AKD4671 [AKM]

Stereo CODEC with MIC/RCV/HP-AMP; 立体声编解码器与MIC / RCV / HP - AMP
AKD4671
型号: AKD4671
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Stereo CODEC with MIC/RCV/HP-AMP
立体声编解码器与MIC / RCV / HP - AMP

解码器 编解码器
文件: 总164页 (文件大小:1855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK4671]  
AK4671  
Stereo CODEC with MIC/RCV/HP-AMP  
GENERAL DESCRIPTION  
The AK4671 is a stereo CODEC with a built-in Microphone-Amplifier, Receiver-Amplifier and  
Headphone-Amplifier. The AK4671 features dual PCM I/F in addition to audio I/F that allows easy  
interfacing in mobile phone designs with Bluetooth I/F. The AK4671 is available in a 57pin BGA, utilizing  
less board space than competitive offerings.  
FEATURES  
1. Recording Function (Stereo CODEC)  
4 Stereo Input Selector x 2ch  
4 Stereo Inputs (Single-ended) or 2 Stereo Input (Full-differential)  
MIC Amplifier: +30dB ∼ −12dB, 3dB step  
Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute  
Wind-noise Reduction Filter  
Stereo Separation Emphasis  
5-band Programmable Notch Filter  
Audio Interface Format: 16bit MSB justified, I2S, DSP Mode  
2. Playback Function (Stereo CODEC)  
Digital Volume (+12dB ∼ −115.0dB, 0.5dB Step, Mute)  
Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute  
Stereo Separation Emphasis  
5-band EQ  
Stereo Line Output  
Mono Receiver-Amp  
- BTL Output  
- Output Power: 30mW@32Ω (AVDD=3.3V)  
Stereo Headphone-Amp  
- Output Power: 30mW@16Ω (AVDD=3.3V)  
Analog Mixing: 4 Stereo Input  
Audio Interface Format:  
- 16bit MSB justified, 16bit LSB justified, 16-24bit I2S, DSP Mode  
3. Dual PCM I/F for Baseband & Bluetooth Interface  
Sample Rate Converter (Up sample: up to x6: Down sample: down to x1/6)  
Sample Rate: 8kHz  
Digital Volume  
Audio Interface Format:  
- 16bit Linear, 8bit A-law, 8bit μ-law  
- Short/Long Frame, I2S, MSB justified  
4. 10bit SAR ADC  
3 Input Selector  
5. Power Management  
6. Master Clock:  
(1) PLL Mode  
Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz,  
24MHz, 26MHz, 27MHz (MCKI pin)  
1fs (LRCK pin)  
32fs or 64fs (BICK pin)  
(2) External Clock Mode  
Frequencies: 256fs, 384fs, 512fs, 768fs or 1024fs (MCKI pin)  
7. Output Master Clock Frequencies: 32fs/64fs/128fs/256fs  
8. Sampling Rate (Stereo CODEC):  
MS0666-E-00  
2007/10  
- 1 -  
[AK4671]  
PLL Slave Mode (LRCK pin): 8kHz 48kHz  
PLL Slave Mode (BICK pin): 8kHz 48kHz  
PLL Slave Mode (MCKI pin):  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
PLL Master Mode:  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
EXT Master/Slave Mode:  
8kHz 48kHz (256fs, 384fs), 8kHz 26kHz (512fs, 768fs),  
8kHz 13kHz (1024fs)  
9. μP I/F: 4-wire Serial / I2C Bus (Ver 1.0, 400kHz Fast Mode)  
10. Master/Slave mode  
11. Ta = 30 85°C  
12. Power Supply:  
AVDD, PVDD, SAVDD: 2.2 3.6V  
DVDD, TVDD2, TVDD3: 1.6 3.6V  
13. Package : 57pin BGA (5mm x 5mm, 0.5mm pitch)  
Block Diagram  
SAIN2  
SAVDD  
VSS3  
AVDD  
VSS1  
VCOM  
SAIN1  
SAIN3  
DVDD  
VSS4  
GPO1  
GPO2  
PMSAD  
MDT  
PMMP  
CSN  
MPWR  
A/D  
CCLK/SCL  
CDTI/SDA  
CDTO  
MIC Power  
Supply  
Control  
Register  
MIC-Amp  
PMMICL  
LIN1/IN1+  
RIN1/IN1−  
LIN2/IN2+  
RIN2/IN2−  
PMADL or PMADR  
A/D HPF  
Internal  
MIC  
I2C  
PDN  
PMMICR  
External  
MIC  
PFSEL=0  
PMADL  
or  
PMADR  
HPF  
LPF  
LIN3/IN3+  
RIN3/IN3−  
LIN4/IN4+  
RIN4/IN4−  
PFSEL=1  
PMDAL  
or  
PMDAR  
or  
BICK  
LRCK  
SDTO  
SDTI  
Stereo  
Separation  
Audio  
I/F  
PMSRA  
5-band  
Notch  
ALC  
MIX  
PMDAL  
or  
PMDAR  
SVOLA  
PMLO1  
PMDAL or PMDAR or PMSRA  
LOUT1/RCP  
ROUT1/RCN  
M
I
X
S
E
L
MCKI  
DATT 5-band  
D/A  
SMUTE  
EQ  
Stereo Line Out  
or  
Mono Receiver  
PMRO1  
PMLO2  
MCKO  
PMPLL  
PLL  
VCOC  
PMLO2S  
PMPCM  
VCOCBT  
LOUT2  
PLLBT  
Headphone Out  
PMSRA  
SRC-A  
PMRO2  
PMRO2S  
ROUT2  
MUTET  
BICKA  
SYNCA  
SDTOA  
SDTIA  
SVOLB  
DATT-C  
PCM  
I/F A  
PMSRB  
SRC-B  
PMLO3  
PMRO3  
DATT-B  
LOUT3/LOP  
ROUT3/LON  
BICKB  
SYNCB  
SDTOB  
SDTIB  
Stereo Line Out  
PCM  
I/F B  
BVOL  
PVDD  
VSS2  
TVDD2  
TVDD3  
Figure 1. Block Diagram  
MS0666-E-00  
2007/10  
- 2 -  
[AK4671]  
Ordering Guide  
AK4671EG  
AKD4671  
30 +85°C  
57pin BGA (0.5mm pitch)  
Evaluation board for AK4671  
Pin Layout  
9
8
7
6
AK4671  
Top View  
5
4
3
2
1
A
B
C
D
E
F
G
H
J
9
8
7
6
5
4
3
2
1
TEST  
AVDD  
LOUT2  
VSS1  
ROUT2  
MUTET  
VCOM  
VCOC  
VCOCBT  
PVDD  
VSS2  
SDTOA  
BICKA  
SYNCA  
GPO2  
SDTIA  
DVDD  
CDTI  
/SDA  
TVDD2  
LOUT1  
/RCP  
ROUT3  
/LON  
RIN4  
/IN4−  
ROUT1  
/RCN  
LOUT3  
/LOP  
VSS4  
CCLK  
/SCL  
CSN  
/CAD0  
LIN4  
/IN4+  
Top View  
I2C  
MCKI  
PDN  
BICK  
MCKO  
LRCK  
RIN3  
/IN3−  
RIN2  
/IN2−  
RIN1  
/IN1−  
LIN3  
/IN3+  
LIN2  
/IN2+  
NC  
LIN1  
/IN1+  
SAIN2  
SAIN3  
C
SAVDD  
SAIN1  
D
TVDD3  
VSS3  
E
SDTOB  
SYNCB  
F
BICKB  
SDTIB  
G
SDTO  
SDTI  
H
CDTO  
GPO1  
J
MDT  
A
MPWR  
B
MS0666-E-00  
2007/10  
- 3 -  
[AK4671]  
PIN/FUNCTION  
No. Pin Name  
A1 MDT  
I/O  
I
O
I
I
I
Function  
MIC Detection Pin (Internal pull down by 500kΩ)  
MIC Power Supply Pin  
B1 MPWR  
C1 SAIN3  
C2 SAIN2  
D1 SAIN1  
D2 SAVDD  
E1 VSS3  
10bit SAR ADC Analog Input 3 Pin  
10bit SAR ADC Analog Input 2 Pin  
10bit SAR ADC Analog Input 1 Pin  
10bit SAR ADC Power Supply Pin, 2.2 3.6V  
Ground 3 Pin  
-
-
E2 TVDD3  
F2 SDTOB  
F1 SYNCB  
G2 BICKB  
G1 SDTIB  
H1 SDTI  
-
O
Digital I/O Power Supply 3 Pin, 1.6 3.6V  
Serial Data Output B Pin  
I/O Sync Signal B Pin  
I/O Serial Data Clock B Pin  
I
I
Serial Data Input B Pin  
Audio Serial Data Input Pin  
J1 GPO1  
O
General Purpose Output 1 Pin  
Control Data Output Pin (I2C pin = “L”: 4-wire Serial Mode)  
Hi-Z (I2C pin = “H”: I2C Bus Mode)  
Audio Serial Data Output Pin  
J2 CDTO  
H2 SDTO  
O
O
Power-Down Mode Pin  
H3 PDN  
I
“H”: Power-up, “L”: Power-down, reset and initializes the control register.  
“L” time of 150ns or more after power-up is needed to reset the AK4671.  
J3 LRCK  
H4 MCKI  
J4 MCKO  
I/O Input / Output Channel Clock Pin  
I
External Master Clock Input Pin  
Master Clock Output Pin  
O
Control Mode Select Pin  
H5 I2C  
I
“H”: I2C Bus, “L”: 4-wire Serial  
J5 BICK  
I/O Audio Serial Data Clock Pin  
CSN  
CAD0  
CCLK  
SCL  
I
I
I
I
-
-
I
Chip Select Pin (I2C pin = “L”: 4-wire Serial Mode)  
Chip Address 0 Select Pin (I2C pin = “H”: I2C Bus Mode)  
Control Data Clock Pin (I2C pin = “L”: 4-wire Serial Mode)  
Control Data Clock Pin (I2C pin = “H”: I2C Bus Mode)  
Ground 4 Pin  
J6  
H6  
H7 VSS4  
J7 DVDD  
Digital Power Supply Pin, 1.6 3.6V  
CDTI  
SDA  
Control Data Input Pin (I2C pin = “L”: 4-wire Serial Mode)  
H8  
I/O Control Data Input Pin (I2C pin = “H”: I2C Bus Mode)  
J9 GPO2  
O
General Purpose Output 2 Pin  
MS0666-E-00  
2007/10  
- 4 -  
[AK4671]  
No. Pin Name  
J8 SDTIA  
G8 BICKA  
H9 SYNCA  
G9 SDTOA  
F8 TVDD2  
F9 VSS2  
I/O  
I
Function  
Serial Data Input A Pin  
I/O Serial Data Clock A Pin  
I/O Sync Signal A Pin  
O
-
Serial Data Output A Pin  
Digital I/O Power Supply 2 Pin, 1.6 3.6V  
Ground 2 Pin  
-
E8 PVDD  
-
PLLBT Power Supply Pin, 2.2 3.6V  
Output Pin for Loop Filter of PLLBT Circuit  
This pin should be connected to VSS2 pin with one resistor and capacitor in series.  
Output Pin for Loop Filter of PLL Circuit  
This pin should be connected to VSS1 pin with one resistor and capacitor in series.  
Common Voltage Output Pin, 0.5 x AVDD  
Bias voltage of ADC inputs and DAC outputs.  
Mute Time Constant Control Pin  
Connected to VSS1 pin with a capacitor for mute time constant.  
E9 VCOCBT  
D8 VCOC  
D9 VCOM  
O
O
O
O
MUTET  
C8  
C9 ROUT2  
B9 LOUT2  
O
O
Rch Headphone-Amp Output Pin  
Lch Headphone-Amp Output Pin  
Test Pin  
This pin should be open.  
A9 TEST  
-
A8 AVDD  
B8 VSS1  
-
-
Analog Power Supply Pin, 2.2 3.6V  
Ground 1 Pin  
ROUT1  
RCN  
LOUT1  
RCP  
ROUT3  
LON  
LOUT3  
LOP  
RIN4  
IN4−  
LIN4  
IN4+  
RIN3  
IN3−  
LIN3  
IN3+  
RIN2  
IN2−  
LIN2  
IN2+  
RIN1  
IN1−  
LIN1  
IN1+  
O
O
O
O
O
O
O
O
I
I
I
I
I
I
I
I
I
I
I
I
I
Rch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output)  
Receiver-Amp Negative Output Pin (RCV bit = “1”: Receiver Output)  
Lch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output)  
Receiver-Amp Positive Output Pin (RCV bit = “1”: Receiver Output)  
Rch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output)  
Negative Line Output Pin (LODIF bit = “1”: Full-differential Mono Output)  
Lch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output)  
Positive Line Output Pin (LODIF bit = “1”: Full-differential Mono Output)  
Rch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input)  
Negative Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input)  
Lch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input)  
Positive Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input)  
Rch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input)  
Negative Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input)  
Lch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input)  
Positive Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input)  
Rch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input)  
Negative Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input)  
Lch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input)  
Positive Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input)  
Rch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input)  
Negative Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input)  
Lch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input)  
Positive Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input)  
No Connect Pin  
B7  
A7  
A6  
B6  
A5  
B5  
B4  
A4  
B3  
A3  
B2  
I
I
I
A2  
C3 NC  
-
No internal bonding. This pin should be open or connected to the ground.  
Note 1. All input pins except analog input pins (MDT, LIN1/IN1+, RIN1/IN1, LIN2/IN2+, RIN2/IN2, LIN3/IN3+,  
RIN3/IN3, LIN4/IN4+, RIN4/IN4, SAIN1, SAIN2, SAIN3) should not be left floating.  
I/O pins except SDA pin (LRCK, BICK, SYNCA, BICKA, SYNCB, BICKB) should be processed appropriately.  
Please refer the “Master Mode/Slave Mode” (P.45) and “PCM I/F Master Mode/Slave Mode” (P.105). SDA pin  
should be pulled-up by a resistor externally and be connected to (DVDD+0.3)V or less voltage.  
MS0666-E-00  
2007/10  
- 5 -  
[AK4671]  
Handling of Unused Pin on the System  
The unused I/O pins on the system should be processed appropriately as below.  
Classification  
Analog  
Pin Name  
Setting  
MPWR, MDT, VCOC, ROUT3/LON, LOUT3/LOP,  
ROUT2, LOUT2, MUTET, ROUT1/RCN,  
LOUT1/RCP, RIN4/IN4, LIN4/IN4+, RIN3/IN3,  
LIN3/IN3+, RIN2/IN2, LIN2/IN2+, RIN1/IN1,  
LIN1/IN1+, VCOCBT, SAIN1, SAIN2, SAIN3  
MCKO, SDTOA, SDTOB, GPO1, GPO2, CDTO,  
BICKA, SYNCA, BICKB, SYNCB  
These pins should be open.  
These pins should be open.  
Digital  
MCKI, SDTIA, SDTIB  
These pins should be connected to VSS4.  
MS0666-E-00  
2007/10  
- 6 -  
[AK4671]  
ABSOLUTE MAXIMUM RATINGS  
(VSS1=VSS2=VSS3=VSS4=0V; Note 2, Note 3)  
Parameter  
Power Supplies:  
Symbol  
AVDD  
PVDD  
SAVDD  
DVDD  
TVDD2  
TVDD3  
IIN  
VINA1  
VINA2  
VIND1  
VIND2  
VIND3  
Ta  
min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
-
0.3  
0.3  
0.3  
0.3  
0.3  
30  
65  
max  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
±10  
Units  
V
V
V
V
V
V
mA  
V
V
V
V
V
°C  
°C  
Analog  
PLLBT  
10bit SAR ADC  
Digital  
Digital I/O 2  
Digital I/O 3  
Input Current, Any Pin Except Supplies  
Analog Input Voltage 1 (Note 4)  
Analog Input Voltage 2 (Note 5)  
Digital Input Voltage 1 (Note 6)  
Digital Input Voltage 2 (Note 7)  
Digital Input Voltage 3 (Note 8)  
Ambient Temperature (powered applied)  
Storage Temperature  
AVDD+0.3  
SAVDD+0.3  
DVDD+0.3  
TVDD2+0.3  
TVDD3+0.3  
85  
Tstg  
150  
Note 2. All voltages with respect to ground.  
Note 3. VSS1, VSS2, VSS3 and VSS4 must be connected to the same analog ground plane.  
Note 4. RIN4/IN4, LIN4/IN4+, RIN3/IN3, LIN3/IN3+, RIN2/IN2, LIN2/IN2+, RIN1/IN1, LIN1/IN1+ pins  
Note 5. SAIN1, SAIN2, SAIN3 pins  
Note 6. PDN, I2C, CSN/CAD0, CCLK/SCL, CDTI/SDA, SDTI, LRCK, BICK, MCKI pins  
Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage.  
Note 7. BICKA, SYNCA, SDTIA pins  
Note 8. BICKB, SYNCB, SDTIB pins  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(VSS1=VSS2=VSS3=VSS4=0V; Note 2)  
Parameter  
Power Supplies Analog  
(Note 9) PLLBT  
Symbol  
AVDD  
PVDD  
SAVDD  
DVDD  
TVDD2  
min  
2.2  
2.2  
2.2  
1.6  
1.6  
1.6  
0.1  
typ  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
0
max  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
+0.1  
Units  
V
V
V
V
V
V
V
10bit SAR ADC  
Digital  
Digital I/O 2  
Digital I/O 3  
Difference  
TVDD3  
AVDDPVDD  
Note 2. All voltages with respect to ground.  
Note 9. The power-up sequence between AVDD, PVDD, SAVDD, DVDD, TVDD2 and TVDD3 is not critical.  
The PDN pin should be held to “L” when power-up. The PDN pin should be set to “H” after all power supplies are  
powered-up. The AK4671 should be operated by the recommended power-up/down sequence shown in “System  
Design (Grounding and Power Supply Decoupling)” to avoid pop noise at receiver output, headphone output and  
line output.  
When the power is OFF partially except for DVDD, all power management bits (PMVCM, PMMP, PMMICL,  
PMMICR, PMADL, PMADR, PMDAL, PMDAR, PMPLL, PMLOOPL, PMLOOPR, PMAINL1, PMAINR1,  
PMAINL2, PMAINR2, PMAINL3, PMAINR3, PMAINL4, PMAINR4, PMLO1, PMRO1, PMLO2, PMRO2,  
PMLO2S, PMRO2S, PMLO3, PMRO3, PMSRA, PMSRB, PMPCM, PMSAD) should be “0” or the PDN pin  
should be “L”. DVDD should not be powered OFF while AVDD, PVDD, SAVDD, TVDD2 or TVDD3 is  
powered ON. When only DVDD is OFF, the current of 10mA to 100mA around may occur.  
* AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0666-E-00  
2007/10  
- 7 -  
 
[AK4671]  
ANALOG CHARACTERISTICS (CODEC)  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V;  
Signal Frequency=1kHz; 16bit Data; fs=44.1kHz, BICK=64fs; Measurement frequency=20Hz 20kHz; unless  
otherwise specified)  
Parameter  
min  
typ  
max  
Units  
MIC Amplifier: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins; PMAINL1/R1/L2/R2/L3/R3/L4/R4 bits = “0”  
Input Resistance  
MGNL/R0 bit = “0”  
MGNL/R0 bit = “1”  
28  
20  
42  
30  
56  
40  
kΩ  
kΩ  
Gain (Note 10)  
Max (MGNL/R3-0 bits = “FH”)  
Min (MGNL/R3-0 bits = “1H”)  
-
-
+30  
12  
-
-
dB  
dB  
MIC Power Supply: MPWR pin  
Output Voltage (Note 11)  
Load Resistance  
Load Capacitance  
2.47  
0.5  
-
2.64  
-
-
2.81  
-
30  
V
kΩ  
pF  
MIC Detection: MDT pin  
Comparator Voltage Level (Note 12)  
Internal pull down Resistance  
Stereo ADC Analog Input Characteristics:  
0.247  
750  
0.165  
250  
mV  
kΩ  
500  
LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins Stereo ADC IVOL, IVOL=0dB, ALC=OFF  
Resolution  
-
-
0.176  
1.98  
82  
87  
85  
95  
85  
95  
90  
16  
0.203  
2.28  
-
-
-
-
-
-
-
-
0.8  
0.8  
Bits  
Vpp  
Vpp  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(Note 14)  
(Note 15)  
(Note 14)  
(Note 15)  
(Note 14)  
(Note 15)  
(Note 14)  
(Note 15)  
(Note 14)  
(Note 15)  
(Note 14)  
(Note 15)  
0.150  
Input Voltage (Note 13)  
1.68  
72  
-
75  
-
75  
-
75  
-
S/(N+D) (1dBFS)  
D-Range (60dBFS, A-weighted)  
S/N (A-weighted)  
Interchannel Isolation  
100  
0.1  
0.1  
dB  
dB  
dB  
-
-
Interchannel Gain Mismatch  
Note 10. In case of full-differential input, MGAIN=0dB (min) and AVDD=2.4V (min).  
Note 11. Output voltage is proportional to AVDD voltage. Vout = 0.8 x AVDD (typ).  
Note 12. Comparator Voltage Level is proportional to AVDD voltage. Vth = 0.05 x AVDD(min), 0.075 x AVDD(max).  
Note 13. Input voltage is proportional to AVDD voltage. Vin = 0.053 x AVDD (typ)@MGNL3-0=MGNR3-0 bits =  
“CH” (+21dB), Vin = 0.6 x AVDD(typ)@MGNL3-0=MGNR3-0 bits = “5H” (0dB).  
Note 14. MGNL3-0=MGNR3-0 bits = “CH” (+21dB).  
Note 15. MGNL3-0=MGNR3-0 bits = “5H” (0dB).  
MS0666-E-00  
2007/10  
- 8 -  
 
[AK4671]  
Parameter  
min  
typ  
max  
Units  
Stereo DAC Characteristics:  
Resolution  
-
-
16  
Bits  
Stereo Line Output Characteristics:  
Stereo DAC LOUT1/ROUT1/LOUT3/ROUT3 pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=L3VL=0dB,  
RCV bit = “0”, RL=10kΩ; unless otherwise specified.  
Output Voltage (Note 16)  
S/(N+D) (0dBFS)  
S/N (A-weighted)  
Interchannel Isolation  
Interchannel Gain Mismatch  
Load Resistance  
1.78  
75  
82  
85  
-
1.98  
85  
92  
100  
0.1  
-
2.18  
-
-
-
0.8  
-
Vpp  
dB  
dB  
dB  
dB  
kΩ  
pF  
10  
-
Load Capacitance  
-
30  
Mono Receiver-Amp Output Characteristics:  
Stereo DAC RCP/RCN pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=0dB, RCV bit = “1”, RL=32Ω, BTL;  
unless otherwise specified.  
Output Voltage (Note 17)  
1.76  
-
1.96  
2.77  
2.16  
-
Vpp  
Vpp  
6dBFS, RL=32Ω (Po=15mW)  
3dBFS, RL=32Ω (Po=30mW)  
S/(N+D)  
40  
-
82  
32  
-
60  
20  
92  
-
-
-
-
-
30  
dB  
dB  
dB  
Ω
6dBFS, RL=32Ω (Po=15mW)  
3dBFS, RL=32Ω (Po=30mW)  
S/N (A-weighted)  
Load Resistance  
Load Capacitance (Note 18)  
-
pF  
Headphone-Amp Characteristics: DAC LOUT2/ROUT2 pins, ALC=OFF, IVOL=0dB, OVOL=0dB, HPG=0dB,  
RL=16Ω  
Output Voltage (Note 19)  
0.89  
-
0.99  
1.98  
1.09  
-
Vpp  
Vpp  
6dBFS (Po=7.6mW)  
0dBFS (Po=30mW)  
S/(N+D)  
40  
-
80  
65  
-
16  
-
-
60  
40  
90  
75  
0.1  
-
-
-
-
-
0.8  
-
dB  
dB  
dB  
dB  
dB  
Ω
6dBFS (Po=7.6mW)  
0dBFS (Po=30mW)  
S/N (A-weighted)  
Interchannel Isolation  
Interchannel Gain Mismatch  
Load Resistance  
C1 in Figure 2  
C2 in Figure 2  
-
-
30  
300  
pF  
pF  
Load Capacitance  
Note 16. Output voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ).  
Note 17. Output voltage is proportional to AVDD voltage. Vout = (RCP) (RCN) = 0.59 x AVDD (typ)@6dBFS.  
Note 18. Load Capacitance for VSS1.  
Note 19. Output voltage is proportional to AVDD voltage. Vout = 0.3 x AVDD (typ)@6dBFS.  
MS0666-E-00  
2007/10  
- 9 -  
 
[AK4671]  
HP-Amp  
LOUT2 pin  
ROUT2 pin  
MeasurementPoint  
100μ  
F
16Ω  
C1  
0.22μF  
C2  
10Ω  
Figure 2. Headphone-Amp output circuit  
Parameter  
min  
typ  
max  
Units  
Mono Line Output Characteristics: Stereo DAC LOP/LON pins, ALC=OFF, IVOL=0dB, OVOL=0dB,  
L3VL=0dB, LODIF bit = “1”, RL=10kΩ for each pin (Full-differential)  
Output Voltage (Note 20)  
S/(N+D) (0dBFS)  
S/N (A-weighted)  
Load Resistance (LOP/LON pins, respectively)  
Load Capacitance (LOP/LON pins, respectively)  
(Note 21)  
3.52  
75  
85  
3.96  
85  
95  
-
4.36  
Vpp  
dB  
dB  
-
-
-
10  
kΩ  
-
-
30  
pF  
Single-ended Line Input: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins;  
(MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
Maximum Input Voltage (Note 22)  
Gain  
-
1.98  
-
Vpp  
InputÆLOUT1/ROUT1/LOUT2/ROUT2/LOUT3/ROUT3 (LODIF=RCV bits = “0”)  
0
+1  
-
dB  
dB  
1  
Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”)  
-
+6  
Full-differential Line Input: IN1+/, IN2+/, IN3+/, IN4+/pins;  
(MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
Maximum Input Voltage (Note 23)  
Gain  
-
1.98  
-
Vpp  
InputÆLOUT1/ROUT1/LOUT2/ROUT2/LOUT3/ROUT3 (LODIF=RCV bits = “0”)  
0
+1  
-
dB  
dB  
1  
Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”, Note 24)  
-
+6  
Power Supply Current:  
Power Up (PDN pin = “H”, All Circuits Power-up)  
(Note 25)  
(Note 26)  
(Note 27)  
-
-
-
21  
23  
8
-
30  
12  
mA  
mA  
mA  
AVDD+PVDD+DVDD  
+TVDD2+TVDD3+SAVDD  
Power Down (PDN pin = “L”) (Note 28)  
AVDD+PVDD+DVDD  
-
1
30  
μA  
+TVDD2+TVDD3+SAVDD  
Note 20. Output voltage is proportional to AVDD voltage. Vout = (LOP) (LON) = 1.2 x AVDD (typ).  
Note 21. Load Capacitance for VSS1.  
Note 22. Maximum Input voltage which analog output does not clip is proportional to AVDD voltage. Vin = 0.6 x AVDD  
(typ).  
Note 23. Maximum Input voltage which analog output does not clip is proportional to AVDD voltage. Vin = (IN4+) −  
(IN4) = 0.6 x AVDD (typ).  
Note 24. Vout = (RCP) (RCN) at RCV bit = “1”, Vout = (LOP) (LON) at LODIF bit = “1”.  
Note 25. EXT Slave Mode and LP bit = “0”, fs=44.1kHz, PMMICL = PMMICR = PMADL = PMADR = PMDAL =  
PMDAR = PMLO1 = PMRO1 = PMLO2 = PMRO2 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD =  
MS0666-E-00  
2007/10  
- 10 -  
 
[AK4671]  
PMVCM = MUTEN bits = “1”, PMPLL = MCKO = PMMP = M/S = PMSRA = PMSRB = PMPCM bits = “0”.  
AVDD=13.2mA (typ), PVDD=0mA (typ), DVDD=6.7mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ),  
SAVDD=0.8mA (typ).  
Note 26. PLL Master Mode and LP bit = “0”, fs=44.1kHz, PMADL = PMMICL= PMMICR= PMADR = PMDAL =  
PMDAR = PMLO1 = PMRO1 = PMLO2 = PMRO2 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD =  
PMVCM = PMPLL = M/S = PMMP = MUTEN bits = “1”, MCKO = PMSRA = PMSRB = PMPCM bits = “0”,  
PLL Reference Clock = MCKI = 11.2896MHz.  
AVDD=14.7mA (typ), PVDD=0mA (typ), DVDD=7.0mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ),  
SAVDD=0.8mA (typ).  
Note 27. In case of LP bit = “1”, fs=8kHz, EXT Slave Mode and PMVCM = PMMP = PMMICL = PMADL = PMDAR =  
RCV = PMLO1 = PMRO1 = PMSRA = PMSRB = PMPCM bits = “1”.  
AVDD=5.2mA (typ), PVDD=0.6mA (typ), DVDD=2.2mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ),  
SAVDD=0mA (typ).  
Note 28. All digital input pins are fixed to each supply pin (DVDD, TVDD2 or TVDD3) or VSS4.  
SRC CHARACTERISTICS  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V;  
Signal Frequency=1kHz; 16bit Data; Measurement frequency=20Hz 3.4kHz; unless otherwise specified)  
Parameter  
Symbol  
min  
typ  
max  
Units  
SRC Characteristics (Down Sampling: SRC-A): SDTI Æ SRC-A Æ SDTOA/SDTOB  
Resolution  
Input Sample Rate  
Output Sample Rate  
-
8
-
-
-
8
16  
48  
-
Bits  
kHz  
kHz  
FSI (fs)  
FSO (fs2)  
THD+N (Input = 1kHz, 1dBFS, Note 29)  
FSO/FSI = 8kHz/44.1kHz  
-
94  
-
dB  
Dynamic Range (Input = 1kHz, 60dBFS, Note 29)  
FSO/FSI = 8kHz/44.1kHz  
Ratio between Input and Output Sample Rate  
-
1/6  
97  
-
1
dB  
-
FSO/FSI  
SRC Characteristics (Up Sampling: SRC-B): SDTIA/SDTIB Æ SRC-B Æ SDTO  
Resolution  
Input Sample Rate  
Output Sample Rate  
-
-
8
-
8
-
16  
-
48  
Bits  
kHz  
kHz  
FSI (fs2)  
FSO (fs)  
THD+N (Input = 1kHz, 1dBFS, Note 29)  
FSO/FSI = 44.1kHz/8kHz  
-
95  
-
dB  
Dynamic Range (Input = 1kHz, 60dBFS, Note 29)  
FSO/FSI = 44.1kHz/8kHz  
Ratio between Input and Output Sample Rate  
-
1
100  
-
6
dB  
-
FSO/FSI  
Note 29. Measured by Audio Precision System Two Cascade.  
Note 30. fs is the sampling frequency for Stereo CODEC. fs2 is for PCM I/F.  
MS0666-E-00  
2007/10  
- 11 -  
 
[AK4671]  
ANALOG CHARACTERISTICS (10bit SAR ADC)  
(Ta=25°C; AVDD=PVDD=SAVDD=DVDD =TVDD2 =TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; unless  
otherwise specified)  
Parameter  
min  
typ  
max  
Units  
10bit SAR ADC Characteristics  
Resolution  
No Missing Codes  
Integral Linearity Error  
DNL  
Analog Input Voltage Range  
Offset Error  
Gain Error  
-
9
-
-
0
-
10  
10  
-
-
-
±2  
Bits  
Bits  
LSB  
LSB  
V
LSB  
LSB  
%
-
SAVDD  
±3  
±1  
-
-
-
-
-
-
±2  
±1  
Accuracy (Note 31)  
Note 31. Accuracy is the difference between the output code when 1.1V is input to SAIN1, SAIN2 or SAIN3 pin and the  
“ideal” code at 1.1V.  
FILTER CHARACTERISTICS (CODEC)  
(Ta=25°C; AVDD=PVDD =SAVDD=2.2 3.6V; DVDD=TVDD2 =TVDD3=1.6 3.6V; fs=44.1kHz; Programmable  
Filter=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband (Note 32)  
PB  
0
-
-
-
-
19.4  
19.9  
22.1  
-
-
-
19  
0
17.3  
-
-
-
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
μs  
±0.16dB  
0.66dB  
1.1dB  
6.9dB  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 33)  
Group Delay Distortion  
SB  
PR  
SA  
GD  
ΔGD  
25.9  
-
-
69  
-
±0.1  
-
-
-
-
DAC Digital Filter (LPF):  
Passband (Note 32)  
PB  
0
-
-
20.0  
21.1  
-
-
-
17.4  
-
-
-
±0.1  
-
-
kHz  
kHz  
kHz  
kHz  
dB  
±0.1dB  
1.0dB  
3.0dB  
-
25.7  
-
68  
-
Stopband  
SB  
PR  
SA  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 33)  
dB  
1/fs  
19  
DAC Digital Filter (LPF) + SCF:  
FR  
-
-
dB  
Frequency Response: 0 20.0kHz  
±1.4  
Note 32. The passband and stopband frequencies scale with fs (system sampling rate).  
For example, DAC is PB=0.454 x fs (@0.7dB). Each response refers to that of 1kHz.  
Note 33. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the  
16-bit data of both channels from the input register to the output register of the ADC.  
For the DAC, this time is from setting the 16-bit data of both channels from the input register to the output of  
analog signal.  
MS0666-E-00  
2007/10  
- 12 -  
 
[AK4671]  
FILTER CHARACTERISTICS (SRC)  
(Ta=25°C; AVDD=PVDD = SAVDD=2.2 3.6V; DVDD=TVDD2 =TVDD3=1.6 3.6V; fs2=8kHz; Programmable  
Filter=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Down Sampling (SRC-A): fs=8kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
5
3.0  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=11.025kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
4
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=12kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
4
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=16kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=22.05kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Down Sampling (SRC-A): fs=24kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.15  
-
kHz  
kHz  
dB  
dB  
ms  
±0.15dB  
-
Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0666-E-00  
2007/10  
- 13 -  
 
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Down Sampling (SRC-A): fs=32kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Down Sampling (SRC-A): fs=44.1kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Down Sampling (SRC-A): fs=48kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
69  
-
-
-
-
-
3
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0666-E-00  
2007/10  
- 14 -  
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Up Sampling (SRC-B): fs=8kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=11.025kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=12kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=16kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=22.05kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=24kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0666-E-00  
2007/10  
- 15 -  
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Up Sampling (SRC-B): fs=32kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=44.1kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Up Sampling (SRC-B): fs=48kHz  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 34)  
PB  
SB  
PR  
SA  
GD  
0
4.7  
-
68  
-
-
-
-
-
2
3.1  
-
±0.1  
-
kHz  
kHz  
dB  
dB  
ms  
±0.1dB  
-
Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input  
register to the output register.  
MS0666-E-00  
2007/10  
- 16 -  
[AK4671]  
DC CHARACTERISTICS  
(Ta=25°C; AVDD=PVDD =SAVDD=2.2 3.6V; DVDD=TVDD2 =TVDD3=1.6 3.6V)  
Parameter  
High-Level Input Voltage 1  
(Note 35)  
Low-Level Input Voltage 1  
(Note 35)  
High-Level Input Voltage 2  
(Note 36)  
Low-Level Input Voltage 2  
(Note 36)  
High-Level Input Voltage 3  
(Note 37)  
Low-Level Input Voltage 3  
(Note 37)  
Symbol  
VIH1  
VIH1  
VIL1  
VIL1  
VIH2  
VIH2  
VIL2  
VIL2  
VIH3  
VIH3  
VIL3  
VIL3  
min  
70%DVDD  
80%DVDD  
Typ  
max  
-
-
Units  
V
V
V
V
V
V
V
V
V
V
V
V
2.2VDVDD3.6V  
1.6VDVDD<2.2V  
2.2VDVDD3.6V  
1.6VDVDD<2.2V  
2.2VTVDD23.6V  
1.6VTVDD2<2.2V  
2.2VTVDD23.6V  
1.6VTVDD2<2.2V  
2.2VTVDD33.6V  
1.6VTVDD3<2.2V  
2.2VTVDD33.6V  
1.6VTVDD3<2.2V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
30%DVDD  
20%DVDD  
70%TVDD2  
80%TVDD2  
-
-
-
-
30%TVDD2  
20%TVDD2  
-
70%TVDD3  
80%TVDD3  
-
-
-
30%TVDD3  
20%TVDD3  
High-Level Output Voltage  
VOH1  
VOH2  
VOH3  
-
-
-
-
-
-
V
V
V
(Note 38) (Iout=200μA)  
(Note 39) (Iout=200μA)  
(Note 40) (Iout=200μA)  
DVDD0.2  
TVDD20.2  
TVDD30.2  
Low-Level Output Voltage  
VOL1  
VOL2  
VOL2  
-
-
-
-
-
-
0.2  
0.4  
20%DVDD  
V
V
V
(Except SDA pin: Iout=200μA)  
(SDA pin, 2.0VDVDD3.6V: Iout=3mA)  
(SDA pin, 1.6VDVDD<2.0V: Iout=3mA)  
Input Leakage Current  
(Note 41)  
(Note 42)  
Iind  
Iina  
-
-
-
-
±2  
±2  
μA  
μA  
Note 35. CSN/CAD0, CCLK/SCL, CDTI/SDA, I2C, PDN, BICK, LRCK, SDTI, MCKI pins.  
Note 36. BICKA, SYNCA, SDTIA pins.  
Note 37. BICKB, SYNCB, SDTIB pins.  
Note 38. MCKO, BICK, LRCK, SDTO, CDTO, GPO1, GPO2 pins.  
Note 39. BICKA, SYNCA, SDTOA pins.  
Note 40. BICKB, SYNCB, SDTOB pins.  
Note 41. SYNCB, BICKB, SDTIB, SDTI, LRCK, MCKI, BICK, CSN/CAD0, CCLK/SCL, CDTI/SDA, SDTIA,BICKA,  
SYNCA pins.  
I/O pins (SYNCB, BICKB, LRCK, BICK, SDA, BICKA, SYNCA) are at the time of Input state.  
Note 42. SAIN1, SAIN2, SAIN3 pins.  
MS0666-E-00  
2007/10  
- 17 -  
 
[AK4671]  
SWITCHING CHARACTERISTICS  
(Ta=25°C; AVDD=PVDD =SAVDD=2.2 3.6V; DVDD=TVDD2 =TVDD3=1.6 3.6V; CL=20pF (except SDA pin) or  
400pF (SDA pin); unless otherwise specified)  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Master Mode (PLL Reference Clock = MCKI pin)  
MCKI Input Timing  
Frequency  
fCLK  
tCLKL  
tCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27  
-
-
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
MCKO Output Timing  
Frequency  
fMCK  
0.256  
-
12.288  
MHz  
Duty Cycle  
Except 256fs at fs=32kHz, 29.4kHz  
256fs at fs=32kHz, 29.4kHz  
LRCK Output Timing  
dMCK  
dMCK  
40  
-
50  
33  
60  
-
%
%
Frequency  
fs  
8
-
-
-
48  
-
-
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Output Timing  
tLRCKH  
Duty  
tBCK  
50  
Period  
BCKO bit = “0”  
BCKO bit = “1”  
tBCK  
tBCK  
dBCK  
-
-
-
1/(32fs)  
1/(64fs)  
50  
-
-
-
ns  
ns  
%
Duty Cycle  
PLL Slave Mode (PLL Reference Clock = MCKI pin)  
MCKI Input Timing  
Frequency  
fCLK  
tCLKL  
tCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27  
-
-
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
MCKO Output Timing  
Frequency  
fMCK  
0.256  
-
12.288  
MHz  
Duty Cycle  
Except 256fs at fs=32kHz, 29.4kHz  
256fs at fs=32kHz, 29.4kHz  
LRCK Input Timing  
dMCK  
dMCK  
40  
-
50  
33  
60  
-
%
%
Frequency  
fs  
8
tBCK60  
45  
-
-
-
48  
1/fs tBCK  
55  
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
Period  
tLRCKH  
Duty  
tBCK  
tBCKL  
tBCKH  
1/(64fs)  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
1/(32fs)  
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
-
-
MS0666-E-00  
2007/10  
- 18 -  
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Slave Mode (PLL Reference Clock = LRCK pin)  
LRCK Input Timing  
Frequency  
fs  
8
tBCK60  
45  
-
-
-
48  
1/fs tBCK  
55  
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
Period  
tLRCKH  
Duty  
tBCK  
tBCKL  
tBCKH  
1/(64fs)  
130  
130  
-
-
-
1/(32fs)  
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
-
-
PLL Slave Mode (PLL Reference Clock = BICK pin)  
LRCK Input Timing  
Frequency  
fs  
8
tBCK60  
45  
-
-
-
48  
1/fs tBCK  
55  
kHz  
ns  
%
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
tLRCKH  
Duty  
Period  
PLL3-0 bits = “0010”  
PLL3-0 bits = “0011”  
tBCK  
tBCK  
tBCKL  
tBCKH  
-
-
1/(32fs)  
1/(64fs)  
-
-
-
-
ns  
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
0.4 x tBCK  
0.4 x tBCK  
-
-
External Slave Mode  
MCKI Input Timing  
Frequency  
256fs  
fCLK  
fCLK  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
2.048  
3.072  
4.096  
6.144  
8.192  
-
-
-
-
-
-
-
12.288  
18.432  
13.312  
19.968  
13.312  
-
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
384fs  
512fs  
768fs  
1024fs  
Pulse Width Low  
Pulse Width High  
0.4/fCLK  
0.4/fCLK  
-
ns  
LRCK Input Timing  
Frequency  
256fs/384fs  
512fs/768fs  
1024fs  
fs  
fs  
fs  
8
8
-
-
-
-
-
48  
26  
kHz  
kHz  
kHz  
ns  
8
tBCK60  
45  
13  
1/fs tBCK  
55  
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Input Timing  
Period  
tLRCKH  
Duty  
%
tBCK  
tBCKL  
tBCKH  
312.5  
130  
130  
-
-
-
-
-
-
ns  
ns  
ns  
Pulse Width Low  
Pulse Width High  
External Master Mode  
MCKI Input Timing  
Frequency  
256fs  
384fs  
512fs  
768fs  
1024fs  
fCLK  
fCLK  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
2.048  
3.072  
4.096  
6.144  
8.192  
-
-
-
-
-
-
-
12.288  
18.432  
13.312  
19.968  
13.312  
-
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
Pulse Width Low  
Pulse Width High  
0.4/fCLK  
0.4/fCLK  
-
ns  
LRCK Output Timing  
Frequency  
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK Output Timing  
fs  
8
-
-
-
48  
-
-
kHz  
ns  
%
tLRCKH  
Duty  
tBCK  
50  
Period  
BCKO bit = “0”  
BCKO bit = “1”  
tBCK  
tBCK  
dBCK  
-
-
-
1/(32fs)  
1/(64fs)  
50  
-
-
-
ns  
ns  
%
Duty Cycle  
MS0666-E-00  
2007/10  
- 19 -  
[AK4671]  
Units  
Parameter  
Symbol  
min  
typ  
max  
Audio Interface Timing (DSP Mode)  
Master Mode  
tDBF  
tDBF  
tBSD  
tBSD  
tSDH  
tSDS  
0.5 x tBCK 0.5 x tBCK + 40  
0.5 x tBCK 0.5 x tBCK + 40  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK “” to BICK “” (Note 43)  
LRCK “” to BICK “” (Note 44)  
BICK “” to SDTO (BCKP bit = “0”)  
BICK “” to SDTO (BCKP bit = “1”)  
SDTI Hold Time  
0.5 x tBCK 40  
0.5 x tBCK 40  
-
-
-
-
70  
70  
-
70  
70  
50  
SDTI Setup Time  
50  
-
Slave Mode  
tLRB  
tLRB  
tBLR  
tBLR  
tBSD  
tBSD  
tSDH  
tSDS  
0.4 x tBCK  
0.4 x tBCK  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK “” to BICK “” (Note 43)  
LRCK “” to BICK “” (Note 44)  
BICK “” to LRCK “” (Note 43)  
BICK “” to LRCK “” (Note 44)  
BICK “” to SDTO (BCKP bit = “0”)  
BICK “” to SDTO (BCKP bit = “1”)  
SDTI Hold Time  
-
-
-
50  
50  
80  
80  
-
SDTI Setup Time  
-
Audio Interface Timing (Right/Left justified & I2S)  
Master Mode  
tMBLR  
tLRD  
-
-
40  
70  
ns  
ns  
BICK “” to LRCK Edge (Note 45)  
LRCK Edge to SDTO (MSB)  
(Except I2S mode)  
40  
70  
tBSD  
tSDH  
tSDS  
-
-
-
70  
-
-
ns  
ns  
ns  
BICK “” to SDTO  
70  
50  
50  
SDTI Hold Time  
SDTI Setup Time  
Slave Mode  
tLRB  
tBLR  
tLRD  
50  
50  
-
-
-
-
-
-
80  
ns  
ns  
ns  
LRCK Edge to BICK “” (Note 45)  
BICK “” to LRCK Edge (Note 45)  
LRCK Edge to SDTO (MSB)  
(Except I2S mode)  
tBSD  
tSDH  
tSDS  
-
50  
50  
-
-
-
80  
-
-
ns  
ns  
ns  
BICK “” to SDTO  
SDTI Hold Time  
SDTI Setup Time  
Note 43. MSBS, BCKP bits = “00” or “11”.  
Note 44. MSBS, BCKP bits = “01” or “10”.  
Note 45. BICK rising edge must not occur at the same time as LRCK edge.  
MS0666-E-00  
2007/10  
- 20 -  
 
[AK4671]  
Units  
Parameter  
Symbol  
min  
typ  
max  
PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Slave Mode):  
SYNCA Timing  
Frequency  
fs2  
-
8
-
kHz  
Serial Interface Timing at Short/long Frame Sync  
BICKA Frequency  
BICKA Period  
fBCK2  
tBCK2  
tBCKL2  
tBCKH2  
tSYB2  
tSYB2  
tBSY2  
tBSY2  
tSYD2  
tBSD2  
tBSD2  
tSDH2  
tSDS2  
tSYL2  
tSYH2  
128  
488  
200  
200  
50  
50  
50  
50  
-
-
-
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
-
-
-
80  
80  
80  
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICKA Pulse Width Low  
Pulse Width High  
SYNCA Edge to BICKA “” (Note 46)  
SYNCA Edge to BICKA “” (Note 47)  
BICKA “” to SYNCA Edge (Note 46)  
BICKA “” to SYNCA Edge (Note 47)  
SYNCA to SDTOA (MSB) (Except Short Frame)  
BICKA “” to SDTOA (BCKPA bit = “0”)  
BICKA “” to SDTOA (BCKPA bit = “1”)  
SDTIA Hold Time  
SDTIA Setup Time  
SYNCA Pulse Width Low  
Pulse Width High  
0.8 x tBCK2  
0.8 x tBCK2  
-
Serial Interface Timing at MSB justified and I2S  
BICKA Frequency  
fBCK2  
tBCK2  
tBCKL2  
tBCKH2  
tSYB2  
tBSY2  
tSYD2  
tBSD2  
tSDH2  
tSDS2  
256  
488  
200  
200  
50  
50  
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
BICKA Period  
BICKA Pulse Width Low  
Pulse Width High  
SYNCA Edge to BICKA “”  
BICKA “” to SYNCA Edge  
SYNCA to SDTOA (MSB) (Except I2S mode)  
BICKA “” to SDTOA  
SDTIA Hold Time  
SDTIA Setup Time  
-
80  
80  
-
-
55  
-
50  
50  
45  
-
50  
SYNCA Duty Cycle  
dSYC2  
Note 46. MSBSA, BCKPA bits = “00” or “11”.  
Note 47. MSBSA, BCKPA bits = “01” or “10”.  
MS0666-E-00  
2007/10  
- 21 -  
 
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Master Mode):  
SYNCA Timing  
Frequency  
fs2  
-
8
-
kHz  
BICKA Timing  
Period (BCKO2 bit = “0”)  
(BCKO2 bit = “1”)  
Duty Cycle  
tBCK2  
tBCK2  
dBCK2  
-
-
-
1/(16fs2)  
1/(32fs2)  
50  
-
-
-
ns  
ns  
%
Serial Interface Timing at Short/long Frame Sync  
SYNCA Edge to BICKA “” (Note 46)  
SYNCA Edge to BICKA “” (Note 47)  
BICKA “” to SDTOA (BCKPA bit = “0”)  
BICKA “” to SDTOA (BCKPA bit = “1”)  
SDTIA Hold Time  
0.5 x tBCK2  
0.5 x tBCK2 + 40  
0.5 x tBCK2 40  
tSYB2  
tSYB2  
tBSD2  
tBSD2  
tSDH2  
tSDS2  
tSYH2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK2  
0.5 x tBCK2 + 40  
0.5 x tBCK2 40  
-
-
-
-
70  
70  
-
-
-
70  
70  
50  
50  
-
SDTIA Setup Time  
SYNCA Pulse Width High  
Serial Interface Timing at MSB justified and I2S  
BICKA “” to SYNCA Edge  
SYNCA to SDTOA (MSB) (Except I2S mode)  
BICKA “” to SDTOA  
SDTIA Hold Time  
SDTIA Setup Time  
SYNCA Duty Cycle  
tBCK2  
tMBSY2  
tSYD2  
tBSD2  
tSDH2  
tSDS2  
-
-
-
-
-
40  
70  
70  
-
-
-
ns  
ns  
ns  
ns  
ns  
%
40  
70  
70  
50  
50  
-
dSYC2  
50  
Note 46. MSBSA, BCKPA bits = “00” or “11”.  
Note 47. MSBSA, BCKPA bits = “01” or “10”.  
MS0666-E-00  
2007/10  
- 22 -  
[AK4671]  
Units  
Parameter  
Symbol  
min  
typ  
max  
PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Slave Mode):  
SYNCB Timing  
Frequency  
fs2  
-
8
-
kHz  
Serial Interface Timing at Short/long Frame Sync  
BICKB Frequency  
BICKB Period  
fBCK3  
tBCK3  
tBCKL3  
tBCKH3  
tSYB3  
tSYB3  
tBSY3  
tBSY3  
tSYD3  
tBSD3  
tBSD3  
tSDH3  
tSDS3  
tSYL3  
tSYH3  
128  
488  
200  
200  
50  
50  
50  
50  
-
-
-
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
-
-
-
80  
80  
80  
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICKB Pulse Width Low  
Pulse Width High  
SYNCB Edge to BICKB “” (Note 48)  
SYNCB Edge to BICKB “” (Note 49)  
BICKB “” to SYNCB Edge (Note 48)  
BICKB “” to SYNCB Edge (Note 49)  
SYNCB to SDTOB (MSB) (Except Short Frame)  
BICKB “” to SDTOB (BCKPB bit = “0”)  
BICKB “” to SDTOB (BCKPB bit = “1”)  
SDTIB Hold Time  
SDTIB Setup Time  
SYNCB Pulse Width Low  
Pulse Width High  
0.8 x tBCK3  
0.8 x tBCK3  
-
Serial Interface Timing at MSB justified and I2S  
BICKB Frequency  
fBCK3  
tBCK3  
tBCKL3  
tBCKH3  
tSYB3  
tBSY3  
tSYD3  
tBSD3  
tSDH3  
tSDS3  
256  
488  
200  
200  
50  
50  
-
-
-
-
-
-
-
-
-
-
2048  
-
-
-
-
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
BICKB Period  
BICKB Pulse Width Low  
Pulse Width High  
SYNCB Edge to BICKB “”  
BICKB “” to SYNCB Edge  
SYNCB to SDTOB (MSB) (Except I2S mode)  
BICKB “” to SDTOB  
SDTIB Hold Time  
SDTIB Setup Time  
-
80  
80  
-
-
55  
-
50  
50  
45  
-
50  
SYNCB Duty Cycle  
dSYC3  
Note 48. MSBSB, BCKPB bits = “00” or “11”.  
Note 49. MSBSB, BCKPB bits = “01” or “10”.  
MS0666-E-00  
2007/10  
- 23 -  
 
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Master Mode):  
SYNCB Timing  
Frequency  
fs2  
-
8
-
kHz  
BICKB Timing  
Period (BCKO2 bit = “0”)  
(BCKO2 bit = “1”)  
Duty Cycle  
tBCK3  
tBCK3  
dBCK3  
-
-
-
1/(16fs2)  
1/(32fs2)  
50  
-
-
-
ns  
ns  
%
Serial Interface Timing at Short/long Frame Sync  
SYNCB Edge to BICKB “” (Note 48)  
SYNCB Edge to BICKB “” (Note 49)  
BICKB “” to SDTOB (BCKPB bit = “0”)  
BICKB “” to SDTOB (BCKPB bit = “1”)  
SDTIB Hold Time  
0.5 x tBCK3  
0.5 x tBCK3 + 40  
0.5 x tBCK3 40  
tSYB3  
tSYB3  
tBSD3  
tBSD3  
tSDH3  
tSDS3  
tSYH3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK3  
0.5 x tBCK3 + 40  
0.5 x tBCK3 40  
-
-
-
-
70  
70  
-
-
-
70  
70  
50  
50  
-
SDTIB Setup Time  
SYNCB Pulse Width High  
Serial Interface Timing at MSB justified and I2S  
BICKB “” to SYNCB Edge  
SYNCB to SDTOB (MSB) (Except I2S mode)  
BICKB “” to SDTOB  
SDTIB Hold Time  
SDTIB Setup Time  
SYNCB Duty Cycle  
tBCK3  
tMBSY3  
tSYD3  
tBSD3  
tSDH3  
tSDS3  
-
-
-
-
-
40  
70  
70  
-
-
-
ns  
ns  
ns  
ns  
ns  
%
40  
70  
70  
50  
50  
-
dSYC3  
50  
Note 48. MSBSB, BCKPB bits = “00” or “11”.  
Note 49. MSBSB, BCKPB bits = “01” or “10”.  
MS0666-E-00  
2007/10  
- 24 -  
[AK4671]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing (4-wire Serial mode)  
CCLK Period (Note 51)  
CCLK Pulse Width Low  
Pulse Width High  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
tCSH  
tDCD  
tCCZ  
200  
80  
80  
40  
40  
150  
50  
50  
-
-
-
-
-
-
-
-
-
-
-
33000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
-
70  
70  
CDTI Setup Time  
CDTI Hold Time  
CSN “H” Time  
CSN Edge to CCLK “” (Note 52)  
CCLK “” to CSN Edge (Note 52)  
CDTO Delay  
-
CSN “” to CDTO Hi-Z  
Control Interface Timing (I2C Bus mode): (Note 50)  
SCL Clock Frequency (Note 53)  
fSCL  
tBUF  
30  
1.3  
0.6  
1.3  
0.6  
0.6  
0
0.1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
-
-
-
-
-
-
-
0.3  
0.3  
-
400  
50  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
pF  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
Clock High Time  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling (Note 54)  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
tF  
tSU:STO  
Cb  
0.6  
-
0
Capacitive Load on Bus  
Pulse Width of Spike Noise Suppressed by Input Filter  
tSP  
Power-down & Reset Timing  
PDN Pulse Width (Note 55)  
tPD  
150  
-
-
-
-
-
ns  
tPDV  
tPDV2  
tPDV3  
-
-
-
1059  
21  
135  
1/fs  
1/fs2  
1/fs  
PMADL or PMADR “” to SDTO valid (Note 56)  
PMSRA “” to SDTOA valid (Note 57)  
PMSRB “” to SDTO valid (Note 58)  
Note 50. I2C is a registered trademark of Philips Semiconductors.  
Note 51. CCLK should be input succeedingly until 10bit data of SAR ADC is read out at 4-wire serial mode (Figure 97).  
Note 52. CCLK rising edge must not occur at the same time as CSN edge.  
Note 53. In case that SAR ADC data is read out via I2C bus, SCL should be input succeedingly corresponding 2 byte data  
including ACK (Figure 104).  
Note 54. Data must be held long enough to bridge the 300ns-transition time of SCL.  
Note 55. The AK4671 can be reset by bringing PDN pin = “L” to “H” only upon power up.  
Note 56. This is the count of LRCK “” from the PMADL or PMADR bit = “1” at PMSRB bit = “1”.  
Note 57. The signal path is SDTI SRC-A SDTOA and PLLBT is locked.  
Note 58. The signal path is SDTIA SRC-B SDTO.  
MS0666-E-00  
2007/10  
- 25 -  
 
[AK4671]  
Timing Diagram  
1/fCLK  
VIH1  
VIL1  
MCKI  
LRCK  
tCLKH  
tCLKL  
1/fs  
50%DVDD  
tLRCKH  
tLRCKL  
Duty = tLRCKH x fs x 100  
tLRCKL x fs x 100  
tBCK  
50%DVDD  
BICK  
tBCKH  
tBCKL  
dBCK = tBCKH / tBCK x 100  
tBCKL / tBCK x 100  
1/fMCK  
MCKO  
50%DVDD  
tMCKL  
dMCK = tMCKL x fMCK x 100  
Figure 3. Clock Timing (PLL/EXT Master mode)  
Note 59. MCKO is not available at EXT Master mode.  
tLRCKH  
LRCK  
50%DVDD  
tDBF  
BICK  
(BCKP = "0")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH1  
VIL1  
SDTI  
Figure 4. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “0”)  
MS0666-E-00  
2007/10  
- 26 -  
[AK4671]  
tLRCKH  
LRCK  
50%DVDD  
tDBF  
BICK  
(BCKP = "1")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH1  
VIL1  
SDTI  
Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “1”)  
50%DVDD  
LRCK  
tMBLR  
BICK  
SDTO  
SDTI  
50%DVDD  
50%DVDD  
tLRD  
tBSD  
tSDS  
tSDH  
VIH  
VIL  
Figure 6. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode)  
MS0666-E-00  
2007/10  
- 27 -  
[AK4671]  
1/fs  
VIH1  
VIL1  
LRCK  
tLRCKH  
tBCK  
tBLR  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
tBCKH  
tBCKL  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
Figure 7. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “0”)  
1/fs  
VIH1  
LRCK  
VIL1  
tLRCKH  
tBCK  
tBLR  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
tBCKH  
tBCKL  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “1”)  
MS0666-E-00  
2007/10  
- 28 -  
[AK4671]  
1/fCLK  
VIH1  
VIL1  
MCKI  
LRCK  
tCLKH  
tCLKL  
1/fs  
VIH1  
VIL1  
tLRCKH  
tBCK  
tLRCKL  
Duty = tLRCKH x fs x 100  
tLRCKL x fs x 100  
VIH1  
VIL1  
BICK  
tBCKH  
tBCKL  
1/fMCK  
50%DVDD  
MCKO  
tMCKL  
dMCK = tMCKL x fMCK x 100  
Figure 9. Clock Timing (PLL Slave mode; Except DSP mode)  
tLRCKH  
VIH1  
VIL1  
LRCK  
tLRB  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH1  
VIL1  
SDTI  
MSB  
Figure 10. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = “0”)  
MS0666-E-00  
2007/10  
- 29 -  
[AK4671]  
tLRCKH  
VIH1  
VIL1  
LRCK  
tLRB  
VIH1  
VIL1  
BICK  
(BCKP = "1")  
VIH1  
VIL1  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
SDTI  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH1  
VIL1  
MSB  
Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS = “1”)  
1/fCLK  
VIH1  
MCKI  
VIL1  
tCLKH  
tCLKL  
1/fs  
VIH1  
VIL1  
LRCK  
BICK  
Duty = tLRCKH x fs x 100  
tLRCKL x fs x 100  
tLRCKH  
tBCK  
tLRCKL  
VIH1  
VIL1  
tBCKH  
tBCKL  
Figure 12. Clock Timing (EXT Slave mode)  
MS0666-E-00  
2007/10  
- 30 -  
[AK4671]  
VIH1  
VIL1  
LRCK  
tBLR  
tLRB  
VIH1  
VIL1  
BICK  
SDTO  
SDTI  
tLRD  
tBSD  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH1  
VIL1  
Figure 13. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode)  
1/fs2  
VIH2  
VIL2  
SYNCA  
tSYH2  
tSYL2  
dSYC2 = tSYH2 x fs2 x 100  
tSYL2 x fs2 x 100  
tBCK2 = 1/fBCK2  
VIH2  
VIL2  
BICKA  
tBCKH2  
tBCKL2  
Figure 14. Clock Timing of PCM I/F A (Slave mode)  
MS0666-E-00  
2007/10  
- 31 -  
[AK4671]  
VIH2  
VIL2  
SYNCA  
tSYB2  
tBSY2  
VIH2  
VIL2  
BICKA  
(BCKPA = “0”)  
VIH2  
VIL2  
BICKA  
(BCKPA = “1”)  
tSYD2  
tBSD2  
SDTOA  
50%TVDD2  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 15. PCM I/F A Timing at short and long frame sync (Slave mode; MSBSA = “0”)  
VIH2  
SYNCA  
VIL2  
tSYB2  
tBSY2  
VIH2  
VIL2  
BICKA  
(BCKPA = “1”)  
VIH2  
VIL2  
BICKA  
(BCKPA = “0”)  
tBSD2  
tSDS2  
SDTOA  
50%TVDD2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 16. PCM I/F A Timing at short and long frame sync (Slave mode; MSBSA = “1”)  
MS0666-E-00  
2007/10  
- 32 -  
[AK4671]  
VIH2  
VIL2  
SYNCA  
BICKA  
tBSY2  
tSYD2  
tSYB2  
VIH2  
VIL2  
tBSD2  
SDTOA  
50%TVDD2  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 17. PCM I/F A Timing at MSB justified and I2S (Slave mode)  
1/fs2  
50%TVDD2  
SYNCA  
tSYH2  
tSYL2  
dSYC2 = tSYL2 x fs2 x 100  
tBCK2 = 1/fBCK2  
50%TVDD2  
BICKA  
tBCKH2  
tBCKL2  
dBCK2 = tBCKL2 / tBCK2 x 100  
Figure 18. Clock Timing of PCM I/F A (Master mode)  
MS0666-E-00  
2007/10  
- 33 -  
[AK4671]  
SYNCA  
50%TVDD2  
50%TVDD2  
tSYB2  
BICKA  
(BCKPA = “0”)  
BICKA  
50%TVDD2  
50%TVDD2  
(BCKPA = “1”)  
tBSD2  
SDTOA  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 19. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “0”)  
SYNCA  
50%TVDD2  
50%TVDD2  
tSYB2  
BICKA  
(BCKPA = “1”)  
BICKA  
50%TVDD2  
50%TVDD2  
(BCKPA = “0”)  
tBSD2  
tSDS2  
SDTOA  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 20. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “1”)  
MS0666-E-00  
2007/10  
- 34 -  
[AK4671]  
50%TVDD2  
50%TVDD2  
50%TVDD2  
SYNCA  
BICKA  
tMBSY2  
tSYD2  
tBSD2  
SDTOA  
tSDS2  
tSDH2  
VIH2  
VIL2  
SDTIA  
Figure 21. PCM I/F A Timing at MSB justified and I2S (Master mode)  
1/fs2  
VIH3  
VIL3  
SYNCB  
tSYH3  
tSYL3  
dSYC3 = tSYH3 x fs2 x 100  
tSYL3 x fs2 x 100  
tBCK3 = 1/fBCK3  
VIH3  
VIL3  
BICKB  
tBCKH3  
tBCKL3  
Figure 22. Clock Timing of PCM I/F B (Slave mode)  
MS0666-E-00  
2007/10  
- 35 -  
[AK4671]  
VIH3  
VIL3  
SYNCB  
tSYB3  
tBSY3  
VIH3  
VIL3  
BICKB  
(BCKPB = “0”)  
VIH3  
VIL3  
BICKB  
(BCKPB = “1”)  
tSYD3  
tBSD3  
SDTOB  
50%TVDD3  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 23. PCM I/F B Timing at short and long frame sync (Slave mode; MSBSB = “0”)  
VIH3  
SYNCB  
VIL3  
tSYB3  
tBSY3  
VIH3  
VIL3  
BICKB  
(BCKPB = “1”)  
VIH3  
VIL3  
BICKB  
(BCKPB = “0”)  
tBSD3  
tSDS3  
SDTOB  
50%TVDD3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 24. PCM I/F B Timing at short and long frame sync (Slave mode; MSBSB = “1”)  
MS0666-E-00  
2007/10  
- 36 -  
[AK4671]  
VIH3  
VIL3  
SYNCB  
BICKB  
tBSY3  
tSYD3  
tSYB3  
VIH3  
VIL3  
tBSD3  
SDTOB  
50%TVDD3  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 25. PCM I/F B Timing at MSB justified and I2S (Slave mode)  
1/fs2  
50%TVDD3  
SYNCB  
tSYH3  
tSYL3  
dSYC3 = tSYL3 x fs2 x 100  
tBCK3 = 1/fBCK3  
50%TVDD3  
BICKB  
tBCKH3  
tBCKL3  
dBCK3 = tBCKL3 / tBCK3 x 100  
Figure 26. Clock Timing of PCM I/F B (Master mode)  
MS0666-E-00  
2007/10  
- 37 -  
[AK4671]  
SYNCB  
50%TVDD3  
50%TVDD3  
tSYB3  
BICKB  
(BCKPB = “0”)  
BICKB  
50%TVDD3  
50%TVDD3  
(BCKPB = “1”)  
tBSD3  
SDTOB  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 27. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “0”)  
SYNCB  
50%TVDD3  
50%TVDD3  
tSYB3  
BICKB  
(BCKPB = “1”)  
BICKB  
50%TVDD3  
50%TVDD3  
(BCKPB = “0”)  
tBSD3  
tSDS3  
SDTOB  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 28. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “1”)  
MS0666-E-00  
2007/10  
- 38 -  
[AK4671]  
50%TVDD3  
50%TVDD3  
50%TVDD3  
SYNCB  
BICKB  
tMBSY3  
tSYD3  
tBSD3  
SDTOB  
tSDS3  
tSDH3  
VIH3  
VIL3  
SDTIB  
Figure 29. PCM I/F B Timing at MSB justified and I2S (Master mode)  
VIH1  
CSN  
VIL1  
tCSS  
tCCKL  
tCCKH  
tCSH  
VIH1  
VIL1  
CCLK  
tCCK  
tCDH  
tCDS  
VIH1  
VIL1  
CDTI  
C1  
C0  
R/W  
Hi-Z  
CDTO  
Figure 30. WRITE Command Input Timing  
MS0666-E-00  
2007/10  
- 39 -  
[AK4671]  
tCSW  
VIH1  
CSN  
VIL1  
tCSS  
tCSH  
VIH1  
VIL1  
CCLK  
VIH1  
VIL1  
CDTI  
D2  
D1  
D0  
Hi-Z  
CDTO  
Figure 31. WRITE Data Input Timing  
VIH1  
VIL1  
CSN  
VIH1  
VIL1  
CCLK  
CDTI  
CDTO  
VIH1  
VIL1  
A1  
A0  
tDCD  
Hi-Z  
D7  
D6  
50%DVDD  
Figure 32. READ Data Output Timing 1  
MS0666-E-00  
2007/10  
- 40 -  
[AK4671]  
tCSW  
VIH1  
VIL1  
CSN  
tCSH  
VIH1  
VIL1  
CCLK  
CDTI  
CDTO  
VIH1  
VIL1  
tCCZ  
Hi-Z  
D2  
D1  
D0  
50%DVDD  
Figure 33. READ Data Output Timing 2  
VIH1  
VIL1  
SDA  
SCL  
tBUF  
tLOW  
tHIGH  
tF  
tR  
tSP  
VIH1  
VIL1  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STA  
Start  
tSU:STO  
Stop  
Stop  
Start  
Figure 34. I2C Bus Mode Timing  
MS0666-E-00  
2007/10  
- 41 -  
[AK4671]  
PMADL bit  
or  
PMADR bit  
tPDV  
SDTO  
50%DVDD  
Figure 35. Power Down & Reset Timing 1  
tPD  
PDN  
VIL1  
Figure 36. Power Down & Reset Timing 2  
PMSRA bit  
SDTOA  
tPDV2  
50%TVDD2  
Figure 37. Power Down & Reset Timing 3  
PMSRB bit  
SDTO  
tPDV3  
50%DVDD  
Figure 38. Power Down & Reset Timing 4  
MS0666-E-00  
2007/10  
- 42 -  
[AK4671]  
OPERATION OVERVIEW  
System Clock (Audio I/F)  
There are the following five clock modes to interface with external devices. (Table 1 and Table 2)  
Mode  
PMPLL bit  
1
M/S bit  
1
PLL3-0 bits  
See Table 4  
Figure  
Figure 39  
PLL Master Mode (Note 60)  
PLL Slave Mode 1  
(PLL Reference Clock: MCKI pin)  
PLL Slave Mode 2  
(PLL Reference Clock: LRCK or BICK pin)  
EXT Slave Mode  
EXT Master Mode  
1
1
0
0
See Table 4  
See Table 4  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
Figure 44  
0
0
0
1
x
x
Note 60. If M/S bit = “1”, PMPLL bit = “0” and MCKO bit = “1” during the setting of PLL Master Mode, the invalid  
clocks are output from MCKO pin when MCKO bit is “1”.  
Table 1. Clock Mode Setting (x: Don’t care)  
Mode  
MCKO bit MCKO pin  
MCKI pin  
BICK pin  
Output  
(Selected by  
BCKO bit)  
LRCK pin  
0
1
0
1
L
Selected by  
PLL3-0 bits  
Output  
(1fs)  
PLL Master Mode  
Selected by  
PS1-0 bits  
L
Selected by  
PS1-0 bits  
Input  
(32fs)  
PLL Slave Mode  
(PLL Reference Clock: MCKI pin)  
Selected by  
PLL3-0 bits  
Input  
(1fs)  
Input  
(Selected by  
PLL3-0 bits)  
Input  
(32fs)  
Output  
PLL Slave Mode  
(PLL Reference Clock: LRCK or BICK pin)  
Input  
(1fs)  
0
0
0
L
L
L
GND  
Selected by  
FS1-0 bits  
Input  
(1fs)  
EXT Slave Mode  
EXT Master Mode  
Selected by  
FS1-0 bits  
Output  
(1fs)  
(Selected by  
BCKO bit)  
Table 2. Clock pins state in Clock Mode  
Master Mode/Slave Mode  
The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave mode. When the  
AK4671 is power-down mode (PDN pin = “L”) and exits reset state, the AK4671 is slave mode. After exiting reset state,  
the AK4671 goes to master mode by changing M/S bit = “1”.  
When the AK4671 is used by master mode, LRCK and BICK pins are a Hi-Z state until M/S bit becomes “1”. LRCK and  
BICK pins of the AK4671 should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the  
floating state.  
M/S bit  
Mode  
0
1
Slave Mode  
Master Mode  
(default)  
Table 3. Select Master/Slave Mode  
MS0666-E-00  
2007/10  
- 43 -  
 
[AK4671]  
PLL Mode (PMPLL bit = “1”)  
When PMPLL bit is “1”, a fully integrated analog phase locked loop (PLL) generates a clock that is selected by the  
PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 4, whenever the AK4671 is supplied to a stable clocks after  
PLL is powered-up (PMPLL bit = “0” “1”) or sampling frequency changes. When AIN3 bit = “1”, the PLL is not  
available.  
1) Setting of PLL Mode  
R and C of  
VCOC pin  
PLL Lock  
Time  
(max)  
PLL3  
bit  
PLL2  
bit  
PLL1  
bit  
PLL0  
bit  
PLL Reference  
Clock Input Pin  
Input  
Frequency  
Mode  
C[F]  
R[Ω]  
6.8k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
0
2
0
0
0
0
0
1
0
0
LRCK pin  
BICK pin  
1fs  
220n  
4.7n  
10n  
160ms  
2ms  
4ms  
2ms  
4ms  
40ms  
40ms  
40ms  
40ms  
40ms  
40ms  
40ms  
60ms  
60ms  
32fs  
4.7n  
10n  
3
0
0
1
1
BICK pin  
64fs  
4
5
6
7
8
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
0
1
0
1
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
11.2896MHz  
12.288MHz  
12MHz  
4.7n  
4.7n  
10n  
(default)  
24MHz  
10n  
19.2MHz  
13.5MHz  
27MHz  
13MHz  
26MHz  
4.7n  
10n  
12  
13  
14  
15  
Others  
10n  
220n  
220n  
Others  
Table 4. Setting of PLL Mode (*fs: Sampling Frequency, N/A: Not available)  
2) Setting of sampling frequency in PLL Mode  
When PLL reference clock input is MCKI pin, the sampling frequency is selected by FS3-0 bits as defined in Table 5.  
Mode  
0
1
2
3
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency  
8kHz  
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
1
0
0
1
1
0
1
1
1
1
0
1
0
1
1
1
0
1
1
12kHz  
16kHz  
24kHz  
11.025kHz  
22.05kHz  
32kHz  
48kHz  
44.1kHz  
5
7
10  
11  
15  
Others  
(default)  
Others  
N/A  
(N/A: Not available)  
Table 5. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = MCKI pin)  
MS0666-E-00  
2007/10  
- 44 -  
 
[AK4671]  
When PLL reference clock input is LRCK or BICK pin, the sampling frequency is selected by FS3-2 bits (Table 6).  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency Range  
x
x
x
x
x
x
0
1
2
0
0
1
0
1
x
8kHz fs 12kHz  
12kHz < fs 24kHz  
24kHz < fs 48kHz  
N/A  
(default)  
Others  
Others  
(x: Don’t care, N/A: Not available)  
Table 6. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = LRCK or BICK pin)  
PLL Unlock State  
1) PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
In this mode, LRCK and BICK pins go to “L” and irregular frequency clock is output from the MCKO pin at MCKO bit  
is “1” before the PLL goes to lock state after PMPLL bit = “0” Æ “1”. If MCKO bit is “0”, the MCKO pin changes to “L”  
(Table 7).  
After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to normal state  
after a period of 1/fs.  
When sampling frequency is changed, BICK and LRCK pins do not output irregular frequency clocks but go to “L” by  
setting PMPLL bit to “0”.  
MCKO pin  
PLL State  
BICK pin  
LRCK pin  
MCKO bit = “0”  
“L” Output  
MCKO bit = “1”  
Invalid  
After that PMPLL bit “0” Æ “1”  
PLL Unlock (except above case)  
PLL Lock  
“L” Output  
Invalid  
See Table 10  
“L” Output  
Invalid  
1fs Output  
“L” Output  
Invalid  
“L” Output  
See Table 9  
Table 7. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
2) PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
In this mode, an invalid clock is output from the MCKO pin before the PLL goes to lock state after PMPLL bit = “0” Æ  
“1”. After that, the clock selected by Table 9 is output from the MCKO pin when PLL is locked. ADC and DAC output  
invalid data when the PLL is unlocked. For DAC, the output signal should be muted by writing “0” to DACL and DACH  
bits.  
MCKO pin  
PLL State  
MCKO bit = “0” MCKO bit = “1”  
After that PMPLL bit “0” Æ “1”  
PLL Unlock  
PLL Lock  
“L” Output  
“L” Output  
“L” Output  
Invalid  
Invalid  
Output  
Table 8. Clock Operation at PLL Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
MS0666-E-00  
2007/10  
- 45 -  
 
[AK4671]  
PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz or 27MHz)  
is input to the MCKI pin, the MCKO, BICK and LRCK clocks are generated by an internal PLL circuit. The MCKO  
output frequency is selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit. The BICK output frequency  
is selected between 32fs or 64fs, by BCKO bit (Table 10).  
11.2896MHz, 12MHz, 12.288MHz, 13MHz,  
13.5MHz, 19.2MHz, 24MHz, 26MHz,  
27MHz  
AK4671  
DSP or μP  
MCKI  
256fs/128fs/64fs/32fs  
MCLK  
BCLK  
LRCK  
MCKO  
BICK  
32fs, 64fs  
1fs  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 39. PLL Master Mode  
Mode  
PS1 bit  
PS0 bit  
MCKO pin  
0
1
2
3
0
0
1
1
0
1
0
1
256fs  
128fs  
64fs  
(default)  
32fs  
Table 9. MCKO Output Frequency (PLL Mode, MCKO bit = “1”)  
BICK Output  
BCKO bit  
Frequency  
0
1
32fs  
64fs  
(default)  
Table 10. BICK Output Frequency at Master Mode  
MS0666-E-00  
2007/10  
- 46 -  
 
[AK4671]  
PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
A reference clock of PLL is selected among the input clocks to MCKI, BICK or LRCK pin. The required clock to the  
AK4671 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 4).  
a) PLL reference clock: MCKI pin  
BICK and LRCK inputs should be synchronized with MCKO output. The phase between MCKO and LRCK does not  
matter. The MCKO pin outputs the frequency selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit.  
Sampling frequency can be selected by FS3-0 bits (Table 5).  
In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this  
case, BICK and LRCK can be stopped.  
11.2896MHz, 12MHz, 12.288MHz, 13MHz,  
13.5MHz, 19.2MHz, 24MHz, 26MHz,  
27MHz  
AK4671  
DSP or μP  
MCKI  
256fs/128fs/64fs/32fs  
MCLK  
BCLK  
LRCK  
MCKO  
BICK  
32fs  
1fs  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 40. PLL Slave Mode 1 (PLL Reference Clock: MCKI pin)  
MS0666-E-00  
2007/10  
- 47 -  
 
[AK4671]  
b) PLL reference clock: BICK or LRCK pin  
Sampling frequency corresponds to 8kHz to 48kHz by changing FS3-0 bits (Table 6).  
AK4671  
MCKO  
DSP or μP  
MCKI  
BICK  
LRCK  
32fs or 64fs  
1fs  
BCLK  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 41. PLL Slave Mode 2 (PLL Reference Clock: BICK pin)  
AK4671  
MCKO  
DSP or μP  
MCKI  
32fs  
BCLK  
LRCK  
BICK  
1fs  
LRCK  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 42. PLL Slave Mode 2 (PLL Reference Clock: LRCK pin)  
MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”,  
PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4671 may draw excess current and it is not  
possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and  
DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”).  
MS0666-E-00  
2007/10  
- 48 -  
 
[AK4671]  
EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
When PMPLL bit is “0”, the AK4671 becomes EXT mode. Master clock is input from the MCKI pin, the internal PLL  
circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate the  
AK4671 are MCKI (256fs, 384fs, 512fs, 768fs or 1024fs), LRCK (fs) and BICK (32fs). The master clock (MCKI)  
should be synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is  
selected by FS2-0 bits (Table 11).  
In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this  
case, BICK and LRCK can be stopped.  
MCKI Input  
Frequency  
Sampling Frequency  
Range  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
x
0
1
4
5
6
7
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
256fs  
1024fs  
384fs  
768fs  
512fs  
256fs  
N/A  
8kHz 48kHz  
8kHz 13kHz  
8kHz 48kHz  
8kHz 26kHz  
8kHz 26kHz  
8kHz 48kHz  
N/A  
x
x
x
x
x
(default)  
Others  
Others  
(x: Don’t care, N/A: Not available)  
Table 11. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.  
The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through  
LOUT/ROUT pins at fs=8kHz is shown in Table 12.  
S/N  
MCKI  
(fs=8kHz, 20kHzLPF + A-weighted)  
256fs, 384fs  
512fs, 768fs  
1024fs  
83dB  
93dB  
93dB  
Table 12. Relationship between MCKI and S/N of LOUT1/ROUT1 pins  
MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”,  
PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4671 may draw excess current and it is not  
possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and  
DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”).  
AK4671  
MCKO  
DSP or μP  
256fs, 384fs, 512fs,  
768fs or 1024fs  
MCKI  
BICK  
LRCK  
MCLK  
BCLK  
LRCK  
32fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 43. EXT Slave Mode  
MS0666-E-00  
2007/10  
- 49 -  
 
[AK4671]  
EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)  
The AK4671 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock is input from the  
MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 384fs, 512fs, 768fs or  
1024fs). The input frequency of MCKI is selected by FS2-0 bits (Table 13).  
MCKI Input  
Frequency  
Sampling Frequency  
Range  
Mode  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
x
0
1
4
5
6
7
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
256fs  
1024fs  
384fs  
768fs  
512fs  
256fs  
N/A  
8kHz 48kHz  
8kHz 13kHz  
8kHz 48kHz  
8kHz 26kHz  
8kHz 26kHz  
8kHz 48kHz  
N/A  
x
x
x
x
x
(default)  
Others  
Others  
(x: Don’t care, N/A: Not available)  
Table 13. MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)  
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.  
The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through  
LOUT/ROUT pins at fs=8kHz is shown in Table 14.  
S/N  
MCKI  
(fs=8kHz, 20kHzLPF + A-weighted)  
256fs, 384fs  
512fs, 768fs  
1024fs  
83dB  
93dB  
93dB  
Table 14. Relationship between MCKI and S/N of LOUT1/ROUT1 pins  
MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”,  
PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4671 may draw excess current and it is not  
possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and  
DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”).  
AK4671  
MCKO  
DSP or μP  
256fs, 384fs, 512fs,  
768fs or 1024fs  
MCKI  
BICK  
LRCK  
MCLK  
BCLK  
LRCK  
32fs or 64fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 44. EXT Master Mode  
BICK Output  
BCKO bit  
Frequency  
0
1
32fs  
64fs  
(default)  
Table 15. BICK Output Frequency at Master Mode  
MS0666-E-00  
2007/10  
- 50 -  
 
[AK4671]  
System Reset  
When power-up, the AK4671 should be reset by bringing the PDN pin = “L”. This ensures that all internal registers reset  
to their initial values.  
The ADC enters an initialization cycle that starts when the PMADL or PMADR bit is changed from “0” to “1” at PMDAL  
and PMDAR bits are “0”. The initialization cycle time is 1059/fs=24ms@fs=44.1kHz. During the initialization cycle, the  
ADC digital data outputs of both channels are forced to a 2’s complement, “0”. The ADC output reflects the analog input  
signal after the initialization cycle is complete. When PMDAL or PMDAR is “1”, the ADC does not require an  
initialization cycle.  
Audio Interface Format  
Four types of data formats are available and can be selected by setting the DIF1-0 bits (Table 16). In all modes, the serial  
data is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. LRCK  
and BICK are output from the AK4671 in master mode, but must be input to the AK4671 in slave mode.  
Mode  
DIF1 bit  
DIF0 bit  
SDTO (ADC)  
DSP Mode  
MSB justified  
MSB justified  
I2S compatible  
SDTI (DAC)  
DSP Mode  
LSB justified  
MSB justified  
I2S compatible  
BICK  
32fs  
32fs  
32fs  
32fs  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
Table 17  
Figure 49  
Figure 50  
Figure 51  
(default)  
Table 16. Audio Interface Format  
In modes 1, 2 and 3, the SDTO is clocked out on the falling edge (“”) of BICK and the SDTI is latched on the rising edge  
(“”).  
In Modes 0 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 17).  
DIF1  
DIF0  
MSBS BCKP  
Audio Interface Format  
Figure  
MSB of SDTO is output by the rising edge (“”) of the  
first BICK after the rising edge (“”) of LRCK.  
MSB of SDTI is latched by the falling edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
MSB of SDTO is output by the falling edge (“”) of the  
first BICK after the rising edge (“”) of LRCK.  
MSB of SDTI is latched by the rising edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
MSB of SDTO is output by next rising edge (“”) of the  
falling edge (“”) of the first BICK after the rising edge  
(“”) of LRCK.  
MSB of SDTI is latched by the falling edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
MSB of SDTO is output by next falling edge (“”) of the  
rising edge (“”) of the first BICK after the rising edge  
(“”) of LRCK.  
0
0
0
1
Figure 45 (default)  
Figure 46  
Figure 47  
0
0
1
1
0
1
Figure 48  
MSB of SDTI is latched by the rising edge (“”) of the  
BICK just after the output timing of SDTO’s MSB.  
Table 17. Audio Interface Format in Mode 0  
If 16-bit data that ADC outputs is converted to 8-bit data by removing LSB 8-bit, “1” at 16bit data is converted to “1”  
at 8-bit data. And when the DAC playbacks this 8-bit data, “1” at 8-bit data will be converted to “256” at 16-bit data  
and this is a large offset. This offset can be removed by adding the offset of “128” to 16-bit data before converting to 8-bit  
data.  
MS0666-E-00  
2007/10  
- 51 -  
 
[AK4671]  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
14  
Lch  
15  
Rch  
15  
2
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 45. Mode 0 Timing (BCKP = “0”, MSBS = “0”)  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
14  
Rch  
Lch  
15  
15  
2
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 46. Mode 0 Timing (BCKP = “1”, MSBS = “0”)  
MS0666-E-00  
2007/10  
- 52 -  
 
[AK4671]  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
14  
Lch  
15  
Rch  
15  
2
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 47. Mode 0 Timing (BCKP = “0”, MSBS = “1”)  
LRCK  
(Master)  
LRCK  
(Slave)  
15  
0
1
8
9
10  
11  
12 13  
14 15  
16  
17  
24  
25 26  
27  
26 29  
30 31  
0
2
18  
BICK(32fs)  
SDTO(o)  
Lch  
15  
Rch  
0
0
8
8
7
7
6
6
5
5
4
4
3
2
2
1
0
0
15  
8
8
7
7
6
5
5
4
4
3
2
2
1
0
0
14  
14  
Lch  
15  
Rch  
15  
3
1
6
3
1
14  
14  
SDTI(i)  
15  
0
1
14  
15 16  
17  
18  
30 31  
32 33  
46  
47 48  
49  
50  
62 63  
2
34  
BICK(64fs)  
SDTO(o)  
Lch  
15  
Rch  
15  
2
2
1
1
0
0
2
1
1
0
0
14  
14  
14  
Lch  
15  
Rch  
15  
2
14  
SDTI(i)  
1/fs  
15:MSB, 0:LSB  
Figure 48. Mode 0 Timing (BCKP = “1”, MSBS = “1”)  
MS0666-E-00  
2007/10  
- 53 -  
 
[AK4671]  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15 14 13  
0 15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15  
0 15  
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14 13  
1
0
15 14 13  
1
0
15  
Don't Care  
15:MSB, 0:LSB  
15 14  
1
0
Don't Care  
15 14  
2
1
0
SDTI(i)  
Lch Data  
Rch Data  
Figure 49. Mode 1 Timing  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15 14 13  
0 15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15  
0 15  
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14 13  
1
0
0
15 14 13  
15 14 13  
1
0
0
15  
15 14 13  
1
Don't Care  
1
Don't Care 15  
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 50. Mode 2 Timing  
MS0666-E-00  
2007/10  
- 54 -  
 
[AK4671]  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
0 15 14  
0 15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0 15 14  
0 15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14  
15 14  
2
2
1
1
0
0
15 14  
15 14  
2
2
1
1
0
0
Don't Care  
Don't Care  
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 51. Mode 3 Timing  
MS0666-E-00  
2007/10  
- 55 -  
 
[AK4671]  
MIC/LINE Input Selector  
The AK4671 has input selector. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “0”, INL1-0 and INR1-0 bits select  
LIN1/LIN2/LIN3/LIN4 and RIN1/RIN2/RIN3/RIN4, respectively. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are  
“1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins become IN1+/, IN2+/, IN3+/and IN4+/pins,  
respectively. In this case, full-differential input is available (Figure 53).  
MDIF1 MDIF2 MDIF3 MDIF4  
INL1  
0
INL0  
0
INR1  
0
INR0  
0
Lch  
LIN1  
Rch  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
0
1
0
RIN1  
RIN2  
RIN3  
RIN4  
RIN1  
RIN2  
RIN3  
RIN4  
RIN1  
RIN2  
RIN3  
RIN4  
RIN1  
RIN2  
RIN3  
RIN4  
(default)  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
LIN1  
LIN1  
LIN1  
LIN2  
LIN2  
LIN2  
LIN2  
LIN3  
LIN3  
LIN3  
LIN3  
LIN4  
LIN4  
LIN4  
LIN4  
LIN1  
IN4+/−  
IN4+/−  
IN4+/−  
RIN1  
RIN2  
RIN4  
IN4+/−  
IN2+/−  
IN2+/−  
IN2+/−  
IN2+/−  
RIN2  
LIN2  
LIN3  
IN3+/−  
IN3+/−  
IN3+/−  
IN3+/−  
LIN1  
LIN3  
LIN4  
IN3+/−  
IN1+/−  
IN1+/−  
IN1+/−  
IN1+/−  
IN1+/−  
RIN3  
RIN4  
IN4+/−  
IN2+/−  
Others  
N/A  
Table 18. MIC-Amp Input Signal (N/A: Not available)  
MS0666-E-00  
2007/10  
- 56 -  
 
[AK4671]  
AK4671  
INL1-0 bits  
LIN1/IN1+ pin  
ADC Lch  
RIN1/IN1pin  
MIC-Amp Lch  
MDIF1 bit  
MDIF3 bit  
INR1-0 bits  
LIN2/IN2+ pin  
ADC Rch  
RIN2/IN2pin  
MIC-Amp Rch  
MDIF2 bit  
MDIF4 bit  
LIN3/IN3+ pin  
RIN3/IN3pin  
LIN4/IN4+ pin  
RIN4/IN4pin  
Lineout  
Figure 52. Mic/Line Input Selector  
AK4671  
MPWR pin  
1k  
1k  
MIC-Amp  
IN1+ pin  
IN1pin  
Figure 53. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”)  
AK4671  
MIC-Amp  
IN1+ pin  
IN1pin  
Figure 54. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”)  
MS0666-E-00  
2007/10  
- 57 -  
 
[AK4671]  
MIC Gain Amplifier  
The AK4671 has a gain amplifier for microphone input. The gain of MIC-Amp Lch and Rch is independently selected by  
the MGNL3-0 and MGNR3-0 bits (Table 19). The typical input impedance is 42kΩ(typ)@MGNL/R0 bits = “0” or  
30kΩ(typ)@MGNL/R0 bits = “1”.  
MGNL3  
MGNR3  
MGNL2  
MGNR2  
MGNL1  
MGNR1  
MGNL0  
MGNR0  
Mode  
Input Gain  
Input Resistance  
0
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
N/A  
12dB  
9dB  
6dB  
3dB  
N/A  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
42kΩ  
30kΩ  
0dB  
(default)  
+3dB  
+6dB  
+9dB  
+12dB  
+15dB  
+18dB  
+21dB  
+24dB  
+27dB  
+30dB  
9
10  
11  
12  
13  
14  
15  
Table 19. Mic Input Gain (N/A: Not available)  
MS0666-E-00  
2007/10  
- 58 -  
 
[AK4671]  
MIC Power  
When PMMP bit = “1”, the MPWR pin supplies power for the microphone. This output voltage is typically 0.8 x AVDD  
and the load resistance is minimum 0.5kΩ. In case of using two sets of stereo mic, the load resistance is minimum 2kΩ for  
each channel. Any capacitor must not be connected directly to the MPWR pin (Figure 55).  
PMMP bit  
MPWR pin  
Hi-Z  
Output  
0
1
(default)  
Table 20. MIC Power  
MIC Power  
MPWR pin  
Microphone  
Microphone  
Microphone  
Microphone  
LIN1 pin  
RIN1 pin  
LIN2 pin  
RIN2 pin  
Figure 55. MIC Block Circuit  
MS0666-E-00  
2007/10  
- 59 -  
 
[AK4671]  
MIC Detection  
The AK4671 has the detecting function of microphone. The external circuit is showed in Figure 56.  
The followings show the example of external microphone detection sequence:  
(1) PMMP bit should be set to “1” after CPU detects the jack insertion of microphone or headphone.  
(2) The MPWR pin drives external microphone.  
(3) The GPO2 pin (at GPOM2 bit = “1”) and DTMIC bit are set as Table 21. In case of Headset (with Mic), the input  
voltage of MDT pin is higher than 0.075 x AVDD because of the relationship between the bias resistance at the  
MPWR pin (typ. 2.2kΩ) and the microphone impedance. In case of Headphone (No Mic), the input voltage of MDT  
pin is 0V because the pin of headphone jack connected to the MDT pin is assigned as ground.  
Input Level of MDT pin  
GPO2 pin  
DTMIC bit  
Result  
H
L
1
0
Mic (Headset)  
No Mic (Headphone)  
0.075 x AVDD  
< 0.050 x AVDD  
Table 21. Microphone Detection Result  
PMMP bit  
MPWR  
AK4671  
LIN1  
LIN2  
MDT  
G
M
R
R
L
L
Headset  
DTMIC bit  
typ.  
500k  
or  
0.075 x AVDD  
G
Headphone  
Figure 56. Microphone Power Supply and Mic Detection  
MS0666-E-00  
2007/10  
- 60 -  
 
[AK4671]  
Digital Block  
Digital block is composed as Figure 57. Each block can be powered-down by power management bits (PMADL,  
PMADR, PMDAL, PMDAR, PMSRA, PMSRB and PMPCM bits). When blocks from HPF to MIX are powered-down,  
both MIX and SVOLA blocks should not be selected by SDOL/R bits and PFMXL/R bits.  
PMADL or PMADR  
HPF  
A/D  
HPFAD  
PFSEL  
PFSEL=0  
PMADL  
or  
PMADR  
HPF  
LPF  
HPF  
LPF  
PFSEL=1  
PMDAL  
or  
PMDAR  
or  
Stereo  
Separation  
FIL3, EQ0,  
GN1-0  
PMSRA  
5-band  
Notch  
EQ1-5  
ALC, IVL/R  
ADM  
ALC  
MIX  
SDOL/R1-0 SDOD  
SDTO Lch  
SDTO Rch  
SVAL/R2-0  
SVOLA  
SRMXL/R1-0  
DAM, MIXD OVL/R  
EQ  
M
I
X
S
E
L
SDTI Lch  
SDTI Rch  
DATT 5-band  
D/A  
SMUTE  
EQ  
SDIM1-0  
PMDAL  
PMDAL or PMDAR or PMSRA  
PFMXL/R1-0  
or PMDAR  
SRA1-0, MIXD  
PMPCM  
PMSRA  
SDOA  
SDOAD  
SRC-A  
SDTOA  
SDTIA  
SVB2-0  
SVOLB  
PMSRB  
SRC-B  
DATT-B  
BVL7-0  
BVMX1-0  
SBMX1-0  
CVL7-0  
DATT-C  
BIV2-0  
SDTOB  
SDTIB  
SDOBD  
BIVOL  
Figure 57. Path Select of Digital Block  
MS0666-E-00  
2007/10  
- 61 -  
 
[AK4671]  
1. ADC: Include the Digital Filter (LPF) for ADC as shown in “FILTER CHRACTERISTICS”.  
2. DAC: Include the Digital Filter (LPF) for DAC as shown in “FILTER CHRACTERISTICS”.  
3. HPF: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See “Digital Programmable Filter”.)  
4. LPF: Low Pass Filter (See “Digital Programmable Filter”.)  
5. Stereo Separation: Stereo Separation Emphasis Filter & Gain Compensation. (See “Digital Programmable Filter”.)  
Gain Compensation is composed with EQ0 and Gain blocks. This block adjusts the frequency response after Stereo  
Separation Emphasis.  
6. 5-Band Notch: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter”.)  
7. ALC: Input Digital Volume with ALC function. (See “Input Digital Volume” and “ALC Operation”.)  
8. SVOLA: Side Tone Volume at Internal MIC/SPK or External Headset Phone Call. (See “Side Tone Volume”.)  
9. 5-Band EQ: Equalizer for playback path. (See “5-band Equalizer”.)  
10. DATT: Digital Volume for playback path. (See “Digital Output Volume”.)  
11. SMUTE: Soft mute. (See “Soft Mute”.)  
12. DATT-B: Digital Volume for Recording of Received Voice. (See “Digital Volume for Recording of Received  
Voice”)  
13. DATT-C: Digital Volume of Received Voice. (See “Digital Volume for Received Voice”)  
14. SVOLA: Side Tone Volume at B/T Headset Phone Call. (See “Side Tone Volume for B/T Phone Call”.)  
Mode  
PMADL  
PMADR  
PMDAL  
PMDAR  
PFSEL  
Figure  
Recording Mode  
1
1
0
1
1
0
0
1
0
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
0
0
1
Figure 58  
Recording &  
Playback Mode  
Figure 59  
Figure 60  
Playback Mode  
Table 22. Recode/Playback Mode  
2nd Order  
HPF  
1st Order  
LPF  
Stereo  
Separation  
Gain  
Compensation  
5 Band  
Notch  
ALC  
(Volume)  
ADC  
Figure 58. Path at Recording Mode  
2nd Order  
HPF  
1st Order  
LPF  
Stereo  
Separation  
Gain  
Compensation  
5 Band  
Notch  
ALC  
(Volume)  
ADC  
DAC  
5 Band  
EQ  
DEM  
SMUTE  
DATT  
Figure 59. Path at Recording & Playback Mode  
1st Order  
HPF  
“0” Data  
ADC  
DAC  
5 Band  
EQ  
5 Band  
EQ  
Gain  
Compensation  
Stereo  
Separation  
1st Order  
LPF  
1st Order  
HPF  
ALC  
(Volume)  
DEM  
SMUTE  
DATT  
Figure 60. Path at Playback Mode  
MS0666-E-00  
2007/10  
- 62 -  
 
[AK4671]  
Digital Programmable Filter  
(1) High Pass Filter (HPF)  
Normally, this HPF is used for a Wind-Noise Reduction Filter. This is composed of 2 steps of 1st order HPF. The  
coefficient of both HPF is the same and set by F1A13-0 bits and F1B13-0 bits. HPFAD bit controls ON/OFF of the 1st  
step HPF and HPF bit controls ON/OFF of the 2nd step HPF. When the HPF is OFF, the audio data passes this block by  
0dB gain. The coefficient should be set when HPFAD=HPF bits = “0” or PMADL=PMADR=PMDAL=PMDAR bits =  
“0”.  
fs: Sampling frequency  
fc: Cut-off frequency  
Register setting (Note 61)  
HPF: F1A[13:0] bits =A, F1B[13:0] bits =B  
(MSB=F1A13, F1B13; LSB=F1A0, F1B0)  
1 / tan (πfc/fs)  
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A =  
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 z −  
1
H(z) = A  
1 + Bz −  
1
The cut-off frequency should be set as below.  
fc/fs 0.0001 (fc min = 4.41Hz at 44.1kHz)  
(2) Low Pass Filter (LPF)  
This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF  
of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when LPF  
bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”.  
fs: Sampling frequency  
fc: Cut-off frequency  
Register setting (Note 61)  
LPF: F2A[13:0] bits =A, F2B[13:0] bits =B  
(MSB=F2A13, F1B13; LSB=F2A0, F2B0)  
1
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A =  
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 + z −  
1
H(z) = A  
1 + Bz −  
1
The cut-off frequency should be set as below.  
fc/fs 0.05 (fc min = 2205Hz at 44.1kHz)  
MS0666-E-00  
2007/10  
- 63 -  
 
[AK4671]  
(3) Stereo Separation Emphasis Filter (FIL3)  
FIL3 is used to emphasize the stereo separation of stereo mic recording data or playback data. F3A13-0 and F3B13-0 bits  
set the filter coefficient of FIL3. FIL3 becomes High Pass Filter (HPF) at F3AS bit = “0”, and Low Pass Filter (LPF) at  
F3AS bit = “1”. FIL3 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data  
passes this block by 0dB gain. The coefficient should be set when FIL3 bit = “0” or PMADL = PMADR = PMDAL =  
PMDAR bits = “0”.  
1) When FIL3 is set to “HPF”  
fs: Sampling frequency  
fc: Cut-off frequency  
K: Filter gain [dB] (0dB K ≥ −10dB)  
Register setting (Note 61)  
FIL3: F3AS bit = “0”, F3A[13:0] bits =A, F3B[13:0] bits =B  
(MSB=F3A13, F3B13; LSB=F3A0, F3B0)  
1 / tan (πfc/fs)  
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A = 10K/20  
x
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 z −  
1
H(z) = A  
1 + Bz −  
1
2) When FIL3 is set to “LPF”  
fs: Sampling frequency  
fc: Cut-off frequency  
K: Filter gain [dB] (0dB K ≥ −10dB)  
Register setting (Note 61)  
FIL3: F3AS bit = “1”, F3A[13:0] bits =A, F3B[13:0] bits =B  
(MSB=F3A13, F3B13; LSB= F3A0, F3B0)  
1
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A = 10K/20  
x
,
B =  
1 + 1 / tan (πfc/fs)  
Transfer function  
1 + z −  
1
H(z) = A  
1 + Bz −  
1
MS0666-E-00  
2007/10  
- 64 -  
[AK4671]  
(4) Gain Compensation (EQ0)  
Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation  
Emphasis Filter. Gain Compensation is composed with Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A15-0,  
E0B13-0 and E0C15-0 bits set the coefficient of EQ0. GN1-0 bits set the gain (Table 23). EQ0 bit controls ON/OFF of  
EQ0. When EQ is OFF and the gain is 0dB, the audio data passes this block by 0dB gain. The coefficient should be set  
when EQ0 bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”.  
fs: Sampling frequency  
fc1: Pole frequency  
fc2: Zero-point frequency  
K: Filter gain [dB] (Maximum +12dB)  
Register setting (Note 61)  
E0A[15:0] bits =A, E0B[13:0] bits =B, E0C[15:0] bits =C  
(MSB=E0A15, E0B13, E0C15; LSB=E0A0, E0B0, E0C0)  
1 + 1 / tan (πfc2/fs)  
1 + 1 / tan (πfc1/fs)  
1 1 / tan (πfc1/fs)  
1 + 1 / tan (πfc1/fs)  
1 1 / tan (πfc2/fs)  
1 + 1 / tan (πfc1/fs)  
A = 10K/20  
x
,
B =  
,
C =10K/20 x  
Transfer function  
A + Cz −  
H(z) =  
1
1 + Bz 1  
Gain[dB]  
K
fc1  
fc2  
Frequency  
Figure 61. EQ0 Frequency Response  
GN1  
GN0  
Gain  
0dB  
+12dB  
+24dB  
0
0
1
0
1
x
(default)  
Table 23. Gain select of gain block (x: Don’t care)  
MS0666-E-00  
2007/10  
- 65 -  
 
[AK4671]  
(5) 5-band Notch  
This block can be used as Equalizer or Notch Filter. 5-band Equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) is ON/OFF  
independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When Equalizer is OFF, the audio data passes this block by 0dB  
gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the  
coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. E4A15-0, E4B15-0 and E4C15-0  
bits set the coefficient of EQ4. E5A15-0, E5B15-0 and E5C15-0 bits set the coefficient of EQ5. The EQx (x=15)  
coefficient should be set when EQx bit = 0or PMADL=PMADR=PMDAL=PMDAR bits = “0”.  
fs: Sampling frequency  
fo1 ~ fo5: Center frequency  
fb1 ~ fb5: Band width where the gain is 3dB different from center frequency  
K1 ~ K5 : Gain (1 Kn 3)  
Register setting (Note 61)  
EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1  
EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2  
EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3  
EQ4: E4A[15:0] bits =A4, E4B[15:0] bits =B4, E4C[15:0] bits =C4  
EQ5: E5A[15:0] bits =A5, E5B[15:0] bits =B5, E5C[15:0] bits =C5  
(MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15, E4C15,  
E5A15, E5B15, E5C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0,  
E4C0, E5A0, E5B0, E5C0)  
2
tan (πfbn/fs)  
1 tan (πfbn/fs)  
1 + tan (πfbn/fs)  
An = Kn x  
,
Cn =  
Bn = cos(2π fon/fs) x  
,
1 + tan (πfbn/fs)  
1 + tan (πfbn/fs)  
(n = 1, 2, 3, 4, 5)  
Transfer function  
H(z) = 1 + h1(z) + h2(z) + h3(z) + h4(z) + h5(z)  
1 z −  
2
hn (z) = An  
1Bnz 1Cnz 2  
(n = 1, 2, 3, 4, 5)  
The center frequency should be set as below.  
fon / fs < 0.497  
Note 61. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s  
complement)]  
X = (Real number of filter coefficient calculated by the equations above) x 213  
X should be rounded to integer, and then should be translated to binary code (2’s complement).  
MSB of each filter coefficient setting register is sine bit.  
MS0666-E-00  
2007/10  
- 66 -  
 
[AK4671]  
ALC Operation  
The ALC (Automatic Level Control) is executed by ALC block when ALC bit is “1”. ALC circuit operates at playback  
path for Playback mode and operates at recording path for Recording mode as shown in Figure 60.  
1. ALC Limiter Operation  
During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 24), the IVL  
and IVR values (same value) are attenuated automatically by the amount defined by the ALC limiter ATT step (Table 25).  
When ZELMN bit = “0” (zero cross detection is enabled), the IVL and IVR values are changed by ALC limiter operation  
at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing  
timeout period of both ALC limiter and recovery operation (Table 26). IVL and IVR values are attenuated 1 step  
immediately (period: 1/fs) by ALC limiter operation when output level is over FS (Digital Full Scale). When output level  
is not over FS, the IVL and IVR values are changed at the individual zero crossing points of Lch and Rch or at the zero  
crossing timeout.  
When ZELMN bit = “1” (zero cross detection is disabled), IVL and IVR values are immediately (period: 1/fs) changed by  
ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting of LMAT1-0 bits.  
The attenuation operation is done continuously until the input signal level becomes ALC limiter detection level (Table 24)  
or less. After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when the input  
signal level exceeds LMTH1-0 bits.  
LMTH1 LMTH0 ALC Limier Detection Level  
ALC Recovery Waiting Counter Reset Level  
2.5dBFS > ALC Output ≥ −4.1dBFS  
4.1dBFS > ALC Output ≥ −6.0dBFS  
6.0dBFS > ALC Output ≥ −8.5dBFS  
8.5dBFS > ALC Output ≥ −12dBFS  
0
0
1
1
0
1
0
1
(default)  
ALC Output ≥ −2.5dBFS  
ALC Output ≥ −4.1dBFS  
ALC Output ≥ −6.0dBFS  
ALC Output ≥ −8.5dBFS  
Table 24. ALC Limiter Detection Level / Recovery Counter Reset Level  
ALC Limiter ATT Step  
LMAT1  
LMAT0  
ALC Output  
ALC Output  
ALC Output  
ALC Output  
LMTH  
FS  
FS + 6dB  
FS + 12dB  
0
0
1
1
0
1
0
1
1
2
2
1
1
2
4
2
1
2
4
4
1
2
8
8
(default)  
Table 25. ALC Limiter ATT Step  
Zero Crossing Timeout Period  
8kHz 16kHz 44.1kHz  
2.9ms  
ZTM1  
ZTM0  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
16ms  
32ms  
64ms  
128ms  
8ms  
(default)  
16ms  
32ms  
64ms  
5.8ms  
11.6ms  
23.2ms  
Table 26. ALC Zero Crossing Timeout Period  
MS0666-E-00  
2007/10  
- 67 -  
 
[AK4671]  
2. ALC Recovery Operation  
The ALC recovery operation waits for the WTM2-0 bits (Table 27) to be set after completing the ALC limiter operation.  
If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 24) during the wait time, the ALC  
recovery operation is executed. The IVL and IVR values are automatically incremented by RGAIN1-0 bits (Table 28) up  
to the set reference level (Table 29) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 26).  
Then the IVL and IVR are set to the same value for both channels. The ALC recovery operation is executed in a period set  
by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, the ALC  
recovery operation waits until WTM2-0 period and the next recovery operation is executed. If ZTM1-0 is longer than  
WTM2-0 and no zero crossing occurs, the ALC recovery operation is executed in a period set by ZTM1-0 bits.  
For example, when the current IVL and IVR values are 30H and RGAIN1-0 bits are set to “01”, IVL and IVR values are  
changed to 32H by the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When  
the IVL and IVR values exceed the reference level (REF7-0 bits), the IVL and IVR values are not increased.  
When  
“ALC recovery waiting counter reset level (LMTH1-0) Output Signal < ALC limiter detection level (LMTH1-0)”  
during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When  
“ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”,  
the waiting timer of ALC recovery operation starts.  
The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation  
becomes faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone  
instantaneously, the quality of small signal level in the large noise can be improved by this fast recovery operation. The  
speed of fast recovery operation is set by RFST1-0 bits (Table 30).  
ALC Recovery Operation Waiting Period  
WTM2  
WTM1  
WTM0  
8kHz  
16kHz  
44.1kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
2048/fs  
4096/fs  
8192/fs  
16384/fs  
16ms  
32ms  
64ms  
128ms  
256ms  
512ms  
1024ms  
2048ms  
8ms  
16ms  
32ms  
64ms  
128ms  
256ms  
512ms  
1024ms  
2.9ms  
5.8ms  
(default)  
11.6ms  
23.2ms  
46.4ms  
92.9ms  
185.8ms  
371.5ms  
Table 27. ALC Recovery Operation Waiting Period  
RGAIN1  
RGAIN0  
GAIN STEP  
0
0
1
1
0
1
0
1
1 step  
0.375dB  
0.750dB  
1.125dB  
1.500dB  
(default)  
2 step  
3 step  
4 step  
Table 28. ALC Recovery GAIN Step  
MS0666-E-00  
2007/10  
- 68 -  
 
[AK4671]  
REF7-0 bits  
GAIN (dB)  
+36.0  
+35.625  
+35.25  
:
Step  
F1H  
F0H  
EFH  
:
(default)  
E1H  
:
+30.0  
:
0.375dB  
92H  
91H  
90H  
:
+0.375  
0.0  
0.375  
:
2H  
1H  
0H  
53.625  
54.0  
MUTE  
Table 29. Reference Level at ALC Recovery Operation  
RFST1 bit  
RFST0 bit  
Recovery Speed  
4 times  
0
0
1
1
0
1
0
1
(default)  
8 times  
16times  
N/A  
Table 30. Fast Recovery Speed Setting (N/A: Not available)  
MS0666-E-00  
2007/10  
- 69 -  
 
[AK4671]  
3. Example of ALC Operation  
Table 31 and Table 32 show the examples of the ALC setting for mic recording and playback, respectively.  
fs=8kHz  
Operation  
fs=44.1kHz  
Operation  
Register Name Comment  
Data  
01  
0
Data  
01  
0
LMTH1-0  
ZELMN  
Limiter detection Level  
4.1dBFS  
Enable  
4.1dBFS  
Enable  
Limiter zero crossing detection  
Zero crossing timeout period  
* ZTM1-0 bits should be equal to or  
shorter than WTM2-0 bits.  
ZTM1-0  
01  
32ms  
11  
23.2ms  
WTM2-0  
REF7-0  
IVL7-0,  
IVR7-0  
Recovery waiting period  
Maximum gain at recovery operation  
001  
E1H  
32ms  
+30dB  
100  
E1H  
46.4ms  
+30dB  
Gain of IVOL  
E1H  
+30dB  
E1H  
+30dB  
LMAT1-0  
RGAIN1-0  
RFST1-0  
ALC  
Limiter ATT step  
Recovery GAIN step  
Fast Recovery Speed  
ALC enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
Table 31. Example of the ALC setting (Recording Path)  
fs=8kHz  
fs=44.1kHz  
Register Name Comment  
Data  
01  
0
Operation  
Data  
01  
0
Operation  
LMTH1-0  
ZELMN  
ZTM1-0  
Limiter detection Level  
4.1dBFS  
Enable  
32ms  
4.1dBFS  
Enable  
23.2ms  
Limiter zero crossing detection  
Zero crossing timeout period  
Recovery waiting period  
01  
11  
WTM2-0  
*WTM2-0 bits should be the same or  
longer data as ZTM1-0 bits  
001  
32ms  
100  
46.4ms  
REF5-0  
IVL7-0,  
IVR7-0  
Maximum gain at recovery operation  
A1H  
91H  
+6dB  
0dB  
A1H  
91H  
+6dB  
0dB  
Gain of IVOL  
LMAT1-0  
RGAIN1-0  
RFST1-0  
ALC  
Limiter ATT step  
Recovery GAIN step  
Fast Recovery Speed  
ALC enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
00  
00  
00  
1
1 step  
1 step  
4 times  
Enable  
Table 32. Example of the ALC setting (Playback Path)  
MS0666-E-00  
2007/10  
- 70 -  
 
[AK4671]  
The following registers should not be changed during the ALC operation. These bits should be changed after the ALC  
operation is finished by ALC bit = “0”.  
LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN, RFST1-0  
Example:  
Limiter = Zero crossing Enable  
Recovery Cycle = 32ms@8kHz  
Zero Crossing Timeout Period = 32ms@8kHz  
Limiter and Recovery Step = 1  
Fast Recovery Speed = 4 step  
Gain of IVOL = +30dB  
Maximum Gain = +30.0dB  
Limiter Detection Level = 4.1dBFS  
Manual Mode  
ALC bit = “1”  
WR (IVL7-0)  
WR (IVR7-0)  
WR (REF7-0)  
(1) Addr=12H, Data=E1H  
(2) Addr=13H, Data=E1H  
(3) Addr=14H, Data=E1H  
* The value of IVOL should be  
the same or smaller than REF’s  
WR (ZTM1-0, WTM2-0, RFST1-0)  
WR (LMTH1-0, RGAIN1-0, LMAT1-0, ZELMN)  
WR (ALC = “1”)  
(4) Addr=16H, Data=05H  
(5) Addr=17H, Data=01H  
(6) Addr=18H, Data=03H  
ALC Operation  
Note : WR : Write  
Figure 62. Registers set-up sequence at ALC operation  
MS0666-E-00  
2007/10  
- 71 -  
 
[AK4671]  
Input Digital Volume (Manual Mode)  
The input digital volume becomes a manual mode when ALC bit is “0”. This mode is used in the case shown below.  
1. After exiting reset state, set-up the registers for the ALC operation (ZTM1-0, LMTH1-0 and etc)  
2. When the registers for the ALC operation (Limiter period, Recovery period and etc) are changed.  
For example, in case of changing the sampling frequency.  
3. When IVOL is used as a manual volume.  
IVL7-0 and IVR7-0 bits set the gain of the volume control (Table 33). When IVOLC bit is “0”, IVL7-0 and IVR7-0 bits  
control Lch and Rch volume values independently. When IVOLC bit is “1”, IVL7-0 bits controls both channels. The  
IVOL value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTM1-0 bits. If IVL7-0 or  
IVR7-0 bits are written during PMADL=PMADR bits = “0”, IVOL operation starts with the written values at the end of  
the ADC initialization cycle after PMADL or PMADR bit is changed to “1”.  
IVL7-0 bits  
IVR7-0 bits  
GAIN (dB)  
Step  
F1H  
F0H  
EFH  
:
+36.0  
+35.625  
+35.25  
:
92H  
91H  
90H  
:
+0.375  
0.0  
0.375  
:
0.375dB  
(default)  
03H  
02H  
01H  
00H  
53.25  
53.625  
54  
MUTE  
Table 33. Input Digital Volume Setting  
Side Tone Volume (SVOLA)  
The AK4671 has the channel independent side tone volume (5 levels, 6dB step). The volume can be set by the  
SVAL/R2-0 bits. The volume is included at mixing path from ALC to 5-band EQ. The output data of ALC is changed  
from 0 to –24dB.  
SVL2-0  
0H  
Gain  
0dB  
(default)  
1H  
2H  
3H  
4H  
6dB  
12dB  
18dB  
24dB  
N/A  
Others  
Table 34. Side Tone Volume A Code Table (N/A: Not available)  
MS0666-E-00  
2007/10  
- 72 -  
 
[AK4671]  
5-Band Equalizer  
The AK4671 has 5-Band Equalizer before DAC of Stereo CODEC.  
The center frequencies and cut/boost amount are the followings.  
Center frequency: 100Hz, 250Hz, 1kHz, 3.5kHz and 10kHz (Note 62, Note 63, Note 64)  
Cut/Boost amount: –10.5dB +12dB, 1.5dB step  
Note 62. These are the frequencies when the sampling frequency is 44.1kHz. These frequencies are proportional to the  
sampling frequency.  
Note 63. 100Hz is not center frequency but the frequency component lower than 100Hz is controlled.  
Note 64. 10kHz is not center frequency but the frequency component higher than 10kHz is controlled.  
EQ bit controls ON/OFF of this Equalizer and these Boost amount are set by EQA3-0, EQB3-0, EQC3-0, EQD3-0 and  
EQE3-0 bits, respectively, as shown in Table 35.  
EQA3-0: Select the boost level of 100Hz  
EQB3-0: Select the boost level of 250Hz  
EQC3-0: Select the boost level of 1kHz  
EQD3-0: Select the boost level of 3.5kHz  
EQE3-0: Select the boost level of 10kHz  
EQx3-0  
0H  
1H  
2H  
3H  
:
Boost amount  
+12.0dB  
+10.5dB  
+9.0dB  
+7.5dB  
:
8H  
:
0dB  
:
(default)  
DH  
EH  
FH  
7.5dB  
9.0dB  
10.5dB  
Table 35. Boost amount of 5-Band Equalizer  
MS0666-E-00  
2007/10  
- 73 -  
 
[AK4671]  
Digital Output Volume  
The AK4671 has a digital output volume (256 levels, 0.5dB step, Mute). The volume can be set by the OVL7-0 and  
OVR7-0 bits. The volume is included in front of a DAC block. The input data of DAC is changed from +12 to –115dB or  
MUTE. When the OVOLC bit = “1”, the OVL7-0 bits control both Lch and Rch attenuation levels. When the OVOLC bit  
= “0”, the OVL7-0 bits control Lch level and OVR7-0 bits control Rch level. This volume has a soft transition function.  
The OVTM bit sets the transition time between set values of OVL/R7-0 bits as either 1061/fs or 256/fs (Table 37). When  
OVTM bit = “0”, a soft transition between the set values occurs (1062 levels). It takes 1061/fs (=24ms@fs=44.1kHz)  
from 00H (+12dB) to FFH (MUTE).  
OVL/R7-0  
00H  
01H  
02H  
:
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
:
Step  
0.5dB  
(default)  
18H  
:
0dB  
:
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 36. Digital Volume Code Table  
Transition time between DVL/R7-0 bits = 00H and FFH  
OVTM bit  
Setting  
1061/fs  
256/fs  
fs=8kHz  
133ms  
32ms  
fs=44.1kHz  
24ms  
0
1
(default)  
6ms  
Table 37. Transition Time Setting of Digital Output Volume  
MS0666-E-00  
2007/10  
- 74 -  
 
[AK4671]  
Soft Mute  
Soft mute operation is performed in the digital domain. When the SMUTE bit is changed to “1”, the output signal is  
attenuated to −∞ (“0”) during the cycle set by the OVTM bit. When the SMUTE bit is returned to “0”, the mute is  
cancelled and the output attenuation gradually changes to the value set by the OVL/R7-0 bits during the cycle set of the  
OVTM bit. If the soft mute is cancelled within the cycle set by the OVTM bit after starting the operation, the attenuation  
is discontinued and returned to the value set by the OVL/R7-0 bits. The soft mute is effective for changing the signal  
source without stopping the signal transmission (Figure 63).  
SMUTE bit  
OVTM bit  
(1)  
OVTM bit  
OVL/R7-0 bits  
Attenuation  
(3)  
-∞  
GD  
GD  
(2)  
Analog Output  
Figure 63. Soft Mute Function  
(1) The output signal is attenuated until −∞ (“0”) in the cycle set by the OVTM bit.  
(2) Analog output corresponding to digital input has the group delay (GD).  
(3) If the soft mute is cancelled within the cycle set by the OVTM bit, the attenuation is discounted and returned to the  
value set by the OVL/R7-0 bits.  
MS0666-E-00  
2007/10  
- 75 -  
 
[AK4671]  
Digital Volume for Recording of Received Voice (DATT-B)  
The AK4671 has a digital output volume (DATT-B: 256 levels, 0.5dB step, Mute) for recording of received voice. The  
volume can be set by the BVL7-0 bits. The volume is included in front of an SRC-B block. The input data of SRC-B is  
changed from +12 to –115dB or MUTE. This volume has a soft transit function. The transition time between set values of  
BVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE).  
BVL7-0  
00H  
01H  
02H  
:
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
:
Step  
0.5dB  
(default)  
18H  
:
0dB  
:
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 38. Digital Volume B Code Table  
Digital Volume for Received Voice (DATT-C)  
The AK4671 has a digital output volume (DATT-C: 256 levels, 0.5dB step, Mute) for received voice. The volume can be  
set by the CVL7-0 bits. The volume is included in front of SDTOB output. The input data of SRC-C is changed from +12  
to –115dB or MUTE. This volume has a soft transition function. The transition time between set values of CVL7-0 bits is  
256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE).  
CVL7-0  
00H  
01H  
02H  
:
Gain  
+12.0dB  
+11.5dB  
+11.0dB  
:
Step  
0.5dB  
(default)  
18H  
:
0dB  
:
FDH  
FEH  
FFH  
114.5dB  
115.0dB  
MUTE (−∞)  
Table 39. Digital Volume C Code Table  
Side Tone Volume for B/T Phone Call (SVOLB)  
The AK4671 has the side tone volume (5 levels, 6dB step) for B/T phone call. The volume can be set by the SVL2-0 bits.  
The volume is included at mixing path from SRC-A to DATT-C. The output data of SRC-A is changed from 0 to –24dB.  
SVB2-0  
0H  
Gain  
0dB  
(default)  
1H  
2H  
3H  
4H  
6dB  
12dB  
18dB  
24dB  
N/A  
Others  
Table 40. Side Tone Volume B Code Table (N/A: Not available)  
MS0666-E-00  
2007/10  
- 76 -  
 
[AK4671]  
Digital Volume for B/T MIC Input (BIVOL)  
The AK4671 has the digital volume (5 levels, 6dB step) for B/T mic input. The volume can be set by the BIV2-0 bits. The  
volume is included at SDTIB input. The input data is changed from 0 to –24dB.  
BIV2-0  
0H  
Gain  
0dB  
(default)  
1H  
2H  
3H  
4H  
6dB  
12dB  
18dB  
24dB  
N/A  
Others  
Table 41. SDTIB Volume Code Table (N/A: Not available)  
Path & Mixing Setting of Digital Block (Figure 57)  
PMADL and PMADR bits set both ADC power management and output data selection. In case of mono operation, the  
same data is output to both channel slots.  
PMADL  
PMADR  
ADC Lch data  
All “0”  
Rch Input Signal  
Lch Input Signal  
Lch Input Signal  
ADC Rch data  
All “0”  
Rch Input Signal  
Lch Input Signal  
Rch Input Signal  
0
0
1
1
0
1
0
1
(default)  
Table 42. ADC Mono/Stereo Select  
PFSEL bit select the input data of programmable filter.  
PFSEL  
Programmable Filter Input  
0
1
ADC Output (selected by Table 42)  
SDTI Input (selected by Table 48)  
(default)  
Table 43. Programmable Filter Input Signal Select  
When ADM bit is “1”, ALC output data is output to both channels of SDTO and SVOLA as (L+R)/2, respectively.  
ADM  
0
1
Lch  
L
(L+R)/2  
Rch  
R
(L+R)/2  
(default)  
Table 44. ALC Output Mono Mixing  
MS0666-E-00  
2007/10  
- 77 -  
 
[AK4671]  
SDOL1-0 and SDOR1-0 bits set the data mixing for each channel of SDTO from the data selected by Table 44 and SRC-B  
output data.  
SDOL1  
SDOL0  
SDTO Lch  
0
0
1
1
0
1
0
1
Lch Signal selected by Table 44  
(default)  
SRC-B  
(Lch Signal selected by Table 44) + (SRC-B)  
N/A  
Table 45. SDTO Lch Output Mixing (N/A: Not available)  
SDOR1  
SDOR0  
SDTO Rch  
0
0
1
1
0
1
0
1
Rch Signal selected by Table 44  
(default)  
SRC-B  
(Rch Signal selected by Table 44) + (SRC-B)  
N/A  
Table 46. SDTO Rch Output Mixing (N/A: Not available)  
When SDOD bit is “1”, SDTO output data can be disabled (fixed to “L”). Input data of SVOLA is not disabled.  
SDOD  
SDTO  
0
1
Enable (Output) (default)  
Disable (“L”)  
Table 47. SDTO Disable  
SDIM1-0 bits select stereo or mono of SDTI input data. In case of mono mode, the same data is input to both channels.  
SDIM1  
SDIM0  
Lch  
L
L
Rch  
R
L
0
0
1
1
0
1
0
1
(default)  
R
R
N/A  
Table 48. SDTI Stereo/Mono Select (N/A: Not available)  
PFMXL1-0 and PFMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 48  
and SVOLA output data.  
PFMXL1 PFMXL0  
5-band EQ Lch Input  
Lch Signal selected by Table 48  
SVOLA Lch  
0
0
1
1
0
1
0
1
(default)  
(Lch Signal selected by Table 48) + (SVOLA Lch)  
N/A  
Table 49. 5-band EQ Lch Input Mixing 1 (N/A: Not available)  
PFMXR1 PFMXR0  
5-band EQ Rch Input  
Rch Signal selected by Table 48  
SVOLA Rch  
0
0
1
1
0
1
0
1
(default)  
(Rch Signal selected by Table 48) + (SVOLA Rch)  
N/A  
Table 50. 5-band EQ Rch Input Mixing 1 (N/A: Not available)  
MS0666-E-00  
2007/10  
- 78 -  
 
[AK4671]  
SRMXL1-0 and SRMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table  
49/Table 50 and SVOLA output data.  
SRMXL1 SRMXL0  
5-band EQ Lch Input  
Signal selected by Table 49  
SRC-B  
0
0
1
1
0
1
0
1
(default)  
(Signal selected by Table 49) + (SRC-B)  
N/A  
Table 51. 5-band EQ Lch Input Mixing 2 (N/A: Not available)  
SRMXR1 SRMXR0  
5-band EQ Rch Input  
Signal selected by Table 50  
SRC-B  
0
0
1
1
0
1
0
1
(default)  
(Signal selected by Table 50) + (SRC-B)  
N/A  
Table 52. 5-band EQ Rch Input Mixing 2 (N/A: Not available)  
DAM and MIXD bits set the data mixing for DAC input.  
DAM  
MIXD  
Lch  
L
L+R  
Rch  
R
L+R  
0
1
1
x
0
1
(default)  
(L+R)/2  
(L+R)/2  
Table 53. DAC Mono Mixing (x: Don’t care)  
SRA1-0 and MIXD bits set the data mixing for SRC-A input.  
SRA1  
SRA0  
MIXD  
SRC-A  
L
0
0
1
1
1
0
1
0
0
1
x
x
0
1
x
(default)  
R
L+R  
(L+R)/2  
N/A  
Table 54. SRC-A Input Mixing (x: Don’t care, N/A: Not available)  
SDOA bit selects the output data of SDTOA.  
SDOA  
SDTOA  
SRC-A  
SDTIB  
0
1
(default)  
Table 55. SDTOA Output Select  
When SDOAD bit is “1”, SDTOA output data can be disabled (fixed to “L”). Input data of SVOLB is not disabled.  
SDOAD  
SDTOA  
0
1
Enable (Output) (default)  
Disable (“L”)  
Table 56. SDTOA Disable  
MS0666-E-00  
2007/10  
- 79 -  
 
[AK4671]  
SBMX1-0 bits set the data mixing from SDTIA input and SVOLB output. The mixed data is output to SDTOB via  
DATT-C.  
SBMX1  
SBMX0  
DATT-C Input  
SDTIA  
SVOLB  
(SDTIA) + (SVOLB)  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 57. SDTOB Mixing (N/A: Not available)  
When SDOBD bit is “1”, SDTOB output data can be disabled (fixed to “L”).  
SDOBD  
SDTOB  
0
1
Enable (Output) (default)  
Disable (“L”)  
Table 58. SDTOB Disable  
BVMX1-0 bits set the data mixing for SRC-B from SDTIA input (DATT-B output) and SDTIB input (BIVOL output).  
BVMX1  
BVMX0  
SRC-B Input  
SDTIA  
SDTIB  
(SDTIA) + (SDTIB)  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 59. SRC-B Input Mixing (N/A: Not available)  
MS0666-E-00  
2007/10  
- 80 -  
 
[AK4671]  
Analog Mixing: Single-ended Input (LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins)  
AK4671 supports analog mixing function from each line input to each line output (Figure 64).  
When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When  
PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR  
bits = “1”, the input resistance of LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins becomes 25kΩ (typ) at  
MGNL/R0 bits = “0” and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively.  
L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63,  
Table 64).  
AK4671  
INL4-0 bits  
LIN1/IN1+ pin  
ADC Lch  
RIN1/IN1pin  
MIC-Amp Lch  
MDIF1 bit  
MDIF3 bit  
INR4-0 bits  
LIN2/IN2+ pin  
ADC Rch  
RIN2/IN2pin  
MIC-Amp Rch  
MDIF2 bit  
MDIF4 bit  
LIN3/IN3+ pin  
RIN3/IN3pin  
LIN4/IN4+ pin  
RIN4/IN4pin  
Figure 56, 57, 59, 60  
Figure 62, 63  
Figure 66, 67, 69, 70  
LOUT1 pin  
ROUT1 pin  
LOUT2 pin  
ROUT2 pin  
LOUT3 pin  
ROUT3 pin  
Figure 64. Analog Mixing Circuit  
MS0666-E-00  
2007/10  
- 81 -  
 
[AK4671]  
L1G1 bit  
L1G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 60. LIN1/RIN1 (or IN1+/) Mixing Gain (typ) (N/A: Not available)  
L2G1 bit  
L2G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 61. LIN2/RIN2 (or IN2+/) Mixing Gain (typ) (N/A: Not available)  
L3G1 bit  
L3G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 62. LIN3/RIN3 (or IN3+/) Mixing Gain (typ) (N/A: Not available)  
L4G1 bit  
L4G0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 63. LIN4/RIN4 (or IN4+/) Mixing Gain (typ) (N/A: Not available)  
LPG1 bit  
LPG0 bit  
Gain  
0dB  
+6dB  
6dB  
N/A  
0
0
1
1
0
1
0
1
(default)  
Table 64. MIC-Amp Mixing Gain (typ) (N/A: Not available)  
Analog Mixing: Full-differential Input (IN1+/IN1/IN2+/IN2/IN3+/IN3/IN4+/IN4pins)  
When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins  
become IN1+/, IN2+/, IN3+/and IN4+/pins, respectively, and analog mixing is availble.  
When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When  
PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR  
bits = “1”, the input resistance of IN1+/, IN2+/, IN3+/and IN4+/pins becomes 25kΩ (typ) at MGNL/R0 bits = “0”  
and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively.  
L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63,  
Table 64).  
MS0666-E-00  
2007/10  
- 82 -  
 
[AK4671]  
Stereo Line Output (LOUT1/ROUT1 pins)  
When DACL and DACR bits are “1”, Lch/Rch signal of DAC is output from the LOUT1/ROUT1 pins which is  
single-ended. When DACL and DACR bits are “0”, output signal is muted and LOUT1/ROUT1 pins output VCOM  
voltage. The load impedance is 10kΩ (min.). When the PMLO1=PMRO1=LOPS1 bits = “0”, LOUT1/ROUT1 enters  
power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS1 bit is “1”, LOUT1/ROUT1  
enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1  
bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 65. Rise/Fall  
time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO1=PMRO1 bits = “1” and LOPS1 bit = “0”,  
LOUT1/ROUT1 is in normal operation.  
L1VL3-0 bits control the volume of LOUT1/ROUT1.  
When LOM bit = “1”, DAC output signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal.  
When LOOPM bit = “1”, the MIC-Amp signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal.  
LOPS1  
0
PMLO1  
Mode  
LOUT1 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
(default)  
(default)  
1
Power-save  
Table 65. Stereo Line Output Mode Select (LOUT1)  
LOPS1  
0
PMRO1  
Mode  
ROUT1 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
1
Power-save  
Table 66. Stereo Line Output Mode Select (ROUT1)  
L1VL2-0  
6H  
Attenuation  
+6dB  
5H  
0dB  
(default)  
4H  
6dB  
3H  
2H  
1H  
0H  
12dB  
18dB  
24dB  
MUTE  
Table 67. Stereo Line Output Volume Setting  
LOUT1  
ROUT1  
1μF  
220Ω  
20kΩ  
Figure 65. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit)  
MS0666-E-00  
2007/10  
- 83 -  
 
[AK4671]  
<Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)>  
(2 )  
(5 )  
P M L O 1 b it  
P M R O 1 b it  
(1 )  
(3 )  
(4 )  
(6 )  
L O P S 1 b it  
L O U T 1 p in  
R O U T 1 p in  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 66. Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)  
(1) Set LOPS1 bit = “1”. Stereo line output enters the power-save mode.  
(2) Set PMLO1=PMRO1 bits = “1”. Stereo line output exits the power-down mode.  
LOUT1 and ROUT1 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and  
AVDD=3.3V.  
(3) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins rise up. Stereo line output exits the power-save mode.  
Stereo line output is enabled.  
(4) Set LOPS1 bit = “1”. Stereo line output enters power-save mode.  
(5) Set PMLO1=PMRO1 bits = “0”. Stereo line output enters power-down mode.  
LOUT1 and ROUT1 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(6) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins fall down. Stereo line output exits the power-save mode.  
MS0666-E-00  
2007/10  
- 84 -  
[AK4671]  
<Analog Mixing Circuit for LOUT1/ROUT1>  
DACL, DACR, LOM, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL, LOOPR and LOOPM  
bits control each path switch.  
LINL1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINL2 bit  
LINL3 bit  
LINL4 bit  
M
I
LOOPL bit  
LOUT1 pin  
L1VL2-0 bits  
X
LOOPR bit x LOOPM bit  
MIC-Amp Lch  
DACL bit  
DATT  
Stereo DAC Lch  
0dB  
DACR bit x LOM bit  
RINR1 bit  
RINR2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RINR3 bit  
RINR4 bit  
M
I
LOOPL bit x LOOPM bit  
ROUT1 pin  
L1VL2-0 bits  
X
LOOPR bit  
+6/0/6dB  
DACL bit x LOM bit  
MIC-Amp Rch  
DACR bit  
DATT  
Stereo DAC Rch  
0dB  
Figure 67. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0666-E-00  
2007/10  
- 85 -  
[AK4671]  
LINL1 bit  
LINL2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN1+/pins  
IN3+/pins  
LINL3 bit  
LINL4 bit  
M
I
LOOPL bit  
LOUT1 pin  
L1VL2-0 bits  
X
LOOPR bit x LOOPM bit  
MIC-Amp Lch  
DACL bit  
DATT  
Stereo DAC Lch  
DACR bit x LOM bit  
RINR1 bit  
RINR2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN2+/pins  
IN4+/pins  
RINR3 bit  
RINR4 bit  
M
I
LOOPL bit x LOOPM bit  
ROUT1 pin  
L1VL2-0 bits  
X
LOOPR bit  
DACL bit x LOM bit  
MIC-Amp Rch  
DACR bit  
DATT  
Stereo DAC Rch  
Figure 68. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0666-E-00  
2007/10  
- 86 -  
[AK4671]  
Receiver-Amp (RCP/RCN pins)  
When RCV bit = “1”, LOUT1/ROUT1 pins become RCP/RCN pins, respectively. Lch/Rch signal of DAC or  
LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the RCP/RCN pins which is BTL as (L+R) signal. The  
load impedance is 32Ω (min). When the PMLO1 = PMRO1 bits = “0”, the mono receiver output enters power-down  
mode and the output is Hi-Z. When the PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “1”, mono receiver output enters  
power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1 bit =  
“0”. When PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “0”, mono receiver output enters in normal operation.  
L1VL3-0 bits control the volume of mono receiver output.  
L1VL2-0  
6H  
Attenuation  
+12dB  
+6dB  
5H  
(default)  
4H  
0dB  
3H  
6dB  
2H  
1H  
0H  
12dB  
18dB  
MUTE  
Table 68. Mono Receiver Output Volume Setting  
PMLO1/RO1  
0
LOPS1  
Mode  
Power-down  
Power-save  
RCP  
Hi-Z  
Hi-Z  
RCN  
Hi-Z  
VCOM  
x
1
0
(default)  
1
Normal Operation  
Normal Operation Normal Operation  
Table 69. Receiver-Amp Mode Setting (x: Don’t care)  
PMLO1 bit  
PMRO1 bit  
LOPS1 bit  
RCP pin  
RCN pin  
Hi-Z  
Hi-Z  
VCOM  
>1ms  
VCOM  
>0  
Hi-Z  
Hi-Z  
Figure 69. Power-up/Power-down Timing for Receiver-Amp  
MS0666-E-00  
2007/10  
- 87 -  
[AK4671]  
<Analog Mixing Circuit for Receiver Output>  
DACL, DACR, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL and LOOPR bits control each  
path switch.  
When MDIF1/2/3/4 bits = “1”, RINR1/2/3/4 bits should be “0”.  
LINL1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINL2 bit  
LINL3 bit  
LINL4 bit  
LOOPL bit  
MIC-Amp Lch  
RINR1 bit  
RINR2 bit  
RINR3 bit  
RINR4 bit  
LOOPR bit  
M
I
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RCP/RCN pins  
L1VL2-0 bits  
X
MIC-Amp Rch  
Stereo DAC Lch  
DACL bit  
DACR bit  
DATT  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 70. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0666-E-00  
2007/10  
- 88 -  
[AK4671]  
LINL1 bit  
LINL2 bit  
LINL3 bit  
LINL4 bit  
LOOPL bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
IN1+/pins  
IN2+/pins  
IN3+/pins  
IN4+/pins  
RCP/RCN pins  
L1VL2-0 bits  
MIC-Amp Lch  
MIC-Amp Rch  
LOOPR bit  
M
I
+6/0/6dB  
DACL bit  
DACR bit  
X
DATT  
Stereo DAC Lch  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 71. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0666-E-00  
2007/10  
- 89 -  
[AK4671]  
Headphone Output (LOUT2/ROUT2 pins)  
Power supply voltage for the LOUT2/ROUT2 is supplied from the AVDD pin and centered on the 0.5 x AVDD (typ)  
voltage. The load resistance is 16Ω (min). HPG3-0 bits control the output volume (Table 70).  
When LOM2 bit = “1”, DAC output signal is output to LOUT2 and ROUT2 pins as (L+R) mono signal.  
When LOOPM2 bit = “1”, the MIC-Amp signal is output to LOUT2 and ROUT2 pins as (L+R) mono signal.  
HPG3-0  
DH  
CH  
BH  
AH  
:
Attenuation  
+6dB  
+3dB  
0dB  
(default)  
3dB  
:
:
:
2H  
1H  
0H  
27dB  
30dB  
MUTE  
Table 70. LOUT2/ROUT2 Output Volume  
When the MUTEN bit is “0”, the common voltage of LOUT2/ROUT2 falls and the outputs (LOUT2 and ROUT2 pins)  
change to “L” (VSS1). When the MUTEN bit is “1”, the common voltage rises to VCOM voltage. A capacitor between  
the MUTET pin and ground reduces pop noise at power-up. Rise/Fall time constant is in proportional to AVDD voltage  
and the capacitor at MUTET pin.  
[Example]: A capacitor between the MUTET pin and ground = 1.0μF, AVDD=3.3V:  
Rise/fall time constant: τ = 100ms(typ), 250ms(max)  
Time until the common goes to VSS1 when MUTEN bit = “1” Æ “0”: 500ms(max)  
When PMLO2, PMRO2, PMLO2S and PMRO2S bits are “0”, the LOUT2/ROUT2 is powered-down, and the outputs  
(LOUT2 and ROUT2 pins) go to “L” (VSS1).  
PMLO2 bit, PMRO2 bit,  
PMLO2S bit, PMRO2S bit  
MUTEN bit  
LOUT2 pin,  
ROUT2 pin  
(1) (2)  
(3)  
(4)  
Figure 72. Power-up/Power-down Timing for LOUT2/ROUT2  
(1) LOUT2/ROUT2 power-up (PMLO2, PMRO2, PMLO2S, PMRO2S bit = “1”). The outputs are still VSS1.  
(2) LOUT2/ROUT2 common voltage rises up (MUTEN bit = “1”).  
(3) LOUT2/ROUT2 common voltage falls down (MUTEN bit = “0”).  
(4) LOUT2/ROUT2 power-down (PMLO2, PMRO2, PMLO2S, PMRO2S bit = “0”). The outputs are VSS1. If the power  
supply is switched off or LOUT2/ROUT2 is powered-down before the common voltage goes to VSS1, some POP  
noise occurs.  
MS0666-E-00  
2007/10  
- 90 -  
 
[AK4671]  
<Analog Mixing Circuit for LOUT2/ROUT2>  
DACHL, DACHR, LOM2, LINH1, RINH1, LINH2, RINH2, LINH3, RINH3, LINH4, RINH4, LOOPHL, LOOPHR and  
LOOPM2 bits control each path switch.  
LINH1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINH2 bit  
LINH3 bit  
LINH4 bit  
M
I
LOOPHL bit  
LOUT2 pin  
HPG3-0 bits  
X
LOOPHR bit x LOOPM2 bit  
MIC-Amp Lch  
DACHL bit  
DATT  
Stereo DAC Lch  
0dB  
DACHR bit x LOM2 bit  
RINH1 bit  
RINH2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RINH3 bit  
RINH4 bit  
M
I
LOOPHL bit x LOOPM2 bit  
ROUT2 pin  
HPG3-0 bits  
X
LOOPHR bit  
+6/0/6dB  
DACHL bit x LOM2 bit  
MIC-Amp Rch  
DACHR bit  
DATT  
Stereo DAC Rch  
0dB  
Figure 73. LOUT2/ROUT2 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0666-E-00  
2007/10  
- 91 -  
[AK4671]  
LINH1 bit  
LINH2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN1+/pins  
IN3+/pins  
LINH3 bit  
LINH4 bit  
M
I
LOOPHL bit  
LOUT2 pin  
HPG3-0 bits  
X
LOOPHR bit x LOOPM2 bit  
MIC-Amp Lch  
DACHL bit  
DATT  
Stereo DAC Lch  
DACHR bit x LOM2 bit  
RINH1 bit  
RINH2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN2+/pins  
IN4+/pins  
RINH3 bit  
RINH4 bit  
M
I
LOOPHL bit x LOOPM2 bit  
ROUT2 pin  
HPG3-0 bits  
X
LOOPHR bit  
DACHL bit x LOM2 bit  
MIC-Amp Rch  
DACHR bit  
DATT  
Stereo DAC Rch  
Figure 74. LOUT2/ROUT2 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0666-E-00  
2007/10  
- 92 -  
[AK4671]  
Stereo Line Output 3 (LOUT3/ROUT3 pins)  
When DACSL and DACSR bits are “1”, Lch/Rch signal of DAC is output from the LOUT3/ROUT3 pins which is  
single-ended. When DACSL and DACSR bits are “0”, output signal is muted and LOUT3/ROUT3 pins output VCOM  
voltage. The load impedance is 10kΩ (min.). When the PMLO3=PMRO3=LOPS3 bits = “0”, LOUT3/ROUT3 enters  
power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS3 bit is “1”, LOUT3/ROUT3  
enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO3 and PMRO3 bits at LOPS3  
bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 75. Rise/Fall  
time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO3=PMRO3 bits = “1” and LOPS3 bit = “0”,  
LOUT3/ROUT3 is in normal operation.  
L3VL3-0 bits control the volume of LOUT3/ROUT3.  
When LOM3 bit = “1”, DAC output signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal.  
When LOOPM3 bit = “1”, the MIC-Amp signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal.  
LOPS3  
0
PMLO3  
Mode  
Power-down  
Normal Operation  
Power-save  
LOUT3 pin  
0
1
0
1
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
(default)  
(default)  
1
Power-save  
Table 71. Stereo Line Output Mode Select (LOUT3)  
LOPS3  
0
PMRO3  
Mode  
ROUT3 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
1
Power-save  
Table 72. Stereo Line Output Mode Select (ROUT3)  
L3VL1  
L3VL0  
Attenuation  
+3dB  
1
1
0
0
1
0
1
0
0dB  
3dB  
6dB  
(default)  
Table 73. Stereo Line Output Volume Setting  
LOUT3  
ROUT3  
1μF  
220Ω  
20kΩ  
Figure 75. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit)  
MS0666-E-00  
2007/10  
- 93 -  
 
[AK4671]  
<Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)>  
(2 )  
(5 )  
P M L O 3 b it  
P M R O 3 b it  
(1 )  
(3 )  
(4 )  
(6 )  
L O P S 3 b it  
L O U T 3 , R O U T 3 p in s  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 76. Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)  
(1) Set LOPS3 bit = “1”. Stereo line output enters the power-save mode.  
(2) Set PMLO3=PMRO3 bits = “1”. Stereo line output exits the power-down mode.  
LOUT3 and ROUT3 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and  
AVDD=3.3V.  
(3) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins rise up. Stereo line output exits the power-save mode.  
Stereo line output is enabled.  
(4) Set LOPS3 bit = “1”. Stereo line output enters power-save mode.  
(5) Set PMLO3=PMRO3 bits = “0”. Stereo line output enters power-down mode.  
LOUT3 and ROUT3 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(6) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins fall down. Stereo line output exits the power-save mode.  
MS0666-E-00  
2007/10  
- 94 -  
[AK4671]  
<Analog Mixing Circuit for LOUT3/ROUT3>  
DACSL, DACSR, LOM3, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL, LOOPSR and  
LOM3 bits control each path switch.  
LINS1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINS2 bit  
LINS3 bit  
LINS4 bit  
M
I
LOOPSL bit  
LOUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit x LOOPM3 bit  
MIC-Amp Lch  
DACSL bit  
DATT  
Stereo DAC Lch  
0dB  
DACSR bit x LOM3 bit  
RINS1 bit  
RINS2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
RINS3 bit  
RINS4 bit  
M
I
LOOPSL bit x LOOPM3 bit  
ROUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit  
+6/0/6dB  
DACSL bit x LOM3 bit  
MIC-Amp Rch  
DACSR bit  
DATT  
Stereo DAC Rch  
0dB  
Figure 77. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0666-E-00  
2007/10  
- 95 -  
[AK4671]  
LINS1 bit  
LINS2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN1+/pins  
IN3+/pins  
LINS3 bit  
LINS4 bit  
M
I
LOOPSL bit  
LOUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit x LOOPM3 bit  
MIC-Amp Lch  
DACSL bit  
DATT  
Stereo DAC Lch  
DACSR bit x LOM3 bit  
RINS1 bit  
RINS2 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
0dB  
IN2+/pins  
IN4+/pins  
RINS3 bit  
RINS4 bit  
M
I
LOOPSL bit x LOOPM3 bit  
ROUT3 pin  
L3VL1-0 bits  
X
LOOPSR bit  
DACSL bit x LOM3 bit  
MIC-Amp Rch  
DACSR bit  
DATT  
Stereo DAC Rch  
Figure 78. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0666-E-00  
2007/10  
- 96 -  
[AK4671]  
Full-differential Mono Line Output (LOP/LON pins)  
When LODIF bit = “1”, LOUT3/ROUT3 pins become LOP/LON pins, respectively. Lch/Rch signal of DAC or  
LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the LOP/LON pins which is full-differential as (L+R)  
signal. The load impedance is 10kΩ (min) for LOP and LON pins, respectively. When the PMLO3 = PMRO3 bits = “0”,  
the mono line output enters power-down mode and the output is pulled-down to VSS1. When the PMLO3 = PMRO3 bits  
= “1” and LOPS3 bit = “1”, mono line output enters power-save mode. Pop noise at power-up/down can be reduced by  
changing PMLO3 and PMRO3 bits at LOPS3 bit = “0”. When PMLO3 = PMRO3 bits = “1” and LOPS3 bit = “0”, mono  
line output enters in normal operation. L3VL1-0 bits set the volume of mono line output.  
L3VL1-0  
3H  
Attenuation  
+9dB  
2H  
+6dB  
(default)  
1H  
+3dB  
0H  
0dB  
Table 74. Mono Line Output Gain Setting  
LOPS3  
0
PMLO3/RO3  
Mode  
LOUT3 pin  
0
1
0
1
Power-down  
Normal Operation  
Power-save  
Pull-down to VSS1  
Normal Operation  
Fall down to VSS1  
Rise up to VCOM  
(default)  
1
Power-save  
Table 75. Mono Line Output Mode Setting  
<Full-differential Mono Line Output Control Sequence (in case of using Pop Noise Reduction  
Circuit)>  
(2 )  
(5 )  
P M L O 3 b it  
P M R O 3 b it  
(1 )  
(3 )  
(4 )  
(6 )  
L O P S 3 b it  
L O P , L O N p in s  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 79. Mono Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)  
(1) Set LOPS3 bit = “1”. Mono line output enters the power-save mode.  
(2) Set PMLO3 = PMRO3 bits = “1”. Mono line output exits the power-down mode.  
LOP and LON pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(3) Set LOPS3 bit = “0” after LOP and LON pins rise up. Mono line output exits the power-save mode.  
Mono line output is enabled.  
(4) Set LOPS3 bit = “1”. Mono line output enters power-save mode.  
(5) Set PMLO3 = PMRO3 bits = “0”. Mono line output enters power-down mode.  
LOP and LON pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V.  
(6) Set LOPS3 bit = “0” after LOP and LON pins fall down. Mono line output exits the power-save mode.  
MS0666-E-00  
2007/10  
- 97 -  
[AK4671]  
<Analog Mixing Circuit for Mono Line Output>  
DACSL, DACSR, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL and LOOPSR bits control  
each path switch.  
When MDIF1/2/3/4 bits = “1”, RINS1/2/3/4 bits should be “0”.  
LINS1 bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
LIN1 pin  
LIN2 pin  
LIN3 pin  
LIN4 pin  
LINS2 bit  
LINS3 bit  
LINS4 bit  
LOOPSL bit  
MIC-Amp Lch  
RINS1 bit  
RINS2 bit  
RINS3 bit  
RINS4 bit  
LOOPSR bit  
M
I
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
RIN1 pin  
RIN2 pin  
RIN3 pin  
RIN4 pin  
LOP/LON pins  
L3VL1-0 bits  
X
MIC-Amp Rch  
Stereo DAC Lch  
DACSL bit  
DACSR bit  
DATT  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 80. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”)  
MS0666-E-00  
2007/10  
- 98 -  
[AK4671]  
LINS1 bit  
LINS2 bit  
LINS3 bit  
LINS4 bit  
LOOPSL bit  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
+6/0/6dB  
IN1+/pins  
IN2+/pins  
IN3+/pins  
IN4+/pins  
LOP/LON pins  
L3VL1-0 bits  
MIC-Amp Lch  
MIC-Amp Rch  
LOOPSR bit  
M
I
+6/0/6dB  
DACSL bit  
DACSR bit  
X
DATT  
Stereo DAC Lch  
0dB  
0dB  
DATT  
Stereo DAC Rch  
Figure 81. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”)  
MS0666-E-00  
2007/10  
- 99 -  
[AK4671]  
System Clock (PCM I/F)  
A reference clock of PLLBT is selected among the input clocks to SYNCA, BICKA, SYNCB or BICKB pin. The  
required clock to PCM I/F is generated by an internal PLLBT circuit. PLLBT circuit is powered up by PMPCM bit. Input  
frequency is selected by PLLBT3-0 bits (Table 76). BCKO2 bit select the output clock frequency of BICKA or BICKB  
pin (Table 77). AK4671 does not support master mode for both PCM I/F A and B nor slave mode for both PCM I/F A and  
B. Whether PCM I/F A or B should be set as slave mode. When PMPCM bit is “0”, SYNCA, BICKA, SYNCB and  
BICKB pins are Hi-Z. Table 78 indicates the output data of SDTOA and SDTOB pins in case of PMPCM bit = “0” and  
during lock time in Table 76, respectively. Table 79 indicates the output clock at master mode during lock time in Table  
76.  
R, C at  
VCOCBT pin  
Reference Clock  
Input Pin  
Lock Time  
(max)  
Mode PLLBT3 PLLBT2 PLLBT1 PLLBT0  
Frequency  
R
C
0
1
2
3
4
5
6
7
11  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
1
1
SYNCA  
BICKA  
BICKA  
BICKA  
SYNCB  
BICKB  
BICKB  
BICKB  
BICKA  
BICKB  
N/A  
1fs2  
16fs2  
32fs2  
64fs2  
1fs2  
16fs2  
32fs2  
64fs2  
48fs2  
48fs2  
6.8k  
10k  
10k  
10k  
6.8k  
10k  
10k  
10k  
10k  
10k  
220n  
4.7n  
4.7n  
4.7n  
220n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
260ms  
40ms  
40ms  
40ms  
260ms  
40ms  
40ms  
40ms  
40ms  
40ms  
(default)  
15  
Others  
Table 76. PLLBT Reference Clock (N/A: Not available)  
Note 65. Mode 1 is available at only FMTA1 bit = “0”.  
Note 66. Mode 5 is available at only FMTB1 bit = “0”.  
BICKA/BICKB  
Output Frequency  
BCKO2 bit  
0
1
16fs2  
32fs2  
(default)  
Table 77. BICKA/B Output Frequency  
PMPCM bit = “1”  
During Locktime  
After PMPCM bit = “0” “1”  
& Before SYNCA/SYNCB Input  
Mode  
PMPCM bit = “0”  
16bit Linear  
8bit A-Law  
8bit μ-Law  
L
L
L
L
H
H
0000H  
11010101b  
11111111b  
Table 78. SDTOA, SDTOB pins Output Data  
Format  
Except for I2S  
I2S  
SYNCA, SYNCB  
BICKA, BICKB  
L
H
L
L
Table 79. Output Clock during Lock Time  
MS0666-E-00  
2007/10  
- 100 -  
 
[AK4671]  
a) PLLBT reference clock: SYNCA or BICKA pin  
The PLLBT circuit generates the required clock for PCM I/F from SYNCA or BICKA. Generated clocks are output via  
SYNCB and BICKB pins.  
AK4671  
Phone Module  
1fs2  
SYNCA  
SYNC  
16fs2  
BICK  
SDTI  
SDTO  
BICKA  
SDTOA  
SDTIA  
Bluetooth Module  
1fs2  
SYNC  
SYNCB  
16fs2 or 32fs2  
BICK  
SDTI  
SDTO  
BICKB  
SDTOB  
SDTIB  
Figure 82. PCM I/F (PLLBT Reference Clock: SYNCA or BICKA pin)  
b) PLLBT reference clock: SYNCB or BICKB pin  
The PLLBT circuit generates the required clock for PCM I/F from SYNCB or BICKB. Generated clocks are output via  
SYNCA and BICKA pins.  
AK4671  
Phone Module  
1fs2  
SYNCA  
SYNC  
16fs2 or 32fs2  
BICK  
SDTI  
SDTO  
BICKA  
SDTOA  
SDTIA  
Bluetooth Module  
1fs2  
SYNC  
SYNCB  
16fs2  
BICK  
SDTI  
SDTO  
BICKB  
SDTOB  
SDTIB  
Figure 83. PCM I/F (PLLBT Reference Clock: SYNCB or BICKB pin)  
PLLBT should always be powered-up (PMPCM bit = “1”) whenever SRC-A or SRC-B is in operation (PMSRA bit = “1”  
or PMSRB bit = “1”). If PLLBT is powered-down, the AK4671 may draw excess current and it is not possible to operate  
properly because utilizes dynamic refreshed logic internally. If PLLBT is powered-down, SRC-A, SRC-B and SRC-C  
should be in the power-down mode (PMSRA=PMSRB bits = “0”).  
MS0666-E-00  
2007/10  
- 101 -  
[AK4671]  
PCM I/F Master Mode/Slave Mode  
The PLLBT2 bit selects either master or slave mode (Table 80). When either PCM I/F A or PCM I/F B is set in slave  
mode, the other is set in master mode. (For example, when PCM I/F B is set in slave mode, PCM I/F A is set in master  
mode.) When the AK4671 is power-down mode (PDN pin = “L”) or PMPCM bit = “0”, each clock pins (SYNCA,  
BICKA, SYNCB, BICKB) of PCM I/F become a Hi-Z (Table 81).  
PLLBT3-0 bits should be set when PMPCM bit = “0” to avoid shorting out of the slave mode clock pins and master mode  
clock output.  
After setting the PDN pin = “H”, the PCM I/F clock pins are the Hi-Z state until PMPCM bit becomes “1”. The PCM I/F  
clock pins of master mode should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the  
floating state.  
PLLBT2 bit  
PCM I/F A  
Slave Mode  
Master Mode  
SYNCA, BICKA pins  
PCM I/F B  
Master Mode  
Slave Mode  
SYNCB, BICKB pins  
0
1
Input  
Output  
Output  
Input  
(default)  
Table 80. Select PCM I/F Master/Slave Mode  
PDN pin  
PMPCM bit  
SYNCA, BICKA pin  
SYNCB, BICKB pin  
L
-
0
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
H
I/O Select by PLLBT2 bit I/O Select by PLLBT2 bit  
(Table 80)  
(Table 80)  
Table 81. PCM I/F Clock I/O State  
MS0666-E-00  
2007/10  
- 102 -  
 
[AK4671]  
PCM I/F A & B Format  
AK4671 supports dual PCM I/F (PCM I/F A & PCM I/F B) that supports 3 kind of I/F (16bit Linear, 8bit A-Law and 8bit  
μ-Law) independently (Table 82 and Table 83).  
Mode  
LAWA1  
LAWA0  
Format  
16bit Linear  
N/A  
8bit A-Law  
8bit μ-Law  
0
1
2
3
0
0
1
1
0
1
0
1
(default)  
(default)  
Table 82. PCM I/F A Mode (N/A: Not available)  
Mode  
LAWB1  
LAWB0  
Format  
16bit Linear  
N/A  
0
1
2
3
0
0
1
1
0
1
0
1
8bit A-Law  
8bit μ-Law  
Table 83. PCM I/F B Mode (N/A: Not available)  
Four types of data formats are available and are selected by setting the FMTA1-0 and FMTB1-0 bits independently (Table  
84 and Table 85). In 16bit Linear mode, the serial data is MSB first, 2’s complement format. In 8bit A-Law and μ-Law  
Mode, the serial data is MSB first. PCM I/F formats can be used in both master and slave modes. SYNCA/B and  
BICKA/B are output from the AK4671 in master mode, but must be input to the AK4671 in slave mode.  
Mode  
FMTA1  
FMTA0  
Format  
Short Frame Sync  
Long Frame Sync  
MSB justified  
I2S  
BICKA  
16fs2  
16fs2  
32fs2  
32fs2  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
See Table 86 (default)  
See Table 88  
Figure 92  
Figure 93  
Table 84. PCM I/F A Format  
Mode  
FMTB1  
FMTB0  
Format  
Short Frame Sync  
Long Frame Sync  
MSB justified  
I2S  
BICKB  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
See Table 87 (default)  
See Table 89  
Figure 92  
16fs2  
16fs2  
32fs2  
32fs2  
Figure 93  
Table 85. PCM I/F B Format  
In modes 2 and 3, the SDTOA/B is clocked out on the falling edge (“”) of BICKA/B and the SDTIA/B is latched on the  
rising edge (“”).  
In Modes 0 and 1, PCM I/F A timing is changed by BCKPA and MSBSA bits,and PCM I/F B timing is changed by  
BCKPB and MSBSB bits.  
When BCKPA bit = “0”, the SDTOA is clocked out on the rising edge (“”) of BICKA and the SDTIA is latched on the  
falling edge (“”). When BCKPA bit = “1”, the SDTOA is clocked out on the falling edge (“”) of BICKA and the  
SDTIA is latched on the rising edge (“”).  
MSBSA bit can shift the MSB position of SDTOA and SDTIA by half period of BICKA.  
When BCKPB bit = “0”, the SDTOB is clocked out on the rising edge (“”) of BICKB and the SDTIB is latched on the  
falling edge (“”). When BCKPB bit = “1”, the SDTOB is clocked out on the falling edge (“”) of BICKB and the  
SDTIB is latched on the rising edge (“”).  
MSBSB bit can shift the MSB position of SDTOB and SDTIB by half period of BICKB.  
MS0666-E-00  
2007/10  
- 103 -  
 
[AK4671]  
Figure  
MSBSA BCKPA  
Data Interface Format  
MSB of SDTOA is output by the falling edge (“”) of SYNCA. MSB of SDTIA is latched  
by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the falling edge (“”) of SYNCA. MSB of SDTIA is latched  
by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the rising edge (“”) of the first BICKA after the rising edge  
(“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA just  
after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the falling edge (“”) of the first BICKA after the rising edge  
(“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA just  
after the output timing of SDTOA’s MSB.  
0
0
0
1
Figure 84  
Figure 85  
1
1
0
1
Figure 86  
Figure 87  
Table 86. PCM I/F A Format in Mode 0  
MSBSB BCKPB  
Data Interface Format  
Figure  
MSB of SDTOB is output by the falling edge (“”) of SYNCB. MSB of SDTIB is latched  
by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the falling edge (“”) of SYNCB. MSB of SDTIB is latched  
by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the rising edge (“”) of the first BICKB after the rising edge  
(“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just  
after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the falling edge (“”) of the first BICKB after the rising edge  
(“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB just after Figure 87  
the output timing of SDTOB’s MSB.  
0
0
0
1
Figure 84  
Figure 85  
Figure 86  
1
1
0
1
Table 87. PCM I/F B Format in Mode 0  
MSBSA BCKPA  
Data Interface Format  
Figure  
MSB of SDTOA is output by the rising edge (“”) of SYNCA. MSB of SDTIA is latched by  
the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the rising edge (“”) of SYNCA. MSB of SDTIA is latched by  
the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the rising edge (“”) of the first BICKA after the rising edge  
(“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA just  
after the output timing of SDTOA’s MSB.  
MSB of SDTOA is output by the falling edge (“”) of the first BICKA after the rising edge  
(“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA just  
after the output timing of SDTOA’s MSB.  
0
0
0
1
Figure 88  
Figure 89  
Figure 90  
1
1
0
1
Figure 91  
Table 88. PCM I/F A Format in Mode 1  
MSBSB BCKPB  
Data Interface Format  
Figure  
MSB of SDTOB is output by the rising edge (“”) of SYNCB. MSB of SDTIB is latched by  
the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the rising edge (“”) of SYNCB. MSB of SDTIB is latched by  
the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the rising edge (“”) of the first BICKB after the rising edge  
(“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just  
after the output timing of SDTOB’s MSB.  
MSB of SDTOB is output by the falling edge (“”) of the first BICKB after the rising edge  
(“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB just after Figure 91  
the output timing of SDTOB’s MSB.  
0
0
0
1
Figure 88  
Figure 89  
Figure 90  
1
1
0
1
Table 89. PCM I/F B Format in Mode 1  
MS0666-E-00  
2007/10  
- 104 -  
 
[AK4671]  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 84. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”)  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 85. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”)  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 86. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”)  
MS0666-E-00  
2007/10  
- 105 -  
 
[AK4671]  
1/fs2  
SYNCA  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
SDTIA  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D7 D6  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6  
Figure 87. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”)  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 88. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”)  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 89. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”)  
MS0666-E-00  
2007/10  
- 106 -  
 
[AK4671]  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 90. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”)  
1/fs2  
SYNCA  
(Master)  
SYNCA  
(Slave)  
BICKA  
(16bit Linear)  
SDTOA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
Don’t Care  
Don’t Care  
SDTIA  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D7 D6 D5  
(8bit A-Law/μ-Law)  
SDTOA  
D7 D6 D5 D4 D3 D2 D1 D0  
SDTIA  
Don’t Care  
Don’t Care  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5  
Figure 91. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”)  
MS0666-E-00  
2007/10  
- 107 -  
 
[AK4671]  
SYNCA  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICKA  
(32fs2)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
SDTOA(o)  
15  
31 0  
Don't Care  
Don't Care  
SDTIA(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
1
BICKA  
(64fs2)  
15 14 13  
1
0
0
15  
15  
SDTOA(o)  
15 14 13  
1
Don't Care  
Don't Care  
SDTIA(i)  
15:MSB, 0:LSB  
Figure 92. Timing of MSB justified  
SYNCA  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICKA  
(32fs2)  
15 14  
15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
SDTOA(o)  
SDTIA(i)  
Don't Care  
15 16 17 18 31 0 1  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
BICKA  
(64fs2)  
15 14  
15 14  
2
2
1
1
0
0
SDTOA(o)  
SDTIA(i)  
Don't Care  
Don't Care  
15:MSB, 0:LSB  
Figure 93. Timing of I2S  
MS0666-E-00  
2007/10  
- 108 -  
 
[AK4671]  
Phone Path  
MIC-Amp  
& ALC  
HPF  
A/D  
MIC  
HPF  
LPF  
Stereo  
Separation  
5-band  
Notch  
ALC  
MIX  
SDTO Lch  
SDTO Rch  
Audio  
I/F  
SVOLA  
CPU  
SDTI Lch  
SDTI Rch  
M
I
X
S
E
L
DATT 5-band  
SMUTE  
EQ  
D/A  
Receiver  
Headphone  
Speaker  
TX  
RX  
SRC-A  
SDTOA  
SDTIA  
SVOLB  
DATT-C  
PCM  
I/F A  
Baseband  
SRC-B  
DATT-B  
BIVOL  
SDTOB  
SDTIB  
PCM  
I/F B  
B/T  
Phone Call TX  
Phone Call TX Recording  
Phone Call Side Tone  
Phone Call RX  
Phone Call RX Recording  
Figure 94. Internal MIC/SPK or External MIC/HP Phone Call & Recoring  
MS0666-E-00  
2007/10  
- 109 -  
[AK4671]  
MIC-Amp  
& ALC  
HPF  
A/D  
MIC  
HPF  
LPF  
Stereo  
Separation  
5-band  
Notch  
ALC  
MIX  
SDTO Lch  
SDTO Rch  
Audio  
I/F  
SVOLA  
CPU  
SDTI Lch  
SDTI Rch  
M
I
X
S
E
L
DATT 5-band  
SMUTE  
EQ  
D/A  
Receiver  
Headphone  
Speaker  
TX  
RX  
SRC-A  
SDTOA  
SDTIA  
SVOLB  
DATT-C  
PCM  
I/F A  
Baseband  
SRC-B  
DATT-B  
BIVOL  
SDTOB  
SDTIB  
PCM  
I/F B  
B/T  
Phone Call TX  
Phone Call TX Recording  
Phone Call Side Tone  
Phone Call RX  
Phone Call RX Recording  
Figure 95. B/T Headset Phone Call & Recoring  
MS0666-E-00  
2007/10  
- 110 -  
[AK4671]  
General Purpose Output  
AK4671 supports General Purpose Output Pin (GPO) to control the external component.  
In the case of GPOM1 bit = “0”, GPO1 pin goes to “H” at GPOE1 bit = “1”.  
GPOE1 bit  
GPO1 pin  
0
1
L
H
(default)  
Table 90. General Purpose Output 1 Pin Control (at GPOM1 bit = “0”)  
In the case of GPOM1 bit = “1”, GPO1 pin goes to “H” if the input level of the channel selected by A0 bit (SAIN1 or  
SAIN2 pin) is higher than the reference voltage that is input to the SAIN3 pin. In the case of GPOM1 bit = “1”, the  
reference voltage input to SAIN3 pin should be lower than 0.5 x SAVDD.  
SAIN1/2 pin  
< SAIN3 pin  
SAIN3 pin  
GPO1 pin  
L
H
(default)  
Table 91. General Purpose Output 1 Pin Control (at GPOM1 bit = “1”)  
In the case of GPOM2 bit = “0”, GPO2 pin goes to “H” at GPOE2 bit = “0”.  
GPOE2 bit GPO2 pin  
0
L
(default)  
1
H
Table 92. General Purpose Output 2 Pin Control (at GPOM2 bit = “0”)  
In the case of GPOM2 bit = “1”, GPO2 pin outputs the mic detection result. (Table 21)  
Input Level of MDT pin  
GPO2 pin  
DTMIC bit  
Result  
H
L
1
0
Mic (Headset)  
No Mic (Headphone)  
0.075 x AVDD  
< 0.050 x AVDD  
Table 21. Microphone Detection Result  
MS0666-E-00  
2007/10  
- 111 -  
 
[AK4671]  
SAR 10bit ADC  
The AK4671 incorporates a 10-bit successive approximation resistor A/D converter for DC measurement.  
The A/D converter output is a straight binary format as shown in Table 93:  
Input Voltage  
Output Code  
3FFH  
3FEH  
:
~
~
AVDD  
(AVDD1.5LSB)  
(AVDD1.5LSB)  
(AVDD2.5LSB)  
:
0.5LSB  
0
~
~
1.5LSB  
0.5LSB  
001H  
000H  
Table 93. Output Code  
When PMSAD bit is set to “1”, 10bit ADC is powered-up. When the control register is read, A/D conversion is executed  
and data is output. In case of 4-wire serial control mode, 10bit A/D data is output from 9th to 18th CCLK clock when 4th  
bit is set to “1” just after R/W bit.  
10bit ADC supports 3 kinds of analog input. A1-0 bits select the measurement modes.  
Mode  
A1  
0
0
1
1
A0  
0
1
0
1
Input Channel  
SAIN1  
0
1
2
3
(default)  
SAIN2  
SAIN3  
N/A  
Table 94. SAR ADC Measurement Mode (N/A: Not available)  
MS0666-E-00  
2007/10  
- 112 -  
 
[AK4671]  
<SAR ADC Execute Sequence (in case that the interrupt function is not used.)>  
[4-wire Serial Mode]  
(1) Select the measurement mode by A1-0 bits and set PMSAD bit = “1” to power-up SAR ADC.  
(2) Input “1” at the 4th bit just after R/W bit so that A/D conversion is executed and 10bit A/D data is output from 9th to  
18th CCLK clock.  
[I2C Mode]  
(1) Select the measurement mode by A1-0 bits and set PMSAD bit = “1” to power-up SAR ADC.  
(2) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output.  
(3) Continuously read Addr=5CH then LSB 2bit data is output.  
<SAR ADC Execute Sequence (in case that the interrupt function is used.)>  
[4-wire Serial Mode]  
(1) GPOM1 bit should be set to “1”. The GPO1 pin can be used as the interrupt output pin.  
(2) Select the measurement mode by A0 bit.  
(3) The GPO1 pin goes to “H” when the input DC voltage of SAIN1 or SAIN2 pin (selected by A0 bit) is higher than the  
input voltage of SAIN3 pin.  
(4) After CPU detects GPO1 pin = “H”, set GPOM1 bit = “0” and PMSAD bit = “1” to power-up SAR ADC.  
(5) Input “1” at the 4th bit just after R/W bit so that A/D conversion is executed and 10bit A/D data is output from 9th to  
18th CCLK clock.  
[I2C Mode]  
(1) GPOM1 bit should be set to “1”. The GPO1 pin can be used as the interrupt output pin.  
(2) Select the measurement mode by A0 bit.  
(3) The GPO1 pin goes to “H” when the input DC voltage of SAIN1 or SAIN2 pin (selected by A0 bit) is higher than the  
input voltage of SAIN3 pin.  
(4) After CPU detects GPO1 pin = “H”, set GPOM1 bit = “0” and PMSAD bit = “1” to power-up SAR ADC.  
(5) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output.  
(6) Continuously read Addr=5CH then LSB 2bit data is output.  
MS0666-E-00  
2007/10  
- 113 -  
[AK4671]  
Serial Control Interface  
(1) 4-wire Serial Control Mode (I2C pin = “L”)  
Internal registers may be written by using the 4-wire µP interface pins (CSN, CCLK, CDTI and CDTO).  
In case except for 10bit SAR ADC data read, the data on this interface consists of a 3-bit Chip address (fixed to “100”),  
Read/Write (1bit), Register address (MSB first, 7bits) and Control data (MSB first, 8bits).  
In case of 10bit SAR ADC data read, the data on this interface consists of a 3-bit Chip address (fixed to “101”),  
Read/Write (1bit: fixed to “0”) and SAR ADC Data (MSB first, 10bits).  
Address and data is clocked in on the rising edge of CCLK and data is clocked out on the falling edge. Address and data  
are latched on the 24th CCLK rising edge (“”) after CSN falling edge (“”) for write operations and CDTO bit goes to  
Hi-Z after CSN rising edge (“”). CSN should be set to “H” once after 24th CCLK for each address. The clock speed of  
CCLK is 5MHz (max). The value of internal registers is initialized at PDN pin = “L”.  
CSN  
0
1
2
3
4
0
0
5
0
0
6
0
0
7
0
0
8
0
0
9
10 11 12 13 14 15  
16 17 18 19 20 21 22 23  
Clock,  
"H" or "L"  
Clock,  
"H" or "L"  
CCLK  
"H" or "L"  
"H" or "L"  
CDTI  
CDTO  
CDTI  
A6 A5 A4 A3 A2 A1 A0  
C2 C1 R/W C0  
D7 D6 D5 D4 D3 D2 D1 D0  
WRITE  
Hi-Z  
"H" or "L"  
"H" or "L"  
A6 A5 A4 A3 A2 A1 A0  
C2 C1 R/W C0  
D7 D6 D5 D4 D3 D2 D1 D0  
READ  
(except for  
10bit SAR ADC Data)  
Hi-Z  
Hi-Z  
CDTO  
D7 D6 D5 D4 D3 D2 D1 D0  
C2-C0: Chip Address (Fixed to “100”)  
R/W:READ/WRITE (0: READ, 1: WRITE)  
A6-A0: Register Address  
D7-D0: Control Data  
Figure 96. Serial Control I/F Timing (Except for 10bit SAR ADC Data)  
CSN  
0
1
2
3
4
0
5
0
6
0
7
0
8
9
10 11 12 13 14 15  
16 17 18 19 20 21 22 23  
Clock,  
"H" or "L"  
Clock,  
"H" or "L"  
CCLK  
"H" or "L"  
"H" or "L"  
CDTI  
C2 C1 R/W C0  
Hi-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
READ  
(10bit SAR ADC Data)  
Hi-Z  
CDTO  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
C2-C0: Chip Address (Fixed to “101”)  
R/W:READ/WRITE (Fixed to “0”: READ Only)  
D9-D0: SAR ADC Data  
Figure 97. Serial Control I/F Timing (10bit SAR ADC Data)  
MS0666-E-00  
2007/10  
- 114 -  
 
[AK4671]  
(2) I2C-bus Control Mode (I2C pin = “H”)  
The AK4671 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins should be connected  
to (DVDD+0.3)V or less voltage.  
(2)-1. WRITE Operations  
Figure 98 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A  
HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 105). After the  
START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit  
(R/W). The most significant six bits of the slave address are fixed as “001001”. The next bit is CAD0 (device address bit).  
This bit identifies the specific device on the bus. The hard-wired input pin (CAD0 pin) sets these device address bits  
(Figure 99). If the slave address matches that of the AK4671, the AK4671 generates an acknowledge and the operation is  
executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the  
acknowledge clock pulse (Figure 106). A R/W bit value of “1” indicates that the read operation is to be executed. A “0”  
indicates that the write operation is to be executed.  
The second byte consists of the control register address of the AK4671. The format is MSB first, and the most significant  
1-bit is fixed to “0” (Figure 100). The data after the second byte contains control data. The format is MSB first, 8bits  
(Figure 101). The AK4671 generates an acknowledge after each byte is received. A data transfer is always terminated by  
a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a  
STOP condition (Figure 105).  
The AK4671 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4671  
generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the  
write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is  
incremented by one, and the next data is automatically taken into the next address. If the address exceeds 5AH prior to  
generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten.  
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only change when the clock signal on the SCL line is LOW (Figure 107) except for the START and STOP  
conditions.  
S
S
T
O
P
T
A
R
T
R/W="0"  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 98. Data Transfer Sequence at the I2C-Bus Mode  
0
0
1
0
0
1
CAD0  
R/W  
(The CAD0 should match with CAD0 pin.)  
Figure 99. The First Byte  
0
A6  
D6  
A5  
A4  
A3  
A2  
A1  
D1  
A0  
D0  
Figure 100. The Second Byte  
D7  
D5  
D4  
D3  
D2  
Figure 101. Byte Structure after the second byte  
MS0666-E-00  
2007/10  
- 115 -  
 
[AK4671]  
(2)-2. READ Operations  
Set the R/W bit = “1” for the READ operation of the AK4671. After transmission of data, the master can read the next  
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word.  
After receiving each data packet the internal 7-bit address counter is incremented by one, and the next data is  
automatically taken into the next address. If the address exceeds 5AH prior to generating a stop condition, the address  
counter will “roll over” to 00H and the data of 00H will be read out.  
The AK4671 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.  
(2)-2-1. CURRENT ADDRESS READ (except for 10bit SAR ADC Data)  
The AK4671 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) were to address n, the next CURRENT READ operation would  
access data from the address n+1. After receipt of the slave address with R/W bit set to “1”, the AK4671 generates an  
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4671  
ceases transmission.  
S
S
T
O
P
T
A
R
T
R/W="1"  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 102. CURRENT ADDRESS READ  
(2)-2-2. RANDOM ADDRESS READ  
The random read operation allows the master to access any memory location at random. Prior to issuing the slave address  
with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave  
address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master  
immediately reissues the start request and the slave address with the R/W bit “1”. The AK4671 then generates an  
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an  
acknowledge but instead generates a stop condition, the AK4671 ceases transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 103. RANDOM ADDRESS READ (Except for 10bit SAR ADC Data)  
When SAR ADC data is read, 5BH should be set as register address and 2 byte data should be read by RANDOM  
ADDRESS READ, then stop condition should be input. A/D readout format is MSB first, 2 byte width. Upper 10bits are  
valid on 2byte (16-bit), and lower 6bits are filled with zero.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(5BH)  
Slave  
Address  
S
S
Data(D9-2)  
Data(D1-0)  
P
SDA  
A
C
K
A
C
K
A
C
K
M A  
M N  
A
S
T
A
S
T
C
K
A
C
K
E
R
E
R
Figure 104. RANDOM ADDRESS READ (10bit SAR ADC Data)  
MS0666-E-00  
2007/10  
- 116 -  
 
[AK4671]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 105. START and STOP Conditions  
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 106. Acknowledge on the I2C-Bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 107. Bit Transfer on the I2C-Bus  
MS0666-E-00  
2007/10  
- 117 -  
 
[AK4671]  
Register Map  
Addr Register Name  
00H AD/DA Power Management PMDAR PMDAL PMADR PMADL  
01H PLL Mode Select 0  
02H PLL Mode Select 1  
03H Format Select  
04H MIC Signal Select  
05H MIC Amp Gain  
D7  
D6  
D5  
D4  
D3  
PMMICR  
PLL3  
PS0  
MSBS  
INR1  
D2  
PMMICL  
D1  
PMMP  
PLL1  
M/S  
DIF1  
D0  
PMVCM  
PLL0  
FS3  
BTCLK  
0
MDIF4  
MGNR3  
0
PMAINR4  
HPG3  
L1G1  
L2G1  
L3G1  
L4G1  
LPG1  
0
FS2  
LP  
0
MDIF3  
MGNR2  
0
PMAINL4  
HPG2  
L1G0  
L2G0  
L3G0  
L4G0  
LPG0  
0
FS1  
BCKO  
0
MDIF2  
MGNR1  
0
PMAINR3  
HPG1  
LOOPL  
LOOPR  
LOOPHL  
LOOPHR  
LOOPSL  
LOOPSR  
RCV  
PMLO2S  
LODIF  
IVL5  
IVR5  
REF5  
SRMXL1  
RFST0  
LMAT1  
SDIM1  
BIV2  
OVL5  
OVR5  
SVAR2  
LPF  
F3A5  
F3A13  
F3B5  
F3B13  
E0A5  
E0A13  
E0B5  
E0B13  
E0C5  
E0C13  
F1A5  
F1A13  
F1B5  
F1B13  
F2A5  
FS0  
PS1  
SDOD  
MDIF1  
MGNR0  
0
PMAINL3  
HPG0  
LINL4  
RINR4  
LINH4  
RINH4  
LINS4  
RINS4  
LOOPM  
LOOPM2  
LOOPM3  
IVL4  
PLL2  
PMPLL  
MCKO  
BCKP  
INR0  
DIF0  
INL0  
INL1  
MGNL3  
MGNL2  
DTMIC  
PMAINL2  
L1VL2  
LINL2  
RINR2  
LINH2  
RINH2  
LINS2  
RINS2  
LOPS1  
MUTEN PMRO2  
LOPS3  
IVL2  
IVR2  
REF2  
MGNL1  
PMLOOPR  
PMAINR1  
L1VL1  
LINL1  
RINR1  
LINH1  
RINH1  
LINS1  
RINS1  
PMRO1  
MGNL0  
PMLOOPL  
PMAINL1  
L1VL0  
DACL  
DACR  
DACHL  
DACHR  
DACSL  
DACSR  
PMLO1  
PMLO2  
PMLO3  
IVL0  
Mixing Power Management 0  
06H  
0
PMAINR2  
0
07H Mixing Power Management  
08H Output Volume Control  
09H LOUT1 Signal Select  
0AH ROUT1 Signal Select  
0BH LOUT2 Signal Select  
0CH ROUT2 Signal Select  
0DH LOUT3 Signal Select  
0EH ROUT3 Signal Select  
0FH LOUT1 Power Management  
10H LOUT2 Power Management  
11H LOUT3 Power Management  
12H Lch Input Volume Control  
13H Rch Input Volume Control  
14H ALC Reference Select  
15H Digital Mixing Control  
16H ALC Timer Select  
17H ALC Mode Control  
18H Mode Control 1  
LINL3  
RINR3  
LINH3  
RINH3  
LINS3  
RINS3  
LOM  
LOM2  
LOM3  
IVL3  
0
0
0
PMRO2S  
L3VL0  
IVL6  
IVR6  
REF6  
SRMXR0  
RFST1  
ZELMN  
MIXD  
SRA0  
OVL6  
OVR6  
0
GN0  
F3A6  
0
F3B6  
0
E0A6  
E0A14  
E0B6  
0
E0C6  
E0C14  
F1A6  
0
L3VL1  
IVL7  
IVR7  
REF7  
SRMXR1  
0
PMRO3  
IVL1  
IVR1  
REF1  
PFMXL1  
IVR4  
REF4  
SRMXL0  
IVR3  
IVR0  
REF0  
REF3  
PFMXR1  
WTM1  
PFMXR0  
PFMXL0  
ZTM0  
LMTH0  
ALC  
OVOLC  
OVL0  
OVR0  
SVAL0  
PFSEL  
F3A0  
F3A8  
F3B0  
F3B8  
E0A0  
E0A8  
E0B0  
E0B8  
E0C0  
E0C8  
F1A0  
F1A8  
F1B0  
F1B8  
F2A0  
F2A8  
F2B0  
WTM2  
WTM0  
ZTM1  
0
LMAT0 RGAIN1 RGAIN0 LMTH1  
SDIM0  
BIV1  
OVL4  
OVR4  
SVAR1  
HPF  
F3A4  
F3A12  
F3B4  
F3B12  
E0A4  
E0A12  
E0B4  
E0B12  
E0C4  
E0C12  
F1A4  
F1A12  
F1B4  
F1B12  
F2A4  
F2A12  
F2B4  
DAM  
SRA1  
OVL7  
OVR7  
0
GN1  
F3A7  
F3AS  
F3B7  
0
E0A7  
E0A15  
E0B7  
0
E0C7  
E0C15  
F1A7  
F1AS  
F1B7  
0
EQ  
BIV0  
ADM  
SMUTE  
OVL2  
OVR2  
SVAL2  
FIL3  
F3A2  
F3A10  
F3B2  
F3B10  
E0A2  
E0A10  
E0B2  
E0B10  
E0C2  
E0C10  
F1A2  
F1A10  
F1B2  
F1B10  
F2A2  
F2A10  
F2B2  
F2B10  
IVOLC  
OVTM  
OVL1  
OVR1  
SVAL1  
0
19H Mode Control 2  
1AH Lch Output Volume Control  
1BH Rch Output Volume Control  
1CH Side Tone A Control  
1DH Digital Filter Select  
1EH FIL3 Co-efficient 0  
1FH FIL3 Co-efficient 1  
20H FIL3 Co-efficient 2  
21H FIL3 Co-efficient 3  
22H EQ Co-efficient 0  
23H EQ Co-efficient 1  
24H EQ Co-efficient 2  
25H EQ Co-efficient 3  
26H EQ Co-efficient 4  
OVL3  
OVR3  
SVAR0  
EQ0  
F3A3  
F3A11  
F3B3  
F3B11  
E0A3  
E0A11  
E0B3  
E0B11  
E0C3  
E0C11  
F1A3  
F1A11  
F1B3  
F3A1  
F3A9  
F3B1  
F3B9  
E0A1  
E0A9  
E0B1  
E0B9  
E0C1  
E0C9  
F1A1  
F1A9  
F1B1  
F1B9  
F2A1  
F2A9  
F2B1  
F2B9  
27H EQ Co-efficient 5  
28H FIL1 Co-efficient 0  
29H FIL1 Co-efficient 1  
2AH FIL1 Co-efficient 2  
2BH FIL1 Co-efficient 3  
2CH FIL2 Co-efficient 0  
2DH FIL2 Co-efficient 1  
2EH FIL2 Co-efficient 2  
2FH FIL2 Co-efficient 3  
F1B6  
0
F2A6  
0
F2B6  
0
F1B11  
F2A3  
F2A11  
F2B3  
F2A7  
0
F2B7  
0
F2A13  
F2B5  
F2B13  
F2B12  
F2B11  
F2B8  
MS0666-E-00  
2007/10  
- 118 -  
[AK4671]  
D0  
Addr Register Name  
30H Digital Filter Select 2  
31H Reserved  
D7  
0
0
D6  
0
0
D5  
0
0
D4  
EQ5  
0
D3  
EQ4  
0
D2  
EQ3  
0
D1  
EQ2  
0
EQ1  
0
32H E1 Co-efficient 0  
33H E1 Co-efficient 1  
34H E1 Co-efficient 2  
35H E1 Co-efficient 3  
36H E1 Co-efficient 4  
37H E1 Co-efficient 5  
38H E2 Co-efficient 0  
39H E2 Co-efficient 1  
3AH E2 Co-efficient 2  
3BH E2 Co-efficient 3  
3CH E2 Co-efficient 4  
3DH E2 Co-efficient 5  
3EH E3 Co-efficient 0  
3FH E3 Co-efficient 1  
40H E3 Co-efficient 2  
41H E3 Co-efficient 3  
42H E3 Co-efficient 4  
43H E3 Co-efficient 5  
44H E4 Co-efficient 0  
45H E4 Co-efficient 1  
46H E4 Co-efficient 2  
47H E4 Co-efficient 3  
48H E4 Co-efficient 4  
49H E4 Co-efficient 5  
4AH E5 Co-efficient 0  
4BH E5 Co-efficient 1  
4CH E5 Co-efficient 2  
4DH E5 Co-efficient 3  
4EH E5 Co-efficient 4  
4FH E5 Co-efficient 5  
50H EQ Control 250Hz/100Hz  
51H EQ Control 3.5kHz/1kHz  
52H EQ Control 10kHz  
53H PCM I/F Control 0  
54H PCM I/F Control 1  
55H PCM I/F Control 2  
56H Digital Volume B Control  
57H Digital Volume C Control  
58H Side Tone Volume Control  
59H Digital Mixing Control  
5AH SAR ADC Control  
E1A7  
E1A15  
E1B7  
E1B15  
E1C7  
E1C15  
E2A7  
E2A15  
E2B7  
E2B15  
E2C7  
E2C15  
E3A7  
E3A15  
E3B7  
E3B15  
E3C7  
E3C15  
E4A7  
E4A15  
E4B7  
E4B15  
E4C7  
E4C15  
E5A7  
E5A15  
E5B7  
E5B15  
E5C7  
E5C15  
EQB3  
EQD3  
0
E1A6  
E1A14  
E1B6  
E1B14  
E1C6  
E1C14  
E2A6  
E2A14  
E2B6  
E2B14  
E2C6  
E2C14  
E3A6  
E3A14  
E3B6  
E3B14  
E3C6  
E3C14  
E4A6  
E4A14  
E4B6  
E4B14  
E4C6  
E4C14  
E5A6  
E5A14  
E5B6  
E5B14  
E5C6  
E5C14  
EQB2  
EQD2  
0
E1A5  
E1A13  
E1B5  
E1B13  
E1C5  
E1C13  
E2A5  
E2A13  
E2B5  
E2B13  
E2C5  
E2C13  
E3A5  
E3A13  
E3B5  
E3B13  
E3C5  
E3C13  
E4A5  
E4A13  
E4B5  
E4B13  
E4C5  
E4C13  
E5A5  
E5A13  
E5B5  
E5B13  
E5C5  
E5C13  
EQB1  
EQD1  
0
E1A4  
E1A12  
E1B4  
E1B12  
E1C4  
E1C12  
E2A4  
E2A12  
E2B4  
E2B12  
E2C4  
E2C12  
E3A4  
E3A12  
E3B4  
E3B12  
E3C4  
E3C12  
E4A4  
E4A12  
E4B4  
E4B12  
E4C4  
E4C12  
E5A4  
E5A12  
E5B4  
E5B12  
E5C4  
E5C12  
EQB0  
EQD0  
0
E1A3  
E1A11  
E1B3  
E1B11  
E1C3  
E1C11  
E2A3  
E2A11  
E2B3  
E2B11  
E2C3  
E2C11  
E3A3  
E3A11  
E3B3  
E3B11  
E3C3  
E3C11  
E4A3  
E4A11  
E4B3  
E4B11  
E4C3  
E4C11  
E5A3  
E5A11  
E5B3  
E5B11  
E5C3  
E5C11  
EQA3  
EQC3  
EQE3  
E1A2  
E1A10  
E1B2  
E1B10  
E1C2  
E1C10  
E2A2  
E2A10  
E2B2  
E2B10  
E2C2  
E2C10  
E3A2  
E3A10  
E3B2  
E3B10  
E3C2  
E3C10  
E4A2  
E4A10  
E4B2  
E4B10  
E4C2  
E4C10  
E5A2  
E5A10  
E5B2  
E5B10  
E5C2  
E5C10  
EQA2  
EQC2  
EQE2  
E1A1  
E1A9  
E1B1  
E1B9  
E1C1  
E1C9  
E2A1  
E2A9  
E2B1  
E2B9  
E2C1  
E2C9  
E3A1  
E3A9  
E3B1  
E3B9  
E3C1  
E3C9  
E4A1  
E4A9  
E4B1  
E4B9  
E4C1  
E4C9  
E5A1  
E5A9  
E5B1  
E5B9  
E5C1  
E5C9  
EQA1  
EQC1  
EQE1  
E1A0  
E1A8  
E1B0  
E1B8  
E1C0  
E1C8  
E2A0  
E2A8  
E2B0  
E2B8  
E2C0  
E2C8  
E3A0  
E3A8  
E3B0  
E3B8  
E3C0  
E3C8  
E4A0  
E4A8  
E4B0  
E4B8  
E4C0  
E4C8  
E5A0  
E5A8  
E5B0  
E5B8  
E5C0  
E5C8  
EQA0  
EQC0  
EQE0  
PMSRA  
FMTA0  
FMTB0  
BVL0  
CVL0  
SVB0  
SBMX0  
PMSAD  
GPOM2  
SDOAD  
SDOBD PLLBT3 MSBSB  
BVL7  
CVL7  
0
SDOR1  
0
GPOE2  
BCKO2  
PLLBT2 PLLBT1 PLLBT0 PMPCM PMSRB  
MSBSA  
BCKPA  
BCKPB  
BVL4  
CVL4  
0
LAWA1 LAWA0  
LAWB1 LAWB0  
BVL3  
CVL3  
SDOA  
FMTA1  
FMTB1  
BVL1  
CVL1  
SVB1  
SBMX1  
A0  
BVL6  
CVL6  
0
SDOR0  
0
BVL5  
CVL5  
0
SDOL1  
0
BVL2  
CVL2  
SVB2  
SDOL0  
GPOM1  
BVMX1 BVMX0  
GPOE1 A1  
Note 67. PDN pin = “L” resets the registers to their default values.  
Note 68. The bits defined as 0 must contain a “0” value.  
Note 69. Addresses 1EH to 2FH and 32H to 4FH cannot be read.  
MS0666-E-00  
2007/10  
- 119 -  
[AK4671]  
Register Definitions  
Addr Register Name  
D7  
PMDAR  
R/W  
D6  
PMDAL  
R/W  
0
D5  
D4  
D3  
PMMICR  
D2  
PMMICL  
D1  
D0  
PMVCM  
00H  
AD/DA Power Management  
PMADR PMADL  
R/W  
0
PMMP  
R/W  
0
R/W  
(default)  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
PMVCM: VCOM Power Management  
0: Power down (default)  
1: Power up  
When any blocks are powered-up, the PMVCM bit must be set to “1”. PMVCM bit can be set to “0” only  
when all power management bits are “0”.  
PMMP: MPWR pin Power Management  
0: Power down: Hi-Z (default)  
1: Power up  
PMMICL: MIC-Amp Lch Power Management  
0: Power down (default)  
1: Power up  
PMMICR: MIC-Amp Rch Power Management  
0: Power down (default)  
1: Power up  
PMADL: ADC Lch Power Management  
0: Power down (default)  
1: Power up  
When the PMADL or PMADR bit is changed from “0” to “1”, the initialization cycle (1059/fs=24ms  
@44.1kHz) starts. After initializing, digital data of the ADC is output.  
PMADR: ADC Rch Power Management  
0: Power down (default)  
1: Power up  
PMDAL: DAC Lch Power Management  
0: Power down (default)  
1: Power up  
PMDAR: DAC Rch Power Management  
0: Power down (default)  
1: Power up  
Each block can be powered-down respectively by writing “0” in each bit of this address. When the PDN pin is “L”, all  
blocks are powered-down regardless of setting of this address. In this case, register is initialized to the default value.  
When all power management bits are “0”, all blocks are powered-down. The register values remain unchanged. Power  
supply current is 20μA(typ) in this case. For fully shut down (typ. 1μA), PDN pin should be “L”.  
When neither ADC nor DAC are used, external clocks may not be present. When ADC or DAC is used, external clocks  
must always be present.  
MS0666-E-00  
2007/10  
- 120 -  
[AK4671]  
Addr  
01H  
Register Name  
PLL Mode Select 0  
R/W  
D7  
FS3  
R/W  
1
D6  
FS2  
R/W  
1
D5  
FS1  
R/W  
1
D4  
FS0  
R/W  
1
D3  
PLL3  
R/W  
0
D2  
PLL2  
R/W  
1
D1  
PLL1  
R/W  
1
D0  
PLL0  
R/W  
0
Default  
PLL3-0: PLL Reference Clock Select (Table 4)  
Default: “0110”(MCKI pin, 12MHz)  
FS3-0: Sampling Frequency Select (Table 5 and Table 6) and MCKI Frequency Select (Table 11)  
FS3-0 bits select sampling frequency at PLL mode and MCKI frequency at EXT mode.  
Addr Register Name  
D7  
BTCLK  
R/W  
0
D6  
LP  
R/W  
0
D5  
BCKO  
R/W  
0
D4  
PS1  
R/W  
0
D3  
PS0  
R/W  
0
D2  
MCKO  
R/W  
0
D1  
M/S  
R/W  
0
D0  
PMPLL  
02H  
PLL Mode Select 1  
R/W  
R/W  
0
Default  
PMPLL: PLL Power Management  
0: EXT Mode and Power Down (default)  
1: PLL Mode and Power up  
M/S: Master / Slave Mode Select  
0: Slave Mode (default)  
1: Master Mode  
MCKO: Master Clock Output Enable  
0: Disable: MCKO pin = “L” (default)  
1: Enable: Output frequency is selected by PS1-0 bits.  
PS1-0: MCKO Output Frequency Select (Table 9)  
default: “00”(256fs)  
BCKO: BICK Output Frequency Select at Master Mode (Table 10)  
LP: Low Power Mode  
0: Normal Mode (default)  
1: Low Power Mode: available at fs=22.05kHz or less.  
BTCLK: Clock Mode of Audio CODEC  
0: Synchronized to Audio I/F (default)  
1: Synchronized to PCM I/F  
BTCLK bit is enabled at only PMPLL bit = “0”. When BTCLK bit is “1”, Audio CODEC and the digital block  
(shown in Figure 57) operate by the clock generated by PLLBT.  
MS0666-E-00  
2007/10  
- 121 -  
[AK4671]  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
SDOD  
R/W  
0
D3  
MSBS  
R/W  
0
D2  
BCKP  
R/W  
0
D1  
DIF1  
R/W  
1
D0  
DIF0  
R/W  
0
03H  
Format Select  
R/W  
Default  
DIF1-0: Audio Interface Format (Table 16)  
Default: “10” (Left jutified)  
BCKP: BICK Polarity at DSP Mode (Table 17)  
“0”: SDTO is output by the rising edge (“”) of BICK and SDTI is latched by the falling edge (“”). (default)  
“1”: SDTO is output by the falling edge (“”) of BICK and SDTI is latched by the rising edge (“”).  
MSBS: LRCK Phase at DSP Mode (Table 17)  
“0”: The rising edge (“”) of LRCK is half clock of BICK before the channel change. (default)  
“1”: The rising edge (“”) of LRCK is one clock of BICK before the channel change.  
SDOD: SDTO Disable (Table 47)  
“0”: Enable (default)  
“1”: Disable (“L”)  
Addr Register Name  
D7  
MDIF4  
R/W  
0
D6  
MDIF3  
R/W  
0
D5  
MDIF2  
R/W  
0
D4  
MDIF1  
R/W  
0
D3  
INR1  
R/W  
0
D2  
INR0  
R/W  
0
D1  
INL1  
R/W  
0
D0  
INL0  
R/W  
0
04H  
MIC Signal Select  
R/W  
Default  
INL1-0: MIC-Amp Lch Input Source Select (Table 18)  
Default: “00” (LIN1)  
INR1-0: MIC-Amp Rch Input Source Select (Table 18)  
Default: “00” (RIN1)  
MDIF1: Line1 Input Type Select  
0: Single-ended input (LIN1/RIN1 pins: default)  
1: Full-differential input (IN1+/IN1pins)  
MDIF2: Line2 Input Type Select  
0: Single-ended input (LIN2/RIN2 pins: default)  
1: Full-differential input (IN2+/IN2pins)  
MDIF3: Line3 Input Type Select  
0: Single-ended input (LIN3/RIN3 pins: default)  
1: Full-differential input (IN3+/IN3pins)  
MDIF4: Line4 Input Type Select  
0: Single-ended input (LIN4/RIN4 pins: default)  
1: Full-differential input (IN4+/IN4pins)  
MS0666-E-00  
2007/10  
- 122 -  
[AK4671]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MGNR3  
MGNR2  
MGNR1  
MGNR0  
MGNL3  
MGNL2  
MGNL1  
MGNL0  
05H  
MIC Amp Gain  
R/W  
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
Default  
MGNL3-0: MIC-Amp Lch Gain Control (Table 19)  
Default: “0101” (0dB)  
MGNR3-0: MIC-Amp Rch Gain Control (Table 19)  
Default: “0101” (0dB)  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
0
RD  
0
D2  
DTMIC  
RD  
D1  
PMLOOPR  
D0  
PMLOOPL  
Mixing Power Management 0  
06H  
R/W  
Default  
R/W  
0
R/W  
0
0
PMLOOPL: MIC-Amp Lch Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMLOOPR: MIC-Amp Rch Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
DTMIC: Microphone Detection Result (Read Only: Table 21)  
0: Microphone is not detected. (default)  
1: Microphone is detected.  
MS0666-E-00  
2007/10  
- 123 -  
[AK4671]  
D0  
Addr Register Name  
07H Mixing Power Management 1  
D7  
PMAINR4  
D6  
PMAINL4  
D5  
PMAINR3  
D4  
PMAINL3  
D3  
PMAINR2  
D2  
PMAINL2  
D1  
PMAINR1  
PMAINL1  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
PMAINL1: LIN1 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR1: RIN1 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINL2: LIN2 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR2: RIN2 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINL3: LIN3 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR3: RIN3 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINL4: LIN4 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
PMAINR4: RIN4 Mixing Circuit Power Management  
0: Power down (default)  
1: Power up  
Addr Register Name  
08H Output Volume Control  
D7  
HPG3  
R/W  
1
D6  
HPG2  
R/W  
0
D5  
HPG1  
R/W  
1
D4  
HPG0  
R/W  
1
D3  
0
RD  
0
D2  
L1VL2  
R/W  
1
D1  
L1VL1  
R/W  
0
D0  
L1VL0  
R/W  
1
R/W  
Default  
L1VL2-0: LOUT1/ROUT1 Output Volume Control (Table 67)  
Default: “5H” (0dB)  
HPG3-0: LOUT2/ROUT2 Output Volume Control (Table 70)  
Default: “BH” (0dB)  
MS0666-E-00  
2007/10  
- 124 -  
[AK4671]  
Addr Register Name  
09H LOUT1 Signal Select  
D7  
L1G1  
R/W  
0
D6  
L1G0  
R/W  
0
D5  
LOOPL  
R/W  
0
D4  
LINL4  
R/W  
0
D3  
LINL3  
R/W  
0
D2  
LINL2  
R/W  
0
D1  
LINL1  
R/W  
0
D0  
DACL  
R/W  
0
R/W  
Default  
DACL: Switch Control from DAC Lch to LOUT1  
0: OFF (default)  
1: ON  
When PMLO1 bit is “1”, DACL bit is enabled. When PMLO1 bit is “0”, the LOUT1 pin goes to VSS1.  
LINL1: Switch Control from LIN1 to LOUT1  
0: OFF (default)  
1: ON  
LINL2: Switch Control from LIN2 to LOUT1  
0: OFF (default)  
1: ON  
LINL3: Switch Control from LIN3 to LOUT1  
0: OFF (default)  
1: ON  
LINL4: Switch Control from LIN4 to LOUT1  
0: OFF (default)  
1: ON  
LOOPL: Switch Control from MIC-Amp Lch to LOUT1  
0: OFF (default)  
1: ON  
L1G1-0: LIN1/RIN1 Mixing Gain Control (Table 60)  
Default: “00” (0dB)  
MS0666-E-00  
2007/10  
- 125 -  
[AK4671]  
Addr Register Name  
0AH ROUT1 Signal Select  
R/W  
D7  
L2G1  
R/W  
0
D6  
L2G0  
R/W  
0
D5  
LOOPR  
R/W  
0
D4  
RINR4  
R/W  
0
D3  
RINR3  
R/W  
0
D2  
RINR2  
R/W  
0
D1  
RINR1  
R/W  
0
D0  
DACR  
R/W  
0
Default  
DACR: Switch Control from DAC Rch to ROUT1  
0: OFF (default)  
1: ON  
When PMRO1 bit is “1”, DACR bit is enabled. When PMRO1 bit is “0”, the ROUT1 pin goes to VSS1.  
RINR1: Switch Control from RIN1 to ROUT1  
0: OFF (default)  
1: ON  
RINR2: Switch Control from RIN2 to ROUT1  
0: OFF (default)  
1: ON  
RINR3: Switch Control from RIN3 to ROUT1  
0: OFF (default)  
1: ON  
RINR4: Switch Control from RIN4 to ROUT1  
0: OFF (default)  
1: ON  
LOOPR: Switch Control from MIC-Amp Rch to ROUT1  
0: OFF (default)  
1: ON  
L2G1-0: LIN2/RIN2 Mixing Gain Control (Table 61)  
Default: “00” (0dB)  
MS0666-E-00  
2007/10  
- 126 -  
[AK4671]  
D0  
Addr Register Name  
0BH LOUT2 Signal Select  
R/W  
D7  
L3G1  
R/W  
0
D6  
L3G0  
R/W  
0
D5  
LOOPHL  
D4  
LINH4  
R/W  
0
D3  
LINH3  
R/W  
0
D2  
LINH2  
R/W  
0
D1  
LINH1 DACHL  
R/W  
0
R/W  
0
R/W  
0
Default  
DACHL: Switch Control from DAC Lch to LOUT2  
0: OFF (default)  
1: ON  
LINH1: Switch Control from LIN1 to LOUT2  
0: OFF (default)  
1: ON  
LINH2: Switch Control from LIN2 to LOUT2  
0: OFF (default)  
1: ON  
LINH3: Switch Control from LIN3 to LOUT2  
0: OFF (default)  
1: ON  
LINH4: Switch Control from LIN4 to LOUT2  
0: OFF (default)  
1: ON  
LOOPHL: Switch Control from MIC-Amp Lch to LOUT2  
0: OFF (default)  
1: ON  
L3G1-0: LIN3/RIN3 Mixing Gain Control (Table 62)  
Default: “00” (0dB)  
MS0666-E-00  
2007/10  
- 127 -  
[AK4671]  
Addr Register Name  
0CH ROUT2 Signal Select  
R/W  
D7  
L4G1  
R/W  
0
D6  
L4G0  
R/W  
0
D5  
LOOPHR  
D4  
RINH4  
R/W  
0
D3  
RINH3  
R/W  
0
D2  
RINH2  
R/W  
0
D1  
RINH1  
R/W  
0
D0  
DACHR  
R/W  
0
R/W  
0
Default  
DACHR: Switch Control from DAC Rch to ROUT2  
0: OFF (default)  
1: ON  
RINH1: Switch Control from RIN1 to ROUT2  
0: OFF (default)  
1: ON  
RINH2: Switch Control from RIN2 to ROUT2  
0: OFF (default)  
1: ON  
RINH3: Switch Control from RIN3 to ROUT2  
0: OFF (default)  
1: ON  
RINH4: Switch Control from RIN4 to ROUT2  
0: OFF (default)  
1: ON  
LOOPHR: Switch Control from MIC-Amp Rch to ROUT2  
0: OFF (default)  
1: ON  
L4G1-0: LIN4/RIN4 Mixing Gain Control (Table 63)  
Default: “00” (0dB)  
MS0666-E-00  
2007/10  
- 128 -  
[AK4671]  
Addr Register Name  
0DH LOUT3 Signal Select  
R/W  
D7  
LPG1  
R/W  
0
D6  
LPG0  
R/W  
0
D5  
LOOPSL  
D4  
LINS4  
R/W  
0
D3  
LINS3  
R/W  
0
D2  
LINS2  
R/W  
0
D1  
LINS1  
R/W  
0
D0  
DACSL  
R/W  
0
R/W  
0
Default  
DACSL: Switch Control from DAC Lch to LOUT3  
0: OFF (default)  
1: ON  
When PMLO3 bit is “1”, DACSL bit is enabled. When PMLO3 bit is “0”, the LOUT3 pin goes to VSS1.  
LINS1: Switch Control from LIN1 to LOUT3  
0: OFF (default)  
1: ON  
LINS2: Switch Control from LIN2 to LOUT3  
0: OFF (default)  
1: ON  
LINS3: Switch Control from LIN3 to LOUT3  
0: OFF (default)  
1: ON  
LINS4: Switch Control from LIN4 to LOUT3  
0: OFF (default)  
1: ON  
LOOPSL: Switch Control from MIC-Amp Lch to LOUT3  
0: OFF (default)  
1: ON  
LPG1-0: MIC-Amp Mixing Gain Control (Table 64)  
Default: “00” (0dB)  
MS0666-E-00  
2007/10  
- 129 -  
[AK4671]  
Addr Register Name  
0EH ROUT3 Signal Select  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
LOOPSR  
D4  
RINS4  
R/W  
0
D3  
RINS3  
R/W  
0
D2  
RINS2  
R/W  
0
D1  
RINS1  
R/W  
0
D0  
DACSR  
R/W  
0
R/W  
0
Default  
DACSR: Switch Control from DAC Rch to ROUT3  
0: OFF (default)  
1: ON  
When PMRO3 bit is “1”, DACR bit is enabled. When PMRO3 bit is “0”, the ROUT3 pin goes to VSS1.  
RINS1: Switch Control from RIN1 to ROUT3  
0: OFF (default)  
1: ON  
RINS2: Switch Control from RIN2 to ROUT3  
0: OFF (default)  
1: ON  
RINS3: Switch Control from RIN3 to ROUT3  
0: OFF (default)  
1: ON  
RINS4: Switch Control from RIN4 to ROUT3  
0: OFF (default)  
1: ON  
LOOPSR: Switch Control from MIC-Amp Rch to ROUT3  
0: OFF (default)  
1: ON  
MS0666-E-00  
2007/10  
- 130 -  
[AK4671]  
D0  
Addr Register Name  
0FH LOUT1 Power Management  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
RCV  
R/W  
0
D4  
LOOPM  
R/W  
0
D3  
LOM  
R/W  
0
D2  
LOPS1  
R/W  
0
D1  
PMRO1 PMLO1  
R/W  
Default  
R/W  
0
R/W  
0
PMLO1: LOUT1 Power Management  
0: Power down (default)  
1: Power up  
PMRO1: ROUT1 Power Management  
0: Power down (default)  
1: Power up  
LOPS1: LOUT1/ROUT1 Power Save Mode  
0: Normal Operation (default)  
1: Power Save Mode  
LOM: Mono Mixing from DAC to LOUT1/ROUT1  
0: Stereo Mixing (default)  
1: Mono Mixing  
LOOPM: Mono Mixing from MIC-Amp to LOUT1/ROUT1  
0: Stereo Mixing (default)  
1: Mono Mixing  
RCV: Receiver Select  
0: Stereo Line Output (LOUT1/ROUT1 pins) (default)  
1: Mono Receiver Output (RCP/RCN pins)  
MS0666-E-00  
2007/10  
- 131 -  
[AK4671]  
D0  
Addr Register Name  
10H LOUT2 Power Management  
D7  
0
RD  
0
D6  
PMRO2S  
D5  
D4  
D3  
LOM2  
R/W  
0
D2  
D1  
PMLO2S LOOPM2  
MUTEN PMRO2 PMLO2  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
PMLO2: LOUT2 Power Management  
0: Power down (default)  
1: Power up  
PMRO2: ROUT2 Power Management  
0: Power down (default)  
1: Power up  
MUTEN: LOUT2/ROUT2 Mute Control  
0: Mute (default)  
1: Normal operation  
LOM2: Mono Mixing from DAC to LOUT2/ROUT2  
0: Stereo Mixing (default)  
1: Mono Mixing  
LOOPM2: Mono Mixing from MIC-Amp to LOUT2/ROUT2  
0: Stereo Mixing (default)  
1: Mono Mixing  
PMLO2S: LOUT2 MIX-Amp Power Management  
0: Power down (default)  
1: Power up  
PMRO2S: ROUT2 MIX-Amp Power Management  
0: Power down (default)  
1: Power up  
MS0666-E-00  
2007/10  
- 132 -  
[AK4671]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
11H LOUT3 Power Management L3VL1  
PMLO3  
R/W  
0
R/W  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
PMLO3: LOUT3 Power Management  
0: Power down (default)  
1: Power up  
PMRO3: ROUT3 Power Management  
0: Power down (default)  
1: Power up  
LOPS3: LOUT3/ROUT3 Power Save Mode  
0: Normal Operation (default)  
1: Power Save Mode  
LOM3: Mono Mixing from DAC to LOUT3/ROUT3  
0: Stereo Mixing (default)  
1: Mono Mixing  
LOOPM3: Mono Mixing from MIC-Amp to LOUT3/ROUT3  
0: Stereo Mixing (default)  
1: Mono Mixing  
LODIF: Lineout Select  
0: Single-ended Stereo Line Output (LOUT3/ROUT3 pins) (default)  
1: Full-differential Mono Line Output (LOP/LON pins)  
L3VL1-0: LOUT3/ROUT3 Output Gain Control (Table 73)  
Default: “10” (0dB)  
MS0666-E-00  
2007/10  
- 133 -  
[AK4671]  
Addr Register Name  
12H Lch Input Volume Control  
13H Rch Input Volume Control  
R/W  
D7  
IVL7  
IVR7  
R/W  
1
D6  
IVL6  
IVR6  
R/W  
0
D5  
IVL5  
IVR5  
R/W  
0
D4  
IVL4  
IVR4  
R/W  
1
D3  
IVL3  
IVR3  
R/W  
0
D2  
IVL2  
IVR2  
R/W  
0
D1  
IVL1  
IVR1  
R/W  
0
D0  
IVL0  
IVR0  
R/W  
1
Default  
IVL7-0, IVR7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 33)  
Default: “91H” (0dB)  
Addr Register Name  
14H ALC Reference Select  
R/W  
D7  
REF7  
R/W  
1
D6  
REF6  
R/W  
1
D5  
REF5  
R/W  
1
D4  
REF4  
R/W  
0
D3  
REF3  
R/W  
0
D2  
REF2  
R/W  
0
D1  
REF1  
R/W  
0
D0  
REF0  
R/W  
1
Default  
REF7-0: Reference Value at ALC Recovery Operation (Recording); 0.375dB step, 242 Level (Table 29)  
Default: “E1H” (+30.0dB)  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SRMXR1 SRMXR0 SRMXL1  
SRMXL0  
PFMXR1 PFMXR0 PFMXL1  
PFMXL0  
15H Digital Mixing Control  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
PFMXL1-0: 5-band EQ Lch Input Mixing 1 (Table 49)  
Default: “00” (SDTI)  
PFMXR1-0: 5-band EQ Rch Input Mixing 1 (Table 50)  
Default: “00” (SDTI)  
SRMXL1-0: 5-band EQ Lch Input Mixing 2 (Table 51)  
Default: “00” (SDTI)  
SRMXR1-0: 5-band EQ Rch Input Mixing 2 (Table 52)  
Default: “00” (SDTI)  
Addr Register Name  
16H ALC Timer Select  
R/W  
D7  
0
RD  
0
D6  
RFST1  
R/W  
0
D5  
RFST0  
R/W  
0
D4  
WTM2  
R/W  
0
D3  
WTM1  
R/W  
0
D2  
WTM0  
R/W  
0
D1  
ZTM1  
R/W  
0
D0  
ZTM0  
R/W  
0
Default  
ZTM1-0: ALC Limiter/Recovery Operation Zero Crossing Timeout Period (Table 26)  
Default: “00” (128/fs)  
WTM2-0: ALC Recovery Waiting Period (Table 27)  
Default: “000” (128/fs)  
RFST1-0: ALC First recovery Speed (Table 30)  
Default: “00” (4times)  
MS0666-E-00  
2007/10  
- 134 -  
[AK4671]  
D0  
Addr Register Name  
17H ALC Mode Control  
R/W  
D7  
0
RD  
0
D6  
D5  
D4  
D3  
D2  
D1  
ZELMN LMAT1 LMAT0 RGAIN1 RGAIN0 LMTH1 LMTH0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
LMTH1-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 24)  
Default: “00”  
RGAIN1-0: ALC Recovery GAIN Step (Table 28)  
Default: “00”  
LMAT1-0: ALC Limiter ATT Step (Table 25)  
Default: “00”  
ZELMN: Zero Crossing Detection Enable at ALC Limiter Operation  
0: Enable (default)  
1: Disable  
Addr Register Name  
18H Mode Control 1  
R/W  
D7  
DAM  
R/W  
0
D6  
MIXD  
R/W  
0
D5  
SDIM1  
R/W  
0
D4  
SDIM0  
R/W  
0
D3  
EQ  
R/W  
0
D2  
ADM  
R/W  
0
D1  
IVOLC  
R/W  
1
D0  
ALC  
R/W  
0
Default  
ALC: ALC Enable  
0: ALC Disable (default)  
1: ALC Enable  
IVOLC: Input Digital Volume Control Mode Select  
0: Independent  
1: Dependent (default)  
When IVOLC bit = “1”, IVL7-0 bits control both Lch and Rch volume level, while register values of IVL7-0  
bits are not written to IVR7-0 bits. When IVOLC bit = “0”, IVL7-0 bits control Lch level and IVR7-0 bits  
control Rch level, respectively.  
ADM: Mono Recording (Table 44)  
0: Stereo (default)  
1: Mono: (L+R)/2  
EQ: Select 5-Band Equalizer  
0: OFF (default)  
1: ON  
SDIM1-0: SDTI Input Signal Select (Table 48)  
Default: “00” (L=Lch, R=Rch)  
MIXD: DAC and SRC-A Mono Mixing (Table 53 and Table 54)  
0: L+R (default)  
1: (L+R)/2  
DAM: DAC Mono Mixing (Table 53)  
0: Stereo (default)  
1: Mono: (L+R) or (L+R)/2 is selected by MIXD bit.  
MS0666-E-00  
2007/10  
- 135 -  
[AK4671]  
Addr Register Name  
19H Mode Control 2  
R/W  
D7  
SRA1  
R/W  
0
D6  
SRA0  
R/W  
0
D5  
BIV2  
R/W  
0
D4  
BIV1  
R/W  
0
D3  
BIV0  
R/W  
0
D2  
SMUTE  
R/W  
0
D1  
OVTM  
R/W  
0
D0  
OVOLC  
R/W  
1
Default  
OVOLC: Output Digital Volume Control Mode Select  
0: Independent  
1: Dependent (default)  
When OVOLC bit = “1”, OVL7-0 bits control both Lch and Rch volume level, while register values of  
OVL7-0 bits are not written to OVR7-0 bits. When OVOLC bit = “0”, OVL7-0 bits control Lch level and  
OVR7-0 bits control Rch level, respectively.  
OVTM: Digital Volume Transition Time Setting  
0: 1061/fs (default)  
1: 256/fs  
This is the transition time between OVL/R7-0 bits = 00H and FFH.  
SMUTE: Soft Mute Control  
0: Normal Operation (default)  
1: DAC outputs soft-muted  
BIV2-0: SDTIB Input Volume Control (Table 41)  
Default: “0H” (0dB)  
SRA1-0: SRC-A Input Signal Select (Table 54)  
Default: “00” (Lch)  
Addr Register Name  
1AH Lch Output Volume Control  
1BH Rch Output Volume Control  
R/W  
D7  
OVL7  
OVR7  
R/W  
0
D6  
OVL6  
OVR6  
R/W  
0
D5  
OVL5  
OVR5  
R/W  
0
D4  
OVL4  
OVR4  
R/W  
1
D3  
OVL3  
OVR3  
R/W  
1
D2  
OVL2  
OVR2  
R/W  
0
D1  
OVL1  
OVR1  
R/W  
0
D0  
OVL0  
OVR0  
R/W  
0
Default  
OVL7-0, OVR7-0: Output Digital Volume (Table 36)  
Default: “18H” (0dB)  
Addr Register Name  
1CH Side Tone A Control  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
SVAR2  
R/W  
0
D4  
SVAR1  
R/W  
0
D3  
SVAR0  
R/W  
0
D2  
SVAL2  
R/W  
0
D1  
SVAL1  
R/W  
0
D0  
SVAL0  
R/W  
0
Default  
SVAL2-0, SVAR2-0: Side Tone Volume A (SVOLA) (Table 34)  
Default: “000” (0dB)  
MS0666-E-00  
2007/10  
- 136 -  
[AK4671]  
Addr Register Name  
1DH Digital Filter Select  
R/W  
D7  
GN1  
R/W  
0
D6  
GN0  
R/W  
0
D5  
LPF  
R/W  
0
D4  
HPF  
R/W  
0
D3  
EQ0  
R/W  
0
D2  
FIL3  
R/W  
0
D1  
HPFAD  
R/W  
1
D0  
PFSEL  
R/W  
0
Default  
PFSEL: Signal Select of Programmable Filter Block (Table 43)  
0: ADC Output Data (default)  
1: SDTI Input Data  
HPFAD: HPF Control of ADC  
0: OFF  
1: ON (default)  
When HPFAD bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPFAD bit is “0”,  
HPFAD block is through (0dB).  
GN1-0: Gain Select at GAIN block (Table 23)  
Default: “00” (0dB)  
FIL3: FIL3 (Stereo Separation Emphasis Filter) Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When FIL3 bit is “1”, the settings of F3A13-0 and F3B13-0 bits are enabled. When FIL3 bit is “0”, FIL3 block  
is OFF (MUTE).  
EQ0: EQ0 (Gain Compensation Filter) Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ0 bit is “1”, the settings of E0A15-0, E0B13-0 and E0C15-0 bits are enabled. When EQ0 bit is “0”,  
EQ0 block is through (0dB).  
HPF: HPF Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When HPF bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is “0”, HPF block  
is through (0dB).  
LPF: LPF Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When LPF bit is “1”, the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is “0”, LPF block  
is through (0dB).  
MS0666-E-00  
2007/10  
- 137 -  
[AK4671]  
Addr Register Name  
1EH FIL3 Co-efficient 0  
1FH FIL3 Co-efficient 1  
20H FIL3 Co-efficient 2  
21H FIL3 Co-efficient 3  
22H EQ Co-efficient 0  
23H EQ Co-efficient 1  
24H EQ Co-efficient 2  
25H EQ Co-efficient 3  
26H EQ Co-efficient 4  
27H EQ Co-efficient 5  
R/W  
D7  
F3A7  
F3AS  
F3B7  
0
E0A7  
E0A15  
E0B7  
0
D6  
F3A6  
0
F3B6  
0
E0A6  
E0A14  
E0B6  
0
E0C6  
E0C14  
W
D5  
F3A5  
F3A13  
F3B5  
F3B13  
E0A5  
E0A13  
E0B5  
E0B13  
E0C5  
E0C13  
W
D4  
F3A4  
F3A12  
F3B4  
F3B12  
E0A4  
E0A12  
E0B4  
E0B12  
E0C4  
E0C12  
W
D3  
F3A3  
F3A11  
F3B3  
F3B11  
E0A3  
E0A11  
E0B3  
E0B11  
E0C3  
E0C11  
W
D2  
F3A2  
F3A10  
F3B2  
F3B10  
E0A2  
E0A10  
E0B2  
E0B10  
E0C2  
E0C10  
W
D1  
D0  
F3A1  
F3A9  
F3B1  
F3B9  
E0A1  
E0A9  
E0B1  
E0B9  
E0C1  
E0C9  
W
F3A0  
F3A8  
F3B0  
F3B8  
E0A0  
E0A8  
E0B0  
E0B8  
E0C0  
E0C8  
W
E0C7  
E0C15  
W
Default  
0
0
0
0
0
0
0
0
F3A13-0, F3B13-0: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2)  
Default: “0000H”  
F3AS: FIL3 (Stereo Separation Emphasis Filter) Select  
0: HPF (default)  
1: LPF  
E0A15-0, E0B13-0, E0C15-C0: EQ0 (Gain Compensation Filter) Coefficient (14bit x 2 + 16bit x 1)  
Default: “0000H”  
Addr Register Name  
28H FIL1 Co-efficient 0  
29H FIL1 Co-efficient 1  
2AH FIL1 Co-efficient 2  
2BH FIL1 Co-efficient 3  
R/W  
D7  
F1A7  
0
F1B7  
0
D6  
F1A6  
0
F1B6  
0
D5  
F1A5  
F1A13  
F1B5  
F1B13  
W
D4  
F1A4  
F1A12  
F1B4  
F1B12  
W
D3  
F1A3  
F1A11  
F1B3  
F1B11  
W
D2  
F1A2  
F1A10  
F1B2  
F1B10  
W
D1  
D0  
F1A1  
F1A9  
F1B1  
F1B9  
W
F1A0  
F1A8  
F1B0  
F1B8  
W
W
W
Default  
F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH”  
F1A13-0, F1B13-B0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2)  
Default: F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” (fc=150Hz@fs=44.1kHz)  
Addr Register Name  
2CH FIL2 Co-efficient 0  
2DH FIL2 Co-efficient 1  
2EH FIL2 Co-efficient 2  
2FH FIL2 Co-efficient 3  
R/W  
D7  
F2A7  
0
F2B7  
0
D6  
F2A6  
0
F2B6  
0
D5  
F2A5  
F2A13  
F2B5  
F2B13  
W
D4  
F2A4  
F2A12  
F2B4  
F2B12  
W
D3  
F2A3  
F2A11  
F2B3  
F2B11  
W
D2  
F2A2  
F2A10  
F2B2  
F2B10  
W
D1  
F2A1  
F2A9  
F2B1  
F2B9  
W
D0  
F2A0  
F2A8  
F2B0  
F2B8  
W
W
W
Default  
0
0
0
0
0
0
0
0
F2A13-0, F2B13-B0: FIL2 (LPF) Coefficient (14bit x 2)  
Default: “0000H”  
MS0666-E-00  
2007/10  
- 138 -  
[AK4671]  
Addr Register Name  
30H Digital Filter Select 2  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
EQ5  
R/W  
0
D3  
EQ4  
R/W  
0
D2  
EQ3  
R/W  
0
D1  
EQ2  
R/W  
0
D0  
EQ1  
R/W  
0
R/W  
Default  
EQ1: Equalizer 1 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ1 bit is “1”, the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When EQ1 bit is “0”,  
EQ1 block is through (0dB).  
EQ2: Equalizer 2 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ2 bit is “1”, the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When EQ2 bit is “0”,  
EQ2 block is through (0dB).  
EQ3: Equalizer 3 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ3 bit is “1”, the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When EQ3 bit is “0”,  
EQ3 block is through (0dB).  
EQ4: Equalizer 4 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ4 bit is “1”, the settings of E4A15-0, E4B15-0 and E4C15-0 bits are enabled. When EQ4 bit is “0”,  
EQ4 block is through (0dB).  
EQ5: Equalizer 5 Coefficient Setting Enable  
0: Disable (default)  
1: Enable  
When EQ5 bit is “1”, the settings of E5A15-0, E5B15-0 and E5C15-0 bits are enabled. When EQ5 bit is “0”,  
EQ5 block is through (0dB).  
MS0666-E-00  
2007/10  
- 139 -  
[AK4671]  
Addr Register Name  
32H E1 Co-efficient 0  
33H E1 Co-efficient 1  
34H E1 Co-efficient 2  
35H E1 Co-efficient 3  
36H E1 Co-efficient 4  
37H E1 Co-efficient 5  
38H E2 Co-efficient 0  
39H E2 Co-efficient 1  
3AH E2 Co-efficient 2  
3BH E2 Co-efficient 3  
3CH E2 Co-efficient 4  
3DH E2 Co-efficient 5  
3EH E3 Co-efficient 0  
3FH E3 Co-efficient 1  
40H E3 Co-efficient 2  
41H E3 Co-efficient 3  
42H E3 Co-efficient 4  
43H E3 Co-efficient 5  
44H E4 Co-efficient 0  
45H E4 Co-efficient 1  
46H E4 Co-efficient 2  
47H E4 Co-efficient 3  
48H E4 Co-efficient 4  
49H E4 Co-efficient 5  
4AH E5 Co-efficient 0  
4BH E5 Co-efficient 1  
4CH E5 Co-efficient 2  
4DH E5 Co-efficient 3  
4EH E5 Co-efficient 4  
4FH E5 Co-efficient 5  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
E1A7  
E1A15  
E1B7  
E1B15  
E1C7  
E1C15  
E2A7  
E2A15  
E2B7  
E2B15  
E2C7  
E2C15  
E3A7  
E3A15  
E3B7  
E3B15  
E3C7  
E3C15  
E4A7  
E4A15  
E4B7  
E4B15  
E4C7  
E4C15  
E5A7  
E5A15  
E5B7  
E5B15  
E5C7  
E5C15  
W
E1A6  
E1A14  
E1B6  
E1B14  
E1C6  
E1C14  
E2A6  
E2A14  
E2B6  
E2B14  
E2C6  
E2C14  
E3A6  
E3A14  
E3B6  
E3B14  
E3C6  
E3C14  
E4A6  
E4A14  
E4B6  
E4B14  
E4C6  
E4C14  
E5A6  
E5A14  
E5B6  
E5B14  
E5C6  
E5C14  
W
E1A5  
E1A13  
E1B5  
E1B13  
E1C5  
E1C13  
E2A5  
E2A13  
E2B5  
E2B13  
E2C5  
E2C13  
E3A5  
E3A13  
E3B5  
E3B13  
E3C5  
E3C13  
E4A5  
E4A13  
E4B5  
E4B13  
E4C5  
E4C13  
E5A5  
E5A13  
E5B5  
E5B13  
E5C5  
E5C13  
W
E1A4  
E1A12  
E1B4  
E1B12  
E1C4  
E1C12  
E2A4  
E2A12  
E2B4  
E2B12  
E2C4  
E2C12  
E3A4  
E3A12  
E3B4  
E3B12  
E3C4  
E3C12  
E4A4  
E4A12  
E4B4  
E4B12  
E4C4  
E4C12  
E5A4  
E5A12  
E5B4  
E5B12  
E5C4  
E5C12  
W
E1A3  
E1A11  
E1B3  
E1B11  
E1C3  
E1C11  
E2A3  
E2A11  
E2B3  
E2B11  
E2C3  
E2C11  
E3A3  
E3A11  
E3B3  
E3B11  
E3C3  
E3C11  
E4A3  
E4A11  
E4B3  
E4B11  
E4C3  
E4C11  
E5A3  
E5A11  
E5B3  
E5B11  
E5C3  
E5C11  
W
E1A2  
E1A10  
E1B2  
E1B10  
E1C2  
E1C10  
E2A2  
E2A10  
E2B2  
E2B10  
E2C2  
E2C10  
E3A2  
E3A10  
E3B2  
E3B10  
E3C2  
E3C10  
E4A2  
E4A10  
E4B2  
E4B10  
E4C2  
E4C10  
E5A2  
E5A10  
E5B2  
E5B10  
E5C2  
E5C10  
W
E1A1  
E1A9  
E1B1  
E1B9  
E1C1  
E1C9  
E2A1  
E2A9  
E2B1  
E2B9  
E2C1  
E2C9  
E3A1  
E3A9  
E3B1  
E3B9  
E3C1  
E3C9  
E4A1  
E4A9  
E4B1  
E4B9  
E4C1  
E4C9  
E5A1  
E5A9  
E5B1  
E5B9  
E5C1  
E5C9  
W
E1A0  
E1A8  
E1B0  
E1B8  
E1C0  
E1C8  
E2A0  
E2A8  
E2B0  
E2B8  
E2C0  
E2C8  
E3A0  
E3A8  
E3B0  
E3B8  
E3C0  
E3C8  
E4A0  
E4A8  
E4B0  
E4B8  
E4C0  
E4C8  
E5A0  
E5A8  
E5B0  
E5B8  
E5C0  
E5C8  
W
Default  
0
0
0
0
0
0
0
0
E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3)  
Default: 0000H”  
E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3)  
Default: 0000H”  
E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3)  
Default: 0000H”  
E4A15-0, E4B15-0, E4C15-0: Equalizer 4 Coefficient (16bit x3)  
Default: 0000H”  
E5A15-0, E5B15-0, E5C15-0: Equalizer 5 Coefficient (16bit x3)  
Default: 0000H”  
MS0666-E-00  
2007/10  
- 140 -  
[AK4671]  
Addr Register Name  
D7  
EQB3  
EQD3  
R/W  
1
D6  
EQB2  
EQD2  
R/W  
0
D5  
EQB1  
EQD1  
R/W  
0
D4  
EQB0  
EQD0  
R/W  
0
D3  
EQA3  
EQC3  
R/W  
1
D2  
EQA2  
EQC2  
R/W  
0
D1  
EQA1  
EQC1  
R/W  
0
D0  
EQA0  
EQC0  
R/W  
0
50H  
51H  
EQ Control 250Hz/100Hz  
EQ Control 3.5kHz/1kHz  
R/W  
Default  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
EQE3  
R/W  
1
D2  
EQE2  
R/W  
0
D1  
EQE1  
R/W  
0
D0  
EQE0  
R/W  
0
52H  
EQ Control 10kHz  
R/W  
Default  
EQA3-0: Select the boost level of 100Hz  
EQB3-0: Select the boost level of 250Hz  
EQC3-0: Select the boost level of 1kHz  
EQD3-0: Select the boost level of 3.5kHz  
EQE3-0: Select the boost level of 10kHz  
See Table 35.  
Addr Register Name  
D7  
GPOM2  
R/W  
0
D6  
GPOE2  
R/W  
0
D5  
D4  
D3  
D2  
D1  
D0  
PMSRA  
R/W  
0
53H  
PCM I/F Control 0  
R/W  
PLLBT2 PLLBT1 PLLBT0 PMPCM PMSRB  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
PMSRA: SRC-A Power Management  
0: Power down (default)  
1: Power up  
PMSRB: SRC-B Power Management  
0: Power down (default)  
1: Power up  
PMPCM: PCM I/F Power Management  
0: Power down (default)  
1: Power up  
PLLBT2-0: PLLBT Reference Clock Select (Table 76)  
PLLBT3 bit is D6 of Addr=55H.  
Default: “0000”: SYNCA  
GPOE2: General Purpose Output 2 Enable at GPOM2 bit = “1”  
“0”: GPO2 pin = “L” (default)  
“1”: GPO2 pin = “H”  
GPOM2: General Purpose Output 2 Operation Mode (Table 92)  
“0”: Controlled by GPOE2 bit (default)  
“1”: MIC Detection Interrupt  
MS0666-E-00  
2007/10  
- 141 -  
[AK4671]  
D0  
Addr Register Name  
D7  
SDOAD  
R/W  
0
D6  
BCKO2  
R/W  
0
D5  
MSBSA  
R/W  
0
D4  
BCKPA  
R/W  
0
D3  
D2  
D1  
54H  
PCM I/F Control 2  
R/W  
LAWA1 LAWA0 FMTA1 FMTA0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
FMTA1-0: PCM I/F A Format (Table 84)  
Default: “00” (Mode 0)  
LAWA1-0: PCM I/F A Mode (Table 82)  
Default: “00” (Mode 0)  
BCKPA: BICKA Polarity of PCM I/F A (Table 86)  
“0”: SDTOA is output by the rising edge (“”) of BICKA and SDTIA is latched by the falling edge (“”). (default)  
“1”: SDTOA is output by the falling edge (“”) of BICKA and SDTIA is latched by the rising edge (“”).  
MSBSA: SYNCA Phase of PCM I/F A (Table 86)  
“0”: The rising edge (“”) of SYNCA is half clock of BICKA before the channel change. (default)  
“1”: The rising edge (“”) of SYNCA is one clock of BICKA before the channel change.  
BCKO2: BICKA/B Output Frequency Select at Master Mode (Table 77)  
0: 16fs2 (default)  
1: 32fs2  
SDOAD: SDTOA Disable (Table 56)  
“0”: Enable (default)  
“1”: Disable (“L”)  
Addr Register Name  
D7  
SDOBD  
R/W  
0
D6  
PLLBT3  
R/W  
D5  
MSBSB  
R/W  
0
D4  
BCKPB  
R/W  
0
D3  
D2  
D1  
D0  
55H  
PCM I/F Control 3  
R/W  
LAWB1 LAWB0 FMTB1 FMTB0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
0
FMTB1-0: PCM I/F B Format (Table 85)  
Default: “00” (Mode 0)  
LAWB1-0: PCM I/F B Mode (Table 83)  
Default: “00” (Mode 0)  
BCKPB: BICKB Polarity of PCM I/F B (Table 87)  
“0”: SDTOB is output by the rising edge (“”) of BICKB and SDTIB is latched by the falling edge (“”). (default)  
“1”: SDTOB is output by the falling edge (“”) of BICKB and SDTIB is latched by the rising edge (“”).  
MSBSB: SYNCB Phase of PCM I/F B (Table 87)  
“0”: The rising edge (“”) of SYNCB is half clock of BICKB before the channel change. (default)  
“1”: The rising edge (“”) of SYNCB is one clock of BICKB before the channel change.  
PLLBT3: PLLBT Reference Clock Select (Table 76)  
PLLBT2-0 bits is D5-3 of Addr=53H.  
Default: “0000”: SYNCA  
SDOBD: SDTOB Disable (Table 58)  
“0”: Enable (default)  
“1”: Disable (“L”)  
MS0666-E-00  
2007/10  
- 142 -  
[AK4671]  
Addr Register Name  
56H Digital Volume B Control  
D7  
BVL7  
R/W  
0
D6  
BVL6  
R/W  
0
D5  
BVL5  
R/W  
0
D4  
BVL4  
R/W  
1
D3  
BVL3  
R/W  
1
D2  
BVL2  
R/W  
0
D1  
BVL1  
R/W  
0
D0  
BVL0  
R/W  
0
R/W  
Default  
BVL7-0: Digital Volume B (Table 38)  
Default: “18H” (0dB)  
Addr Register Name  
57H Digital Volume C Control  
D7  
CVL7  
R/W  
0
D6  
CVL6  
R/W  
0
D5  
CVL5  
R/W  
0
D4  
CVL4  
R/W  
1
D3  
CVL3  
R/W  
1
D2  
CVL2  
R/W  
0
D1  
CVL1  
R/W  
0
D0  
CVL0  
R/W  
0
R/W  
Default  
CVL7-0: Digital Volume C (Table 39)  
Default: “18H” (0dB)  
Addr Register Name  
58H Side Tone Volume Control  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
SDOA  
R/W  
0
D2  
SVB2  
R/W  
0
D1  
SVB1  
R/W  
0
D0  
SVB0  
R/W  
0
R/W  
Default  
SVB2-0: Side Tone Volume (Table 40)  
Default: “0H” (0dB)  
SDOA: SDTOA Output Signal Select (Table 55)  
“0”: SRC-A (default)  
“1”: SDTI-B  
Addr Register Name  
59H Digital Mixing Control  
D7  
SDOR1  
R/W  
0
D6  
SDOR0  
R/W  
0
D5  
SDOL1  
R/W  
0
D4  
SDOL0  
R/W  
0
D3  
D2  
D1  
D0  
BVMX1 BVMX0 SBMX1 SBMX0  
R/W  
0
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
SBMX1-0: SDTOB Output Signal Select (Table 57)  
Default: “00” (SDTIA)  
BVMX1-0: SRC-B Input Signal Select (Table 59)  
Default: “00” (SDTIA)  
SDOL1-0: SDTO Lch Output Mixing (Table 45)  
Default: “00” (Lch Signal Selected by Table 44)  
SDOR1-0: SDTO Rch Output Mixing (Table 46)  
Default: “00” (Rch Signal Selected by Table 44)  
MS0666-E-00  
2007/10  
- 143 -  
[AK4671]  
Addr Register Name  
5AH SAR ADC Control  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
GPOM1  
R/W  
0
D3  
GPOE1  
R/W  
0
D2  
A1  
R/W  
0
D1  
A0  
R/W  
0
D0  
PMSAD  
R/W  
0
Default  
PMSAD: 10bit ADC Power Management  
“0”: Power down (default)  
“1”: Power up  
A1-0: SAR ADC Measurement Mode (Table 94)  
Default: “00” (AIN1)  
GPOE1: General Purpose Output 1 Enable at GPOM1 bit = “1”  
“0”: GPO pin = “L” (default)  
“1”: GPO pin = “H”  
GPOM1: General Purpose Output 1 Operation Mode  
“0”: Controlled by GPOE bit (default)  
“1”: Controlled by A0 bit  
MS0666-E-00  
2007/10  
- 144 -  
[AK4671]  
SYSTEM DESIGN  
Figure 108 shows the system connection diagram for the AK4671. The evaluation board [AKD4671] demonstrates the  
optimum layout, power supply arrangements and measurement results.  
Headphone  
Analog  
Ground  
Digital  
Ground  
Digital  
(Base Band)  
1.6 3.6V  
10u  
Analog  
2.2 3.6V  
Base Band  
0.1u  
TEST  
AVDD  
RCP  
LOUT2 ROUT2 VCOM VCOCBT VSS2  
SDTOA SYNCA GPO2  
Digital  
(μP & CPU)  
1.6 3.6V  
VSS1  
RCN  
MUTET VCOC  
PVDD TVDD2 BICKA  
CDTI  
VSS4  
CCLK  
I2C  
SDTIA  
DVDD  
CSN  
Receiver  
Ext SPK-Amp  
0.1u  
μP  
Stereo  
Speaker  
ROUT3 LOUT3  
AK4671EG  
Top View  
RIN4  
LIN3  
IN2+  
IN1+  
MDT  
LIN4  
RIN3  
IN2−  
IN1−  
BICK  
Line In  
MCKI  
PDN  
MCKO  
LRCK  
CDTO  
GPO1  
CPU  
External MIC  
Internal MIC  
NC  
SAIN2 SAVDD TVDD3 SDTOB BICKB  
SDTO  
SDTI  
MPWR SAIN3  
SAIN1  
VSS3  
SYNCB SDTIB  
Bluetooth  
Module  
Digital  
(Bluetooth)  
1.6 3.6V  
DC Measurement  
Notes:  
- VSS1, VSS2, VSS3 and VSS4 of the AK4671 should be distributed separately from the ground of external  
controllers.  
- All digital input pins should not be left floating.  
- When the AK4671 is EXT mode (PMPLL bit = “0”), a resistor and capacitor of the VCOC pin is not needed.  
- When the AK4671 is PLL mode (PMPLL bit = “1”), a resistor and capacitor of the VCOC pin is shown in Table  
4.  
- When the AK4671 is used by master mode, LRCK and BICK pins are a Hi-Z state until M/S bit becomes “1”.  
LRCK and BICK pins of the AK4671 should be pulled-down or pulled-up by the resistor (about 100kΩ)  
externally to avoid the floating state.  
- A resistor and capacitor of the VCOCBT pin is shown in Table 76.  
- After setting PDN pin = “H”, the PCM I/F clock pins of AK4671 are a Hi-Z state until PMPCM bit becomes  
“1”. The PCM I/F clock pins of master mode should be pulled-down or pulled-up by the resistor (about 100kΩ)  
externally to avoid the floating state.  
Figure 108. Typical Connection Diagram  
(Internal Full-differentila Mic, External pseudo differential Mic, Recevier Output, 4-wire serial mode)  
MS0666-E-00  
2007/10  
- 145 -  
 
[AK4671]  
1. Grounding and Power Supply Decoupling  
The AK4671 requires careful attention to power supply and grounding arrangements. AVDD, PVDD, SAVDD, DVDD,  
TVDD2 and TVDD3 are usually supplied from the system’s analog supply. If AVDD, PVDD, SAVDD, DVDD, TVDD2  
and TVDD3 are supplied separately, the power-up sequence is not critical. The PDN pin should be held to “L” when  
power-up. The PDN pin should be set to “H” after all power supplies are powered-up.  
In case that the pop noise should be avoided at receiver output, headphone output and line output, the AK4671 should be  
operated by the following recommended power-up/down sequence.  
1) Power-up  
- The PDN pin should be held to “L” when power-up. The AK4671 should be reset by bringing the PDN pin “L” for  
150ns or more.  
- In case that the power supplies are separated in two or more groups, the power supply including DVDD should be  
powered ON at first.  
2) Power-down  
- Each power supplies should be powered OFF after the PDN pin is set to “L”.  
- In case that the power supplies are separated in two or more groups, the power supply including DVDD should be  
powered OFF at last.  
VSS1, VSS2, VSS3 and VSS4 of the AK4671 should be connected to the analog ground plane. System analog ground  
and digital ground should be connected together near to where the supplies are brought onto the printed circuit board.  
Decoupling capacitors should be as near to the AK4671 as possible, with the small value ceramic capacitor being the  
nearest.  
2. Voltage Reference  
VCOM is a signal ground of this chip. A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached  
to the VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM pin. All  
signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the  
AK4671.  
3. Analog Inputs  
The Mic, Line and MIN inputs are single-ended. The input signal range scales with nominally at 0.6 x AVDD Vpp (typ)  
at MGNL=MGNR=0dB and single-ended input, centered around the internal common voltage (0.5 x AVDD). The input  
signal should be AC coupled using a capacitor. The cut-off frequency is fc = 1/(2πRC). The AK4671 can accept input  
voltages from VSS1 to AVDD.  
4. Analog Outputs  
The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFH(@16bit) and  
a negative full scale for 8000H(@16bit). The ideal output is VCOM voltage for 0000H(@16bit). VCOM voltage is 0.5 x  
AVDD (typ).  
When LOUT1, ROUT1, LOUT2, ROUT2, LOUT3/LOP and ROUT3/LON pins are single-ended output, these pins  
should be AC coupled using a capacitor. When RCP, RCN pins are full-differential output, these pins should be  
connected directly to a receiver. (RCP, RCN pins should be not AC coupled using a capacitor.)  
MS0666-E-00  
2007/10  
- 146 -  
[AK4671]  
CONTROL SEQUENCE (AUDIO)  
„ Clock Set up  
When ADC or DAC is powered-up, the clocks must be supplied.  
1. PLL Master Mode.  
Example:  
Power Supply  
Audio I/F Format: MSB justified (ADC & DAC)  
BICK frequency at Master Mode: 64fs  
Input Master Clock Select at PLL Mode: 11.2896MHz  
MCKO: Enable  
(1)  
PDN pin  
(2)  
(3)  
Sampling Frequency: 44.1kHz  
PMVCM bit  
(Addr:00H, D0)  
(4)  
(1) Power Supply & PDN pin = “L” Æ “H”  
MCKO bit  
(Addr:02H, D2)  
PMPLL bit  
(2)Addr:02H, Data:22H  
Addr:03H, Data:02H  
Addr:01H, Data:F4H  
(Addr:02H, D0)  
(5)  
MCKI pin  
Input  
M/S bit  
(3)Addr:00H, Data:01H  
(4)Addr:02H, Data:27H  
(Addr:02H, D1)  
40msec(max)  
(6)  
(8)  
BICK pin  
LRCK pin  
Output  
Output  
40msec(max)  
(7)  
MCKO, BICK and LRCK output  
MCKO pin  
Figure 109. Clock Set Up Sequence (1)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) DIF1-0, PLL3-0, FS3-0, BCKO and M/S bits should be set during this period.  
(3) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered-up before the other block operates.  
(4) In case of using MCKO output: MCKO bit = “1”  
(5) PLL lock time is 40ms(max.) after PMPLL bit changes from “0” to “1” and MCKI is supplied from an external  
source.  
(6) The AK4671 starts to output the LRCK and BICK clocks after the PLL becomes stable. Then normal operation  
starts.  
(7) The invalid frequency is output from MCKO pin during this period if MCKO bit = “1”.  
(8) The normal clock is output from MCKO pin after the PLL is locked if MCKO bit = “1”.  
MS0666-E-00  
2007/10  
- 147 -  
 
[AK4671]  
2. PLL Slave Mode (MCKI pin)  
Example:  
Audio I/F Format: MSB justified (ADC & DAC)  
BICK frequency at Master Mode: 64fs  
Input Master Clock Select at PLL Mode: 11.2896MHz  
MCKO: Enable  
Sampling Frequency: 44.1kHz  
Power Supply  
(1) Power Supply & PDN pin = “L” Æ “H”  
(1)  
PDN pin  
(2)  
(3)  
PMVCM bit  
(Addr:00H, D0)  
(2)Addr:03H, Data:02H  
Addr:01H, Data:F4H  
(4)  
MCKO bit  
(Addr:02H, D2)  
(3)Addr:00H, Data:01H  
(4)Addr:02H, Data:25H  
MCKO output start  
PMPLL bit  
(Addr:02H, D0)  
(5)  
MCKI pin  
Input  
40msec(max)  
(7)  
MCKO pin  
(6)  
Output  
Input  
(8)  
BICK and LRCK input start  
BICK pin  
LRCK pin  
Figure 110. Clock Set Up Sequence (2)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) DIF1-0, PLL3-0 and FS3-0 bits should be set during this period.  
(3) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered up before the other block operates.  
(4) Enable MCKO output: MCKO bit = “1”  
(5) PLL starts after that the PMPLL bit changes from “0” to “1” and PLL reference clock (MCKI pin) is supplied.  
PLL lock time is 40ms(max.).  
(6) The normal clock is output from MCKO during this period.  
(7) The invalid frequency is output from MCKO after PLL is locked.  
(8) BICK and LRCK clocks should be synchronized with MCKO clock.  
MS0666-E-00  
2007/10  
- 148 -  
[AK4671]  
3. PLL Slave Mode (LRCK or BICK pin)  
Example:  
Audio I/F Format : MSB justified (ADC & DAC)  
PLL Reference clock: BICK  
Power Supply  
BICK frequency: 64fs  
(1)  
Sampling Frequency: 44.1kHz  
PDN pin  
(2)  
(3)  
(1) Power Supply & PDN pin = “L” Æ “H”  
PMVCM bit  
(Addr:00H, D0)  
PMPLL bit  
(Addr:02H, D0)  
(2) Addr:03H, Data:02H  
Addr:01H, Data:83H  
LRCK pin  
BICK pin  
Input  
(4)  
(3) Addr:00H, Data:01H  
(4) Addr:02H, Data:01H  
Internal Clock  
(5)  
Figure 111. Clock Set Up Sequence (3)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) DIF1-0, FS3-2 and PLL3-0 bits should be set during this period.  
(3) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered up before the other block operates.  
(4) PLL starts after the PMPLL bit changes from “0” to “1” and PLL reference clock (LRCK or BICK pin) is  
supplied. PLL lock time is 160ms(max.) when LRCK is a PLL reference clock. And PLL lock time is  
2ms(max.) when BICK is a PLL reference clock.  
(5) Normal operation stats after that the PLL is locked.  
MS0666-E-00  
2007/10  
- 149 -  
[AK4671]  
4. EXT Slave Mode  
Example:  
Audio I/F Format: MSB justified (ADC and DAC)  
Input MCKI frequency: 256fs  
Sampling Frequency: 44.1kHz  
MCKO: Disable  
Power Supply  
(1) Power Supply & PDN pin = “L” Æ “H”  
(1)  
PDN pin  
(2) Addr:03H, Data:02H  
Addr:01H, Data:00H  
(2)  
(3)  
PMVCM bit  
(Addr:00H, D0)  
(4)  
(4)  
MCKI pin  
Input  
Input  
(3) Addr:00H, Data:01H  
LRCK pin  
BICK pin  
MCKI, BICK and LRCK input  
Figure 112. Clock Set Up Sequence (4)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) DIF1-0 and FS1-0 bits should be set during this period.  
(3) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered up before the other block operates.  
(4) Normal operation starts after the MCKI, LRCK and BICK are supplied.  
MS0666-E-00  
2007/10  
- 150 -  
[AK4671]  
5. EXT Master Mode  
Example:  
Audio I/F Format: MSB justified (ADC and DAC)  
Input MCKI frequency: 256fs  
Sampling Frequency: 44.1kHz  
MCKO: Disable  
(1) Power Supply & PDN pin = “L” Æ “H”  
Power Supply  
(1)  
PDN pin  
(2) MCKI input  
(4)  
PMVCM bit  
(Addr:00H, D0)  
(3) Addr:03H, Data:02H  
Addr:01H, Data:00H  
Addr:02H, Data:02H  
(2)  
(3)  
MCKI pin  
Input  
M/S bit  
(Addr:02H, D1)  
BICK and LRCK output  
(4) Addr:00H, Data:01H  
LRCK pin  
BICK pin  
Output  
Figure 113. Clock Set Up Sequence (5)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) MCKI should be input.  
(3) After DIF1-0 and FS2-0 bits are set, M/S bit should be set to “1”. Then LRCK and BICK are output.  
(4) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered up before the other block operates.  
MS0666-E-00  
2007/10  
- 151 -  
[AK4671]  
MIC Input Recording (Stereo)  
Example:  
PLL Master Mode  
FS3-0 bits  
0000  
1111  
AAH  
Audio I/F Format: MSB justified (ADC & DAC)  
Sampling Frequency: 44.1kHz  
Pre MIC AMP: +15dB  
MIC Power: On  
ALC setting: Refer to Table 62  
ALC: Enable  
(Addr:01H, D7-4)  
(1)  
MIC Control  
55H  
(Addr:05H, D7-0)  
(2)  
(1) Addr:01H, Data:F4H  
(2) Addr:05H, Data: AAH  
ALC Control 1  
00H  
05H  
E1H  
(Addr:16H)  
(3)  
ALC Control 2  
E1H  
(Addr:14H)  
(3) Addr:16H, Data:05H  
(4) Addr:14H, Data:E1H  
(4)  
ALC Control 3  
15H  
01H  
(Addr:17H)  
(5)  
ALC Control 4  
02H  
(5) Addr:17H, Data:01H  
(6) Addr:18H, Data:03H  
(7) Addr:00H, Data:3FH  
Recording  
03H  
02H  
(Addr:18H)  
(6)  
(9)  
ALC State  
ALC Disable  
ALC Disable  
ALC Enable  
PMMP bit  
(Addr:00H, D1)  
PMMICL/R bits  
PMADL/R bits  
(Addr:00H, D5-2)  
1059 / fs  
(8)  
(7)  
(8) Addr:00H, Data:01H  
ADC Internal  
State  
Power Down  
Normal State Power Down  
Initialize  
(9) Addr:18H, Data:02H  
Figure 114. Stereo MIC Input Sequence  
(MIC Recording: LIN1/RIN1 MICL/R ADCL/R ALC Audio I/F SDTO)  
<Example>  
This sequence is an example of ALC setting at fs=44.1kHz. If the parameter of the ALC is changed, please refer to “Figure  
62”.  
At first, clocks should be supplied according to “Clock Set Up” sequence.  
(1) Set up a sampling frequency (FS3-0 bits). When the AK4671 is PLL mode, MIC and ADC should be powered-up in  
consideration of PLL lock time after a sampling frequency is changed.  
(2) Set up Gain for MIC-Amp (Addr: 05H)  
(3) Set up Timer Select for ALC (Addr: 16H)  
(4) Set up REF value for ALC (Addr: 14H)  
(5) Set up LMTH1-0, RGAIN1-0 and LMAT1-0 bits (Addr: 17H)  
(6) Set up ALC bit (Addr: 18H)  
(7) Power Up MIC and ADC: PMMP = PMMICL = PMMICR = PMADL = PMADR bits = “0” “1”  
The initialization cycle time of ADC is 1059/fs=24ms@fs=44.1kHz.  
After the ALC bit is set to “1” and ADC block is powered-up, the ALC operation starts from IVOL default value (0dB).  
The time of offset voltage going to “0” after the ADC initialization cycle depends on both the time of analog input pin  
going to the common voltage and the time constant of the offset cancel digital HPF. This time can be shorter by using  
the following sequence:  
At first, PMVCM and PMMP bits should set to “1”. Then, the ADC should be powered-up. The wait time to power-up  
the ADC should be longer than 4 times of the time constant that is determined by the AC coupling capacitor at analog  
input pin and the internal input resistance.  
(8) Power Down MIC and ADC: PMMP = PMMICL = PMMICR = PMADL = PMADR bits = “1” “0”  
When the registers for the ALC operation are not changed, ALC bit may be keeping “1”. The ALC operation is disabled  
because the ADC block is powered-down. If the registers for the ALC operation are also changed when the sampling  
frequency is changed, it should be done after the AK4671 goes to the manual mode (ALC bit = “0”) or ADC block is  
powered-down (PMADL = PMADR bits = “0”). IVOL gain is not reset when PMADL = PMADR bits = “0”, and then  
IVOL operation starts from the setting value when PMADL or PMADR bit is changed to “1”.  
(9) ALC Disable: ALC bit = “1” “0”  
MS0666-E-00  
2007/10  
- 152 -  
[AK4671]  
Headphone-Amp Output  
FS3-0 bits  
0000  
1111  
1010  
(Addr:01H, D7-4)  
(1)  
E x am ple  
:
P L L M a s ter M o d e  
A u d io I/F F o rm a t: M S B ju s tifie d (A D C  
S a m p lin g F re q u e n c y: 4 4 .1 kH z  
O V O L C b it  
& D A C )  
= 1 ” (d ef a u lt)  
D ig ita l V o lu m e L e ve l: 8 d B  
H P V o lu m e L e ve l: 3 d B  
HPG3-0 bits  
1011  
(Addr:08H, D7-4)  
5
b a n d E Q : E n a b le  
(2)  
(1 ) A d d r:0 1 H , D ata :F 4 H  
DACHL/R bits  
(Addr:0B&0CH, D0)  
(12)  
(2 ) A d d r:0 8 H , D ata A 5 H  
A d d r:0 B H & 0 C H , D a ta 0 1 H  
(3 ) A d d r:1 8 H , D ata 0 A H  
(4 ) A d d r:1 A H & 1 B H , D a ta 2 8 H  
(5 ) A d d r:0 0 H , D ata C 1 H  
(6 ) A d d r:1 0 H , D ata 6 3 H  
(7 ) A d d r:1 0 H , D ata 6 7 H  
P la y b a c k  
EQ bit  
0
1
0
(Addr:18H, D3)  
(3)  
(11)  
OVL/R7-0 bits  
18H  
28H  
(Addr:1AH&1BH, D7-0)  
(4)  
PMDAL/R bits  
(Addr:00H, D7-6)  
(5)  
(10)  
PML/RO2S bits  
(Addr:10H, D6-5)  
(6)  
(9)  
(8 ) A d d r:1 0 H , D ata 6 3 H  
(9 ) A d d r:1 0 H , D ata 0 0 H  
(1 0 ) A d d r:0 0 H , D a ta 0 1 H  
(1 1 ) A d d r:1 8 H , D a ta 0 2 H  
(1 2 ) A d d r:0 B H & 0 C H , D ata 0 0 H  
PML/RO2 bits  
(Addr:10H, D1-0)  
MUTEN bit  
(Addr:10H, D2)  
(7)  
(8)  
LOUT2 pin  
ROUT2 pin  
Normal Output  
Figure 115. Headphone-Amp Output Sequence  
(Headphone Playback: SDTI Audio I/F EQ DATT DACL/R LOUT2/ROUT2)  
<Example>  
At first, clocks should be supplied according to “Clock Set Up” sequence.  
(1) Set up a sampling frequency (FS3-0 bits). When the AK4671 is PLL mode, DAC and Headphone-Amp should  
be powered-up in consideration of PLL lock time after a sampling frequency is changed.  
(2) Set up the path of “SDTI Æ DAC Æ HP-Amp”: DACHL = DACHR bits = “0” “1”  
Set up analog volume for HP-Amp (Addr: 08H, HPG3-0 bits)  
(3) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.)  
(4) Set up the output digital volume (Addr: 1AH and 1BH)  
When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up,  
the digital volume changes from default value (0dB) to the register setting value by the soft transition.  
(5) Power up DAC: PMDAL = PMDAR bits = “0” “1”  
(6) Power up Headphone-Amp and MIX-Amp: PMLO2 = PMRO2 = PMLO2S = PMRO2S bits = “0” “1”  
Output voltages of Headphone-Amp are still VSS1.  
(7) Rise up the common voltage of Headphone-Amp: MUTEN bit = “0” “1”  
The rise time depends on AVDD and the capacitor value connected with the MUTET pin. When AVDD=3.3V  
and the capacitor value is 1.0μF, the time constant is τr = 250ms(max.).  
(8) Fall down the common voltage of Headphone-Amp: MUTEN bit = “1” “0”  
The fall time depends on AVDD and the capacitor value connected with the MUTET pin. When AVDD=3.3V  
and the capacitor value is 1.0μF, the time constant is τ f = 250ms(max.).  
If the power supply is powered-off or Headphone-Amp is powered-down before the common voltage goes to  
VSS2, the pop noise occurs. It takes twice of τf that the common voltage goes to VSS2.  
(9) Power down Headphone-Amp and MIX-Amp: PMLO2 = PMRO2 = PMLO2S = PMRO2S bits = “1” “0”  
(10)Power down DAC: PMDAL = PMDAR bits = “1” “0”  
(11)Disable 5-band Equalizer: EQ bit = “1” Æ “0”  
(12)Disable the path of “DAC Headphone-Amp”: DACHL = DACHR bits = “1” “0”  
MS0666-E-00  
2007/10  
- 153 -  
[AK4671]  
Stereo Line Output  
Example:  
PLL, Master Mode  
Audio I/F Format: MSB justified (ADC & DAC)  
Sampling Frequency: 44.1kHz  
OVOLC bit = “1”(default)  
Digital Volume Level: 8dB  
LINEOUT Volume Level: 3dB  
FS3-0 bits  
0000  
1111  
01  
(Addr:01H, D7-4)  
(1)  
L3VL1-0 bits  
10  
(1) Addr:01H, Data:F4H  
(Addr:11H, D7-D6)  
(2)  
(2) Addr:11H, Data:40H  
Addr:1DH, Data:01H  
Addr:15H, Data:05H  
PFSEL bis  
(Addr:1DH, D0)  
Addr:0DH&0EH, Data:01H  
PFMXL/R1-0 bits  
0000  
0101  
28H  
(Addr:15H, D3-0)  
(3) Addr:1AH&1BH, Data:28H  
(4) Addr:11H, Data:44H  
DACSL/R bits  
(Addr:0DH&0EH, D0)  
(9)  
(5) Addr:00H, Data:C1H  
Addr:11H, Data:47H  
OVL/R7-0 bits  
18H  
(Addr:1AH&1BH, D7-0)  
(3)  
(6) Addr:11H, Data:43H  
Playback  
LOPS3 bit  
(Addr:11H, D2)  
(4)  
(6)  
(7)  
(10)  
PMDAL/R bits  
(Addr:00H, D7-6)  
(7) Addr:11H, Data:47H  
(5)  
(8)  
(8) Addr:00H, Data:01H  
Addr:11H, Data:44H  
PML/RO3 bits  
(Addr:11H, D1-0)  
>300 ms  
>300 ms  
(9) Addr:0DH&0E, Data:00H  
(10) Addr:11H, Data:40H  
LOUT3 pin  
ROUT3 pin  
Normal Output  
Figure 116. Stereo Lineout Sequence  
(Speaker Playback: SDTI Audio I/F SVOLA DATT DACL/R LOUT3/ROUT3 External SPK-Amp)  
<Example>  
At first, clocks should be supplied according to “Clock Set Up” sequence.  
(1) Set up the sampling frequency (FS3-0 bits). When the AK4671 is PLL mode, DAC and Stereo Line-Amp  
should be powered-up in consideration of PLL lock time after the sampling frequency is changed.  
(2) Set up the path of “SDTI Æ DAC Æ Stereo Line-Amp”: PFSEL = “0” Æ “1”, PFMXL1-0 = PFMXR1-0 bits =  
“0000” Æ “0101”, DACSL = DACSR bits = “0” Æ “1”  
Set up analog volume for Stereo Line-Amp (Addr: 11H, L3VL1-0 bits)  
(3) Set up the output digital volume (Addr: 1AH and 1BH)  
When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up,  
the digital volume changes from default value (0dB) to the register setting value by the soft transition.  
(4) Enter power-save mode of Stereo Line-Amp: LOPS3 bit = “0” Æ “1”  
(5) Power-up DAC and Stereo Line-Amp: PMDAL = PMDAR = PMLO3 = PMRO3 bits = “0” “1”  
LOUT3 and ROUT3 pins rise up to VCOM voltage after PMLO3 and PMRO3 bits are changed to “1”. Rise  
time is 300ms(max.) at C=1μF and AVDD=3.3V.  
(6) Exit power-save mode of Stereo Line-Amp: LOPS3 bit = “1” Æ “0”  
LOPS3 bit should be set to “0” after LOUT3 and ROUT3 pins rise up. Stereo Line-Amp goes to normal  
operation by setting LOPS3 bit to “0”.  
(7) Enter power-save mode of Stereo Line-Amp: LOPS3 bit: “0” Æ “1”  
(8) Power-down DAC and Stereo Line-Amp: PMDAL = PMDAR = PMLO3 = PMRO3 bits = “1” “0”  
LOUT3 and ROUT3 pins fall down to VSS1. Fall time is 300ms(max.) at C=1μF and AVDD=3.3V.  
(9) Disable the path of “DAC Æ Stereo Line-Amp”: DACSL = DACSR bits = “1” Æ “0”  
(10)Exit power-save mode of Stereo Line-Amp: LOPS3 bit = “1” Æ “0”  
LOPS3 bit should be set to “0” after LOUT3 and ROUT3 pins fall down.  
MS0666-E-00  
2007/10  
- 154 -  
[AK4671]  
Stop of Clock  
Master clock can be stopped when ADC and DAC are not used.  
1. PLL Master Mode  
Example:  
Audio I/F Format: MSB justified (ADC & DAC)  
BICK frequency at Master Mode: 64fs  
Input Master Clock Select at PLL Mode: 11.2896MHz  
Sampling Frequency: 44.1kHz  
(1)  
PMPLL bit  
(Addr:02H, D0)  
(1)  
"1" or "0"  
MCKO bit  
(Addr:02H, D2)  
(1) Addr:02H, Data:02H  
(2)  
External MCKI  
Input  
(2) Stop an external MCKI  
Figure 117. Clock Stopping Sequence (1)  
<Example>  
(1) Power down PLL: PMPLL bit = “1” “0”  
Stop MCKO clock: MCKO bit = “1” “0”  
(2) Stop an external MCKI clock.  
2. PLL Slave (MCKI pin)  
Example  
Audio I/F Format: MSB justified (ADC & DAC)  
PLL Reference clock: MCKI  
(1)  
PMPLL bit  
(Addr:02H, D0)  
BICK frequency: 64fs  
Sampling Frequency: 44.1kHz  
(1)  
MCKO bit  
(Addr:02H, D2)  
(1) Addr:02H, Data:00H  
(2)  
External MCKI  
Input  
(2) Stop the external clocks  
Figure 118. Clock Stopping Sequence (2)  
<Example>  
(1) Power down PLL: PMPLL bit = “1” “0”  
Stop MCKO output: MCKO bit = “1” “0”  
(2) Stop the external master clock.  
3. PLL Slave Mode (LRCK or BICK pin)  
Example  
Audio I/F Format: MSB justified (ADC & DAC)  
PLL Reference clock: BICK  
BICK frequency: 64fs  
(1)  
PMPLL bit  
(Addr:02H, D0)  
Sampling Frequency: 44.1kHz  
(2)  
External BICK  
External LRCK  
Input  
Input  
(1) Addr:02H, Data:00H  
(2)  
(2) Stop the external clocks  
Figure 119. Clock Stopping Sequence (3)  
<Example>  
(1) Power down PLL: PMPLL bit = “1” “0”  
(2) Stop the external BICK and LRCK clocks  
MS0666-E-00  
2007/10  
- 155 -  
[AK4671]  
4. EXT Slave Mode  
(1)  
External MCKI  
Input  
Example  
(1)  
(1)  
Audio I/F Format:MSB justified(ADC & DAC)  
Input MCKI frequency:1024fs  
External BICK  
External LRCK  
Input  
Input  
Sampling Frequency:44.1kHz  
(1) Stop the external clocks  
Figure 120. Clock Stopping Sequence (4)  
<Example>  
(1) Stop the external MCKI, BICK and LRCK clocks.  
5. EXT Master Mode  
(1)  
External MCKI  
Input  
Example  
Audio I/F Format:MSB justified(ADC & DAC)  
Input MCKI frequency:1024fs  
Sampling Frequency:44.1kHz  
BICK  
Output  
Output  
"H" or "L"  
"H" or "L"  
LRCK  
(1) Stop the external MCKI  
Figure 121. Clock Stopping Sequence (5)  
<Example>  
(1) Stop MCKI clock. BICK and LRCK are fixed to “H” or “L”.  
Power down  
Power supply current can be shut down (typ. 20μA) by stopping clocks and setting PMVCM bit = “0” after all blocks  
except for VCOM are powered-down. Power supply current can be also shut down (typ. 1μA) by stopping clocks and  
setting the PDN pin = “L”. When the PDN pin = “L”, the registers are initialized.  
MS0666-E-00  
2007/10  
- 156 -  
[AK4671]  
CONTROL SEQUENCE (PCM)  
Clock Set up  
When ADC or DAC is powered-up, the clocks must be supplied.  
1. PCM I/F A Slave Mode  
Example:  
PCM I/F A Format : Linear, Short Frame (ADC & DAC)  
PLLBT Reference clock: SYNCA  
SYNCA frequency: 1fs2  
Sampling Frequency: 8kHz  
Power Supply  
(1) Power Supply & PDN pin = “L” Æ “H”  
(1)  
PDN pin  
(2)  
(3)  
PMVCM bit  
(2) Addr:02H, Data:C0H  
Addr:03H, Data:12H  
Addr:54H, Data:00H  
Addr:53H, Data:00H  
Addr:55H, Data:00H  
(Addr:00H, D0)  
PMPCM bit  
(Addr:53H, D2)  
SYNCA pin  
BICKA pin  
Input  
(4)  
(3) Addr:00H, Data:01H  
(4) Addr:53H, Data:04H  
Internal Clock  
(5)  
Figure 122. Clock Set Up Sequence (1)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) BTCLK, LP, SDOD, FMTA1-0, LAWA1-0, BCKPA, MSBSA, PLLBT3-0 bits should be set during this  
period.  
(3) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered up before the other block operates.  
(4) PLLBT starts after the PMPCM bit changes from “0” to “1” and PLLBT reference clock (SYNCA or BICKA  
pin) is supplied. PLLBT lock time is 260ms(max.) when SYNCA is a PLLBT reference clock. And PLLBT  
lock time is 40ms(max.) when BICKA is a PLLBT reference clock.  
(5) Normal operation stats after that the PLLBT is locked.  
MS0666-E-00  
2007/10  
- 157 -  
 
[AK4671]  
2. PCM I/F A Master Mode  
Example:  
Power Supply  
PCM I/F A Format : Linear, Short Frame (ADC & DAC)  
PLLBT Reference clock: SYNCB  
SYNCB frequency: 1fs2  
(1)  
PDN pin  
Sampling Frequency: 8kHz  
(3)  
(2)  
PMVCM bit  
(Addr:00H, D0)  
(1) Power Supply & PDN pin = “L” Æ “H”  
PMPCM bit  
(Addr:53H, D2)  
(2) Addr:02H, Data:C0H  
Addr:03H, Data:12H  
Addr:54H, Data:00H  
Addr:53H, Data:00H  
Addr:55H, Data:00H  
SYNCB pin  
BICKB pin  
Input  
(4)  
Internal Clock  
(5)  
(6)  
(3) Addr:00H, Data:01H  
(4) Addr:53H, Data:04H  
SYNCA pin  
BICKA pin  
Output  
Figure 123. Clock Set Up Sequence (2)  
<Example>  
(1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671.  
The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design  
(Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and  
lineout output.  
(2) BTCLK, LP, SDOD, FMTA1-0, LAWA1-0, BCKPA, MSBSA, PLLBT3-0 bits should be set during this  
period.  
(3) Power Up VCOM: PMVCM bit = “0” Æ “1”  
VCOM should first be powered up before the other block operates.  
(4) PLLBT starts after the PMPCM bit changes from “0” to “1” and PLLBT reference clock (SYNCB or BICKB  
pin) is supplied. PLLBT lock time is 260ms(max.) when SYNCB is a PLLBT reference clock. And PLLBT  
lock time is 40ms(max.) when BICKB is a PLLBT reference clock.  
(5) Normal operation stats after that the PLLBT is locked.  
(6) The invalid frequency is output from SYNCA and BICKA after PLLBT is locked.  
MS0666-E-00  
2007/10  
- 158 -  
[AK4671]  
MIC Input Phone Call (Mono)  
MIC Control 1  
00H  
14H  
Example:  
PCM I/F A: Slave Mode  
(Addr:04H, D7-0)  
(1)  
PCM I/F A Format: Linear, Short Frame (ADC & DAC)  
Sampling Frequency: 8kHz  
Pre MIC AMP: +15dB  
MIC Power: On  
Digital Volume Level: +17.25dB  
ADC HPF: Enable  
MIC Control 2  
0101  
1010  
1
(Addr:05H, D3-0)  
HPFAD bit  
0
5 band EQ: Enable  
(Addr:1DH, D1)  
(1) Addr:04H, Data:14H  
Addr:05H, Data: AAH  
(2)  
(8)  
HPF bit  
0
1
(Addr:1DH, D4)  
(2) Addr:1DH, Data:12H  
(3) Addr:15H, Data:01H  
(4) Addr:18H, Data:0AH  
(5) Addr:12H, Data:BFH  
PFMXL1-0 bits  
00  
01  
(Addr:15H, D1-0)  
(3)  
EQ bit  
0
0
1
(Addr:18H, D3)  
(9)  
(4)  
IVL7-0 bits  
91H  
BFH  
(Addr:12H, D7-0)  
(5)  
(6) Addr:00H, Data:17H  
Addr:53H, Data:05H  
PMMP bit  
(Addr:00H, D1)  
Phone Call  
PMMICL bit  
PMADL bit  
(Addr:00H, D4&D2)  
(7) Addr:00H, Data:01H  
Addr:53H, Data:04H  
PMSRA bit  
(Addr:53H, D0)  
1059 / fs  
(7)  
(6)  
(8) Addr:1DH, Data:00H  
(9) Addr:18H, Data:02H  
ADC Internal  
State  
Power Down  
Normal State Power Down  
Initialize  
Figure 124. Mono MIC Input Sequence  
(Phone Call Tx: IN1+/IN1- MICL ADCL HPFIVL EQ SRC-A PCM I/F A SDTOA)  
<Example>  
At first, clocks should be supplied according to “Clock Set Up” sequence. Also, MIC, ADC and SRC-A should be  
powered-up in consideration of PLLBT lock time.  
(1) Set up Signal Select for MIC Input (Addr: 04H) and Gain for MIC-Amp (Addr: 05H)  
(2) Enable ADC High Pass Filter: HPFAD bit = “0” Æ “1”  
Enable the coefficient of High Pass Filter: HPF bit = “0” Æ “1” (Coefficient of wind-noise reduction filter is set by  
Addr = 28H- 2BH.)  
This sequence is an example of HPF setting at fs2=8kHz. The coefficient should be set when HPFAD = HPF bits = “0”  
or PMADL = PMADR = PMDAL = PMDAR bits = “0”.  
(3) Set up the path of “ADC Æ 5-band EQ”: PFMXL1-0 bits = “00” Æ “01”  
(4) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.)  
(5) Set up input volume (Addr: 12H)  
When PMADL = PMADR bits = “0”, IVL7-0 and IVR7-0 bits should be set to “91H”(0dB).  
(6) Power Up MIC, ADC and SRC-A: PMMP = PMMICL = PMADL = PMSRA bits = “0” “1”  
The initialization cycle time of ADC is 1059/fs2=132ms@fs2=8kHz.  
The time of offset voltage going to “0” after the ADC initialization cycle depends on both the time of analog input pin  
going to the common voltage and the time constant of the offset cancel digital HPF. This time can be shorter by using  
the following sequence:  
At first, PMVCM and PMMP bits should set to “1”. Then, the ADC should be powered-up. The wait time to power-up  
the ADC should be longer than 4 times of the time constant that is determined by the AC coupling capacitor at analog  
input pin and the internal input resistance.  
(7) Power Down MIC, ADC and SRC-A: PMMP = PMMICL = PMADL = PMSRA bits = “1” “0”  
IVOL gain is not reset when PMADL = PMADR bits = “0”, and then IVOL operation starts from the setting value when  
PMADL or PMADR bit is changed to “1”.  
(8) Disable ADC High Pass Filter : HPFAD bit = “1” Æ “0”  
Disable the coefficient of High Pass Filter: HPF bit = “1” Æ “0”  
(9) Disable 5-band Equalizer: EQ bit = “1” Æ “0”  
MS0666-E-00  
2007/10  
- 159 -  
[AK4671]  
Receiver-Amp Output  
Example:  
PCM I/F A: Slave Mode  
PCM I/F A Format : Linear, Short Frame (ADC & DAC)  
Sampling Frequency: 8kHz  
Digital Volume Level: 8dB  
RCV Volume Level: 0dB  
5 band EQ: Enable  
L1VL2-0 bits  
101  
100  
01  
(Addr:08H, D2-0)  
(1)  
SRMXR1-0 bits  
(Addr:15H, D7-6)  
(1) Addr:08H, Data:B4H  
Addr:15H, Data:40H  
Addr:0AH, Data:01H  
Addr:0FH, Data:20H  
00  
DACR bit  
(Addr:0AH, D0)  
(10)  
(2) Addr:18H, Data:0AH  
(3) Addr:1BH, Data:28H  
(4) Addr:0FH, Data:24H  
RCV bit  
(Addr:0FH, D5)  
EQ bit  
(Addr:18H, D3)  
0
1
0
(2)  
(9)  
(5) Addr:53H, Data:06H  
Addr:00H, Data:81H  
Addr:0FH, Data:27H  
OVR7-0 bits  
(Addr:1BH, D7-0)  
18H  
28H  
(3)  
(6) Addr:0FH, Data:23H  
Phone Call  
LOPS1 bit  
(Addr:0FH, D2)  
(4)  
(6)  
(7)  
(11)  
PMSRB bit  
(Addr:53H, D1)  
(7) Addr:0FH, Data:27H  
(8) Addr:53H, Data:04H  
Addr:00H, Data:01H  
Addr:0FH, Data:24H  
PMDAR bit  
(Addr:00H, D7)  
(5)  
(8)  
PML/RO1 bits  
(9) Addr:18H, Data:02H  
(10) Addr:0AH, Data:00H  
(11) Addr:0FH, Data:20H  
(Addr:0FH, D1-0)  
>1 ms  
RCP pin  
RCN pin  
Normal Output  
Figure 125. Receiver-Amp Output Sequence  
(Phone Call Rx: SDTIA PCM I/F A SRC-B EQ DATT DACR RCP/RCN)  
<Example>  
At first, clocks should be supplied according to “Clock Set Up” sequence. Also, SRC-B, DAC and Receiver-Amp  
should be powered-up in consideration of PLLBT lock time.  
(1) Set up the path of “SDTIA Æ DAC Æ Receiver-Amp”: SRMXR1-0 bits = “00” Æ “01”, DACR bit = “0” Æ  
“1”, RCV bit = “0” Æ “1”  
Set up analog volume for Receiver-Amp (Addr: 08H, L1VL2-0 bits)  
(2) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.)  
(3) Set up the output digital volume (Addr: 1BH)  
When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up,  
the digital volume changes from default value (0dB) to the register setting value by the soft transition.  
(4) Enter power-save mode of Receiver-Amp: LOPS1 bit = “0” Æ “1”  
(5) Power-up SRC-B, DAC and Receiver-Amp: PMSRB bit = PMDAR = PMLO1 = PMRO1 bits = “0” “1”  
RCN pin rise up to VCOM voltage after PMLO1 and PMRO1 bits are changed to “1”.  
(6) Exit power-save mode of Receiver-Amp: LOPS1 bit = “1” Æ “0”  
LOPS1 bit should be set to “0” after PCN pin rise up. Receiver-Amp goes to normal operation by setting  
LOPS1 bit to “0”.  
(7) Enter power-save mode of Receiver-Amp: LOPS1 bit: “0” Æ “1”  
(8) Power-down SRC-B, DAC and Receiver-Amp: PMSRB bit = PMDAR = PMLO1 = PMRO1 bits = “1” “0”  
Receiver-Amp becomes to power-down mode.  
(9) Disable 5-band Equalizer: EQ bit = “1” Æ “0”  
(10)Disable the path of “DAC Æ Receiver-Amp”: DACR bit = “1” Æ “0”  
(11)Exit power-save mode of Receiver-Amp: LOPS1 bit = “1” Æ “0”  
LOPS1 bit should be set to “0” after Receiver-Amp power-down.  
MS0666-E-00  
2007/10  
- 160 -  
[AK4671]  
Mono Line Output  
Example:  
PCM I/F A: Slave Mode  
PCM I/F A Format : Linear, Short Frame (ADC & DAC)  
Sampling Frequency: 8kHz  
Digital Volume Level: 8dB  
LINEOUT Volume Level: 3dB  
5 band EQ: Enable  
L3VL1-0 bits  
10  
01  
01  
(Addr:11H, D7-D6)  
(1) Addr:11H, Data:40H  
Addr:15H, Data:40H  
Addr:0EH, Data:01H  
(1)  
SRMXR1-0 bits  
00  
(Addr:15H, D7-6)  
(2) Addr:18H, Data:0AH  
(3) Addr:1BH, Data:28H  
(4) Addr:11H, Data:44H  
DACSR bit  
(10)  
(Addr:0EH, D0)  
EQ bit  
0
1
0
(Addr:18H, D3)  
(2)  
(9)  
(5) Addr:53H, Data:06H  
Addr:00H, Data:81H  
Addr:11H, Data:46H  
OVR7-0 bits  
18H  
28H  
(Addr:1BH, D7-0)  
(3)  
(6) Addr:11H, Data:42H  
Playback  
LOPS3 bit  
(Addr:11H, D2)  
(4)  
(6)  
(7)  
(11)  
PMSRB bit  
(Addr:53H, D1)  
(7) Addr:11H, Data:46H  
(8) Addr:53H, Data:04H  
Addr:00H, Data:01H  
Addr:11H, Data:44H  
PMDAR bit  
(Addr:00H, D7)  
(5)  
(8)  
PMRO3 bit  
(9) Addr:18H, Data:02H  
(10) Addr:0EH, Data:00H  
(11) Addr:11H, Data:40H  
(Addr:11H, D1)  
>300 ms  
>300 ms  
Normal Output  
ROUT3 pin  
Figure 126. Mono Lineout Sequence  
(Speaker Playback: SDTIA PCM I/F A SRC-B EQ DATT DACR ROUT3 External SPK-Amp)  
<Example>  
At first, clocks should be supplied according to “Clock Set Up” sequence. Also, SRC-B, DAC and Mono Line-Amp  
should be powered-up in consideration of PLLBT lock time.  
(1) Set up the path of “SDTIA Æ DAC Æ Mono Line-Amp”: SRMXR1-0 bits = “00” Æ “01”, DACSR bit = “0” Æ “1”  
Set up analog volume for Mono Line-Amp (Addr: 11H, L3VL1-0 bits)  
(2) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.)  
(3) Set up the output digital volume (Addr: 1BH)  
When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up,  
the digital volume changes from default value (0dB) to the register setting value by the soft transition.  
(4) Enter power-save mode of Mono Line-Amp: LOPS3 bit = “0” Æ “1”  
(5) Power-up SRC-B, DAC and Mono Line-Amp: PMSRB = PMDAR = PMRO3 bits = “0” “1”  
ROUT3 pin rise up to VCOM voltage after PMRO3 bit is changed to “1”. Rise time is 300ms(max.) at C=1μF  
and AVDD=3.3V.  
(6) Exit power-save mode of Mono Line-Amp: LOPS3 bit = “1” Æ “0”  
LOPS3 bit should be set to “0” after ROUT3 pin rise up. Mono Line-Amp goes to normal operation by setting  
LOPS3 bit to “0”.  
(7) Enter power-save mode of Mono Line-Amp: LOPS3 bit: “0” Æ “1”  
(8) Power-down SRC-B, DAC and Mono Line-Amp: PMSRB = PMDAR = PMRO3 bits = “1” “0”  
ROUT3 pin fall down to VSS1. Fall time is 300ms(max.) at C=1μF and AVDD=3.3V.  
(9) Disable 5-band Equalizer: EQ bit = “1” Æ “0”  
(10)Disable the path of “DAC Æ Mono Line-Amp”: DACSR bit = “1” Æ “0”  
(11)Exit power-save mode of Mono Line-Amp: LOPS3 bit = “1” Æ “0”  
LOPS3 bit should be set to “0” after ROUT3 pin fall down.  
MS0666-E-00  
2007/10  
- 161 -  
[AK4671]  
Stop of Clock  
Master clock can be stopped when ADC and DAC are not used.  
1. PCM I/F A Slave Mode  
Example  
PCM I/F A Format : Linear, Short Frame (ADC & DAC)  
PLLBT Reference clock: SYNCA  
SYNCA frequency: 1fs2  
(1)  
PMPCM bit  
(Addr:53H, D2)  
Sampling Frequency: 8kHz  
(2)  
External SYNCA  
External BICKA  
Input  
Input  
(1) Addr:53H, Data:00H  
(2)  
(2) Stop the external clocks  
Figure 127. Clock Stopping Sequence (1)  
<Example>  
(1) Power down PLLBT: PMPCM bit = “1” “0”  
(2) Stop the external SYNCA and BICKA clocks  
2. PCM I/F A Master Mode  
(1)  
PMPCM bit  
(Addr:53H, D2)  
(2)  
Example  
PCM I/F A Format : Linear, Short Frame (ADC & DAC)  
PLLBT Reference clock: SYNCB  
SYNCB frequency: 1fs2  
External SYNCB  
External BICKB  
SYNCA  
Input  
(2)  
Sampling Frequency: 8kHz  
Input  
Output  
(1) Addr:53H, Data:00H  
"H" or "L"  
"H" or "L"  
BICKA  
Output  
(2) Stop the external clocks  
Figure 128. Clock Stopping Sequence (2)  
< Example >  
(1) Power down PLLBT: PMPCM bit = “1” “0”  
(2) Stop the external SYNCB and BICKB clocks. SYNCA and BICKA are fixed to “H” or “L”.  
Power down  
Power supply current can be shut down (typ. 20μA) by stopping clocks and setting PMVCM bit = “0” after all blocks  
except for VCOM are powered-down. Power supply current can be also shut down (typ. 1μA) by stopping clocks and  
setting the PDN pin = “L”. When the PDN pin = “L”, the registers are initialized.  
MS0666-E-00  
2007/10  
- 162 -  
[AK4671]  
PACKAGE  
5.0 ± 0.1  
57 - φ 0.3 ± 0.05  
φ 0.05  
M
S AB  
7 6 5  
4 3 2 1  
9 8  
A
B
C
B
D
E
F
G
H
J
0.5  
0.5  
S
0.08  
S
Material & Lead finish  
Package molding compound:  
Interposer material:  
Solder ball material:  
Epoxy  
BT resin  
SnAgCu  
MS0666-E-00  
2007/10  
- 163 -  
[AK4671]  
MARKING  
4671  
XXXX  
1
A
XXXX: Date code (4 digit)  
Pin #A1 indication  
REVISION HISTORY  
Date (YY/MM/DD) Revision Reason  
07/10/15 00 First Edition  
Page  
Contents  
IMPORTANT NOTICE  
z These products and their specifications are subject to change without notice.  
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei  
EMD Corporation (AKEMD) or authorized distributors as to current status of the products.  
z AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or  
use of any information contained herein.  
z Any export of these products, or devices or systems containing them, may require an export license or other official  
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency  
exchange, or strategic materials.  
z AKEMD products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or  
other hazard related device or systemNote2), and AKEMD assumes no responsibility for such use, except for the use  
approved with the express written consent by Representative Director of AKEMD. As used here:  
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and  
which must therefore meet very high standards of performance and reliability.  
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or  
for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform  
may reasonably be expected to result in loss of life or in significant injury or damage to person or property.  
z It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise  
places the product with a third party, to notify such third party in advance of the above content and conditions, and  
the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless  
from any and all claims arising from the use of said product in the absence of such notification.  
MS0666-E-00  
2007/10  
- 164 -  

相关型号:

AKD4671-B

stereo CODEC with built-in Microphone-Amplifier
AKM

AKD4673

Stereo CODEC with MIC/HP-AMP and Touch Screen Controller
AKM

AKD4673-A

stereo CODEC with built-in MIC/HP amplifier and TSC
AKM

AKD4675

Stereo CODEC with MIC/RCV/HP/SPK-AMP
AKM

AKD4682

Multi-channel CODEC with 2Vrms Stereo Selector
AKM

AKD4682-A

24bit CODEC that has two channels of ADC and four channels of DAC
AKM

AKD4683

Asynchronous Multi-Channel Audio CODEC with DIR/T
AKM

AKD4683-A

AK4683 Evaluation Board Rev.1
AKM

AKD4683-B

24bit CODEC that has two channels of ADC and four channels of DAC with internal DIR, DIT
AKM

AKD4685

Multi-channel CODEC with Differential Analog I/O
AKM

AKD4686

Multi-channel CODEC with Capless Stereo Selector
AKM

AKD4686-B

AK4686 Evaluation Board Rev.0
AKM