
2
3
0
0
1
1
0
1
0
1
Default  
Table 7. De-emphasis control  
„ Digital High Pass Filter  
The ADC has a digital high pass filter for DC offset cancel. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz and  
scales with sampling rate (fs).  
MS0397-E-00  
2005/06  
- 17 -  
ASAHI KASEI  
[AK4626A]  
„ Audio Serial Interface Format  
When TDM= “L”, four modes can be selected by the DIF1-0 as shown in Table 8. In all modes the serial data is  
MSB-first, 2’s compliment format. The SDTO is clocked out on the falling edge of BICK and the SDTI/DAUX are  
latched on the rising edge of BICK.  
Figures 14 shows the timing at SDOS = “L”. In this case, the SDTO outputs the ADC output data. When SDOS = “H”,  
the data input to DAUX is converted to SDTO’s format and output from SDTO. Mode 2, 3, 6, 7, 10, 11 in SDTI input  
formats can be used for 16-20bit data by zeroing the unused LSBs.  
Mode  
TDM0  
DIF1  
DIF0  
SDTO  
SDTI1-3,  
DAUX  
LRCK  
I/O  
BICK  
TDM 1  
I/O  
I
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
0
1
0
0
0
0
0
0
0
1
H/L  
H/L  
I
I
48fs  
I
48fs  
24bit, Left  
justified  
24bit, Left  
justified  
Default  
2
3
0
0
0
0
1
1
0
1
H/L  
L/H  
I
I
I
I
48fs  
48fs  
24bit, I2S  
24bit, I2S  
Table 8. Audio data formats (Normal mode)  
The audio serial interface format becomes the TDM mode if TDM0 pin is set to “H”. In the TDM256 mode, the serial data  
of all DAC (six channels) is input to the SDTI1 pin. The input data to SDTI2-3 pins are ignored. BICK should be fixed to  
256fs. “H” time and “L” time of LRCK should be 1/256fs at least. Four modes can be selected by the DIF1-0 as shown in  
Table 9. In all modes the serial data is MSB-first, 2’s compliment format. The SDTO is clocked out on the falling edge of  
BICK and the SDTI1 are latched on the rising edge of BICK. SDOS and LOOP1-0 should be set to “0” at the TDM mode.  
TDM128 Mode can be set by TDM1 as show in Table10. In Double Speed Mode, the serial data of DAC (four channels;  
L1, R1, L2, R2) is input to the SDTI1 pin. Other two data (L3, R3) are input to the SDTI2. TDM0 pin and TDM0 register  
should be set to “H” if TDM256 Mode is selected. TDM0 pin and TDM0 register, TDM1 register should be set to “H” if  
Double Speed Mode is selected in TDM128 Mode.  
Mode  
TDM 1  
TDM0  
DIF1  
DIF0  
SDTO  
SDTI1  
LRCK  
I/O  
BICK  
I/O  
I
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
4
5
0
0
1
1
0
0
0
1
I
I
256fs  
256fs  
I
24bit, Left  
justified  
24bit, Left  
justified  
6
7
0
0
1
1
1
1
0
1
I
I
256fs  
256fs  
I
I
24bit, I2S  
24bit, I2S  
Table 9. Audio data formats (TDM256 mode)  
Mode  
TDM 1  
TDM0  
DIF1  
DIF0  
SDTO  
SDTI1,  
SDTI2  
LRCK  
BICK  
I/O  
I/O  
I
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
8
9
1
1
1
1
0
0
0
1
I
128fs  
128fs  
I
I
24bit, Left  
justified  
24bit, Left  
justified  
10  
11  
1
1
1
1
1
1
0
1
I
I
128fs  
128fs  
I
I
24bit, I2S  
24bit, I2S  
Table 10. Audio data formats (TDM128 mode)  
MS0397-E-00  
2005/06  
- 18 -  
ASAHI KASEI  
[AK4626A]  
LRCK  
0
1
2
12  
13  
14  
24  
25  
31  
0
1
2
12  
13  
14  
24  
24  
28  
25  
25  
29  
31  
0
1
BICK(64fs)  
23 22  
12 11 10  
19 18  
0
23 22  
12 11 10  
19 18  
Don’t Care  
0
23  
SDTO(o)  
SDTI(i)  
8
7
1
0
8
7
1
0
Don’t Care  
SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 1. Mode 0 Timing  
LRCK  
0
1
2
8
9
10  
24  
25  
31  
0
1
2
8
9
10  
31  
0
1
BICK(64fs)  
SDTO(o)  
23 22  
16 15 14  
23 22  
0
23 22  
16 15 14  
23 22  
Don’t Care  
0
23  
8
7
1
0
8
7
1
0
Don’t Care  
SDTI(i)  
LRCK  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 2. Mode 1 Timing  
0
1
2
21  
22  
23  
24  
28  
29  
30  
31  
0
1
2
22  
23  
24  
30  
31  
0
1
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
23  
23  
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 3. Mode 2 Timing  
LRCK  
0
1
2
3
22  
23  
24  
25  
29  
30  
31  
0
1
2
3
22  
23  
24  
25  
29  
30  
31  
0
1
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 4. Mode 3 Timing  
MS0397-E-00  
2005/06  
- 19 -  
ASAHI KASEI  
[AK4626A]  
256 BICK  
LRCK  
BICK(256fs)  
SDTO(o)  
23 22  
0
23 22  
0
23 22  
Lch  
Rch  
32 BICK  
32 BICK  
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19  
SDTI1(i)  
R1  
R2  
R3  
L1  
L2  
L3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 5. Mode 4 Timing  
256 BICK  
LRCK  
BICK(256fs)  
SDTO(o)  
23 22  
0
23 22  
0
23 22  
Lch  
Rch  
32 BICK  
32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23  
SDTI1(i)  
R1  
R2  
R3  
L1  
L2  
L3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 6. Mode 5 Timing  
256 BICK  
LRCK  
BICK(256fs)  
SDTO(o)  
23 22  
0
23 22  
0
23 22  
Lch  
32 BICK  
Rch  
32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
SDTI1(i)  
R1  
32 BICK  
R2  
32 BICK  
R3  
32 BICK  
L1  
32 BICK  
L2  
32 BICK  
L3  
32 BICK  
32 BICK  
32 BICK  
Figure 7. Mode 6 Timing  
256 BICK  
LRCK  
BICK(256fs)  
SDTO(o)  
23  
0
23  
0
23  
23  
Lch  
32 BICK  
Rch  
32 BICK  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDTI1(i)  
R1  
32 BICK  
R2  
32 BICK  
R3  
32 BICK  
L1  
32 BICK  
L2  
32 BICK  
L3  
32 BICK  
32 BICK  
32 BICK  
Figure 8. Mode 7 Timing  
MS0397-E-00  
2005/06  
- 20 -  
ASAHI KASEI  
[AK4626A]  
128 BICK  
LRCK  
BICK(128fs)  
SDTO(o)  
23 22  
0
23  
22  
19  
0
23 22  
Lch  
Rch  
32 BICK  
32 BICK  
18  
18  
18  
18  
19  
0
0
0
0
19 18  
0
19 18  
0
19  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19  
19  
19  
L3  
R3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 9. Mode 8 Timing  
128 BICK  
LRCK  
BICK(128fs)  
23 22  
0
23  
22  
23  
0
23 22  
Lch  
Rch  
32 BICK  
32 BICK  
22  
22  
0
0
22  
22  
0
0
23  
0
0
19  
23  
22  
23 22  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19  
23  
23  
L3  
R3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 10. Mode 9 Timing  
128 BICK  
LRCK  
BICK(128fs)  
SDTO(o)  
23 22  
0
0
23  
22  
0
0
23 22  
Lch  
Rch  
32 BICK  
32 BICK  
22  
22  
23 22  
23  
2
23  
23  
23 22  
0
22  
0
23 22  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
0
0
23 22  
L3  
R3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 11. Mode 10 Timing  
MS0397-E-00  
2005/06  
- 21 -  
ASAHI KASEI  
[AK4626A]  
128 BICK  
LRCK  
BICK(128fs)  
SDTO(o)  
23  
23  
0
23  
23  
22  
22  
0
0
23 22  
Lch  
Rch  
32 BICK  
32 BICK  
22  
22  
0
0
23  
0
23  
23  
22  
23 22  
0
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
22  
0
23  
23  
L3  
R3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 12. Mode 11 Timing  
MS0397-E-00  
2005/06  
- 22 -  
ASAHI KASEI  
[AK4626A]  
„ Overflow Detection  
The AK4626A has overflow detect function for analog input. Overflow detect function is enable if OVFE bit is set to “1”  
at serial control mode. OVF pin goes to “H” if analog input of Lch or Rch overflows (more than -0.3dBFS). OVF output  
for overflowed analog input has the same group delay as ADC (GD = 16/fs = 333µs @fs=48kHz). OVF is “L” for 522/fs  
(=11.8ms @fs=48kHz) after PDN = “”, and then overflow detection is enabled.  
„ Zero Detection  
The AK4626A has two pins for zero detect flag outputs. Channel grouping can be selected by DZFM3-0 bits if P/S = “L”  
and DZFE = “L” (Table 11). DZF1 pin corresponds to the group 1 channels and DZF2 pin corresponds to the group 2  
channels. However DZF2 pin becomes OVF pin if OVFE bit is set to “1”. Zero detection mode is set to mode 0 if DZFE=  
“H” regardless of P/S pin. DZF1 is AND of all six channels and DZF2 is disabled (“L”) at mode 0. Table 12 shows the  
relation of P/S, DZFE, OVFE and DZF.  
When the input data of all channels in the group 1(group 2) are continuously zeros for 8192 LRCK cycles, DZF1(DZF2)  
pin goes to “H”. DZF1(DZF2) pin immediately goes to “L” if input data of any channels in the group 1(group 2) is not  
zero after going DZF1(DZF2) “H”.  
DZFM  
AOUT  
L2  
Mode  
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
L1  
R1  
R2  
L3  
R3  
0
1
2
3
4
5
6
7
8
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
disable (DZF1=DZF2 = “L”)  
Default  
Not Available  
9
10  
11  
12  
13  
14  
15  
disable (DZF1=DZF2 = “L”)  
Table 11. Zero detect control  
P/S pin  
“H” (parallel mode)  
DZFE pin  
“L”  
OVFE bit  
disable  
disable  
“0”  
DZF mode  
Mode 7  
Mode 0  
Selectable  
Selectable  
Mode 0  
DZF1 pin  
“L”  
AND of 6ch  
Selectable  
Selectable  
DZF2/OVF pin  
“L”  
“H”  
“L”  
“L”  
“L” (serial mode)  
Selectable  
OVF output  
“L”  
“1”  
“0”  
“1”  
“H”  
AND of 6ch  
AND of 6ch  
Mode 0  
OVF output  
Table 12. DZF1-2 pins outputs  
MS0397-E-00  
2005/06  
- 23 -  
ASAHI KASEI  
[AK4626A]  
„ Digital Attenuator  
The AK4626A has channel-independent digital attenuator (128 levels, 0.5dB step). Attenuation level of each channel can  
be set by each ATT7-0 bits (Table 13).  
ATT7-0  
00H  
01H  
02H  
:
Attenuation Level  
0dB  
Default  
-0.5dB  
-1.0dB  
:
7DH  
7EH  
7FH  
-62.5dB  
-63dB  
MUTE (-)  
:
FEH  
FFH  
MUTE (-)  
MUTE (-)  
Table 13. Attenuation level of digital attenuator  
Transition time between set values of ATT7-0 bits can be selected by ATS1-0 bits (Table 14). Transition between set  
values is the soft transition. Therefore, the switching noise does not occur in the transition.  
Mode  
ATS1  
ATS0  
ATT speed  
1792/fs  
896/fs  
256/fs  
256/fs  
Default  
0
1
2
3
0
0
1
1
0
1
0
1
Table 14. Transition time between set values of ATT7-0 bits  
The transition between set values is soft transition of 1792 levels in mode 0. It takes 1792/fs (37.3ms@fs=48kHz) from  
00H(0dB) to 7FH(MUTE) in mode 0. If PDN pin goes to “L”, the ATTs are initialized to 00H. The ATTs are 00H when  
RSTN = “0”. When RSTN return to “1”, the ATTs fade to their current value.  
MS0397-E-00  
2005/06  
- 24 -  
ASAHI KASEI  
[AK4626A]  
„ Soft mute operation  
Soft mute operation is performed at digital domain. When the SMUTE pin goes to “H”, the output signal is attenuated by  
-during ATT_DATA×ATT transition time (Table 14) from the current ATT level. When the SMUTE pin is returned to  
“L”, the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA×ATT  
transition time. If the soft mute is cancelled before attenuating to -after starting the operation, the attenuation is  
discontinued and returned to ATT level by the same cycle. The soft mute is effective for changing the signal source  
without stopping the signal transmission.  
SMUTE bit  
(1)  
(1)  
ATT Level  
Attenuation  
(3)  
-
GD  
(2)  
GD  
AOUT  
(4)  
8192/fs  
DZF1,2  
Notes:  
(1) ATT_DATA×ATT transition time (Table 14). For example, in Normal Speed Mode, this time is 1792LRCK cycles  
(1792/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to 7FH  
(2) The analog output corresponding to the digital input has a group delay, GD.  
(3) If the soft mute is cancelled before attenuating to -after starting the operation, the attenuation is discontinued and  
returned to ATT level by the same cycle.  
(4) When the input data at all the channels of the group are continuously zeros for 8192 LRCK cycles, DZF pin of each  
channel goes to “H”. DZF pin immediately goes to “L” if the input data of either channel of the group are not zero  
after going DZF “H”.  
Figure 13. Soft mute and zero detection  
„ System Reset  
The AK4626A should be reset once by bringing PDN = “L” upon power-up. The AK4626A is powered up and the  
internal timing starts clocking by LRCK “” after exiting reset and power down state by MCLK. The AK4626A is in the  
power-down mode until MCLK and LRCK are input.  
MS0397-E-00  
2005/06  
- 25 -  
ASAHI KASEI  
[AK4626A]  
„ Power-Down  
The ADC and DACs of AK4626A are placed in the power-down mode by bringing PDN “L” and both digital filters are  
reset at the same time. PDN “L” also reset the control registers to their default values. In the power-down mode, the  
analog outputs go to VCOM voltage and DZF1-2 pins go to “L”. This reset should always be done after power-up. In case  
of the ADC, an analog initialization cycle starts after exiting the power-down mode. Therefore, the output data, SDTO  
becomes available after 522 cycles of LRCK clock. In case of the DAC, an analog initialization cycle starts after exiting  
the power-down mode. The analog outputs are VCOM voltage during the initialization. Figure 14 shows the sequences of  
the power-down and the power-up.  
The ADC and all DACs can be powered-down individually by PWADN and PWDAN bits. In this case, the internal  
register values are not initialized. When PWADN = “0”, SDTO goes to “L”. When PWDAN = “0”, the analog outputs go  
to VCOM voltage and DZF1-2 pins go to “H”. Because some click noise occurs, the analog output should muted  
externally if the click noise influences system application.  
PDN  
(1)  
522/fs  
ADC Internal  
State  
Normal Operation  
Power-down  
Power-down  
Init Cycle  
516/fs  
Normal Operation  
(2)  
DAC Internal  
State  
Normal Operation  
GD  
Init Cycle  
Normal Operation  
GD  
(3)  
ADC In  
(Analog)  
(4)  
ADC Out  
(Digital)  
(5)  
“0”data  
DAC In  
(Digital)  
“0”data  
(3)  
GD  
GD  
(6)  
(6)  
DAC Out  
(Analog)  
(7)  
Don’t care  
Clock In  
MCLK,LRCK,SCLK  
1011/fs (10)  
(8)  
DZF1/DZF2  
External  
Mute  
(9)  
Mute ON  
Notes:  
(1) The analog part of ADC is initialized after exiting the power-down state.  
(2) The analog part of DAC is initialized after exiting the power-down state.  
(3) Digital output corresponding to analog input and analog output corresponding to digital input have the group delay  
(GD).  
(4) ADC output is “0” data at the power-down state.  
(5) Click noise occurs at the end of initialization of the analog part. Please mute the digital output externally if the click  
noise influences system application.  
(6) Click noise occurs at the falling edge of PDN and at 512/fs after the rising edge of PDN.  
(7) When the external clocks (MCLK, BICK and LRCK) are stopped, the AK4626A should be in the power down  
mode.  
(8) DZF pins are “L” in the power-down mode (PDN = “L”).  
(9) Please mute the analog output externally if the click noise (6) influences system application.  
(10) DZF= “L” for 1011/fs after PDN= “”.  
Figure 14. Power-down/up sequence example  
MS0397-E-00  
2005/06  
- 26 -  
ASAHI KASEI  
[AK4626A]  
„ Reset Function  
When RSTN = “0”, ADC and DACs are powered-down but the internal register are not initialized. The analog outputs go  
to VCOM voltage, DZF1-2 pins go to “H” and SDTO pin goes to “L”. Because some click noise occurs, the analog output  
should muted externally if the click noise influences system application. Figure 15 shows the power-up sequence.  
RSTN bit  
4~5/fs (9)  
1~2/fs (9)  
Internal  
RSTN bit  
(1)  
516/fs  
ADC Internal  
State  
Digital Block Power-down  
Digital Block Power-down  
Normal Operation  
Normal Operation  
Init Cycle  
DAC Internal  
State  
Normal Operation  
GD  
Normal Operation  
(2)  
GD  
ADC In  
(Analog)  
(3)  
ADC Out  
(Digital)  
(4)  
“0”data  
DAC In  
(Digital)  
“0”data  
(2)  
GD  
GD  
(6)  
(5)  
(6)  
DAC Out  
(Analog)  
(7)  
Don’t care  
Clock In  
MCLK,LRCK,SCLK  
45/fs (8)  
DZF1/DZF2  
Notes:  
(1) The analog part of ADC is initialized after exiting the reset state.  
(2) Digital output corresponding to analog input and analog output corresponding to digital input have the group delay  
(GD).  
(3) ADC output is “0” data at the power-down state.  
(4) Click noise occurs when the internal RSTN bit becomes “1”. Please mute the digital output externally if the click  
noise influences system application.  
(5) The analog outputs go to VCOM voltage.  
(6) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 12/fs after RSTN bit becomes “1”. This  
noise is output even if “0” data is input.  
(7) The external clocks (MCLK, BICK and LRCK) can be stopped in the reset mode. When exiting the reset mode, “1”  
should be written to RSTN bit after the external clocks (MCLK, BICK and LRCK) are fed.  
(8) DZF pins go to “H” when the RSTN bit becomes “0”, and go to “L” at 6~7/fs after RSTN bit becomes “1”.  
(9) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”.  
Figure 15. Reset sequence example  
MS0397-E-00  
2005/06  
- 27 -  
ASAHI KASEI  
[AK4626A]  
„ Serial Control Interface  
The AK4626A can control its functions via registers. Internal registers may be written by 2 types of control mode. The  
chip address is determined by the state of the CAD0 and CAD1 inputs. PDN = “L” initializes the registers to their default  
values. Writing “0” to the RSTN bit can initialize the internal timing circuit. But in this case, the register data is not be  
initialized. When the state of P/S pin is changed, the AK4626A should be reset by PDN pin.  
* Writing to control register is invalid when PDN = “L”.  
* AK4626A does not support the read command.  
(1) 3-wire Serial Control Mode (I2C = “L”)  
Internal registers may be written to the 3 wire µP interface pins (CSN, CCLK and CDTI). The data on this interface  
consists of Chip address (2bits, CAD0/1), Read/Write (1bit, Fixed to “1”, Write only), Register address (MSB first,  
5bits) and Control data (MSB first, 8bits). Address and data is clocked in on the rising edge of CCLK and data is  
clocked out on the falling edge. For write operations, data is latched after a low-to-high transition of CSN. The clock  
speed of CCLK is 5MHz(max).  
CSN  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CCLK  
CDTI  
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
C1-C0: Chip Address (C1=CAD1, C0=CAD0)  
R/W: Read/Write (Fixed to “1”, Write only)  
A4-A0: Register Address  
D7-D0: Control Data  
Figure 16. 3-wire Serial Control I/F Timing  
MS0397-E-00  
2005/06  
- 28 -  
ASAHI KASEI  
[AK4626A]  
(2) I2C-bus Control Mode (I2C= “H”)  
AK4626A supports the standard-mode I2C-bus (max:100kHz). Then AK4626A does not support a fast-mode  
I2C-bus system (max:400kHz). The CSN pin should be connected to DVDD at the I2C-bus mode.  
Figure 17 shows the data transfer sequence at the I2C-bus mode. All commands are preceded by a START condition.  
A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 21). After the  
START condition, a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data  
direction bit (R/W) (Figure 18). The most significant five bits of the slave address are fixed as “00100”. The next  
two bits are CAD1 and CAD0 (device address bits). These two bits identify the specific device on the bus. The  
hard-wired input pins (CAD1 pin and CAD0 pin) set them. If the slave address match that of the AK4626A and R/W  
bit is “0”, the AK4626A generates the acknowledge and the write operation is executed. If R/W bit is “1”, the  
AK4626A generates the not acknowledge since the AK4626A can be only a slave-receiver. The master must  
generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse  
(Figure 22).  
The second byte consists of the address for control registers of the AK4626A. The format is MSB first, and those  
most significant 3-bits are fixed to zeros (Figure 20). Those data after the second byte contain control data. The  
format is MSB first, 8bits (Figure 20). The AK4626A generates an acknowledge after each byte has been received.  
A data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on  
the SDA line while SCL is HIGH defines a STOP condition (Figure 20).  
The AK4626A is capable of more than one byte write operation by one sequence. After receipt of the third byte, the  
AK4626A generates an acknowledge, and awaits the next data again. The master can transmit more than one byte  
instead of terminating the write cycle after the first data byte is transferred. After the receipt of each data, the internal  
5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address  
exceed 1FH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data  
will be overwritten.  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only change when the clock signal on the SCL line is LOW (Figure 23) except for the START and the STOP  
condition.  
S
S
T
O
P
T
A
R
T
R/W  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 17. Data transfer sequence at the I2C-bus mode  
0
*
0
1
0
0
CAD1 CAD0  
R/W  
A0  
(Those CAD1/0 should match with CAD1/0 pins)  
Figure 18. The first byte  
*
*
A4  
A3  
A2  
A1  
D1  
(*: Don’t care)  
Figure 19. The second byte  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
Figure 20. Byte structure after the second byte  
MS0397-E-00  
2005/06  
- 29 -  
ASAHI KASEI  
[AK4626A]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 21. START and STOP conditions  
DATA  
OUTPUT BY  
MASTER  
not acknowledge  
DATA  
OUTPUT BY  
SLAVE(AK4529)  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 22. Acknowledge on the I2C-bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 23. Bit transfer on the I2C-bus  
MS0397-E-00  
2005/06  
- 30 -  
ASAHI KASEI  
[AK4626A]  
„ Mapping of Program Registers  
Addr Register Name  
00H Control 1  
01H Control 2  
02H LOUT1 Volume Control  
03H ROUT1 Volume Control  
04H LOUT2 Volume Control  
05H ROUT2 Volume Control  
06H LOUT3 Volume Control  
07H ROUT3 Volume Control  
08H De-emphasis  
D7  
0
0
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
0
D6  
0
D5  
TDM1  
LOOP1 LOOP0  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
D4  
TDM0  
D3  
DIF1  
D2  
DIF0  
D1  
0
D0  
SMUTE  
0
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
DEMC0  
DFS1  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
0
SDOS  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
DFS0  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ACKS  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
DEMC1  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
DEMA1 DEMA0 DEMB1 DEMB0  
09H ATT speed & Reset  
Control  
0
0
ATS1 ATS0  
0
0
0
RSTN  
0AH Zero detect  
OVFE  
DZFM3 DZFM2 DZFM1 DZFM0 PWVRN PWADN PWDAN  
Note: For addresses from 0BH to 1FH, data is not written.  
When PDN goes to “L”, the registers are initialized to their default values.  
When RSTN bit goes to “0”, the internal timing is reset and DZF1-2 pins go to “H”, but registers are not initialized  
to their default values.  
SMUTE, DFS0, SDOS and TDM0 are ORed with pins.  
MS0397-E-00  
2005/06  
- 31 -  
ASAHI KASEI  
[AK4626A]  
„ Register Definitions  
Addr Register Name  
00H Control 1  
Default  
D7  
0
0
D6  
0
0
D5  
D4  
D3  
DIF1  
1
D2  
DIF0  
0
D1  
0
0
D0  
SMUTE  
0
TDM1 TDM0  
0
0
SMUTE: Soft Mute Enable  
0: Normal operation  
1: All DAC outputs soft-muted  
Register bit of SMUTE is ORed with the SMUTE pin if P/S = “L”.  
DIF1-0: Audio Data Interface Modes (see Table 8, 9, 10)  
Initial: “10”, mode 2  
TDM1-0: TDM Format Select (see Table 8, 9, 10)  
Mode TDM1 TDM0  
SDTI  
1-3  
1
Sampling Speed  
Normal, Double, Four Times Speed  
Normal Speed  
0
1
2
0
0
1
0
1
1
1-2  
Normal, Double Speed  
Register bit of TDM0 is ORed with the TDM0 pin if P/S = “L”.  
TDM0 pin should be “L” if the register control is used.  
MS0397-E-00  
2005/06  
- 32 -  
ASAHI KASEI  
[AK4626A]  
Addr Register Name  
01H Control 2  
Default  
D7  
0
0
D6  
D5  
D4  
D3  
D2  
DFS0  
0
D1  
ACKS  
0
D0  
0
0
DFS1 LOOP1 LOOP0 SDOS  
0
0
0
0
ACKS: Master Clock Frequency Auto Setting Mode Enable  
0: Disable, Manual Setting Mode  
1: Enable, Auto Setting Mode  
Master clock frequency is detected automatically at ACKS bit “1”. In this case, the setting of DFS are  
ignored. When this bit is “0”, DFS0, 1 set the sampling speed mode.  
DFS1-0: Sampling speed mode (see Table 1.)  
Register bit of DFS0 is ORed with DFS0 pin if P/S = “L”.  
The setting of DFS is ignored at ACKS bit “1”.  
SDOS: SDTO source select  
0: ADC  
1: DAUX  
Register bit of SDOS is ORed with SDOS pin if P/S = “L”.  
SDOS should be set to “0” at TDM bit “1”.  
In the case of PWADN=”0” and PWDAN=”0”, the setting of SDOS becomes invalid. And ADC is selected.  
The output of SDTO becomes “L” at PWADN=”0”.  
LOOP1-0: Loopback mode enable  
00: Normal (No loop back)  
01: LIN LOUT1, LOUT2, LOUT3  
RIN ROUT1, ROUT2, ROUT3  
The digital ADC output (DAUX input if SDOS = “1”) is connected to the digital DAC input. In this  
mode, the input DAC data to SDTI1-3 is ignored. The audio format of SDTO at loopback mode  
becomes mode 2 at mode 0, and mode 3 at mode 1, respectively.  
10: SDTI1(L) SDTI2(L), SDTI3(L)  
SDTI1(R) SDTI2(R), SDTI3(R)  
In this mode the input DAC data to SDTI2-3 is ignored.  
11: N/A  
LOOP1-0 should be set to “00” at TDM bit “1”.  
In the case of PWADN=”0” and PWDAN=”0”, the setting of LOOP1-0 becomes invalid. And ADC is selected.  
And it becomes the normal operation (No loop back).  
MS0397-E-00  
2005/06  
- 33 -  
ASAHI KASEI  
[AK4626A]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
02H LOUT1 Volume Control  
03H ROUT1 Volume Control  
04H LOUT2 Volume Control  
05H ROUT2 Volume Control  
06H LOUT3 Volume Control  
07H ROUT3 Volume Control  
Default  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
0
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
0
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
0
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
0
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
0
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
0
0
0
ATT7-0: Attenuation Level (see Table 13.)  
Addr Register Name  
08H De-emphasis  
Default  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
DEMA1 DEMA0 DEMB1 DEMB0 DEMC1 DEMC0  
0
0
0
1
0
1
0
1
DEMA1-0: De-emphasis response control for DAC1 data on SDTI1 (see Table 7.)  
Initial: “01”, OFF  
DEMB1-0: De-emphasis response control for DAC2 data on SDTI2 (see Table 7.)  
Initial: “01”, OFF  
DEMC1-0: De-emphasis response control for DAC3 data on SDTI3 (see Table 7.)  
Initial: “01”, OFF  
MS0397-E-00  
2005/06  
- 34 -  
ASAHI KASEI  
[AK4626A]  
Addr Register Name  
09H ATT speed & Reset  
D7  
0
D6  
0
D5  
ATS1  
0
D4  
ATS0  
0
D3  
0
D2  
0
D1  
0
D0  
RSTN  
1
Control  
Default  
0
0
0
0
0
RSTN: Internal timing reset  
0: Reset. DZF1-2 pins go to “H”, but registers are not initialized.  
1: Normal operation  
ATS1-0: Digital attenuator transition time setting (see Table 14.)  
Initial: “00”, mode 0  
Addr Register Name  
0AH Zero detect  
Default  
D7  
OVFE  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DZFM3 DZFM2 DZFM1 DZFM0 PWVRN PWADN PWDAN  
0
1
1
1
1
1
1
PWDAN: Power-down control of DAC1-3  
0: Power-down  
1: Normal operation  
PWADN: Power-down control of ADC  
0: Power-down  
1: Normal operation  
PWVRN: Power-down control of reference voltage  
0: Power-down  
1: Normal operation  
DZFM3-0: Zero detect mode select (see Table 11.)  
Initial: “0111”, disable  
OVFE: Overflow detection enable  
0: Disable, pin#33 becomes DZF2 pin.  
1: Enable, pin#33 becomes OVF pin.  
MS0397-E-00  
2005/06  
- 35 -  
ASAHI KASEI  
[AK4626A]  
SYSTEM DESIGN  
Figure 24 shows the system connection diagram. An evaluation board is available which demonstrates application  
circuits, the optimum layout, power supply arrangements and measurement results.  
Condition: TVDD=5V, 3-wire serial control mode, CAD1-0 = “00”  
Analog 5V  
+
10u  
uP  
2.2u  
+
0.1u  
0.1u  
Digital  
Audio  
Source  
(DIR)  
SDOS  
I2C  
DZF2  
RIN  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
LIN  
SMUTE  
BICK  
3
NC  
4
LRCK  
SDTI1  
SDTI2  
SDTI3  
SDTO  
DAUX  
DFS0  
TST5  
ROUT1  
LOUT1  
ROUT2  
LOUT2  
5
Audio  
DSP  
6
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
AK4626A  
7
(MPEG/  
AC3)  
8
9
ROUT3  
LOUT3  
10  
11  
0.1u  
10u  
+
5
Power-down  
control  
Digital Ground  
Analog Ground  
Figure 24. Typical Connection Diagram  
MS0397-E-00  
2005/06  
- 36 -  
ASAHI KASEI  
[AK4626A]  
Digital Ground  
Analog Ground  
33  
32  
31  
30  
29  
28  
27  
1
2
3
4
5
6
7
8
9
SDOS  
I2C  
DZF2/OVF  
RIN  
System  
Controller  
SMUTE  
BICK  
LIN  
NC  
TST5  
LRCK  
SDTI1  
SDTI2  
SDTI3  
SDTO  
AK4626A  
ROUT1  
LOUT1  
ROUT2 26  
LOUT2 25  
ROUT3 24  
10 DAUX  
11 DFS0  
23  
LOUT3  
Figure 25. Ground Layout  
Note: AVSS and DVSS must be connected to the same analog ground plane.  
1. Grounding and Power Supply Decoupling  
The AK4626A requires careful attention to power supply and grounding arrangements. AVDD and DVDD are usually  
supplied from analog supply in system. Alternatively if AVDD and DVDD are supplied separately, the power up  
sequence is not critical. AVSS and DVSS of the AK4626A must be connected to analog ground plane. System analog  
ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit  
board. Decoupling capacitors should be as near to the AK4626A as possible, with the small value ceramic capacitor being  
the nearest.  
2. Voltage Reference Inputs  
The voltage of VREFH sets the analog input/output range. VREFH pin is normally connected to AVDD with a 0.1µF  
ceramic capacitor. VCOM is a signal ground of this chip. An electrolytic capacitor 2.2µF parallel with a 0.1µF ceramic  
capacitor attached to VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from  
VCOM pin. All signals, especially clocks, should be kept away from the VREFH and VCOM pins in order to avoid  
unwanted coupling into the AK4626A.  
3. Analog Inputs  
ADC inputs are single-ended and internally biased to VCOM. The input signal range scales with the supply voltage and  
nominally 0.62 x VREFH Vpp (typ)@fs=48kHz. The ADC output data format 2’s compliment. The DC offset is removed  
by the internal HPF.  
The AK4626A samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples  
of 64fs. The AK4626A includes an anti-aliasing filter (RC filter) to attenuate a noise around 64fs.  
MS0397-E-00  
2005/06  
- 37 -  
ASAHI KASEI  
[AK4626A]  
4. Analog Outputs  
The analog outputs are also single-ended and centered around the VCOM voltage. The input signal range scales with the  
supply voltage and nominally 0.6 x VREFH Vpp. The DAC input data format is 2’s complement. The output voltage is a  
positive full scale for 7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM  
voltage for 000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma  
modulator of DAC beyond the audio passband.  
DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV.  
„ Peripheral I/F Example  
The AK4626A can accept the signal of device with a nominal 3.3V supply because of TTL input. The power supply for  
output buffer (TVDD) of the AK4626A should be 3.3V when the peripheral devices operate at a nominal 3.3V supply.  
Figure 26 shows an example with the mixed system of 3.3V and 5V.  
5V for input  
3.3V Analog  
3.3V Digital  
Audio signal  
PLL  
I/F  
DSP  
AK4112B  
3.3V for output  
5V Analog  
5V Digital  
uP &  
Others  
Analog Digital  
Control signal  
AK4626A  
Figure 26. Power supply connection example  
MS0397-E-00  
2005/06  
- 38 -  
ASAHI KASEI  
[AK4626A]  
PACKAGE  
44pin LQFP (Unit: mm)  
1.70max  
12.80 0.30  
±
0 0.2  
10.00  
23  
33  
34  
44  
22  
12  
1
11  
0.37 0.10  
±
0.17 0.05  
±
0 10  
°∼  
°
0.60 0.20  
±
0.15  
„ Package & Lead frame material  
Package molding compound:  
Lead frame material:  
Epoxy  
Cu  
Lead frame surface treatment:  
Solder (Pb free) plate  
MS0397-E-00  
2005/06  
- 39 -  
ASAHI KASEI  
[AK4626A]  
MARKING  
AK4626AVQ  
XXXXXXX  
1
1) Pin #1 indication  
2) Date Code: XXXXXXX(7 digits)  
3) Marking Code: AK4626AVQ  
4) Asahi Kasei Logo  
Revision History  
Date (YY/MM/DD)  
05/06/03  
Revision  
00  
Reason  
First Edition  
Page  
Contents  
IMPORTANT NOTICE  
These products and their specifications are subject to change without notice. Before considering any  
use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized  
distributor concerning their current status.  
AKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
Any export of these products, or devices or systems containing them, may require an export license  
or other official approval under the law and regulations of the country of export pertaining to customs  
and tariffs, currency exchange, or strategic materials.  
AKM products are neither intended nor authorized for use as critical components in any safety, life  
support, or other hazard related device or system, and AKM assumes no responsibility relating to  
any such use, except with the express written consent of the Representative Director of AKM. As  
used here:  
(a) A hazard related device or system is one designed or intended for life support or maintenance of  
safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its  
failure to function or perform may reasonably be expected to result in loss of life or in significant  
injury or damage to person or property.  
(b) A critical component is one whose failure to function or perform may reasonably be expected to  
result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or  
system containing it, and which must therefore meet very high standards of performance and  
reliability.  
It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or  
otherwise places the product with a third party to notify that party in advance of the above content  
and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability  
for and hold AKM harmless from any and all claims arising from the use of said product in the  
absence of such notification.  
MS0397-E-00  
2005/06  
- 40 -  

相关型号:

AKD4626A-B

Multi-channel Audio CODEC.
AKM

AKD4627

High Performance Multi-channel Audio CODEC
AKM

AKD4627-A

Evaluation board Rev.0 for AK4627
AKM

AKD4628

Evaluation board Rev.B for AK4628
AKM

AKD4628A-B

single chip CODEC that includes two channels of ADC and eight channels of DAC.
AKM

AKD4629

High Performance Multi-channel Audio CODEC
AKM

AKD4629-A

Evaluation board Rev.1 for AK4629
AKM

AKD4631

16-Bit ツヒ Mono CODEC with ALC & MIC/SPK-AMP
AKM

AKD4631-VN

16bit mono CODEC with MIC/SPK amplifier.
AKM

AKD4632

16-Bit ΔΣ Mono CODEC with ALC & MIC/SPK/Video-AMP
AKM

AKD4632-A

AK4632 Evaluation board Rev.0
AKM

AKD4633

16-Bit Mono CODEC with ALC & MIC/SPK-AMP
AKM