ACS723KMATR-40AB-T [ALLEGRO]

Analog Circuit,;
ACS723KMATR-40AB-T
型号: ACS723KMATR-40AB-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Analog Circuit,

信息通信管理 光电二极管
文件: 总17页 (文件大小:579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACS723KMA  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
DESCRIPTION  
FEATURES AND BENEFITS  
• Patented integrated digital temperature compensation  
circuitry allows for near closed loop accuracy over  
temperature in an open loop sensor  
TheAllegroACS723 current sensor IC is an economical and  
precise solution for AC or DC current sensing in industrial,  
commercial, and communication systems. The small package  
is ideal for space constrained applications while also saving  
costs due to reduced board area. Typical applications include  
motorcontrol,loaddetectionandmanagement,switched-mode  
power supplies, and overcurrent fault protection.  
• UL60950-1 (ed. 2) certified  
Dielectric Strength Voltage = 4.8 kVrms  
Basic Isolation Working Voltage = 1097 Vrms  
Reinforced Isolation Working Voltage = 565 Vrms  
• Industry-leading noise performance with greatly improved  
bandwidth through proprietary amplifier and filter  
design techniques  
• Pin-selectable band width: 80 kHz for high bandwidth  
applications or 20 kHz for low noise performance  
0.85 mΩ primary conductor resistance for low power loss  
and high inrush current withstand capability  
• Low-profile SOIC16 package suitable for space-  
constrained applications  
The device consists of a precise, low-offset, linear Hall  
sensor circuit with a copper conduction path located near the  
surface of the die.Applied current flowing through this copper  
conduction path generates a magnetic field which is sensed by  
theintegratedHallICandconvertedintoaproportionalvoltage.  
Deviceaccuracyisoptimizedthroughthecloseproximityofthe  
magnetic field to the Hall transducer. A precise, proportional  
voltage is provided by the low-offset, chopper-stabilized  
BiCMOS Hall IC, which includes Allegro’s patented digital  
temperature compensation, resulting in extremely accurate  
performance over temperature. The output of the device has  
a positive slope when an increasing current flows through the  
primarycopperconductionpath(from pins 1through4, topins  
5 through 8), which is the path used for current sensing. The  
internal resistance of this conductive path is 0.85 mΩ typical,  
providing low power loss.  
• 4.5 to 5.5 V, single supply operation  
• Output voltage proportional to AC or DC current  
• Factory-trimmed sensitivity and quiescent output voltage  
for improved accuracy  
Continued on the next page…  
TÜV America  
Certificate Number:  
U8V 14 11 54214 030  
CB 14 11 54214 029  
CB Certificate Number:  
US-22339-A1-UL  
The terminals of the conductive path are electrically isolated  
from the sensor leads (pins 9 through 16). This allows the  
ACS723currentsensorICtobeusedinhigh-sidecurrentsense  
applicationswithouttheuseofhigh-sidedifferentialamplifiers  
or other costly isolation techniques.  
Package: 16-pin SOICW (suffix MA)  
Continued on the next page…  
Approximate Scale 1:1  
16  
ACS723  
NC  
GND  
NC  
1
2
3
The ACS723 outputs an  
analog signal, VIOUT, that  
changes, proportionally, with  
the bidirectional AC or DC  
primary sensed current, IP,  
within the specified measure-  
ment range. The BW_SEL pin  
can be used to select one of  
the two bandwidths to opti-  
mize the noise performance.  
Grounding the BW_SEL pin  
puts the part in the high  
IP+  
IP+  
IP+  
IP+  
15  
+IP  
14  
4
13  
BW_SEL  
VIOUT  
NC  
IP  
12  
5
6
7
11  
10  
9
CL  
IP–  
IP–  
IP–  
IP–  
–IP  
VCC  
8
CBYPASS  
bandwidth (80 kHz) mode.  
0.1 mF  
NC  
Typical Application  
ACS723-DS, Rev. 1  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
Features and Benefits (continued)  
Description (continued)  
• Chopper stabilization results in extremely stable quiescent  
output voltage  
• Nearly zero magnetic hysteresis  
• Ratiometric output from supply voltage  
The ACS723 is provided in a low profile surface mount SOIC16  
package. The leadframe is plated with 100% matte tin, which is  
compatiblewithstandardlead(Pb)freeprintedcircuitboardassembly  
processes.Internally,thedeviceisPb-free,exceptforflip-chiphigh-  
temperature Pb-based solder balls, currently exempt from RoHS.  
The device is fully calibrated prior to shipment from the factory.  
Selection Guide  
Sens(Typ) at VCC = 5.0 V  
Part Number  
IPR (A)  
TA (°C)  
Packing1  
(mV/A)  
ACS723KMATR-10AB-T  
ACS723KMATR-20AB-T  
ACS723KMATR-40AB-T  
±10  
±20  
±40  
200  
-40 to 125  
Tape and Reel, 3000 pieces per reel  
100  
50  
1Contact Allegro for additional packing options.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
2
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
SPECIFICATIONS  
Absolute Maximum Ratings  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
6
Units  
V
Supply Voltage  
Reverse Supply Voltage  
Output Voltage  
VRCC  
–0.1  
V
VIOUT  
VRIOUT  
TA  
25  
V
Reverse Output Voltage  
Operating Ambient Temperature  
Junction Temperature  
–0.1  
V
Range K  
–40 to 125  
165  
°C  
°C  
TJ(max)  
Storage Temperature  
Tstg  
–65 to 165  
°C  
Isolation Characteristics  
Characteristic  
Symbol  
Notes  
Rating  
Unit  
Agency type-tested for 60 seconds per UL 60950-1  
(edition. 2). Production tested at 3000 VRMS for 1 second,  
in accordance with UL 60950-1 (edition. 2).  
Dielectric Strength Test Voltage  
VISO  
4800  
VRMS  
1550  
1097  
800  
VPK  
Maximum approved working voltage for basic (single)  
isolation according UL 60950-1 (edition 2)  
Working Voltage for Basic Isolation  
VWVBI  
VRMS or VDC  
VPK  
Maximum approved working voltage for reinforced  
isolation according to UL 60950-1 (edition 2)  
Working Voltage for Reinforced Isolation  
VWVRI  
565  
VRMS or VDC  
Minimum distance through air from IP leads to signal  
leads.  
Clearance  
Creepage  
Dcl  
Dcr  
7.5  
8.2  
mm  
mm  
Minimum distance along package body from IP leads to  
signal leads  
Thermal Characteristics  
Characteristic  
Symbol  
Test Conditions*  
Value Units  
Mounted on the Allegro 85-0738 evaluation board with 700 mm2 of 4 oz.  
copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with  
thermal vias connecting the layers. Performance values include the power  
consumed by the PCB.  
Package Thermal Resistance  
(Junction to Ambient)  
RθJA  
23  
5
ºC/W  
ºC/W  
Package Thermal Resistance  
(Junction to Lead)  
RθJL  
Mounted on the Allegro ASEK 723 evaluation board.  
*Additional thermal information available on the Allegro website.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
3
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
VCC  
Master Current  
Supply  
To All Subcircuits  
POR  
Programming  
Control  
Hall  
Current  
Drive  
EEPROM and  
Control Logic  
Temperature  
Sensor  
Offset  
Control  
IP+  
IP+  
IP+  
IP+  
Sensitivity  
Control  
Tuned  
Filter  
VIOUT  
IP  
IP–  
IP–  
IP–  
BW_SEL  
GND  
Functional Block Diagram  
Terminal List Table  
16 NC  
IP+  
IP+  
IP+  
IP+  
IP-  
1
2
3
4
5
6
7
8
Number  
1, 2, 3, 4  
5, 6, 7, 8  
Name  
Description  
15 GND  
14 NC  
IP+  
IP-  
Terminals for current being sensed; fused internally  
Terminals for current being sensed; fused internally  
13 BW_SEL  
12 VIOUT  
11 NC  
No internal connection; recommended to be left unconnected in order to  
maintain high creepage.  
9, 16  
10  
NC  
VCC  
NC  
IP-  
Device power supply terminal  
IP-  
10 VCC  
No internal connection; recommened to connect to GND for the best ESD  
performance  
11, 14  
IP-  
9 NC  
12  
13  
15  
VIOUT  
BW_SEL  
GND  
Analog output signal  
Pin-out Diagram  
Terminal for selecting 20 kHz or 80 kHz bandwidth  
Signal ground terminal  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
4
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
COMMON ELECTRICAL CHARACTERISTICS1: valid through the full range of TA = –40°C to 125°C, and at VCC  
=
5 V; unless otherwise specified  
Characteristic  
Supply Voltage  
Symbol  
VCC  
ICC  
Test Conditions  
Min.  
4.5  
Typ.  
5
Max.  
5.5  
14  
10  
Units  
V
Supply Current  
VCC within VCC(min) and VCC(max)  
VIOUT to GND  
9
mA  
nF  
Output Capacitance Load  
Output Resistive Load  
Primary Conductor Resistance  
Magnetic Coupling Factor  
CL  
RL  
VIOUT to GND  
4.7  
kΩ  
RIP  
TA = 25°C  
0.85  
4.5  
mΩ  
G/A  
CF  
IP = IP(max), TA = 25°C, CL = 1 nF,  
BW_SEL tied to GND  
4
17.5  
2
μs  
μs  
Rise Time  
tr  
IP = IP(max), TA = 25°C, CL = 1 nF,  
BW_SEL tied to VCC  
IP = IP(max), TA = 25°C, CL = 1 nF,  
BW_SEL tied to GND  
μs  
Propagation Delay  
Response Time  
tpd  
IP = IP(max), TA = 25°C, CL = 1 nF,  
BW_SEL tied to VCC  
5
μs  
IP = IP(max), TA = 25°C, CL = 1 nF,  
BW_SEL tied to GND  
5
μs  
tRESPONSE  
IP = IP(max), TA = 25°C, CL = 1 nF,  
BW_SEL tied to VCC  
22.5  
80  
20  
220  
62  
31  
μs  
Small signal –3 dB; CL = 1 nF,  
BW_SEL tied to GND  
kHz  
kHz  
Internal Bandwidth  
Noise Density  
Noise  
BWi  
IND  
IN  
Small signal –3 dB; CL = 1nF,  
BW_SEL tied to VCC  
Input referenced noise density;  
TA = 25°C, CL = 1 nF  
µA(rms)/  
Hz  
Input referenced noise; BWi = 80 kHz,  
TA = 25°C, CL = 1 nF  
mA(rms)  
mA(rms)  
Input referenced noise; BWi = 20 kHz,  
TA = 25°C, CL = 1 nF  
Nonlinearity  
ELIN  
VOH  
VOL  
Through full range of IP  
RL = 4.7 kΩ, TA = 25°C  
RL = 4.7 kΩ, TA = 25°C  
VCC – 0.5  
±1  
%
V
Saturation Voltage2  
0.5  
V
Output reaches 90% of steady-state  
level, TA = 25°C, IP = IPR(max) applied  
Power-On Time  
tPO  
64  
μs  
1Device may be operated at higher primary current levels, IP, ambient temperatures, TA, and internal leadframe temperatures, provided the Maximum Junction Tempera-  
ture, TJ(max), is not exceeded.  
2The sensor IC will continue to respond to current beyond the range of IP until the high or low saturation voltage; however, the nonlinearity in this region will be worse than  
through the rest of the measurement range.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
5
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
xKMATR-10AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = –ꢀ40°C to 125°C, VCC = 5.0 V, unless  
otherwise specified  
Characteristic  
Nominal Performance  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Units  
IPR  
–10  
10  
A
Sens  
IPR(min) < IP < IPR(max)  
200  
mV/A  
VCC  
0.5  
x
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
Accuracy Performance  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2.5  
±1.4  
±2  
2.5  
%
%
Total Output Error2  
ETOT  
Total Output Error Components 3: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C; measured at IP = IPR(max)  
TA = –40°C to 25°C; ; measured at IP = IPR(max)  
IP = 0 A; TA = 25°C to 125°C  
–2  
±1.3  
±1.8  
±10  
±20  
2
%
%
Sensitivity Error  
Offset Voltage4  
ESENS  
–15  
15  
mV  
mV  
VOE  
IP = 0 A; TA = -40°C to 25°C  
Lifetime Drift Characteristics  
Sensitivity Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
Total Output Error Lifetime  
Drift  
1 Typical values with +/- are 3 sigma values.  
2 Percentage of IP, with IP = IPR(max)  
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
4 Offset Voltage does not incorporate any error due to external magnetic fields. See section: Impact of External Magnetic Fields.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
6
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
xKMATR-20AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = –ꢀ40°C to 125°C, VCC = 5.0 V, unless  
otherwise specified  
Characteristic  
Nominal Performance  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Units  
IPR  
–20  
20  
A
Sens  
IPR(min) < IP < IPR(max)  
100  
mV/A  
VCC  
0.5  
x
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
Accuracy Performance  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2  
±1.3  
±2  
2
%
%
Total Output Error2  
ETOT  
Total Output Error Components 3: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C; measured at IP = IPR(max)  
TA = –40°C to 25°C; ; measured at IP = IPR(max)  
IP = 0 A; TA = 25°C to 125°C  
–1.5  
±1.2  
±1.8  
±5  
1.5  
%
%
Sensitivity Error  
Offset Voltage4  
ESENS  
–10  
10  
mV  
mV  
VOE  
I
P = 0 A; TA = -40°C to 25°C  
±12  
Lifetime Drift Characteristics  
Sensitivity Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
Total Output Error Lifetime  
Drift  
1 Typical values with +/- are 3 sigma values.  
2 Percentage of IP, with IP = IPR(max)  
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
4 Offset Voltage does not incorporate any error due to external magnetic fields. See section: Impact of External Magnetic Fields.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
7
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
xKMATR-40AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = –ꢀ40°C to 125°C, VCC = 5.0 V, unless  
otherwise specified  
Characteristic  
Nominal Performance  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Units  
IPR  
–40  
40  
A
Sens  
IPR(min) < IP < IPR(max)  
50  
mV/A  
VCC  
0.5  
x
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
Accuracy Performance  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2  
±0.8  
±1.8  
2
%
%
Total Output Error2  
ETOT  
Total Output Error Components 3: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C; measured at IP = IPR(max)  
TA = –40°C to 25°C; ; measured at IP = IPR(max)  
IP = 0 A; TA = 25°C to 125°C  
–1.5  
±0.8  
±1.8  
±4  
1.5  
%
%
Sensitivity Error  
Offset Voltage4  
ESENS  
–10  
10  
mV  
mV  
VOE  
I
P = 0 A; TA = -40°C to 25°C  
±6  
Lifetime Drift Characteristics  
Sensitivity Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
Total Output Error Lifetime  
Drift  
1 Typical values with +/- are 3 sigma values.  
2 Percentage of IP, with IP = IPR(max)  
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
4 Offset Voltage does not incorporate any error due to external magnetic fields. See section: Impact of External Magnetic Fields.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
8
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
CHARACTERISTIC PERFORMANCE  
xKMATR-10AB Key Parameters  
Zero Current Output Voltage vs. Temperature  
Offset Voltage vs. Temperature  
25  
20  
15  
10  
5
2525  
2520  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
2475  
0
-5  
-10  
-15  
-20  
-25  
0
50  
100  
150  
150  
150  
-50  
0
50  
100  
150  
150  
150  
-50  
Temperature (ºC)  
Temperature (ºC)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
205  
204  
2.5  
2.0  
203  
202  
201  
200  
199  
198  
197  
196  
195  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
0
50  
100  
-50  
0
50  
100  
-50  
Temperature (ºC)  
Temperature (ºC)  
Nonlinearity vs. Temperature  
Total Error at IPR(max) vs. Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
0
50  
100  
-50  
0
50  
100  
-50  
Temperature (ºC)  
Temperature (ºC)  
+3 Sigma  
Average  
-3 Sigma  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
9
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
xKMATR-20AB Key Parameters  
Zero Current Output Voltage vs. Temperature  
Offset Voltage vs. Temperature  
2520  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-50  
0
50  
100  
150  
150  
150  
-50  
0
50  
100  
150  
150  
150  
Temperature (ºC)  
Temperature (ºC)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
103  
2.5  
2.0  
1.5  
102  
101  
100  
99  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
98  
97  
0
50  
100  
-50  
0
50  
100  
-50  
Temperature (ºC)  
Temperature (ºC)  
Nonlinearity vs. Temperature  
Total Error at IPR(max) vs. Temperature  
3.0  
1.0  
0.8  
2.0  
1.0  
0.6  
0.4  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.0  
-2.0  
-3.0  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature (ºC)  
Temperature (ºC)  
+3 Sigma  
Average  
-3 Sigma  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
10  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
xKMATR-40AB Key Parameters  
Zero Current Output Voltage vs. Temperature  
Offset Voltage vs. Temperature  
8
6
2508  
2506  
4
2504  
2502  
2500  
2498  
2496  
2494  
2492  
2
0
-2  
-4  
-6  
-8  
0
50  
100  
150  
150  
150  
-50  
0
50  
100  
150  
150  
150  
-50  
Temperature (ºC)  
Temperature (ºC)  
Sensitivity Error vs. Temperature  
Sensitivity vs. Temperature  
51.5  
2.5  
2.0  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
0
50  
100  
-50  
0
50  
100  
-50  
Temperature (ºC)  
Temperature (ºC)  
Nonlinearity vs. Temperature  
Total Error at IPR(max) vs. Temperature  
2.5  
0.5  
2.0  
1.5  
0.4  
0.3  
1.0  
0.2  
0.5  
0.1  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
50  
100  
-50  
0
50  
100  
-50  
Temperature (ºC)  
Temperature (ºC)  
+3 Sigma  
Average  
-3 Sigma  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
11  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
DEFINITIONS OF ACCURACY CHARACTERISTICS  
due to sensitivity error, and at relatively low currents, ETOT will  
be mostly due to Offset Voltage (VOE). In fact, at IP = 0, ETOT  
approaches infinity due to the offset. This is illustrated in Figures  
1 and 2. Figure 1 shows a distribution of output voltages versus IP  
at 25°C and across temperature. Figure 2 shows the correspond-  
ing ETOT versus IP.  
Sensitivity (Sens)  
The change in sensor IC output in response to a 1A change  
through the primary conductor. The sensitivity is the product  
of the magnetic coupling factor (G/A) (1 G = 0.1 mT)and the  
linear IC amplifier gain (mV/G). The linear IC amplifier gain is  
programmed at the factory to optimize the sensitivity (mV/A) for  
the full-scale current of the device.  
Accuracy Across  
Temperature  
Increasing  
V
(V)  
IOUT  
Nonlinearity (ELIN  
)
Accuracy at  
25°C Only  
The nonlinearity is a measure of how linear the output of the sen-  
sor IC is over the full current measurement range. The nonlinear-  
ity is calculated as:  
Ideal V  
IOUT  
Accuracy Across  
Temperature  
Accuracy at  
25°C Only  
V
IOUT (IPR(max)) VIOUT(Q)  
× 100 (%)  
1–  
ELIN  
=
{
[
[ {  
2 × VIOUT (IPR(max)/2) VIOUT(Q)  
I
(min)  
PR  
+I (A)  
P
V
IOUT(Q)  
where VIOUT(IPR(max)) is the output of the sensor IC with the  
maximum measurement current flowing through it and  
VIOUT(IPR(max)/2) is the output of the sensor IC with half of the  
maximum measurement current flowing through it.  
–I (A)  
P
Full Scale I  
P
I (max)  
PR  
Zero Current Output Voltage (V  
)
0 A  
IOUT(Q)  
The output of the sensor when the primary current is zero. For  
a unipolar supply voltage, it nominally remains at 0.5 × VCC for  
a bidirectional device and 0.1 × VCC for a unidirectional device.  
Accuracy at  
25°C Only  
Decreasing  
(V)  
V
Accuracy Across  
Temperature  
IOUT  
For example, in the case of a bidirectional output device, VCC  
=
Figure 1: Output Voltage versus Sensed Current  
5.0 V translates into VIOUT(Q) = 2.50 V. Variation in VIOUT(Q) can  
be attributed to the resolution of the Allegro linear IC quiescent  
voltage trim and thermal drift.  
+E  
TOT  
Offset Voltage (VOE)  
The deviation of the device output from its ideal quiescent value  
of 0.5 × VCC (bidirectional) or 0.1 × VCC (unidirectional) due to  
nonmagnetic causes. To convert this voltage to amperes, divide  
by the device sensitivity, Sens.  
Across Temperature  
25°C Only  
Total Output Error (ETOT  
)
The the difference between the current measurement from the  
sensor IC and the actual current (IP), relative to the actual current.  
This is equivalent to the difference between the ideal output volt-  
age and the actual output voltage, divided by the ideal sensitivity,  
relative to the current flowing through the primary conduction  
path:  
–I  
P
+I  
P
V
IOUT_ideal(IP) – VIOUT(IP)  
ETOT(IP) =  
× 100 (%)  
–E  
TOT  
Sensideal(IP)  
× IP  
The Total Output Error incorporates all sources of error and is a  
function of IP. At relatively high currents, ETOT will be mostly  
Figure 2: Total Output Error versus Sensed Current  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
12  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
APPLICATION INFORMATION  
±3 sigma value for Total Error (ETOT) as a function of the sensed  
current (IP) is estimated as:  
Impact of External Magnetic Fields  
The ACS723 works by sensing the magnetic field created by the  
current flowing through the package. However, the sensor cannot  
differentiate between fields created by the current flow and exter-  
nal magnetic fields. This means that external magnetic fields can  
cause errors in the output of the sensor. Magnetic fields which are  
perpendicular to the surface of the package affect the output of  
the sensor, as it only senses fields in that one plane. The error in  
Amperes can be quantified as:  
2
100 × VOE  
(Sens × I )  
2
ETOT(IP) = ESENS  
+
P
Here, ESENS and VOE are the ±3 sigma values for those error  
terms. If there is an average sensitivity error or average offset  
voltage, then the average Total Error is estimated as:  
100 × VOE  
AVG  
ETOT (IP) = ESENS  
+
AVG  
AVG  
B
Error(B) =  
CF  
Sens × IP  
The resulting total error will be a sum of ETOT and ETOT_AVG  
.
where B is the strength of the external field perpendicular to the  
surface of the package in Gauss, and CF is the coupling factor in  
G/A. Then, multiplying by the sensitivity of the part (Sens) gives  
the error in mV.  
Using these equations and the 3 sigma distributions for Sensitiv-  
ity Error and Offset Voltage, the Total Error vs. sensed current  
(IP) is below for the ACS723KMATR-40AB. As expected, as one  
goes towards zero current, the error in percent goes towards infin-  
ity due to division by zero (refer to Figure 3).  
For example, an external field of 1 Gauss will result in around  
0.22 A of error. If the ACS723KMATR-10AB, which has a nomi-  
nal sensitivity of 200 mV/A, is being used, that equates to 44 mV  
of error on the output of the sensor.  
15.00  
10.00  
Table 1: External Magnetic Field (Gauss) Impact  
-40C+3sig  
Error (mV)  
5.00  
External Field  
-40C-3sig  
Error (A)  
(Gauss)  
10AB  
22  
20AB  
11  
40AB  
6
25C+3sig  
0.00  
25C-3sig  
0.5  
1
0.11  
0.22  
0.44  
125C+3sig  
44  
22  
11  
-5.00  
125C-3sig  
2
88  
44  
22  
-10.00  
-15.00  
Estimating Total Error vs. Sensed Current  
The Performance Characteristics tables give distribution (±3  
sigma) values for Total Error at IPR(max); however, one often  
wants to know what error to expect at a particular current. This  
can be estimated by using the distribution data for the compo-  
nents of Total Error, Sensitivity Error and Offset Voltage. The  
30  
0
5
10  
15  
20  
25  
35  
40  
Current (A)  
Figure 3: Predicted Total Error as a Function of Sensed  
Current for the ACS723KMATR-40AB  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
13  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
DEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICS  
Power-On Time (tPO)  
V
V
CC  
V
(typ.)  
CC  
When the supply is ramped to its operating voltage, the device  
requires a finite time to power its internal components before  
responding to an input magnetic field.  
V
IOUT  
90% V  
IOUT  
Power-On Time (tPO) is defined as the time it takes for the output  
voltage to settle within ±10% of its steady state value under an  
applied magnetic field, after the power supply has reached its  
minimum specified operating voltage (VCC(min)) as shown in the  
chart at right (refer to Figure 4).  
V
CC  
(min.)  
t
PO  
t
t
1
2
t = time at which power supply reaches  
1
minimum specified operating voltage  
t = time at which output voltage settles  
2
within ±10% of its steady state value  
under an applied magnetic field  
Rise Time (tr)  
The time interval between: a) when the sensor IC reaches 10%  
of its full scale value; and b) when it reaches 90% of its full scale  
value (refer to Figure 5). The rise time to a step response is used  
to derive the bandwidth of the current sensor IC, in which ƒ(–3  
dB) = 0.35/tr. Both tr and tRESPONSE are detrimentally affected by  
eddy current losses observed in the conductive IC ground plane.  
0
t
Figure 4: Power-On Time  
Primary Current  
(%)  
90  
V
IOUT  
Propagation Delay (tpd)  
Rise Time, t  
r
The propagation delay is measured as the time interval between:  
a) when the primary current signal reaches 20% of its final value;  
and b) when the device reaches 20% of its output corresponding  
to the applied current (refer to Figure 5).  
20  
10  
0
t
Propagation Delay, t  
pd  
Response Time (tRESPONSE  
)
Figure 5: Rise Time and Propagation Delay  
The time interval between: a) when the primary current signal  
reaches 90% of its final value; and b) when the device reaches  
90% of its output corresponding to the applied current (refer to  
Figure 6).  
Primary Current  
(%)  
90  
V
IOUT  
Response Time, t  
RESPONSE  
0
t
Figure 6: Response Time  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
14  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
NOT TO SCALE  
All dimensions in millimeters.  
15.75  
9.54  
1.27  
0.65  
Package Outline  
Slot in PCB to maintain >8 mm creepage  
once part is on PCB  
2.25  
7.25  
1.27  
3.56  
17.27  
Current  
In  
Current  
Out  
Perimeter holes for stitching to the other,  
matching current trace design, layers of  
the PCB for enhanced thermal capability.  
21.51  
Figure 7: High-Isolation PCB Layout  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
15  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference MS-013AA)  
NOT TO SCALE  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
8°  
10.30 0.20  
0°  
16  
0.33  
0.20  
7.50 0.10  
10.30 0.33  
A
1.27  
0.40  
1.40 REF  
1
2
Branded Face  
0.25 BSC  
SEATING PLANE  
16X  
CC  
GAUGE PLANE  
2.65 MAX  
0.10  
C
SEATING  
PLANE  
0.30  
0.10  
1.27 BSC  
0.51  
0.31  
1.27  
0.65  
16  
NNNNNNN  
LLLLLLLL  
2.25  
1
B
Standard Branding Reference View  
L
9.50  
N = Device part number  
= Assembly Lot Number, first eight characters  
A
Terminal #1 mark area  
B
C
Branding scale and appearance at supplier discretion  
1
2
Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M);  
all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
PCB Layout Reference View  
Figure 8: Package MA, 16-pin SOICW  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
16  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
High Accuracy, Hall-effect Based Current Sensor  
IC in High Isolation SOIC16 Package  
ACS723KMA  
Document Revision History  
Revision  
Date  
February 23, 2015 Initial release  
Change  
1
April 13, 2016  
Corrected Package Outline Drawing branding information (page 16).  
Copyright ©2011-2016, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
17  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  

相关型号:

ACS724KMATR-20AB-T

Analog Circuit, 1 Func, BICMOS, PDSO16, SOIC-16
ALLEGRO

ACS724KMATR-30AB-T

Analog Circuit, 1 Func, BICMOS, PDSO16, SOIC-16
ALLEGRO

ACS724KMATR-30AU-T

Analog Circuit, 1 Func, BICMOS, PDSO16, SOIC-16
ALLEGRO

ACS724LLCTR-05AB-T

Analog Circuit, 1 Func, PDSO8, SOIC-8
ALLEGRO

ACS724LLCTR-10AB-T

Analog Circuit, 1 Func, PDSO8, SOIC-8
ALLEGRO

ACS724LLCTR-20AU-T

Analog Circuit, 1 Func, PDSO8, SOIC-8
ALLEGRO

ACS724LLCTR-30AB-T

Analog Circuit, 1 Func, PDSO8, SOIC-8
ALLEGRO

ACS724LLCTR-50AB-T

Analog Circuit, 1 Func, PDSO8, SOIC-8
ALLEGRO

ACS724LMA

Automotive Grade, High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package
ALLEGRO

ACS724LMATR-20AB-T

Automotive Grade, High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package
ALLEGRO

ACS724LMATR-30AB-T

Hall Effect Sensor,
ALLEGRO

ACS724LMATR-30AU-T

Automotive Grade, High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package
ALLEGRO