AKD4627 [AKM]

High Performance Multi-channel Audio CODEC; 高性能多通道音频编解码器
AKD4627
型号: AKD4627
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

High Performance Multi-channel Audio CODEC
高性能多通道音频编解码器

解码器 编解码器
文件: 总46页 (文件大小:660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK4627]  
AK4627  
High Performance Multi-channel Audio CODEC  
GENERAL DESCRIPTION  
The AK4627 is a single chip audio CODEC that includes four ADC channels and six DAC channels. The  
converters are designed with Enhanced Dual Bit architecture for the ADC’s, and Advanced Multi-Bit  
architecture for the DAC, enabling very low noise performance. The AK4627 ADC supports both  
single-ended and differential inputs and outputs. A wide range of applications can be realized, including  
home theater, pro audio and car audio. The AK4627 is available in a 48-pin LQFP package.  
FEATURES  
† 4ch 24bit ADC  
- 64x Oversampling  
- Sampling Rate up to 96kHz  
- Linear Phase Digital Anti-Alias Filter  
- Single-ended / Differential Input  
- S/(N+D): 92dB (Single-ended, Differential)  
- Dynamic Range, S/N: 102dB (Single-ended), 103dB (Differential)  
- Digital HPF for offset cancellation  
- I/F format: MSB justified, I2S or TDM  
† 6ch 24bit DAC  
- 128x Oversampling  
- Sampling Rate up to 192kHz  
- 24bit 8 times Digital Filter  
- Single-ended Outputs  
- On-chip Switched-Capacitor Filter  
- S/(N+D): 90dB  
- Dynamic Range, S/N: 106dB  
- I/F format: MSB justified, LSB justified(20bit,24bit), I2S or TDM  
- Individual channel digital volume with 128 levels and 0.5dB step  
- Soft mute  
- De-emphasis for 32kHz, 44.1kHz and 48kHz  
- Zero Detect Function  
† High Jitter Tolerance  
† TTL Level Digital I/F  
† 3-wire Serial and I2C Bus µP I/F for mode setting  
† Master clock:256fs, 384fs or 512fs for fs=32kHz to 48kHz  
128fs, 192fs or 256fs for fs=64kHz to 96kHz  
128fs for fs=120kHz to 192kHz  
† Power Supply: 4.5 to 5.5V  
† Power Supply for output buffer: 2.7 to 5.5V  
† Small 48pin LQFP  
MS1278-E-02  
2012/03  
- 1 -  
[AK4627]  
Block Diagram  
Audio  
I/F  
LIN1+/LIN1  
LIN1-  
ADC  
ADC  
ADC  
ADC  
HPF  
HPF  
HPF  
HPF  
RIN1+/RIN1  
RIN1-  
SDTO1  
SDTO2  
SDTO1  
SDTO2  
LIN2+/LIN2  
LIN2-  
RIN2+/RIN2  
RIN2-  
MCLK  
LRCK  
BICK  
MCLK  
LRCK  
BICK  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
DAC  
DAC  
LPF  
LPF  
DATT  
DATT  
DATT  
DATT  
LPF  
LPF  
DAC  
DAC  
DAC  
DAC  
SDTI1  
SDTI2  
SDTI3  
SDIN1  
SDIN2  
SDIN3  
LOUT3  
ROUT3  
LPF  
DATT  
DATT  
LPF  
AK4627  
Block Diagram  
MS1278-E-02  
2012/03  
- 2 -  
[AK4627]  
Ordering Guide  
AK4627VQ  
-40 +105°C  
Evaluation Board for AK4627  
48pin LQFP(0.5mm pitch)  
AKD4627  
Pin Layout  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
TST5  
RIN2-  
RIN2+/RIN2  
LIN2-  
TST4  
TST2  
LIN2+/LIN2  
RIN1-  
I2C/TST6  
DFS0  
AK4627  
RIN1+/RIN1  
LIN1-  
TST3  
SDTI3  
SDTI2  
Top View  
LIN1+/LIN1  
TST1  
SDTI1  
LRCK  
SGL  
DZFE  
BICK  
SMUTE  
MCLK  
MS1278-E-02  
2012/03  
- 3 -  
[AK4627]  
PIN/FUNCTION  
No. Pin Name  
I/O Function  
1
2
CAD0  
CAD1  
PS  
I
I
I
Chip Address 0 Pin  
Chip Address 1 Pin  
Parallel/Serial Select Pin  
“L”: Serial control mode, “H”: Parallel control mode  
ADC1 Audio Serial Data Output Pin  
ADC2 Audio Serial Data Output Pin  
Output Buffer Power Supply Pin, 2.7V5.5V  
Digital Power Supply Pin, 4.5V5.5V  
Digital Ground Pin, 0V  
3
4
5
6
7
8
SDTO1  
SDTO2  
TVDD  
DVDD  
VSS1  
O
O
-
-
-
TDM0  
I
TDM I/F Format Mode Pin in parallel control mode  
“L”: Normal mode, “H”: TDM mode  
9
SDA/CDTI  
I/O Control Data Input Pin in serial control mode  
I2C pin= “L”: CDTI (3-wire Serial), I2C pin= “H”: SDA (I2C Bus)  
DIF1  
SCL/CCLK  
I
I
Audio Data Interface Format 1 Pin in parallel control mode  
Control Data Clock Pin in serial control mode  
10  
11  
I2C pin= “L”: CCLK (3-wire Serial), I2C pin= “H”: SCL (I2C Bus)  
Audio Data Interface Format 0 Pin in parallel control mode  
Chip Select Pin in 3-wire serial control mode  
DIF0  
CSN  
I
I
This pin should be connected to DVDD at I2C bus control mode  
Power-Down & Reset Pin  
PDN  
I
When “L”, the AK4627 is powered-down and the control registers are reset to default  
state. If the state of PS pin or CAD1-0 pins change, then the AK4627 must be reset by  
the PDN pin.  
12  
13 MCLK  
14 BICK  
15 LRCK  
16 SDTI1  
17 SDTI2  
18 SDTI3  
I
I
I
I
I
I
I
Master Clock Input Pin  
Audio Serial Data Clock Pin  
Input Channel Clock Pin  
DAC1 Audio Serial Data Input Pin  
DAC2 Audio Serial Data Input Pin  
DAC3 Audio Serial Data Input Pin  
Test Pin  
This pin should be connected to VSS1  
Double Speed Sampling Mode Pin (Note 1)  
“L”: Normal Speed, “H”: Double Speed  
Control Mode Select Pin (PS pin = “L”)  
“L”: 3-wire Serial, “H”: I2C Bus  
Test Pin (PS pin = “H”)  
TST3  
19  
DFS0  
20  
I
I
I
I2C  
21  
TST6  
This pin should be connected to VSS1  
TST2  
22  
Test Pin  
This pin should be connected to VSS1.  
Test Pin  
This pin should be open.  
TST4  
23  
TST5  
24  
Test Pin  
This pin should be open.  
25 LOUT3  
26 ROUT3  
27 LOUT2  
28 ROUT2  
29 LOUT1  
30 ROUT1  
O
O
O
O
O
O
DAC3 Lch Analog Output Pin  
DAC3 Rch Analog Output Pin  
DAC2 Lch Analog Output Pin  
DAC2 Rch Analog Output Pin  
DAC1 Lch Analog Output Pin  
DAC1 Rch Analog Output Pin  
MS1278-E-02  
2012/03  
- 4 -  
[AK4627]  
No. Pin Name  
I/O Function  
VCOM  
O
Common Voltage Output Pin, AVDD/2  
31  
Large external capacitor around 2.2µF is used to reduce power-supply noise.  
Positive Voltage Reference Input Pin, AVDD  
Analog Power Supply Pin, 4.5V5.5V  
32 VREFH  
I
-
AVDD  
33  
34 VSS2  
35 DZF1  
-
O
Analog Ground Pin, 0V  
Zero Input Detect 1 Pin  
(Note 2)  
When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data,  
this pin goes to “H”. And when RSTN bit is “0”, PWDAN pin is “L”, this pin goes to  
“H”. It always is in “L” when the PS pin is “H”.  
36 DZF2  
O
Zero Input Detect 2 Pin  
(Note 2)  
When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data,  
this pin goes to “H”. And when RSTN bit is “0”, PWDAN pin is “L”, this pin goes to  
“H”. It always is in “L” when the PS pin is “H”.  
ADC2 Rch Analog Negative Input Pin (SGL pin = “L”)  
ADC2 Rch Analog Positive Input Pin (SGL pin = “L”)  
ADC2 Rch Analog Input Pin (SGL pin = “H”)  
ADC2 Lch Analog Negative Input Pin (SGL pin = “L”)  
ADC2 Lch Analog Positive Input Pin (SGL pin = “L”)  
ADC2 Lch Analog Input Pin (SGL pin = “H”)  
ADC1 Rch Analog Negative Input Pin (SGL pin = “L”)  
ADC1 Rch Analog Positive Input Pin (SGL pin = “L”)  
ADC1 Rch Analog Input Pin (SGL pin = “H”)  
ADC1 Lch Analog Negative Input Pin (SGL pin = “L”)  
ADC1 Lch Analog Positive Input Pin (SGL pin = “L”)  
ADC1 Lch Analog Input Pin (SGL pin = “H”)  
Test Pin  
37 RIN2-  
38 RIN2+  
RIN2  
39 LIN2-  
40 LIN2+  
LIN2  
I
I
I
I
I
I
I
I
I
I
I
I
41 RIN1-  
RIN1+  
RIN1  
42  
43 LIN1-  
44 LIN1+  
LIN1  
45 TST1  
This pin should be connected to VSS1.  
46 SGL  
I
I
Single-ended Input Mode Select Pin.  
“L”: ADC Differential Input Mode  
“H”: ADC Single-ended Input Mode  
Zero Input Detect Enable Pin  
47 DZFE  
“L”: mode 7 (disable) at parallel mode,  
zero detect mode is selectable by DZFM3-0 bits at serial mode  
“H”: mode 0 (DZF1 is AND of all six channels)  
Soft Mute Pin (Note 1)  
48 SMUTE  
I
When this pin goes to “H”, soft mute cycle is initialized.  
When returning to “L”, the output mute releases.  
Note 1. SMUTE and DFS0 pins are ORed with register data when the PS pin= “L”.  
Note 2. The output pin (DZF1 and DZF2) of zero detection results of each lineout channels can be selected by DZFM3-0  
bits when the PS pin and DZFE pin= “L”. (Table 11)  
Note 3. All digital input pins except for pull-down should not be left floating.  
MS1278-E-02  
2012/03  
- 5 -  
 
[AK4627]  
ABSOLUTE MAXIMUM RATINGS  
(VSS1=VSS2=0V; Note 4)  
Parameter  
Power Supplies  
Symbol  
AVDD  
DVDD  
TVDD  
IIN  
VINA  
VIND  
Ta  
min  
-0.3  
-0.3  
-0.3  
-
-0.3  
-0.3  
-40  
max  
6.0  
6.0  
Unit  
V
V
V
mA  
V
V
°C  
°C  
Analog  
Digital  
Output buffer  
6.0  
Input Current (any pins except for supplies)  
Analog Input Voltage  
Digital Input Voltage  
Ambient Temperature (power applied) (Note 6)  
Storage Temperature  
±10  
AVDD+0.3  
DVDD+0.3  
105  
Tstg  
-65  
150  
Note 4. All voltages with respect to ground.  
Note 5. VSS1 and VSS2 must be connected to the same analog ground plane.  
Note 6. In case that PCB wiring density is 100% or more.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(VSS1=VSS2=0V; Note 4)  
Parameter  
Power Supplies  
(Note 7)  
Symbol  
AVDD  
DVDD  
TVDD  
min  
4.5  
4.5  
2.7  
typ  
5.0  
5.0  
5.0  
max  
5.5  
5.5  
Unit  
V
V
Analog  
Digital  
Output buffer  
5.5  
V
Note 4. All voltages with respect to ground.  
Note 7. The power up sequence between AVDD, DVDD and TVDD is not critical. Do not turn off only the AK4627 under  
the condition that a surrounding device is powered on and the I2C bus is in use.  
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS1278-E-02  
2012/03  
- 6 -  
 
[AK4627]  
ANALOG CHARACTERISTICS  
(Ta=25°C; AVDD=DVDD=TVDD=5V; VSS1=VSS2=0V; VREFH=AVDD; fs=48kHz; BICK=64fs;  
Signal Frequency=1kHz; 24bit Data; Measurement Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at fs=96kHz,  
20Hz~40kHz at fs=192kHz; unless otherwise specified)  
Parameter  
min  
typ  
max  
Unit  
ADC Analog Input Characteristics (Single-ended Inputs)  
Resolution  
S/(N+D)  
24  
Bits  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(-0.5dBFS)  
(-60dBFS)  
fs=48kHz  
fs=96kHz  
84  
-
96  
92  
102  
99  
105  
102  
99  
DR  
fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
fs=48kHz, A-weighted  
fs=96kHz  
94  
88  
93  
94  
88  
93  
90  
S/N  
(Note 11)  
fs=96kHz, A-weighted  
105  
110  
Interchannel Isolation  
DC Accuracy (Single-ended Inputs)  
Interchannel Gain Mismatch  
Gain Drift  
0.2  
20  
3.4  
14  
11  
50  
0.3  
-
3.6  
dB  
ppm/°C  
Vpp  
kΩ  
kΩ  
dB  
Input Voltage  
AIN=0.68xVREFH  
3.2  
10  
fs=48kHz  
fs=96kHz  
Input Resistance  
Power Supply Rejection  
(Note 9)  
ADC Analog Input Characteristics (Differential inputs)  
S/(N+D)  
(-0.5dBFS)  
fs=48kHz  
fs=96kHz  
fs=48kHz, A-weighted  
fs=96kHz  
84  
-
96  
94  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
DR  
(-60dBFS)  
95  
89  
94  
95  
89  
94  
90  
103  
100  
106  
103  
100  
106  
110  
fs=96kHz, A-weighted  
S/N  
(Note 11)  
fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
Interchannel Isolation  
DC Accuracy (Differential inputs)  
Interchannel Gain Mismatch  
Gain Drift  
0.2  
20  
±3.4  
32  
0.3  
-
±3.6  
dB  
ppm/°C  
Vpp  
k  
Input Voltage  
AIN=0.68xVREFH (Note 8)  
±3.2  
22  
fs=48kHz  
fs=96kHz  
Input Resistance  
19  
kΩ  
Power Supply Rejection  
(Note 9)  
50  
-
dB  
Common Mode Rejection Ratio (CMRR)  
(Note 10)  
60  
dB  
MS1278-E-02  
2012/03  
- 7 -  
[AK4627]  
DAC Analog Output Characteristics  
Resolution  
S/(N+D)  
24  
Bits  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(0dBFS)  
fs=48kHz  
fs=96kHz  
fs=192kHz  
fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
fs=192kHz  
fs=192kHz, A-weighted  
fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
fs=192kHz  
fs=192kHz, A-weighted  
80  
78  
-
95  
88  
94  
-
98  
98  
98  
DR  
(-60dBFS)  
106  
100  
106  
100  
106  
106  
100  
106  
100  
106  
110  
-
S/N  
(Note 12)  
95  
88  
94  
-
-
90  
Interchannel Isolation  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Drift  
0.2  
20  
3.0  
0.5  
-
3.25  
dB  
ppm/°C  
Vpp  
Output Voltage  
AOUT=0.6xVREFH  
2.75  
5
Load Resistance  
Load Capacitance  
Power Supply Rejection  
kΩ  
pF  
dB  
25  
(Note 10)  
50  
Note 8. (LIN+) – (LIN-) or (RIN+) – (RIN-); this value is proportional to VREFH voltage.  
Note 9. PSR is applied to AVDD, DVDD and TVDD with 1kHz, 50mVpp. VREFH pin is held +5V.  
Note 10. VREFH is held +5V, the input bias voltage is set to AVDD1, AVDD2 x 0.5. The 1kHz, 1.52Vpp signal is applied  
to LIN- and LIN+ with same phase (e.g. shorted) or RIN- and RIN+. The CMRR is measured as the attenuation  
level from 1.52Vpp = -7dBFS.  
Note 11. S/N measured by CCIR-ARM is 98dB(@fs=48kHz).  
Note 12. S/N measured by CCIR-ARM is 102dB(@fs=48kHz).  
Parameter  
min  
typ  
max  
Unit  
Power Supplies  
Power Supply Current (AVDD+DVDD+TVDD)  
Normal Operation (PDN = “H”)  
AVDD  
fs=48kHz, 96kHz  
fs=192kHz  
57  
34  
19  
27  
27  
80  
86  
51  
29  
40  
40  
mA  
mA  
mA  
mA  
mA  
μA  
DVDD+TVDD fs=48kHz  
fs=96kHz  
(Note 13)  
(Note 14)  
fs=192kHz  
Power-down mode (PDN = “L”)  
200  
Note 13. TVDD=0.1mA(typ).  
Note 14. In the power-down mode. All digital input pins including clock pins (MCLK, BICK, LRCK) are held VSS1.  
MS1278-E-02  
2012/03  
- 8 -  
 
[AK4627]  
FILTER CHARACTERISTICS  
(Ta=25°C; AVDD=DVDD=4.55.5V; TVDD=2.75.5V; fs=48kHz)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 15)  
PB  
0
-
-
18.9  
-
-
kHz  
kHz  
kHz  
±0.1dB  
-0.2dB  
-3.0dB  
20.0  
23.0  
Stopband  
SB  
PR  
SA  
GD  
ΔGD  
28  
68  
kHz  
dB  
dB  
1/fs  
μs  
Passband Ripple  
Stopband Attenuation  
Group Delay  
±0.04  
(Note 16)  
16  
0
Group Delay Distortion  
ADC Digital Filter (HPF):  
Frequency Response  
(Note 15) -3dB  
FR  
1.0  
6.5  
Hz  
Hz  
-0.1dB  
DAC Digital Filter:  
Passband  
(Note 15) -0.1dB  
-6.0dB  
PB  
0
-
26.2  
21.8  
-
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
24.0  
Stopband  
SB  
PR  
SA  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay  
±0.02  
54  
(Note 16)  
19.2  
DAC Digital Filter + Analog Filter:  
FR  
FR  
FR  
dB  
dB  
dB  
Frequency Response: 0 20.0kHz  
±0.2  
±0.3  
±1.0  
40.0kHz (Note 17)  
80.0kHz (Note 17)  
Note 15. The passband and stopband frequencies scale with fs.  
For example, 21.8kHz at –0.1dB is 0.454 x fs.  
Note 16. The calculating delay time which occurred by digital filtering. This time is from setting the input of analog signal  
to setting the 24bit data of both channels to the output register for ADC.  
For DAC, this time is from setting the 20/24bit data of both channels on input register to the output of analog  
signal.  
Note 17. 40.0kHz; fs=96kHz , 80.0kHz; fs=192kHz.  
DC CHARACTERISTICS  
(Ta=25°C; AVDD=DVDD=4.55.5V; TVDD=2.75.5V)  
Parameter  
Symbol  
VIH  
VIL  
min  
2.2  
-
typ  
-
-
max  
-
0.8  
Unit  
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Voltage  
(SDTO1-2 pins:  
(DZF1, DZF2 pins:  
Low-Level Output Voltage  
Iout=-100μA)  
Iout=-100μA)  
VOH  
VOH  
TVDD-0.5  
AVDD-0.5  
-
-
-
-
V
V
(SDTO1-2, DZF1, DZF2 pins: Iout= 100μA)  
VOL  
VOL  
Iin  
-
-
-
-
-
-
0.5  
0.4  
±10  
V
V
μA  
(SDA pin:  
Iout= 3mA)  
Input Leakage Current  
MS1278-E-02  
2012/03  
- 9 -  
 
[AK4627]  
SWITCHING CHARACTERISTICS  
(Ta=25°C; AVDD=DVDD=4.55.5V; TVDD=2.75.5V; CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Master Clock Timing  
256fsn, 128fsd:  
fCLK  
8.192  
27  
27  
12.288  
20  
20  
16.384  
15  
15  
12.288  
MHz  
ns  
ns  
MHz  
ns  
ns  
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
384fsn, 192fsd:  
Pulse Width Low  
Pulse Width High  
512fsn, 256fsd, 128fsq:  
Pulse Width Low  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fCLK  
18.432  
24.576  
tCLKL  
tCLKH  
Pulse Width High  
LRCK Timing  
Normal mode (TDM0= “0”, TDM1= “0”)  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
fsn  
fsd  
fsq  
Duty  
32  
64  
128  
45  
48  
96  
192  
55  
kHz  
kHz  
kHz  
%
Duty Cycle  
TDM256 mode (TDM0= “1”, TDM1= “0”)  
LRCK frequency  
“H” time  
fsn  
tLRH  
tLRL  
32  
1/256fs  
1/256fs  
48  
kHz  
ns  
ns  
“L” time  
TDM128 mode (TDM0= “1”, TDM1= “1”)  
LRCK frequency  
“H” time  
fsn  
tLRH  
tLRL  
64  
1/128fs  
1/128fs  
96  
kHz  
ns  
ns  
“L” time  
Audio Interface Timing  
Normal mode (TDM0= “0”, TDM1= “0”)  
BICK Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tLRS  
tBSD  
tSDH  
tSDS  
81  
32  
32  
20  
20  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
LRCK to SDTO(MSB)  
BICK “” to SDTO1-2  
SDTI1-3 Hold Time  
(Note 18)  
(Note 18)  
40  
40  
20  
20  
SDTI1-3 Setup Time  
TDM256 mode (TDM0= “1”, TDM1= “0”)  
BICK Period  
BICK Pulse Width Low  
Pulse Width High  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSD  
tSDH  
tSDS  
81  
32  
32  
20  
20  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
BICK “” to SDTO1  
SDTI1 Hold Time  
(Note 18)  
(Note 18)  
20  
10  
10  
SDTI1 Setup Time  
TDM128 mode (TDM0= “1”, TDM1= “1”)  
BICK Period  
BICK Pulse Width Low  
Pulse Width High  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSD  
tSDH  
tSDS  
81  
32  
32  
20  
20  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
BICK “” to SDTO1  
SDTI1-2 Hold Time  
(Note 18)  
(Note 18)  
20  
10  
10  
SDTI1-2 Setup Time  
Note 18. BICK rising edge must not occur at the same time as LRCK edge.  
MS1278-E-02  
2012/03  
- 10 -  
 
[AK4627]  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Control Interface Timing (3-wire Serial mode):  
CCLK Period  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
200  
80  
80  
40  
40  
150  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Setup Time  
CDTI Hold Time  
CSN “H” Time  
CSN “” to CCLK “”  
CCLK “” to CSN “”  
tCSH  
Control Interface Timing (I2C Bus mode):  
SCL Clock Frequency  
fSCL  
tBUF  
-
400  
-
-
-
-
-
-
-
1.0  
0.3  
-
50  
400  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
Clock High Time  
Setup Time for Repeated Start Condition  
1.3  
0.6  
1.3  
0.6  
0.6  
0
0.1  
-
-
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
SDA Hold Time from SCL Falling  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
(Note 19)  
tF  
tSU:STO  
tSP  
Cb  
0.6  
0
-
Pulse Width of Spike Noise Suppressed by Input Filter  
Capacitive load on bus  
pF  
Power-down & Reset Timing  
PDN Pulse Width  
PDN “” to SDTO1-2 valid  
(Note 20)  
(Note 21)  
tPD  
tPDV  
150  
ns  
1/fs  
522  
Note 19. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.  
Note 20. The AK4627 can be reset by bringing the PDN pin “L” to “H” upon power-up.  
Note 21. These cycles are the number of LRCK rising from the PDN pin rising edge.  
Note 22. I2C-bus is a trademark of NXP B.V.  
MS1278-E-02  
2012/03  
- 11 -  
 
[AK4627]  
Timing Diagram  
1/fCLK  
VIH  
VIL  
MCLK  
tCLKH  
tCLKL  
1/fsn, 1/fsd  
VIH  
VIL  
LRCK  
tBCK  
VIH  
BICK  
VIL  
tBCKH  
tBCKL  
Clock Timing (TDM0 bit= “0”)  
1/fCLK  
VIH  
VIL  
MCLK  
LRCK  
BICK  
tCLKH  
tCLKL  
1/fs  
VIH  
VIL  
tLRH  
tLRL  
tBCK  
VIH  
VIL  
tBCKH  
tBCKL  
Clock Timing (TDM0 bit= “1”)  
MS1278-E-02  
2012/03  
- 12 -  
[AK4627]  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRS  
tLRB  
VIH  
VIL  
tBSD  
SDTO  
50%TVDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing (TDM0 bit= “0”)  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRB  
VIH  
VIL  
tBSD  
SDTO  
50%TVDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing (TDM0 bit= “1”)  
MS1278-E-02  
2012/03  
- 13 -  
[AK4627]  
VIH  
VIL  
CSN  
tCSS  
tCCKL tCCKH  
VIH  
VIL  
CCLK  
CDTI  
tCDS tCDH  
C0  
VIH  
VIL  
C1  
R/W  
A4  
WRITE Command Input Timing (3-wire Serial mode)  
tCSW  
VIH  
CSN  
VIL  
tCSH  
VIH  
VIL  
CCLK  
CDTI  
VIH  
VIL  
D3  
D2  
D1  
D0  
WRITE Data Input Timing (3-wire Serial mode)  
VIH  
SDA  
SCL  
VIL  
tLOW tR  
tHIGH  
tBUF  
tF  
tSP  
VIH  
VIL  
tHD:STA  
Stop Start  
tHD:DAT  
tPD  
tSU:DAT tSU:STA  
tSU:STO  
Stop  
Start  
I2C Bus mode Timing  
VIH  
VIL  
PDN  
tPDV  
SDTO  
50%TVDD  
Power-down & Reset Timing  
MS1278-E-02  
2012/03  
- 14 -  
[AK4627]  
OPERATION OVERVIEW  
System Clock  
The external clocks, which are required to operate the AK4627, are MCLK, LRCK and BICK. MCLK should be  
synchronized with LRCK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting  
Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS0 and DFS1 bits (Table 1). The frequency of MCLK at  
each sampling speed is set automatically. (Table 2, Table 3, Table 4). In Auto Setting Mode (ACKS bit= “1”), as MCLK  
frequency is detected automatically (Table 5) and the internal master clock becomes the appropriate frequency (Table 6),  
it is not necessary to set DFS bits.  
The AK4627 is automatically placed in power saving mode when MCLK or LRCK is stopped during normal operation  
mode, and the analog output goes to VCOM (typ). When MCLK and LRCK are input again, the AK4627 is powered up.  
After exiting reset following power-up, the AK4627 is not fully operational until MCLK and LRCK are input.  
DFS1  
DFS0  
Sampling Speed (fs)  
0
0
1
0
1
0
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
32kHz~48kHz  
64kHz~96kHz  
120kHz~192kHz  
(default)  
Table 1. Sampling Speed (Manual Setting Mode)  
LRCK  
fs  
32.0kHz  
44.1kHz  
48.0kHz  
MCLK (MHz)  
384fs  
BICK (MHz)  
64fs  
256fs  
8.1920  
11.2896  
12.2880  
512fs  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
2.0480  
2.8224  
3.0720  
Table 2. System Clock Example (Normal Speed Mode @Manual Setting Mode)  
LRCK  
fs  
MCLK (MHz)  
192fs  
BICK (MHz)  
64fs  
128fs  
256fs  
88.2kHz  
96.0kHz  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
5.6448  
6.1440  
Table 3. System Clock Example (Double Speed Mode @Manual Setting Mode)  
(Note: At Double speed mode(DFS1 bit= “0”, DFS0 bit= “1”), 128fs and 192fs are not available for ADC.)  
LRCK  
fs  
MCLK (MHz)  
BICK (MHz)  
64fs  
128fs  
192fs  
256fs  
176.4kHz  
192.0kHz  
22.5792  
24.5760  
-
-
-
-
11.2896  
12.2880  
Table 4. System Clock Example (Quad Speed Mode @Manual Setting Mode)  
(Note: At Quad speed mode(DFS1bit= “1”, DFS0 bit= “0”) are not available for ADC.)  
MS1278-E-02  
2012/03  
- 15 -  
 
[AK4627]  
MCLK  
512fs  
256fs  
128fs  
Sampling Speed  
Normal  
Double  
Quad  
Table 5. Sampling Speed (Auto Setting Mode)  
LRCK  
fs  
MCLK (MHz)  
Sampling  
Speed  
128fs  
256fs  
512fs  
32.0kHz  
44.1kHz  
48.0kHz  
88.2kHz  
96.0kHz  
176.4kHz  
192.0kHz  
-
-
-
-
-
-
-
16.3840  
22.5792  
24.5760  
Normal  
22.5792  
24.5760  
-
-
-
-
Double  
Quad  
-
22.5792  
24.5760  
-
-
Table 6. System Clock Example (Auto Setting Mode)  
Differential/Single-ended Input selection  
The AK4627 supports differential inputs (Figure 1) by setting the SGL pin = “L”, and single-ended inputs (Figure 2) by  
setting the SGL pin= “H”. When single-ended input mode, L/RIN1-2 pins should be open, because L/RIN1-2 pins output  
an invert signal of the input signal. The AK4627 includes an anti-aliasing filter (RC filter) for both differential input and  
the single-ended input.  
AK4627  
AK4627  
L/RIN+  
L/RIN  
LPF  
LPF  
SCF  
SCF  
LPF  
L/RIN-  
L/RIN-  
(Open)  
Figure 1. Differential Input (SGL pin = “L”)  
Figure 2. Single-ended Input (SGL pin = “H”)  
MS1278-E-02  
2012/03  
- 16 -  
 
[AK4627]  
De-emphasis Filter  
The AK4627 includes the digital de-emphasis filter (tc=50/15µs) by IIR filter. De-emphasis filter is not available in  
Double Speed Mode and Quad Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz,  
48kHz). De-emphasis of each DAC can be set individually by register data of DEMA1-C0 (DAC1: DEMA1-0, DAC2:  
DEMB1-0, DAC3: DEMC1-0, see “Register Definitions”).  
Mode  
Sampling Speed  
Normal Speed  
Normal Speed  
Normal Speed  
Normal Speed  
DEM1  
DEM0  
DEM  
44.1kHz  
OFF  
48kHz  
32kHz  
0
1
2
3
0
0
1
1
0
1
0
1
(default)  
Table 7. De-emphasis control  
Digital High Pass Filter  
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz  
and scales with sampling rate (fs).  
MS1278-E-02  
2012/03  
- 17 -  
 
[AK4627]  
Audio Serial Interface Format  
When TDM1 bit = “0” and TDM0 pin = “L” or when TDM1-0 bits = “00”, four modes can be selected by the DIF1-0 bits  
as shown in Table 8. In all modes the serial data is MSB-first, 2’s complement format. The SDTO1-2 are clocked out on  
the falling edge of BICK and the SDTI1-3 are latched on the rising edge of BICK.  
Mode 2, 3, 6, 7, 10, 11 in SDTI input formats can be used for 16-20bit data by zeroing the unused LSBs.  
Mode TDM 1 TDM0  
DIF1 DIF0  
SDTO1-2  
SDTI1-3  
LRCK  
BICK  
24bit, Left 20bit, Right  
justified justified  
24bit, Left 24bit, Right  
0
1
0
0
0
0
0
0
0
1
H/L  
I
I
I
I
48fs  
H/L  
48fs  
justified  
24bit, Left  
justified  
justified  
24bit, Left  
justified  
(default)  
2
3
0
0
0
0
1
1
0
1
H/L  
L/H  
I
I
I
I
48fs  
48fs  
24bit, I2S  
24bit, I2S  
Table 8. Audio data formats (Normal mode)  
The audio serial interface format becomes the TDM mode when the TDM0 pin is set to “H”. The serial data of all ADC  
(four channels) are output from the SDTO1 pin and the SDTO2 pin outputs “L”. In the TDM256 mode, the serial data of  
all DAC (six channels) are input to the SDTI1 pin. The input data to SDTI2-3 pins are ignored. BICK should be fixed to  
256fs. “H” time and “L” time of LRCK should be 1/256fs at least. Four modes can be selected by DIF1-0 bits as shown in  
Table 9. In all modes the serial data is MSB-first, 2’s complement format. The SDTO1 is clocked out on the falling edge  
of BICK and the SDTI1 is latched on the rising edge of BICK. LOOP1-0 bits should be set to “0” at the TDM mode.  
TDM128 Mode can be set by TDM1 bit as show in Table 10. In Double Speed Mode, the serial data of DAC (four  
channels; L1, R1, L2, R2) is input to the SDTI1 pin. Other two data (L3 and R3) are input to the SDTI2 pin. The TDM0  
pin (or TDM0 register) should be set to “H” (or “1”) if TDM256 Mode is selected. The TDM0 register and TDM1 register  
should be set to “1” if Double Speed Mode is selected in TDM128 Mode.  
Mode TDM 1 TDM0 DIF1 DIF0  
SDTO1  
SDTI1  
LRCK  
I/O  
BICK  
I/O  
24bit, Left 20bit, Right  
justified justified  
24bit, Left 24bit, Right  
4
5
0
0
1
1
0
0
0
1
I
I
256fs  
I
256fs  
I
justified  
24bit, Left  
justified  
justified  
24bit, Left  
justified  
6
7
0
0
1
1
1
1
0
1
I
I
256fs  
256fs  
I
I
24bit, I2S  
24bit, I2S  
Table 9. Audio data formats (TDM256 mode)  
Mode TDM 1 TDM0 DIF1 DIF0  
SDTO1  
SDTI1,  
SDTI2  
LRCK  
BICK  
I/O  
I/O  
24bit, Left 20bit, Right  
justified justified  
24bit, Left 24bit, Right  
8
9
1
1
1
1
0
0
0
1
I
128fs  
128fs  
I
I
I
justified  
24bit, Left  
justified  
justified  
24bit, Left  
justified  
10  
11  
1
1
1
1
1
1
0
1
I
I
128fs  
128fs  
I
I
24bit, I2S  
24bit, I2S  
Table 10. Audio data formats (TDM128 mode)  
MS1278-E-02  
2012/03  
- 18 -  
 
[AK4627]  
LRCK  
0
0
0
0
1
2
12  
13  
14  
24  
25  
31  
0
1
2
12  
13  
14  
24  
24  
28  
25  
25  
29  
31  
31  
31  
31  
0
0
0
0
1
BICK(64fs)  
SDTO(o)  
23 22  
12 11 10  
19 18  
0
23 22  
12 11 10  
19 18  
Don’t Care  
0
23  
8
7
1
0
8
7
1
0
Don’t Care  
SDTI(i)  
SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 3. Mode 0 Timing  
LRCK  
1
2
8
9
10  
24  
25  
31  
0
1
2
8
9
10  
1
1
1
BICK(64fs)  
SDTO(o)  
23 22  
16 15 14  
23 22  
0
23 22  
16 15 14  
23 22  
Don’t Care  
0
23  
8
7
1
0
8
7
1
0
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 4. Mode 1 Timing  
LRCK  
1
2
21  
22  
23  
24  
28  
29  
30  
31  
0
1
2
22  
23  
24  
30  
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
23  
23  
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 5. Mode 2 Timing  
LRCK  
1
2
3
22  
23  
24  
25  
29  
30  
31  
0
1
2
3
22  
23  
24  
25  
29  
30  
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 6. Mode 3 Timing  
MS1278-E-02  
2012/03  
- 19 -  
[AK4627]  
256 BICK  
LRCK  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19  
SDTI1(i)  
L1  
R1  
L2  
R2  
L3  
R3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 7. Mode 4 Timing  
256 BICK  
LRCK  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23  
SDTI1(i)  
R1  
R2  
R3  
L1  
L2  
L3  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 8. Mode 5 Timing  
256 BICK  
LRCK  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
SDTI1(i)  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
L3  
32 BICK  
R3  
32 BICK  
Figure 9. Mode 6 Timing  
256 BICK  
LRCK  
BICK(256fs)  
SDTO1(o)  
23  
0
23  
0
23  
0
23  
0
23  
23  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDTI1(i)  
R1  
32 BICK  
R2  
32 BICK  
R3  
32 BICK  
L1  
32 BICK  
L2  
32 BICK  
L3  
32 BICK  
Figure 10. Mode 7 Timing  
MS1278-E-02  
2012/03  
- 20 -  
[AK4627]  
128 BICK  
LRCK  
BICK(128fs)  
SDTO1(o)  
22  
0
22  
0
23 22  
23  
0
23 22  
23  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19 18  
0
0
19 18  
0
0
19 18  
0
19 18  
0
19  
SDTI1(i)  
SDTI2(i)  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
18  
18  
19  
19  
19  
L3  
R3  
32 BICK  
32 BICK  
Figure 11. Mode 8 Timing  
128 BICK  
LRCK  
BICK(128fs)  
SDTO1(o)  
23 22  
0
0
23 22  
0
0
23 22  
23 22  
23 22  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
22  
22  
23  
0
0
23  
0
0
23 22  
0
23 22  
0
19  
SDTI1(i)  
SDTI2(i)  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
23 22  
19  
L3  
R3  
32 BICK  
32 BICK  
Figure 12. Mode 9 Timing  
128 BICK  
LRCK  
BICK(128fs)  
SDTO1(o)  
22  
0
0
23 22  
0
0
23 22  
0
23 22  
23  
0
0
23 22  
L2  
R2  
L1  
R1  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
23 22  
23 22  
23 22  
0
23 22  
SDTI1(i)  
SDTI2(i)  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
22  
23 22  
0
23 22  
23  
0
L3  
R3  
32 BICK  
32 BICK  
Figure 13. Mode 10 Timing  
MS1278-E-02  
2012/03  
- 21 -  
[AK4627]  
128 BICK  
LRCK  
BICK(128fs)  
SDTO1(o)  
23 22  
0
0
23 22  
0
0
23 22  
0
0
23 22  
0
0
23  
23  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
23 22  
23 22  
23 22  
23 22  
SDTI1(i)  
SDTI2(i)  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
22  
0
22  
0
23  
23  
23  
L3  
R3  
32 BICK  
32 BICK  
Figure 14. Mode 11 Timing  
MS1278-E-02  
2012/03  
- 22 -  
[AK4627]  
Zero Detection  
The AK4627 has two pins for zero detect flag outputs. The output pin (DZF1 and DZF2 pins) for zero detection results of  
each lineout channels can be selected by DZFM3-0 bits when the PS pin and DZFE pin = “L” (Table 11). Zero detection  
mode is set to mode 0 when the DZFE pin= “H” regardless of the PS pin. The DZF1 pin outputs AND result of all six  
channels and the DZF2 pin is disabled (“L”) at mode 0.  
When the input data of all lineout channels of DZF1 (DZF2) pin are continuously zeros for 8192 LRCK cycles, the DZF1  
(DZF2) pin becomes “H”. The DZF1 (DZF2) pin immediately returns to “L” if input data of any channel of DZF1 (DZF2)  
pin is not zero.  
DZFM  
AOUT  
Mode  
3
2
1
0
L1  
R1  
L2  
R2  
L3  
R3  
0
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
disable (DZF1=DZF2 = “L”)  
DZF1  
DZF1  
(default)  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
9
10  
11  
12  
13  
14  
15  
disable (DZF1=DZF2 = “L”)  
Table 11. Zero detect control  
MS1278-E-02  
2012/03  
- 23 -  
 
[AK4627]  
Digital Attenuator  
The AK4627 has channel-independent digital attenuator (128 levels, 0.5dB step). Attenuation level of each channel can  
be set by each ATT7-0 bits (Table 12).  
ATT7-0  
00H  
01H  
02H  
:
Attenuation Level  
0dB  
(default)  
-0.5dB  
-1.0dB  
:
7DH  
7EH  
7FH  
-62.5dB  
-63dB  
MUTE (-)  
:
FEH  
FFH  
MUTE (-)  
MUTE (-)  
Table 12. Attenuation level of digital attenuator  
Transition time between set values of ATT7-0 bits can be selected by ATS1-0 bits (Table 13). Transition between set  
values is soft transition. Therefore, the switching noise does not occur in the transition.  
Mode  
ATS1  
ATS0  
ATT speed  
1792/fs  
896/fs  
256/fs  
256/fs  
(default)  
0
1
2
3
0
0
1
1
0
1
0
1
Table 13. Transition time between set values of ATT7-0 bits  
The transition between set values is soft transition of 1792 levels in mode 0. It takes 1792/fs (37.3ms@fs=48kHz) from  
00H(0dB) to 7FH(MUTE). When the PDN pin becomes “L”, the ATTs are initialized to 00H. The ATTs are 00H when  
RSTN bit= “0”. When RSTN bit return to “1”, the ATTs fade to their current value.  
Note: The attenuation level is calculated in 11bit accuracy.  
MS1278-E-02  
2012/03  
- 24 -  
 
[AK4627]  
Soft mute operation  
Soft mute operation is performed at digital domain. When the SMUTE pin changes to “H”, the output signal is attenuated  
by -during ATT_DATA×ATT transition time (Table 13) from the current ATT level. When the SMUTE pin returns to  
“L”, the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA×ATT  
transition time. If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT  
level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.  
SMUTE bit  
(1)  
(1)  
ATT Level  
Attenuation  
(3)  
-
GD  
(2)  
GD  
AOUT  
(4)  
8192/fs  
DZF1,2  
Notes:  
(1) ATT_DATA×ATT transition time (Table 13). For example, in Normal Speed Mode, this time is 1792LRCK cycles  
(1792/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to 7FH  
(2) The analog output corresponding to the digital input has group delay. (GD)  
(3) If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT level by  
the same cycle.  
(4) When the input data at all the channels of the group are continuously zeros for 8192 LRCK cycles, the DZF pin of  
each channel becomes “H”. The DZF pin immediately returns to “L” if the input data of either channel of the group  
are not zero.  
Figure 15. Soft mute and zero detection  
System Reset  
The AK4627 should be reset once by bringing the PDN pin = “L” upon power-up. The AK4627 is powered up and the  
internal timing starts clocking by LRCK “” after exiting reset and power down state by MCLK. The AK4627 is in the  
power-down mode until MCLK and LRCK are input.  
MS1278-E-02  
2012/03  
- 25 -  
[AK4627]  
Power-Down  
The ADC and DACs of AK4627 are placed in the power-down mode by bringing the PDN “L” and both digital filters are  
reset at the same time. Bringing the PDN pin=“L” also resets the control registers to their default values. In the  
power-down mode, the analog outputs become to VCOM voltage and DZF1-2 pins output “L”. This reset should always  
be made after power-up. In case of ADC, an analog initialization cycle starts after exiting the power-down mode.  
Therefore, the output data, SDTO1-2 become available after 516 cycles of LRCK clock. In case of the DAC, an analog  
initialization cycle starts after exiting the power-down mode. The analog outputs are VCOM voltage during the  
initialization. Figure 16 shows the power-down/up sequences.  
All ADCs and all DACs can be powered-down by PWADN and PWDAN bits respectively. DAC1-3 can be power-down  
individually by PDDA1-3 bits. In this case, the internal register values are not initialized. When PWADN bit= “0” and  
PDAD1-2 bits = “0”, SDTO1-2 become “L”. When PWDAN bit = “0” and PDDA1-3 bits= “0”, the analog outputs go to  
VCOM voltage and DZF1-2 pins go to “H”. As some click noise occurs, the analog output should be muted externally if  
the click noise influences system applications.  
PDN  
(1)  
516/fs  
ADC Internal  
State  
Normal Operation  
Power-down  
Power-down  
Init Cycle  
512/fs  
Normal Operation  
(2)  
DAC Internal  
State  
Normal Operation  
GD  
Init Cycle  
Normal Operation  
GD  
(3)  
ADC In  
(Analog)  
(4)  
ADC Out  
(Digital)  
(5)  
“0”data  
DAC In  
(Digital)  
“0”data  
(3)  
GD  
GD  
(6)  
(6)  
DAC Out  
(Analog)  
(7)  
Clock In  
MCLK,LRCK,SCLK  
Don’t care  
1011/fs (10)  
(8)  
DZF1/DZF2  
External  
Mute  
(9)  
Mute ON  
Notes:  
(1) The analog part of ADC is initialized after exiting the power-down state.  
(2) The analog part of DAC is initialized after exiting the power-down state.  
(3) Digital outputs corresponding to analog inputs and analog outputs corresponding to digital inputs have group delay  
(GD).  
(4) ADC outputs “0” data in power-down state.  
(5) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise  
influences system application.  
(6) Click noise occurs at the falling edge of PDN and at 512/fs after the rising edge of PDN.  
(7) When the external clocks (MCLK, BICK and LRCK) are stopped, the AK4627 should be in the power-down mode.  
(8) DZF pins are “L” in power-down mode (PDN pin= “L”).  
(9) Mute the analog output externally if the click noise (6) influences system application.  
(10) DZF1-2 pins are “L” for 1011/fs after PDN = “”.  
Figure 16. Power-down/up sequence example  
MS1278-E-02  
2012/03  
- 26 -  
 
[AK4627]  
Reset Function  
(1) Reset by RSTN bit  
When RSTN bit = “0”, ADC and DACs are powered-down but the internal registers are not initialized. The analog outputs  
go to VCOM voltage, DZF1-2 pins output “H” and the SDTO1-2 pins outputs “L”. As some click noise occurs, the analog  
output should be muted externally if the click noise influences system application. Figure 17 shows the power-up  
sequence.  
RSTN bit  
4~5/fs (9)  
1~2/fs (9)  
Internal  
RSTN bit  
(1)  
516/fs  
ADC Internal  
State  
Digital Block Power-down  
Digital Block Power-down  
Normal Operation  
Normal Operation  
Init Cycle  
DAC Internal  
State  
Normal Operation  
GD  
Normal Operation  
(2)  
GD  
ADC In  
(Analog)  
(3)  
ADC Out  
(Digital)  
(4)  
“0”data  
DAC In  
(Digital)  
“0”data  
(2)  
GD  
GD  
(6)  
(5)  
(6)  
DAC Out  
(Analog)  
(7)  
Don’t care  
Clock In  
MCLK,LRCK,SCLK  
45/fs (8)  
DZF1/DZF2  
Notes:  
(1) The analog part of the ADC is initialized after exiting reset state.  
(2) Digital outputs corresponding to analog inputs and analog outputs corresponding to digital inputs have group delay  
(GD).  
(3) ADC outputs “0” data in power-down state.  
(4) Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise  
influences system application.  
(5) The analog outputs become VCOM voltage.  
(6) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 12/fs after RSTN bit becomes “1”. This  
noise is output even if “0” data is input.  
(7) The external clocks (MCLK, BICK and LRCK) can be stopped in reset mode. When exiting reset mode, “1” should  
be written to RSTN bit after the external clocks (MCLK, BICK and LRCK) are fed.  
(8) The DZF pins go to “H” when the RSTN bit becomes “0”, and go to “L” at 6~7/fs after RSTN bit becomes “1”.  
(9) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”.  
Figure 17. Reset sequence example  
MS1278-E-02  
2012/03  
- 27 -  
 
[AK4627]  
(2) Reset by MCLK, LRCK or BICK stop  
The AK4627 is automatically placed in reset state when MCLK, LRCK or BICK is stopped during normal operation  
(RSTN pin = “H”). In this reset state, the analog output becomes VCOM voltage, and SDTO1-2, DZF1-2 pins output “L”,  
but register values are not initialized. When MCLK, LRCK or BICK are input again, the AK4627 is powered up. After  
exiting reset following power-up, the ADC enters initializing cycle. Therefore, SDTO1-2 output data is not stable in 516x  
LRCK cycle. After exiting reset following power-up, the DAC enters initializing cycle. The analog output becomes  
VCOM voltage during this initializing cycle. Figure 19 shows the reset sequence by clock stop.  
RSTN bit  
Clock In  
MCLK, BICK, LRCK  
CLK Stop  
(1)  
516/fs  
ADC Internal  
State  
Normal Operation  
Power-down  
Power-down  
Init Cycle  
512/fs  
Normal Operation  
(2)  
DAC Internal  
State  
Normal Operation  
GD  
Init Cycle  
Normal Operation  
GD  
(3)  
ADC In  
(Analog)  
(4)  
ADC Out  
(Digital)  
(5)  
“0”data  
DAC In  
(Digital)  
“0”data  
(3)  
GD  
GD  
(6)  
(7)  
(6)  
DAC Out  
(Analog)  
1011/fs (10)  
DZF1/DZF2  
External  
Mute  
(8)  
Mute ON  
Notes:  
(1) The analog section of the ADC is initialized after exiting reset state.  
(2) The analog section of the DAC is initialized after exiting reset state.  
(3) The Digital output corresponding to a specific analog input, and the analog ouput corresponding to a specific digital  
input have group delay (GD).  
(4) ADC output is “0” data during reset.  
(5) Click noise occurs at the end of initilizing cycle of the ADC. Mute the digital output if click noise influences  
systemapplications.  
(6) Click noise occurs within 20usec from MCLK, LRCK or BICK stop/start.  
(7) DZF1-2 pins output “L” during reset.  
(8) Mute the analog output externally if click noise (6) influences system applications.  
Figure 18. Reset 2 Sequence Example  
MS1278-E-02  
2012/03  
- 28 -  
[AK4627]  
ADC partial Power-Down Function  
All of the ADCs can be powered-down individually by PDAD2-1 bits. The analog part and the digital part of the ADC are  
in power-down mode when the PDAD2-1 bits = “1”. The analog section of ADCs are initialized after exiting the  
power-down state. Digital outputs corresponding to analog inputs have group delay (GD). ADC outputs “0” data in  
power-down state. Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the  
click noise influences system applications. Figure 19 shows the power-down and power-up sequences by PDAD2-1 bits.  
PDAD2-1 bit  
Power Down Channel  
ADCDigital  
Normal Operation  
Power-down  
Power-down  
Power-down  
Normal Operation  
516/fs (1)  
Init Cycle  
Normal Operation  
Internal State  
516/fs (1)  
Init Cycle  
ADC Analog  
Internal State  
Normal Operation  
GD  
Normal Operation Power-down  
Normal Operation  
(2)  
GD  
(2)  
ADC In  
(Analog)  
(3)  
“0”data  
ADC Out  
(Digital)  
(4)  
(4)  
Normal Operation Channel  
(2)  
(2)  
GD  
GD  
ADC In  
(Analog)  
(3)  
“0”data  
ADC Out  
(Digital)  
Clock In  
MCLK,LRCK,SCLK  
Note:  
(1) The analog part of the ADC is initialized after exiting reset state.  
(2) Analog outputs corresponding to the digital inputs have group delay (GD).  
(3) ADC outputs “0” data in power-down state.  
(4) Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise  
influences system applications.  
Figure 19. ADC partial power-down example  
MS1278-E-02  
2012/03  
- 29 -  
 
[AK4627]  
DAC partial Power-Down Function  
All DACs of AK4627 can be powered-down individually by PDDA1-3 bits. The analog part of DAC is in power-down  
mode by PDDA1-3 bits = “1”, however, the digital part is not powered-down. Even if all DACs were set in power-down  
mode by the partial power-down bits, the digital part continues an operation. The analog output channels which are  
powered-down by PDDA1-3 bits are fixed to the VCOM voltage. Although DZF detection is in operation, DZF detection  
results of these analog output channels are not reflected to DZF1-2 pins. Some click noise occurs in both set-up and  
release of power-down. Mute the analog output externally or set PDDA1-3 bits when PWDAN bit = “0” or RSTN bit =  
“0”, if click noise aversely affects system performance. Figure 20 shows the power-down/up sequences by PDDA1-3 bits.  
PDDA1-3 bit  
Power Down Channel  
DAC Digital  
Normal Operation  
Internal State  
DAC Analog  
Internal State  
Normal Operation  
Power-down  
Normal Operation  
“0”data  
Power-down  
NormalOperation  
GD  
DAC In  
(Digital)  
(1)  
GD  
(3)  
(2)  
(3)  
(3)  
(3)  
(2)  
(4)  
DAC Out  
(Analog)  
8192/fs  
DZF Detect  
Internal State  
(4)  
Normal Operation Channel  
DAC In  
(Digital)  
“0”data  
GD  
GD  
DAC Out  
(Analog)  
8192/fs  
DZF Detect  
Internal State  
Clock In  
MCLK,LRCK,SCLK  
(5)  
(6)  
DZF1/DZF2  
Notes:  
(1) Digital outputs corresponding to analog inputs and analog outputs corresponding to digital inputs have group delay  
(GD).  
(2) Analog outputs of the DAC when powered down by PDDA1-3 bits = “1” are fixed to the VCOM voltage.  
(3) Immediately after PDDA1-3 bits are changed, a click noise occurs at the output of the channel which is changed by  
the own PDDA bits.  
(4) Although DZF detection is in operation, DZF detection results of powered-down DAC analog output channels are  
not reflected to DZF1-2 pins.  
(5) DZF detection of the DAC which is in power-down mode is ignored, and DZF1-2 pins become “H”.  
(6) When signal is input to a DAC, even if other DACs are powered-down by partial power-down by PDDA bits,  
DXF1-2 pins do not become “H”. Mute the analog output externally if the click noise influences system  
applications.  
Figure 20. DAC partial power-down example  
MS1278-E-02  
2012/03  
- 30 -  
 
[AK4627]  
Serial Control Interface  
The AK4627’s functions are controlled through registers. The registers may be written by two types of control modes.  
The chip address is determined by the state of the CAD0 and CAD1 inputs. The PDN pin = “L” initializes the registers to  
their default values. Writing “0” to the RSTN bit can initialize the internal timing circuit but the register data will not be  
initialized. When the PS pin state is changed, the AK4627 should be reset by the PDN pin.  
* Writing to control register is invalid when the PDN pin = “L”.  
(1) 3-wire Serial Control Mode (I2C pin= “L”)  
Internal registers may be written through the 3 wire µP interface pins (CSN, CCLK and CDTI). The data on this  
interface consists of Chip address (2bits, CAD0/1), Read/Write (1bit, Fixed to “1”, Write only), Register address  
(MSB first, 5bits) and Control data (MSB first, 8bits). Address and data is clocked in on the rising edge of CCLK  
and data is clocked out on the falling edge. For write operations, data is latched after a low-to-high transition of  
CSN. The clock speed of CCLK is 5MHz(max).  
* The AK4627 does not support read commands in 3wire serial control mode.  
CSN  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CCLK  
CDTI  
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
C1-C0: Chip Address (C1=CAD1, C0=CAD0)  
R/W: Read/Write (Fixed to “1”, Write only)  
A4-A0: Register Address  
D7-D0: Control Data  
Figure 21. 3-wire Serial Control I/F Timing  
MS1278-E-02  
2012/03  
- 31 -  
[AK4627]  
(2) I2C-bus Control Mode (I2C pin= “H”)  
The AK4627 supports the fast-mode I2C-bus (max: 400kHz).  
1. WRITE Operations  
Figure 22 shows the data transfer sequence in I2C-bus mode. All commands are preceded by a START condition. A  
HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 28). After the  
START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit which is a data  
direction bit (R/W) (Figure 23). The most significant five bits of the slave address are fixed as “00100”. The next  
two bits are CAD1 and CAD0 (device address bits). These two bits identify the specific device on the bus. The  
hard-wired input pins (CAD1 pin and CAD0 pin) set these device address bits. If the slave address matches that of  
the AK4627, the AK4627 generates an acknowledge and the operation is executed. R/W bit = “1” indicates that the  
read operation is to be executed. “0” indicates that the write operation is to be executed.  
The second byte consists of the address for control registers of the AK4627. The format is MSB first, and those most  
significant 3-bits are fixed to zeros (Figure 24). Those data after the second byte contain control data. The format is  
MSB first, 8bits (Figure 25). The AK4627 generates an acknowledge after each byte has been received. A data  
transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA  
line while SCL is HIGH defines a STOP condition (Figure 28).  
The AK4627 is capable of more than one byte write operation by one sequence. After receipt of the third byte, the  
AK4627 generates an acknowledge, and awaits the next data again. The master can transmit more than one byte  
instead of terminating the write cycle after the first data byte is transferred. After the receipt of each data, the internal  
5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address  
exceed 0DH prior to generating a stop condition, the address counter will “roll over” to 00H and the previous data  
will be overwritten.  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only be changed when the clock signal on the SCL line is LOW (Figure 30) except for the START and the  
STOP condition.  
S
S
T
O
P
T
A
R
T
R/W  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 22. Data transfer sequence at the I2C-bus mode  
0
0
0
1
0
0
CAD1 CAD0  
R/W  
(Those CAD1/0 should match with CAD1/0 pins)  
Figure 23. The first byte  
0
0
A4  
A3  
A2  
D2  
A1  
D1  
A0  
D0  
Figure 24. The second byte  
D7  
D6  
D5  
D4  
D3  
Figure 25. Byte structure after the second byte  
MS1278-E-02  
2012/03  
- 32 -  
 
[AK4627]  
2. READ Operations  
Set the R/W bit = “1” for the READ operation of the AK4627. After transmission of data, the master can read the next  
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word.  
After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is  
automatically taken into the next address. If the address exceeds 16H prior to generating stop condition, the address  
counter will “roll over” to 00H and the data of 00H will be read out.  
The AK4627 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.  
2-1. CURRENT ADDRESS READ  
The AK4627 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would  
access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4627 generates an  
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4627  
ceases transmission.  
S
S
T
O
P
T
A
R
T
R/W="1"  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 26. CURRENT ADDRESS READ  
2-2. RANDOM ADDRESS READ  
The random read operation allows the master to access any memory location at random. Prior to issuing a slave address  
with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave  
address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master  
immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4627 then generates an  
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an  
acknowledge but generates a stop condition instead, the AK4627 ceases transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 27. RANDOM ADDRESS READ  
MS1278-E-02  
2012/03  
- 33 -  
[AK4627]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 28. START and STOP conditions  
DATA  
OUTPUT BY  
MASTER  
not acknowledge  
DATA  
OUTPUT BY  
SLAVE(AK4529)  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 29. Acknowledge on the I2C-bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 30. Bit transfer on the I2C-bus  
MS1278-E-02  
2012/03  
- 34 -  
 
[AK4627]  
Mapping of Program Registers  
Addr Register Name  
00H Control 1  
01H Control 2  
02H LOUT1 Volume Control  
03H ROUT1 Volume Control  
04H LOUT2 Volume Control  
05H ROUT2 Volume Control  
06H LOUT3 Volume Control  
07H ROUT3 Volume Control  
08H De-emphasis  
D7  
0
0
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
0
D6  
0
D5  
TDM1  
LOOP1 LOOP0  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
D4  
TDM0  
D3  
DIF1  
0
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
D2  
DIF0  
D1  
0
D0  
SMUTE  
0
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
DEMC0  
DFS1  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
1
DFS0  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ACKS  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
DEMC1  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
DEMA1 DEMA0 DEMB1 DEMB0  
09H ATT speed  
0
0
ATS1 ATS0 PDDA3 PDDA2  
PDDA1  
RSTN  
& Power Down Control  
0AH Zero detect  
0DH Power Down Control  
0
0
DZFM3 DZFM2 DZFM1 DZFM0 PWVRN PWADN PWDAN  
PDAD2 PDAD1  
0
0
0
0
0
Note: For addresses 0BH, 0CH, 0EH and 0FH, data must not be written.  
When the PDN goes to “L”, the registers are initialized to their default values.  
When RSTN bit goes to “0”, the internal timing is reset and DZF1-2 pins go to “H”, but registers are not initialized  
to their default values.  
SMUTE and DFS0 bits are ORed with pins.  
MS1278-E-02  
2012/03  
- 35 -  
[AK4627]  
Register Definitions  
Addr Register Name  
00H Control 1  
Default  
D7  
0
0
D6  
0
0
D5  
D4  
D3  
DIF1  
1
D2  
DIF0  
0
D1  
0
0
D0  
SMUTE  
0
TDM1 TDM0  
0
0
SMUTE: Soft Mute Enable  
0: Normal operation  
1: All DAC outputs soft-muted  
Register bit of SMUTE is ORed with the SMUTE pin when the PS pin= “L”.  
DIF1-0: Audio Data Interface Modes (Table 8, Table 9, Table 10)  
Initial: “10”, mode 2  
TDM1-0: TDM Format Select (Table 8, Table 9, Table 10)  
Mode  
TDM1  
TDM0  
Data Output  
Pins  
Data Input  
Pins  
Sampling Speed  
0
1
2
3
0
0
1
1
0
1
0
1
SDTO1-2  
SDTO1  
-
SDTI1-3  
SDTI1  
-
Normal, Double, Quad Speed  
Normal Speed  
N/A  
SDTO1  
SDTI1-2  
Normal, Double Speed  
(N/A: Not Available)  
MS1278-E-02  
2012/03  
- 36 -  
[AK4627]  
Addr Register Name  
01H Control 2  
Default  
D7  
0
0
D6  
D5  
D4  
D3  
0
0
D2  
DFS0  
0
D1  
ACKS  
0
D0  
0
0
DFS1 LOOP1 LOOP0  
0
0
0
ACKS: Master Clock Frequency Auto Setting Mode Enable  
0: Disable, Manual Setting Mode  
1: Enable, Auto Setting Mode  
Master clock frequency is detected automatically at ACKS bit “1”. In this case, the settings of DFS bits  
are ignored. When this bit is “0”, DFS0 and DFS1 bits set the sampling speed mode.  
DFS1-0: Sampling speed mode (Table 1)  
Register bit of DFS0 is ORed with DFS0 pin when the PS pin= “L”.  
The settings of DFS bits are ignored at ACKS bit “1”.  
LOOP1-0: Loopback mode enable  
00: Normal (No loop back)  
01: LIN1 LOUT1, LOUT2, LOUT3  
RIN1 ROUT1, ROUT2, ROUT3  
The digital ADC output is connected to the digital DAC input. In this mode, the input DAC data to  
SDTI1-3 is ignored. In loopback mode, the actual audio format is forced to mode2 when the SDTO  
audio format setting is for mode0/1/2, and the actual audio format is forced to mode3 when the setting  
is for mode3. (Table 8)  
10: SDTI1(L) SDTI2(L), SDTI3(L)  
SDTI1(R) SDTI2(R), SDTI3(R)  
In this mode the input DAC data to SDTI2-3 is ignored.  
11: LIN2 LOUT1, LOUT2, LOUT3  
RIN2 ROUT1, ROUT2, ROUT3  
The digital ADC output is connected to the digital DAC input. In this mode, the input DAC data to  
SDTI1-3 is ignored. In loopback mode, the actual audio format is forced to mode2 when the SDTO  
audio format setting is for mode0/1/2, and the actual audio format is forced to mode3 when the setting  
is for mode3. (Table 8)  
MS1278-E-02  
2012/03  
- 37 -  
[AK4627]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
02H LOUT1 Volume Control  
03H ROUT1 Volume Control  
04H LOUT2 Volume Control  
05H ROUT2 Volume Control  
06H LOUT3 Volume Control  
07H ROUT3 Volume Control  
Default  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
0
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
0
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
0
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
0
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
0
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
0
0
0
ATT7-0: Attenuation Level (Table 12)  
Addr Register Name  
08H De-emphasis  
Default  
D7  
0
0
D6  
1
1
D5  
D4  
D3  
D2  
D1  
D0  
DEMA1 DEMA0 DEMB1 DEMB0 DEMC1 DEMC0  
0
1
0
1
0
1
DEMA1-0: De-emphasis response control for DAC1 data on SDTI1 (Table 7)  
Initial: “01”, OFF  
DEMB1-0: De-emphasis response control for DAC2 data on SDTI2 (Table 7)  
Initial: “01”, OFF  
DEMC1-0: De-emphasis response control for DAC3 data on SDTI3 (Table 7)  
Initial: “01”, OFF  
MS1278-E-02  
2012/03  
- 38 -  
[AK4627]  
Addr Register Name  
09H ATT speed  
D7  
0
D6  
0
D5  
ATS1  
0
D4  
ATS0  
0
D3  
PDDA3  
0
D2  
PDDA2  
0
D1  
PDDA1  
0
D0  
RSTN  
1
& Power Down Control  
Default  
0
0
RSTN: Internal timing reset  
0: Reset. DZF1-2 pins go to “H”, but registers are not initialized.  
1: Normal operation  
ATS1-0: Digital attenuator transition time setting (Table 13)  
Initial: “00”, mode 0  
PDDA3-1: Power-down control (0: Power-up, 1: Power-down)  
PDDA1: Power down control of DAC1  
PDDA2: Power down control of DAC2  
PDDA3: Power down control of DAC3  
Addr Register Name  
0AH Zero detect  
Default  
D7  
0
0
D6  
DZFM3  
0
D5  
DZFM2  
1
D4  
DZFM1  
1
D3  
D2  
D1  
D0  
PWDAN  
1
DZFM0 PWVRN PWADN  
1
1
1
PWDAN: Power-down control of DAC1-3  
0: Power-down  
1: Normal operation  
PWADN: Power-down control of ADC  
0: Power-down  
1: Normal operation  
PWVRN: Power-down control of reference voltage  
0: Power-down  
1: Normal operation  
DZFM3-0: Zero detect mode select (Table 11)  
Initial: “0111”, disable  
Addr Register Name  
0DH Power Down Control  
Default  
D7  
0
0
D6  
0
0
D5  
0
0
D4  
0
0
D3  
0
0
D2  
0
0
D1  
D0  
PDAD2 PDAD1  
0
0
PDAD2-1: Power-down control (0: Power-up, 1: Power-down)  
PDAD1: Power down control of ADC1  
PDAD2: Power down control of ADC2  
MS1278-E-02  
2012/03  
- 39 -  
[AK4627]  
SYSTEM DESIGN  
Figure 31 shows the system connection diagram. An evaluation board is available which demonstrates application  
circuits, the optimum layout, power supply arrangements and measurement results.  
Condition: TVDD=5V, 3-wire serial control mode, CAD1-0 = “00”  
Analog 5V  
+
10u  
MUTE  
2.2u  
+
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
0.1u  
0.1u  
26 25  
36 35 34 33 32 31 30 29 28 27  
2.2u  
TST5  
RIN2-  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
TST4  
TST2  
RIN2+/RIN2  
39 LIN2-  
I2C/TST6  
DFS0  
40  
41  
42  
43  
44  
LIN2+/LIN2  
RIN1-  
TST3  
RIN1+/RIN1  
LIN1-  
AK4627  
SDTI3  
SDTI2  
SDTI1  
Audio  
DSP  
LIN1+/LIN1  
45  
46  
47  
48  
TST1  
SGL  
LRCK  
BICK  
DZFE  
SMUTE  
MCLK  
1
2
3
4
5
6
7
9 10  
11 12  
8
Digital  
Audio  
Source  
0.1u  
10u  
(DIR)  
+
Power-down  
control  
5
uP  
Analog Ground  
Digital Ground  
Figure 31. Typical Connection Diagram  
MS1278-E-02  
2012/03  
- 40 -  
 
[AK4627]  
Digital Ground  
Analog Ground  
DZF2 36  
1
CAD0  
CAD1  
35  
34  
33  
32  
31  
30  
29  
28  
DZF1  
VSS2  
2
3
System  
Controller  
P/S  
AVDD  
VREFH  
VCOM  
4
SDTO1  
5
SDTO2  
AK4627  
6
TVDD  
ROUT1  
LOUT1  
ROUT2  
7
DVDD  
8
VSS1  
9
TDM0/SDA/CDTI  
DIF1/SCL/CCLK  
LOUT2 27  
ROUT3 26  
LOUT3 25  
10  
11 DIF0/CSN  
PDN  
12  
Figure 32. Ground Layout  
Note: VSS1 and VSS2 must be connected to the same analog ground plane.  
1. Grounding and Power Supply Decoupling  
The AK4627 requires careful attention to power supply and grounding arrangements. AVDD and DVDD are usually  
supplied from analog supply in system. Alternatively if AVDD and DVDD are supplied separately, the power up  
sequence is not critical. VSS1 and VSS2 of the AK4627 must be connected to analog ground plane. System analog  
ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit  
board. Decoupling capacitors should be as near to the AK4627 as possible, with the small value ceramic capacitor being  
the nearest.  
2. Voltage Reference Inputs  
The voltage of VREFH sets the analog input/output range. The VREFH pin is normally connected to the AVDD pin with  
a 0.1µF ceramic capacitor in between the VSS2 pin. VCOM is a signal ground of this chip. A 2.2µF electrolytic capacitor  
in parallel with a 0.1µF ceramic capacitor attached to between the VCOM and VSS2 pins eliminates the effects of high  
frequency noise. No load current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away  
from the VREFH and VCOM pins in order to avoid unwanted coupling into the AK4627.  
3. Analog Inputs  
The ADC inputs correspond to single-ended and differential which able to select by the SGL pin. When the inputs are  
single-ended, the signal is internally biased to the common voltage (AVDD1x1/2) with 14kΩ(typ) resistance. The input  
signal range scales with the supply voltage and nominally 0.68xVREFH Vpp (typ) @fs=48kHz. When the inputs are  
differential, the signal is internally biased to the common voltage (AVDD2x1/2) with 32kΩ(typ) resistance. The input  
signal range between LIN(RIN)+ and LIN(RIN)scales with the supply voltage and nominally ±0.68xVREFH Vpp (typ)  
@fs=48kHz .The ADC output data format is 2’s complement. The internal HPF removes the DC offset.  
The AK4627 samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples of  
the sampling frequency of analog inputs. The AK4627 includes an anti-aliasing filter (RC filter) to attenuate a noise  
around the sampling frequency of analog inputs.  
MS1278-E-02  
2012/03  
- 41 -  
[AK4627]  
4. Analog Outputs  
The analog outputs are also single-ended and centered around the VCOM voltage. The input signal range scales with the  
supply voltage and nominally 0.6 x VREFH Vpp. The DAC input data format is 2’s complement. The output voltage is a  
positive full scale for 7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM  
voltage for 000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma  
modulator of DAC beyond the audio passband.  
DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV.  
5. External Analog Inputs Circuit  
Figure 33 shows the input buffer circuit example 3. The input level of this circuit is ±3.4Vpp.  
Analog In  
3.4Vpp  
AIN+  
+
2.2uF  
50%  
-
AK4627  
Analog In  
3.4Vpp  
AIN-  
+50%  
-
2.2uF  
Figure 33. Input buffer circuit example 1 (AC coupled differential input)  
Figure 34 shows the input buffer circuit example 3. The input level of this circuit is 3.4Vpp.  
Analog In  
3.4Vpp  
AIN+  
+ 50%  
2.2uF  
-
AK4627  
AIN-  
Open  
Figure 34. Input buffer circuit example 2 (AC coupled single-ended input)  
MS1278-E-02  
2012/03  
- 42 -  
 
[AK4627]  
6. Peripheral I/F Example  
The AK4627 supports signals from external devices which are operated on 3.3V power supplies for TTL inputs. The  
power supply for output buffer (TVDD) should be 3.3V when those external devices are connected. Figure 35 shows an  
I/F example when 3.3V and 5V power supply devices are used.  
5V for input  
3.3V Analog  
3.3V Digital  
Audio signal  
PLL  
I/F  
DSP  
AK4113  
3.3V for output  
5V Analog  
5V Digital  
uP &  
Others  
Analog Digital  
Control signal  
AK4627  
Figure 35. Power Supply Connection Example  
MS1278-E-02  
2012/03  
- 43 -  
 
[AK4627]  
PACKAGE  
48pin LQFP(Unit: mm)  
1.70Max  
9.0  
7.0  
0.13 ± 0.13  
1.40 ± 0.05  
36  
25  
37  
24  
13  
48  
1
12  
0.09 0.20  
0.5  
0.22 ± 0.08  
0.10  
M
10°  
S
0.10 S  
0.30 ~ 0.75  
Package & Lead frame material  
Package molding compound:  
Lead frame material:  
Epoxy  
Cu  
Lead frame surface treatment:  
Solder (Pb free) plate  
MS1278-E-02  
2012/03  
- 44 -  
[AK4627]  
MARKING  
AK4627VQ  
XXXXXXX  
1
1) Pin #1 indication  
2) Date Code: XXXXXXX(7 digits)  
3) Marking Code: AK4627VQ  
4) Asahi Kasei Logo  
REVISION HISTORY  
Date (YY/MM/DD) Revision Reason  
Page  
7
Contents  
11/01/26  
11/08/29  
00  
01  
First Edition  
Specification  
Change  
ANALOG CHARACTERISTICS  
ADC Analog Input Characteristics (Single-ended Inputs)  
S/(N+D), fs=48kHz: 92 96dB (typ)  
fs=96kHz: 86 92dB (typ)  
DR, fs=96kHz: 96 99dB (typ)  
fs=96kHz, A-weighted: 102 105dB (typ)  
S/N: fs=96kHz: 96 99dB (typ)  
fs=96kHz, A-wieghted: 102 105dB (typ)  
ADC Analog Input Characteristics (Differential Inputs)  
S/(N+D), fs=48kHz: 92 96dB (typ)  
fs=96kHz: 86 94dB (typ)  
DR, fs=96kHz: 97 100dB (typ)  
fs=96kHz, A-weighted: 103 106dB (typ)  
S/N: fs=96kHz: 97 100dB (typ)  
fs=96kHz, A-wieghted: 103 106dB (typ)  
DAC Analog Output Characteristics  
S/(N+D), fs=48kHz: 90 98dB (typ)  
fs=96kHz: 88 98dB (typ)  
8
fs=192kHz: 88 98dB (typ)  
MS1278-E-02  
2012/03  
- 45 -  
[AK4627]  
Date (Y/M/D)  
12/03/07  
Revision Reason  
Page  
3
Contents  
Ordering Guide  
02  
Error  
Correction  
AK4627 AK4627VQ  
9
DC CHARACTERISTICS  
High-level Output Voltage Condition:  
SDTO1-2, LRCK, BICK pins SDTO1-2 pins  
Low-level Output Voltage Condition:  
SDTO1-2, LRCK, BICK, DZF1, DZF2 pins  
SDTO1-2, DZF1, DZF2 pins  
IMPORTANT NOTICE  
z These products and their specifications are subject to change without notice.  
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei  
Microdevices Corporation (AKM) or authorized distributors as to current status of the products.  
z Descriptions of external circuits, application circuits, software and other related information contained in this  
document are provided only to illustrate the operation and application examples of the semiconductor products. You  
are fully responsible for the incorporation of these external circuits, application circuits, software and other related  
information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third  
parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent,  
intellectual property, or other rights in the application or use of such information contained herein.  
z Any export of these products, or devices or systems containing them, may require an export license or other official  
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,  
or strategic materials.  
z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or  
other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use  
approved with the express written consent by Representative Director of AKM. As used here:  
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and  
which must therefore meet very high standards of performance and reliability.  
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety  
or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or  
perform may reasonably be expected to result in loss of life or in significant injury or damage to person or  
property.  
z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places  
the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer  
or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all  
claims arising from the use of said product in the absence of such notification.  
MS1278-E-02  
2012/03  
- 46 -  

相关型号:

AKD4627-A

Evaluation board Rev.0 for AK4627
AKM

AKD4628

Evaluation board Rev.B for AK4628
AKM

AKD4628A-B

single chip CODEC that includes two channels of ADC and eight channels of DAC.
AKM

AKD4629

High Performance Multi-channel Audio CODEC
AKM

AKD4629-A

Evaluation board Rev.1 for AK4629
AKM

AKD4631

16-Bit ツヒ Mono CODEC with ALC & MIC/SPK-AMP
AKM

AKD4631-VN

16bit mono CODEC with MIC/SPK amplifier.
AKM

AKD4632

16-Bit ΔΣ Mono CODEC with ALC & MIC/SPK/Video-AMP
AKM

AKD4632-A

AK4632 Evaluation board Rev.0
AKM

AKD4633

16-Bit Mono CODEC with ALC & MIC/SPK-AMP
AKM

AKD4633-A

16bit mono CODEC with MIC/SPK amplifier.
AKM

AKD4634

16-Bit Mono CODEC with ALC & MIC/SPK-AMP
AKM