APW7063KC-TRL [ANPEC]

Synchronous Buck PWM and Linear Controller; 同步降压PWM和线性控制器
APW7063KC-TRL
型号: APW7063KC-TRL
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM and Linear Controller
同步降压PWM和线性控制器

控制器
文件: 总21页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7063  
Synchronous Buck PWM and Linear Controller  
Features  
General Description  
The APW7063 integrates PWM and linear controller,  
as well as themonitoring and protectionfunctions into  
·
Provide Two Regulated Voltages  
- Synchronous Rectified Buck PWM Controller  
- Linear Controller  
a single package. The synchronous PWM controller  
which drives dualN-channel MOSFETs, which provides  
one controlled power outputs with under-voltage and  
over-current protections. Linear controller drives an  
external N-channel MOSFET with under-voltage  
protection.  
·
·
Fast Transient Response  
- 0~85% Duty Ratio  
Excellent Output Voltage Regulation  
- 0.8V Internal Reference  
APW7063 provides excellent regulationfor output load  
variation. An internal 0.8V temperature-compensated  
reference voltage is designed to meet the various low  
output voltage applications. APW7063 includes a  
250kHz free-running triangle-wave oscillator that is  
adjustable from below 70KHz to over 800KHz.  
- ±1% Over Line Voltage and Temperature  
Over Current Protection  
·
- Sense Low-Side MOSFET’s RDS(ON)  
Under Voltage Lockout  
·
·
Small Converter Size  
- 250KHz Free-Running Oscillator  
- Programmable From 70kHz to 800kHz  
14-Lead SOIC Package  
A power-on-reset (POR)circuit limits the VCC minimum  
opearting supply voltage to assure the controller  
working well. Over current protection is achieved by  
monitoring the voltage drop across the low side  
MOSFET, eliminating the need for a current sensing  
resistor and short circuit condition is detected through  
the FB pin. The over-current protection triggers the  
soft-start function until the fault events be removed,  
but Under-voltage protection will shutdown IC directly.  
·
·
Lead Free Available (RoHS Compliant)  
Applications  
·
Graphic Cards  
·
·
·
·
Memory Power Supplies  
DSL or Cable MODEMs  
Set Top Boxes  
Pull the COMP pin below 0.4V will shutdown the  
controller, and both gate drive signals will be low.  
Pinouts  
Low-Voltage Distributed Power Supplies  
1
2
3
4
5
6
7
RT  
SS  
FBL  
14  
13  
12  
DRIVE  
VREG  
VCC  
11  
10  
9
LGATE  
PGND  
FB  
COMP  
BOOT  
GND  
PHASE  
8
UGATE  
ANPEC reserves the right to make changesto improve reliability or manufacturability without notice, and advise  
customers to obtain the latest versionof relevant informationto verify before placingorders.  
Copyright ã ANPECElectronicsCorp.  
1
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Ordering and Marking Information  
Package Code  
APW7063  
K : SOP - 14  
Lead Free Code  
Handling Code  
Temp. Range  
Package Code  
Operating Ambient Temp. Range  
°
C : 0 to 70 C  
Handling Code  
TU : Tube  
TR : Tape & Reel  
Lead Free Code  
L : Lead Free Device Blank : Original Device  
XXXXX - Date Code  
APW7063  
XXXXX  
APW7063 K :  
Note:ANPEC lead-free products contain molding compounds/die attach m aterials and 100% matte tin plate  
termination finish;which are fullycompliant with RoHSand compatible with both SnPb and lead-free soldiering  
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C  
for MSL classification at lead-free peak reflow temperature.  
Block Diagram  
SS  
VCC  
vcc  
BOOT  
I
SS  
5.8V  
Power-On  
Reset  
10uA  
GateControl  
UGATE  
vcc  
SoftStart  
and  
FaultLogic  
I
OCSET  
GND  
250uA  
PHASE  
VCC  
U.V.P  
Comparator  
O.C.P  
Comparator  
50%VREF  
:
2
LGATE  
PGND  
FBL  
50%VREF  
VCC  
:
2
PWM  
Comparator  
ErrorAmp  
VCC  
DRIVE  
VREF  
Oscillator  
Regulator  
V
REF  
Triangle  
Wave  
FB  
COMP  
RT  
VREG  
Copyright ã ANPECElectronicsCorp.  
2
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Application Circuit  
1. Boot-Strap - Use Internal Regulator  
C1  
12V  
D1  
5V  
12V  
1uF  
1N4148  
L1  
VIN  
R1  
2R2  
1uH  
+
C2  
470uF  
6.3V  
25mR  
VIN  
R2  
R3  
N C  
N C  
U1  
APW7063  
+
C5  
470uF  
16V  
+
C6  
470uF  
16V  
+
C7  
470uF  
16V  
C 3  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
8
7
6
5
4.7uF  
RT  
SS  
VREG  
FB  
COMP  
GND  
FBL  
DRIVE  
VCC  
LGATE  
PGND  
BOOT  
C 8  
1uF  
25mR  
25mR  
25mR  
C 4  
0.1uF  
Q1  
APM3055L  
1
Q2  
APM4220  
R 4  
3V3  
8
4
PHASE UGATE  
1
2
3
0R  
C11  
2.5V  
/SHDN  
L2  
2.2uH  
R6  
C9  
C10  
4.7uF  
R 5  
0.1uF  
+
470uF  
6.3V  
25mR  
3.125KF  
1%  
820R  
8
7
6
5
R 7  
100R  
C12  
1000uF  
6.3V  
C13  
+
1000uF  
6.3V  
+
D 2  
C14  
SR24  
4.7uF  
R 8  
1KF  
1%  
Q3  
APM4220  
2A/40V  
30mR  
30mR  
R 9  
0R  
C15  
0.01uF  
4
R10  
2.32KF  
1%  
1
2
3
C16  
56pF  
C17  
0.1uF  
R11  
20K  
R12  
1.07KF  
1%  
2. Boot-Strap - Use External Power  
12V  
C1  
5V  
C2  
12V  
1uF  
1uF  
L1  
R2  
VIN  
2R2  
1uH  
+
C3  
D1  
VIN  
470uF  
R1  
R3  
N C  
N C  
U1  
APW7063  
1N4148  
C5  
470uF  
16V  
25mR  
C9  
470uF  
16V  
25mR  
C6  
470uF  
16V  
25mR  
+
+
+
6.3V  
25mR  
C 4  
4.7uF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
8
8
RT  
SS  
VREG  
FB  
COMP  
GND  
PHASE UGATE  
FBL  
DRIVE  
VCC  
LGATE  
PGND  
BOOT  
C8  
1uF  
7
6
5
C 7  
0.1uF  
Q1  
APM3055L  
1
Q2  
APM4220  
R 4  
0R  
3V3  
4
1
2
3
C12  
2.5V  
/SHDN  
L2  
2.2uH  
R6  
C10  
470uF  
C11  
4.7uF  
R 5  
0.1uF  
+
3.125KF  
1%  
620R  
6.3V  
25mR  
8
7
6
5
R 8  
100R  
C13  
1000uF  
6.3V  
C14  
+
1000uF  
6.3V  
+
D 2  
SR24  
C15  
4.7uF  
R 7  
Q3  
APM4220  
2A/40V  
30mR  
30mR  
R 9  
0R  
1KF  
C16  
0.01uF  
4
R10  
2.32KF  
1%  
1%  
1
2
3
C17  
56pF  
C18  
0.1uF  
R11  
20K  
R12  
1.07KF  
1%  
Copyright ã ANPECElectronicsCorp.  
3
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
30  
Unit  
V
VCC  
VCC to GND  
LGATE LGATE to GND  
DRIVE DRIVE to GND  
UGATE UGATE to GND  
30  
V
30  
V
30  
V
VBOOT  
BOOT to GND  
30  
V
PHASE to GND  
30  
V
Operating Junction Temperature  
Storage Temperature  
0~150  
-65 ~ 150  
300  
±2  
oC  
oC  
oC  
KV  
TSTG  
TSDR  
VESD  
Soldering Temperature (10 Seconds)  
Minimum ESD Rating  
Recommended Operating Conditions  
Symbol  
Parameter  
Min.  
Nom.  
Max.  
19  
Unit  
Supply Voltage  
Boot Voltage  
VCC  
7
12  
V
V
VBOOT  
26  
Thermal Characteristics  
Symbol  
Parameter  
Junction to Ambient Resistance in free air (SOP-14)  
Value  
Unit  
oC/W  
160  
qJA  
Electrical Characteristics  
Unless otherswise specified, these specifications apply over VCC = 12V, VBOOT = 12V, RT = OPEN and  
TA = 0 ~ 70oC. Typlcal values are at TA = 25oC.  
APW7063  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ Max  
SUPPLY CURRENT  
ICC  
POWER-ON-RESET  
Rising VCC Threshold  
Falling VCC Threshold  
OSCILLATOR  
VCC Nominal Supply  
UGATE and LGATE Open  
3
mA  
7.0  
6.6  
7.2  
6.8  
7.4  
7.0  
V
V
Free Running Frequency  
Total Variation  
RT = OPEN, VCC = 12V  
220  
-15  
250  
280  
+15  
kHz  
%
6KW < RT to GND < 200KW  
Ramp Amplitude  
RT = OPEN  
1.7  
VP-P  
Copyright ã ANPECElectronicsCorp.  
4
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Electrical Characteristics (Cont.)  
Unless otherswise specified, these specifications apply over VCC = 12V, VBOOT = 12V, RT = OPEN and  
TA = 0 ~ 70oC. Typlcal values are at TA = 25oC.  
APW7063  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
-1  
Typ  
Max  
REFERENCE  
VREF  
Reference Voltage  
0.80  
V
Reference Voltage Tolerance  
+1  
%
PWM EEEOR AMPLIFIER  
DC Gain  
75  
dB  
%
UGATE Duty Range  
FB Input Current  
0
85  
0.1  
uA  
GATE DRIVERS  
IUGATE Upper Gate Source  
RUGATE Upper Gate Sink  
ILGATE Lower Gate Source  
RLGATE Lower Gate Sink  
VBOOT = 12V, VUGATE = 6V  
IUGATE = 0.3A  
650  
550  
800  
4
mA  
W
8
8
VCC = 12V, VLGATE = 6V  
ILGATE = 0.3A  
700  
4
mA  
W
TD  
LINEAR REGULATOR  
Reference Voltage  
Dead Time  
50  
nS  
0.8  
2
V
%
Regulation  
Output Drive Current  
VDRIVE = 4V  
8
10  
12  
mA  
PROTECTION  
FB Under Voltage Level  
FBL Under Voltage Level  
OCSET Source Current  
50  
50  
%
%
250  
mA  
VREG  
VREG  
IOUT  
Output Voltage Accuracy  
Output Current Capacity  
VCC > 12V  
VCC = 12V  
5.5  
6
6.5  
12  
V
20  
mA  
SOFT START and SHUTDOWN  
TSS  
ISS  
Internal Soft-Start Interval  
Soft-Start Charge Current  
Shutdown Threshold  
CSS = 0uF  
2
mS  
uA  
V
8
10  
0.4  
50  
COMP Falling  
Shutdown Hysteresis  
mV  
Copyright ã ANPECElectronicsCorp.  
5
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Functional Pin Description  
RT (Pin 1)  
VOLTAGE  
V
SOFT START  
This pin can adjust the switching frequency. Connect  
a resistor from RT to VCC for decreasing the switching  
frequency, Conversely, connect a resistor from RT to  
GND for increasing the switching frequency (see  
Typical Characteristics).  
V
V
OUT2  
OUT1  
SS (Pin 2)  
Connect a capacitor from this pin to GND to set the  
soft-start interval of the converter. An internal 10mA  
current source charges this capacitor to 5.2V. The SS  
voltage clamps the reference voltage to theSS voltage,  
and Figure1 shows the soft-start interval. At t0, the  
internal source current starts to charge the capacitor  
and the internal 0.8V reference also starts to rise and  
follows the SS. Until the internal reference reaches to  
0.8V at t2, the soft-start interval is completed. This  
method provides a rapid and controlled output voltage  
rise. The way of the Soft-Start of the output2 is the  
same as the output1, but it starts from the SS at 2.2V  
to 3.0V. The APW7063 also provides the internal  
Soft-Start which is fixed to 2ms (t0 to t1). If the  
FB  
FBL  
TIME  
t0  
t1  
t2  
t3  
Figure 1. Soft-Start Interval  
VREG (Pin 3)  
An internal regulator will supply 6V for boost voltage,  
a 1uF capacitor to GND is recommended for stability.  
If the VREGvoltage has variation by other interference,  
the IC can not work normally. When the VCC<8V,  
don’t use the VREG for BOOST voltage.  
external Soft-Start interval is slower than the internal FB (Pin 4)  
Soft-Start interval (CSS<0.025uF) or no external  
FB pinis the inverting input of the error amplifier, and it  
capacitor, the Soft-Start will follow the internal Soft-  
receives the feedback voltage from an external resistive  
divider across the output (VOUT). The output voltage is  
determined by :  
Start.  
C SS  
´ 0.8V  
Soft-Start  
T
= t1 - t0 =  
ISS  
C SS  
ROUT  
RGND  
æ
è
ö
÷
ø
´ 0.8V  
+
t3 = t2  
VOUT = 0.8V´ 1+  
ç
ISS  
where ROUT is the resistor connected from VOUT to FB,  
and RGND is the resistor connected from FB to GND.  
Where:  
CSS = external Soft-Start capacitor  
When the FB voltage is under 50% Vref, it will cause  
the under voltage protection, and shutdown the device.  
Remove the condition and restart the VCC voltage or  
pull the COMP from low to high once, will enable the  
device again.  
ISS = Soft-Start current = 10mA  
CSS ´ 2.2V  
t2 =  
ISS  
Copyright ã ANPECElectronicsCorp.  
6
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Functional Pin Description (Cont.)  
COMP (Pin 5)  
PGND (Pin 10)  
This pin is the output of the error amplifier. Add an  
external resistor and capacitor network to provide the  
loop compensation for the PWM converter (see  
Application Information).  
Power ground for the gate diver. Connect the lower  
MOSFET source to this pin.  
LGATE (Pin 11)  
This pin provides the gate drive signal for the low side  
MOSFET.  
Pull this pin below 0.4V will shutdown the controller,  
forcing the UGATE and LGATE signals to be 0V.A soft  
start cycle will be initiated upon the release of this pin.  
VCC (Pin 12)  
GND (Pin 6)  
This pin provides a supply voltagefor the device, when  
VCC is above the rising threshold 4.2V, It turns on the  
device is turned on, and conversely, VCC is below the  
falling threshold 3.9V, the device is turned off. A 1uF  
decoupling capacitor to GND is recommended.  
Signal ground for the IC.  
PHASE (Pin 7)  
A resistor (ROCSET) is connected between this pin and  
the drain of the low-side MOSFET will determine the  
over current limit. An internally generated 250uA current  
source will flow through this resistor, creating a voltage  
drop. This voltage will be compared with the voltage  
across the low-side MOSFET. The threshold of the  
over current limit is therefore given by :  
DRIVE (Pin 13)  
Connect this pin to the gate of an external N-channel  
MOSFET transistor. This pin provides the gate volt-  
age for the linear regulator pass transistor. It also pro-  
vides a means of compensating the linear controller  
for applications where the user needs to optimize the  
regulator transient response.  
ILIMIT ´ RDS(ON)  
ROCSET  
=
250uA  
FBL (Pin 14)  
An over current condition will cycle the soft start  
function until the over current condition is removed. Connect this pin to the output of the linear regulator  
Because of the comparator delay time, so theon time via a proper sized resistor divider. The voltage at this  
of the low-side MOSFETmust be longer than 800ns to pin is regulated to 0.8V and the output voltage is de-  
termined using the following formula :  
have the over current protection work.  
UGATE (Pin 8)  
ROUT  
RGND  
æ
è
ö
÷
ø
VOUT = 0.8V´ 1+  
ç
This pin provides gate drive for the high-side MOSFET.  
BOOT (Pin 9)  
where ROUT is the resistorconnected from VOUT to FBL,  
and RGND is the resistor connected from FBL to GND.  
This pin provides the supply voltage to the high side  
MOSFET driver. For driving logic level N-channel  
MOSEFT, a bootstrap circuit can be use to create a  
suitable driver’s supply.  
This pin also monitores the under-voltage events, if  
the linear regulator is not used, tie the FBL to VREG.  
Copyright ã ANPECElectronicsCorp.  
7
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Typical Characteristics  
Power Up  
Power Down  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VCC(10V/div)  
SS(5V/div)  
VCC(10V/div)  
SS(5V/div)  
VOUT1(2V/div)  
VOUT1(2V/div)  
VOUT2(2V/div)  
VOUT2(2V/div)  
Time (10ms/div)  
Time (10ms/div)  
Enable (COMP is left open)  
Shutdown (COMP is pulled to GND)  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VOUT2(2V/div)  
VOUT2(2V/div)  
VOUT1(2V/div)  
VOUT1(2V/div)  
COMP(1V/div)  
COMP(1V/div)  
SS(5V/div)  
SS(5V/div)  
Time (2ms/div)  
Time (10ms/div)  
Copyright ã ANPECElectronicsCorp.  
8
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Typical Characteristics (Cont.)  
UGATE Falling  
UGATE Rising  
VCC=2V, VIN=12V  
VCC=2V, VIN=12V  
LGATE(10V/div)  
LGATE(10V/div)  
PHASE(10V/div)  
UGATE(10V/div)  
PHASE(10V/div)  
UGATE(10V/div)  
Time (50ns/div)  
Time (50ns/div)  
Under Voltage Protection (PWM)  
Under Voltage Protection (Linear)  
VCC=12,VIN=12V  
VOUT=3.3V, L=2.2mH  
IL(10A/div)  
SS(5V/div)  
VCC=12V, VIN=5V  
VOUT2=2.5V  
SS(5V/div)  
VOUT2(2V/div)  
VOUT1 (2V/div)  
UGATE (10V/div)  
DRV(5V/div)  
Time (5us/div)  
Time (5us/div)  
Copyright ã ANPECElectronicsCorp.  
9
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Typical Characteristics (Cont.)  
PWM Load Transient  
Linear Load Transient  
VCC=12V  
VIN=12V  
VCC=12V  
VIN=12V  
VOUT=2.5V  
VOUT=3.3V  
COUT=470mFx2  
ESR=22.5mW  
L=1.5mH  
COUT=470mF  
f=400kHz  
VOUT2(100mV/div)  
VOUT1(100mV/div)  
IOUT2(1A/div)  
IOUT1(5A/div)  
Time (20us/div)  
Time (10us/div)  
UGATE Sink Current vs. UGATE Voltage  
UGATE Source Current vs. UGATE Voltage  
1.4  
1.2  
VBOOT=12V  
VBOOT=12V  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
UGATE Voltage (V)  
UGATE Voltage (V)  
Copyright ã ANPECElectronicsCorp.  
10  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Typical Characteristics (Cont.)  
LGATE Source Current vs. LGATE Voltage  
LGATE Sink Current vs. LGATE Voltage  
1.4  
1.2  
1
VCC=12V  
VCC=12V  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
LGATE Voltage (V)  
LGATE Voltage (V)  
Over Current Protection  
VCC=12V,VIN=12V, VOUT=2.5V, ROCSET=1kW  
RDS(ON)=16mW, L=2.2mH, IOUT=15A  
Switching Frequence vs. RT Resistance  
10000  
1000  
100  
10  
IL(10A/div)  
SS(5V/div)  
RT pull up to 12V  
RT pull down to GND  
UGATE(20V/div)  
1
VOUT1(2V/div)  
10  
100  
1000  
Time (5us/div)  
Switching Frequency (kHz)  
Copyright ã ANPECElectronicsCorp.  
11  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Typical Characteristics (Cont.)  
Comp Source Current vs. Comp Voltage  
Comp Sink Current vs. Comp Voltage  
150  
150  
VCC=12V  
VCC=12V  
125  
125  
100  
75  
50  
25  
0
100  
75  
50  
25  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
1
1.5  
2
2.5  
3
3.5  
4
Comp Voltage (V)  
Comp Voltage (V)  
Drive Source Current vs. Drive Voltage  
Drive Sink Current vs. Drive Voltage  
10  
8
40  
30  
20  
10  
0
VCC=12V  
VCC=12V  
6
4
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Drive Voltage (V)  
Drive Voltage (V)  
Copyright ã ANPECElectronicsCorp.  
12  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Typical Characteristics (Cont.)  
VREG Voltage vs. Supply Voltage  
6
VREG Voltage vs. Load Current  
6.5  
VCC=12V  
5.5  
5
6.25  
6
4.5  
4
5.75  
5.5  
0
2
4
6
8
10 12 14 16 18  
0
5
10  
15  
20  
Supply Voltage (V)  
Load Current (mA)  
Supply Current vs. Supply Voltage  
Reference Voltage vs. Temperature  
4
3.5  
3
0.8  
0.798  
0.796  
0.794  
0.792  
0.79  
ICC  
2.5  
2
ICC(SHDN)  
1.5  
1
0.5  
0
-40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
10  
12  
Supply Voltage (V)  
Temperature (°C)  
Copyright ã ANPECElectronicsCorp.  
13  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Application Information  
Component Selection Guidelines  
There is a tradeoff exists between the inductor’s ripple  
current and the regulator load transient response time  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple  
current and vice versa. The maximum ripple current  
occurs at the maximum input voltage. A good starting  
point is to choose the ripple current tobe approximately  
30% of the maximum output current.  
Output Capacitor Selection  
The selection of COUT is determined by the required  
effective series resistance (ESR) and voltage rating  
rather than the actual capacitance requirement.  
Therefore select high performance low ESR capacitors  
that are intended for switching regulator applications.  
In some applications, multiple capacitors have to be  
paralled to achieve the desired ESR value. If tantalum  
capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
Once the inductance value has been chosen, select  
an inductor that is capable of carrying the required  
peak current without going into saturation. In some  
type of inductors, especially core that is make of  
ferrite, the ripple current will increase abruptly when it  
Input Capacitor Selection  
The input capacitor is chosen based on the voltage saturates. This will result in a larger output ripple  
ratingandthe RMS current rating. Forreliableoperation, voltage.  
select the capacitor voltage rating to be at least 1.3  
Compensation  
times higher than the maximum input voltage. The  
The output LC filter of a stepdown converter introduces  
maximum RMS current ratingrequirement is approximately  
a double pole, which contributes with –40dB/decade  
IOUT/2 , where IOUT is the load current. During power up,  
gain slope and 180 degrees phase shift in the control  
the input capacitors have to handle large amount of  
loop. A compensationnetwork betweenCOMP pin and  
surge current. If tantalum capacitors are used, make  
ground shouldbe added. The simplestloop compensation  
sure they are surge tested by the manufactures. If in  
network is shown in Fig. 5.  
doubt, consult the capacitors manufacturer.  
The output LC filter consists of the output inductor  
For high frequency decoupling, a ceramic capacitor  
and output capacitors. The transfer function of the LC  
between 0.1uF to 1uF can be connected between VCC  
filter is given by:  
and ground pin.  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT+ s´ ESR´ COUT+ 1  
GAINLC  
=
Inductor Selection  
The inductance of the inductor is determined by the  
output voltage requirement. The larger the inductance,  
the lower the inductor’s current ripple. This will translate  
into lower output ripple voltage. The ripple current and  
ripple voltage can be approximated by:  
The poles and zero of this transfer function are:  
1
FLC  
=
2´ p´ L´ COUT  
1
FESR  
=
2 ´ p ´ ESR ´ COUT  
VIN - VOUT  
VOUT  
IRIPPLE  
=
x
VIN  
Fs x L  
The FLC is the double poles ofthe LC filter, and FESR is  
thezero introduced by the ESR of the output capacitor.  
where Fs is the switching frequency of the regulator.  
DVOUT = IRIPPLE x ESR  
Copyright ã ANPECElectronicsCorp.  
14  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Application Information (Cont.)  
Compensation (Cont.)  
The compensation circuit is shown in Figure 5. R3  
and C1 introduce a zero and C2 introduces a pole to  
reduce the switching noise. The transfer function of  
error amplifier is given by:  
L
Output  
PHASE  
COUT  
é
ù
1
1
æ
ö
gm´ Zo gm ´ R3 +  
//  
GAINAMP =  
=
ç
÷
ê
ú
ESR  
sC1 sC2  
è
ë
ø
û
1
æ
ö
÷
s +  
ç
R3 ´ C1  
è
ø
gm ´  
=
Figure 2. The Output LC Filter  
C1+ C2  
R3 ´ C1´ C2  
æ
ö
÷
s´ s +  
´ C2  
ç
F
LC  
è
ø
-40dB/dec  
The pole and zero of the compensation network are:  
1
F
ESR  
FP =  
C1´ C2  
2´ p ´ R3´  
C1+ C2  
1
Gain  
-20dB/dec  
FZ  
=
2´ p ´ R3 ´ C1  
V
OUT  
Frequency  
Figure 3. The LC Filter Gain & Frequency  
Error  
R1  
Amplifier  
FB  
-
COMP  
The PWM modulator is shown in Figure. 4. The input  
is the output of the error amplifierand the output is the  
PHASE node. The transfer function of the PWM  
modulator is given by:  
R2  
+
R3  
C1  
VREF  
C2  
VIN  
GAINPWM =  
DVOSC  
VIN  
Figure 5. Compensation Network  
Driver  
The closed loop gain of the converter can be written  
PWM  
Comparator  
as:  
R2  
R1+R2  
GAINLC x GAINPWM x  
x GAINAMP  
VOSC  
Figure 6 shows the converter gain and the following  
guidelines will help to design the compensation  
network.  
Output of  
PHASE  
Error  
Amplifier  
1.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) x FS >FO>FZ  
Driver  
Use the following equation to calculate R3:  
Figure 4. The PWM Modulator  
Copyright ã ANPECElectronicsCorp.  
15  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Application Information (Cont.)  
losses inthe MOSFETs have twocomponents: conduction  
Compensation (Cont.)  
loss and transition loss. For the upper and lower  
MOSFET, the losses are approximately given by the  
following :  
DVOSC  
FESR  
R1 + R2  
FO  
R3 =  
´
´
´
2
VIN  
R2  
gm  
FLC  
Where:  
PUPPER = Iou2t (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FS  
PLOWER = Iou2t (1+ TC)(RDS(ON))(1-D)  
gm = 900uA/V  
2.Place the zero FZ before the LC filter double poles  
FLC:  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tswis the switching interval  
FZ = 0.75 x FLC  
Calculate the C1 by the equation:  
1
C1 =  
D is the duty cycle  
2´ p ´ R1´ 0.75 ´ FLC  
Note that bothMOSFETs have conduction losses while  
theupper MOSFETinclude anadditional transition loss.  
The switching internal, tsw, is a function of the reverse  
transfer capacitance CRSS. Figure 7 illustrates the  
switching waveform internal of the MOSFET.  
3. Set the pole at the half the switching frequency:  
FP = 0.5xFS  
Calculate the C2 by the equation:  
C1  
C2 =  
p ´ R3 ´ C1 ´ FS - 1  
The (1+TC)term is tofactor in thetemperaturedependency  
of the RDS(ON) and can be extracted from the “RDS(ON) vs  
Temperature” curve of the power MOSFET.  
FZ=0.75FLC  
F
P
=0.5F  
S
LinearRegulator Input/OutputCapacitor Selection  
20 ×log(gm×R3)  
The input capacitor is chosen based on its voltage  
rating. Underload transient condition, the input capacitor  
will momentarily supply the required transient current.  
A 1uF ceramic capacitor will be sufficient inmost  
applications.  
Compensation Gain  
Gain  
F
LC  
F
O
VIN  
? VOSC  
20 ×log  
Converter  
Gain  
F
ESR  
PWM &  
Filter Gain  
The output capacitor for the linear regulator is chosen  
to minimize any droop during load transient condition.  
In addition, thecapacitor is chosen based on its voltage  
rating.  
Frequency  
Figure 6. Converter Gain & Frequency  
Linear Regulator MOSFET Selection  
MOSFET Selection  
Themaximum DRIVE voltage is determined by the VCC.  
Since this pin drives an external N-channel MOSFET,  
therefore the maximum output voltage of the linear  
regulator is dependent upon the VGS.  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS) and maximum output current requirement.The  
Copyright ã ANPECElectronicsCorp.  
16  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Application Information (Cont.)  
MOSFET Selection (Cont.)  
VOUT2MAX = VCC- VGS  
VDS  
Another criteria is its efficiency of heat removal. The  
power dissipated by the MOSFET is given by:  
Pdiss = Iout * (VIN - VOUT2  
)
where Iout is the maximum load current  
Vout2 is the nominal output voltage  
In some applications, heatsink maybe required to help  
maintain the junction temperature of the MOSFET  
below its maximum rating.  
t
Time  
sw  
Layout Considerations  
Figure 7. Switching waveform across MOSFET  
In high power switching regulator, a correct layout is  
important to ensure proper operation of the regulator.  
In general, interconnecting impedances should be  
minimized by using short, wide printed circuit traces.  
Signal and power grounds are to be kept separate and  
finally combined using ground plane construction or  
single point grounding. Figure 8 illustrates the layout,  
with bold lines indicating high current paths. Components  
along the bold lines should be placed close together.  
Below is a checklist for your layout:  
VIN  
CIN  
APW7063  
+
11  
PGND  
12  
LGATE  
L
O
A
D
COUT  
9
8
Q1  
UGATE  
PHASE  
Q2  
+
· Keep the switching nodes (UGATE, LGATE and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals. Therefore  
keep traces to these nodes as short as possible.  
L1  
VOUT  
Figure 8. Recommended Layout Diagram  
· The groundreturn of CIN must return to the combine  
COUT (-) terminal.  
· Capacitor CBOOT should be connected as close to  
the BOOT and PHASE pins as possible.  
Copyright ã ANPECElectronicsCorp.  
17  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Package Information  
SOP – 14 (150mil)  
A
D
Ee  
B
L
Millimeters  
Inches  
Dim  
Min.  
1.477  
0.102  
0.331  
0.191  
8.558  
3.82  
Max.  
1.732  
0.255  
0.509  
0.2496  
8.762  
3.999  
Min.  
0.058  
0.004  
0.013  
0.0075  
0.336  
0.150  
Max.  
0.068  
0.010  
0.020  
0.0098  
0.344  
0.157  
A
A1  
B
C
D
E
e
1.274  
0.050  
H
L
5.808  
0.382  
0°  
6.215  
1.274  
8°  
0.228  
0.015  
0°  
0.244  
0.050  
8°  
q°  
Copyright ã ANPECElectronicsCorp.  
18  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Physical Specifications  
Terminal Material  
Lead Solderability  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to T P  
Ramp-up  
T L  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Classification Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
°
°
3 C/second max.  
3 C/second max.  
Preheat  
°
°
150 C  
100 C  
-
-
-
Temperature Min (Tsmin)  
Temperature Max (Tsmax)  
Time (min to max) (ts)  
°
°
150 C  
200 C  
60-120 seconds  
60-180 seconds  
Time maintained above:  
°
°
183 C  
217 C  
-
-
Temperature (TL)  
Time (tL)  
60-150 seconds  
60-150 seconds  
Peak/Classificatioon Temperature (Tp)  
See table 1  
See table 2  
°
Time within 5 C of actual  
10-30 seconds  
20-40 seconds  
Peak Temperature (tp)  
°
°
Ramp-down Rate  
6 C/second max.  
6 C/second max.  
°
6 minutes max.  
8 minutes max.  
Time 25 C to Peak Temperature  
Notes: All temperatures refer to topside of the package .Measured on the body surface.  
Copyright ã ANPECElectronicsCorp.  
19  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Classification Reflow Profiles(Cont.)  
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
°
°
225 +0/-5 C  
240 +0/-5 C  
³
°
°
225 +0/-5 C  
2.5 mm  
225 +0/-5 C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
°
°
°
260 +0 C*  
260 +0 C*  
260 +0 C*  
°
°
°
1.6 mm – 2.5 mm  
260 +0 C*  
250 +0 C*  
245 +0 C*  
³
°
°
°
245 +0 C*  
2.5 mm  
250 +0 C*  
shall  
245 +0 C*  
*Tolerance: The device manufacturer/supplier  
assure process compatibility up to and including the  
°
°
°
stated classification temperature (this means Peak reflow temperature +0 C. For example 260 C+0 C)  
at the rated MSL level.  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
TST  
Method  
Description  
245°C,5 SEC  
1000 Hrs Bias @ 125°C  
168 Hrs, 100% RH, 121°C  
-65°C ~ 150°C, 200 Cycles  
MIL-STD-883D-2003  
MIL-STD 883D-1005.7  
JESD-22-B, A102  
MIL-STD 883D-1011.9  
Carrier Tape & Reel Dimensions  
t
D
P
Po  
E
P1  
Bo  
Ko  
F
W
Ao  
D1  
Copyright ã ANPECElectronicsCorp.  
20  
www.anpec.com.tw  
Rev. A.7 - Nov., 2005  
APW7063  
Carrier Tape & Reel Dimensions(Cont.)  
T2  
J
C
A
B
T1  
A
B
C
J
T1  
T2  
W
P
E
Application  
13.0 + 0.5  
- 0.2  
16.0 ± 0.3  
330REF 100REF  
2 ± 0.5 16.5REF 2.5 ± 025  
8
t
1.75  
SOP-14  
(150mil)  
F
D
D1  
Po  
4.0  
P1  
Ao  
Ko  
f
f
0.50 +  
0.1  
1.50  
(MIN)  
±
0.3 0.05  
7.5  
2.0  
6.5  
2.10  
(mm)  
Cover Tape Dimensions  
Application  
SOP- 14  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
24  
21.3  
2500  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright ã ANPECElectronicsCorp.  
Rev. A.7 - Nov., 2005  
21  
www.anpec.com.tw  

相关型号:

APW7063KC-TU

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TUL

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063_09

Synchronous Buck PWM and Linear Controller
ANPEC

APW7064

Synchronous Buck PWM Controller
ANPEC

APW7064KAE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065

Synchronous Buck PWM Controller
ANPEC

APW7065C

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TR

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRL

Synchronous Buck PWM Controller
ANPEC