U3600BM-MFN [ATMEL]

RF and Baseband Circuit, Bipolar, PDSO44, SSO-44;
U3600BM-MFN
型号: U3600BM-MFN
厂家: ATMEL    ATMEL
描述:

RF and Baseband Circuit, Bipolar, PDSO44, SSO-44

无绳电话集成电路 电信集成电路 电信电路 光电二极管 无绳技术 异步传输模式 ATM
文件: 总44页 (文件大小:742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
All Functions and Channel Selections are Controlled by Serial Bus  
RF Part  
All Oscillators and PLL Integrated  
IF Converter  
Single-chip  
Cordless  
FM Demodulator  
RSSI  
Telephone IC  
Low Frequency Part  
Asymmetrical Input of Microphone Amplifier  
Asymmetrical Output of Earpiece Amplifier  
Compander  
U3600BM  
Power Supply Management  
Serial Bus  
Application  
CT0 Standard  
Narrowband Voice and Data Transmitting/Receiving Systems  
1. Description  
The programmable single-chip multichannel cordless phone IC includes all necessary  
low frequency parts such as microphone- and earphone amplifier, compander, power-  
supply management as well as all RF parts such as IF converter, FM demodulator,  
RSSI, oscillators and PLL. Several gains and mutes in transmit and receive direction  
are controlled by the serial bus. The compander can be bypassed.  
Rev. 4516D–CT0–10/05  
Figure 1-1. Block Diagram  
MIX2IN  
33  
MIX2O  
VAF  
OSCGND  
MIX1O  
MIX1IN2  
MIX1IN1  
XCK  
MIX2GND  
IFIN1  
32  
EXIN  
29  
IFIN2  
31  
ETC  
30  
41  
40  
39  
37  
36  
34  
38  
35  
28  
IF  
Amp  
RSSI  
42  
Mixer1  
Mixer2  
RECO  
Crystal  
Oscillator  
Ear  
Amp  
Expander  
GNDLO  
RECO2  
27  
26  
MUXDA  
D
A
f
LO  
Serial  
Bus  
43  
44  
Demo-  
dulator  
f
f
RXO  
DAIN  
LO2  
LO1  
Ref3  
LO  
:K  
:N  
VCO3  
:2  
-
+
Bias  
Bat low  
Detector  
f
LO  
sin  
(3)  
Phase  
Comparator  
25  
cos  
+
1
1
PCLO  
DATRX  
-
1.5V  
24  
MIC  
-
Mic  
+
MixerT  
+45  
-45  
VRMIC  
23  
:D2  
MICO  
COIN  
:D3  
(1)  
:D1  
:10  
:M  
:2  
:M12  
Ref2  
22  
f
Compressor  
Mod  
:M12  
f
21  
(2)  
:2  
CTC  
20  
Phase  
Comparator  
COUT  
f
2
3
4
Ref1  
12  
RFOGND  
RFO  
+
Spl  
19  
Loop  
Filter  
1.5V  
Phase  
Comparator  
VCO1  
9
VCO2  
Limiter  
LIMIN  
Amp  
-
RFOVB  
10  
15  
14  
13  
VSS  
16  
7
11  
18  
TXO  
5
8
17  
6
VDD  
AGND  
D
C
OPOUT  
VBIAS  
MODIN  
VRF  
LFGND  
MLF  
OPIN  
(3): PLL3: Local oscillator (LO) PLL  
DACO  
(1): PLL1: Modulator PLL  
(2): PLL2: Mixer PLL  
2
U3600BM  
4516D–CT0–10/05  
U3600BM  
2. Pin Configuration  
Figure 2-1. Pinning SSO44  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PCLO  
RFOGND  
RFO  
LO1  
LO2  
3
GNDLO  
MIX1IN2  
4
RFOVB  
AGND  
5
MIX1IN1  
MIX1O  
OSCGND  
XCK  
6
VBIAS  
7
VRF  
MLF  
8
LFGND  
9
VAF  
MODIN  
10  
MIX2O  
MIX2GND  
11  
VDD  
VSS  
12  
13  
14  
15  
16  
17  
18  
MIX2IN  
IFIN1  
IFIN2  
ETC  
32  
31  
D
C
DACO  
30  
29  
28  
27  
26  
25  
OPOUT  
OPIN  
TXO  
EXIN  
RECO1  
RECO2  
RXO  
LIMIN  
COUT  
19  
20  
DAIN  
MIC  
CTC  
21  
22  
24  
23  
COIN  
MICO  
3
4516D–CT0–10/05  
Table 2-1.  
Pin  
1
Pin Description  
Symbol  
Function  
Phase comparator local oscillator  
PCLO  
2
RFOGND RF transmit output ground  
3
RFO  
RFOVB  
AGND  
VBIAS  
VRF  
RF transmit output  
4
Power supply input of RF transmit output buffer  
Analog ground for RF part  
5
6
Decoupling capacitor of current reference  
Supply voltage for RF part  
7
8
MLF  
Modulator loop filter  
9
LFGND  
MODIN  
VDD  
Modulator loop filter ground  
Modulator input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
Supply voltage output for peripherals and internal supply of digital part  
Ground for LF analog and digital  
Data input of serial bus  
VSS  
D
C
Clock input of serial bus  
DACO  
OPOUT  
OPIN  
TXO  
D/A and data comparator output  
Operational amplifier output  
Operational amplifier input (inverting)  
Output of limiter amplifier  
LIMIN  
COUT  
CTC  
Limiter input  
Compressor output  
Compressor time constant control analog output  
Compressor input  
COIN  
MICO  
MIC  
Microphone amplifier output  
Inverting input of microphone amplifier  
Data comparator input  
DAIN  
RXO  
Output of demodulator  
RECO2  
RECO1  
EXIN  
ETC  
Symmetrical output of receive amplifier  
Expander input  
Expander time constant control analog output  
IFIN2  
IFIN1  
MIX2IN  
Symmetrical input of IF amplifier  
Input of Mixer2  
MIX2GND IF amplifier and Mixer2 ground  
MIX2O  
VAF  
Mixer2 output  
Supply voltage for AF/IF parts  
Crystal oscillator input 11.15 MHz  
XCK  
OSCGND Oscillator ground  
MIX1O  
MIX1IN1  
MIX1IN2  
GNDLO  
Output of Mixer1  
Symmetrical input of MIxer1  
Ground of LO  
43  
44  
LO2  
LO1  
Tank elements for LO are connected to these pins  
4
U3600BM  
4516D–CT0–10/05  
U3600BM  
3. System Description  
Radio frequency IC for analog cordless telephone application in 26/50 MHz band (CTO stan-  
dard). The IC performs full duplex communication. The transmitting and receiving frequency are  
depending on whether the IC is used in the handset or in the base station.  
Frequency converter comprise an FM transmitter with switchable output power and first receiver  
mixer in the same unit. A two-wire bus interface can be used for the frequency control as well as  
for switching the transmitter power amplifier and the receiver. Fine frequency adjust of reference  
quartz oscillator is programmable.  
The receive part is designed for a double conversion architecture. The incoming radio frequency  
signal will be filtered and amplified before reaching the first mixer. At this stage the RF signal will  
be converted down to the first intermediate frequency (10.7 MHz) by using a crystal oscillator  
(LO1).  
The transmit part contains two PLL controlled VCOs. The frequency modulation is accomplished  
by super-posing the incoming audio signal on the PLL control voltage. Final frequency is a prod-  
uct of mixing VCO1 with first local oscillator of receiver part (VCO3). The FM modulated carrier  
is amplified by externals power amplifier before entering the output filter and the antenna  
connector.  
3.1  
Adjustments for VCO1 and VCO2  
To be able to use a wide frequency range for the VCOs (i.e., VCO2 26.3 MHz to 49.9 MHz) the  
two internal VCOs (VCO1 and VCO2, i.e., the VCOs of the transmit part) have a rough adjust  
and a fine adjust to increase the frequency range given by the phase comparator.  
The rough adjusts for these VCOs are correlated with the country setting. For every country  
there are two sets of VCO rough adjust settings, one for the base and one for the handset. See  
tables at channels frequencies and dividers.  
To compensate the variation in production there is a fine adjust for each of the VCOs. The fine  
adjusts of the internal VCOs could be set manually (for test purposes) or set by the automatic  
mode. Theoretically the sign of the changing (increase/ decrease when the voltage of the phase  
comparator is to high) is selectable, but we need value 1 () in all cases.  
Setting VCO1 (VCO2) under normal conditions:  
EAFA1 (EAFA2) = 1, automatic fine adjust VCO1(VCO2) enabled  
SAFA1 (SAFA2) = 1, sign of auto fine adjustment of VCO1 (VCO2) = 1.  
3.2  
Adjustment for VCO3  
In order to increase the adjustment range of VCO3 with fixed external tank elements and/or for  
“band switching”, especially for US frequencies, VCO3 has programmable capacitors inside.  
These capacitors can be added by serial bus (FA3 [4:0]) between LO1 and LO2. There are 31  
steps available, every step adding a capacitor of 0.5 pF.  
5
4516D–CT0–10/05  
3.3  
Speed-up of the Loop Filter of PLL1 (“Modulator PLL)  
To have a fast locking time for the modulator loop there is a precharge and a speed-up mode for  
the external loop filter.  
During receive mode (VCO3 enabled, VCO1 disabled) the modulator loop filter is precharged to  
about half of the internally regulated 2.5V charge-pump voltage.  
During the first 30 ms after enabling VCO1 the modulator phase comparator is in speed-up  
mode. In this mode the current of the pase comparator which charges the loop filter is much  
larger than in normal mode. Additionally to the automatically switched 30 ms speed-up mode,  
the speed-up can be activated for any time by setting the bit SU1.  
3.4  
3.5  
Speed-up of the Loop Filter of PLL3 (“1st. LO.)  
Similiar to PLL1, there is also a possibility to increase the locking speed of PLL3. This can be  
done by setting the bit SU3. Having done this, the charge pump at the output of the phase com-  
parator has a bigger current capability and therefore charges the external capacitors faster.  
Adjustment of the Modulator Gain  
To fulfil the different requirements of the different countries three conversion gains of the modu-  
lator are selectable by the bits GMOD [1:0] (R6: D2, D3).  
Country settings see tables at channel frequencies and dividers. Ranges see electrical charac-  
teristics at RF transmitter.  
3.6  
Modulator PLL  
The fractional divider has been chosen to increase the reference frequency of the modulator  
PLL.  
Q
1
557.5 kHz = f  
/ P + ---------  
Mod  
1
223  
P1: integer part of the fractional divider (M = 1)  
Q1: fractional part of the fractional divider (M = 1)  
f
Mod  
Q
= 223 × -------------------------- – P  
1
1
557.5 kHz  
557.5 kHz  
223 = --------------------------  
2.5 kHz  
The frequency step 2.5 kHz is a fraction of the reference frequency 557.5 kHz.  
In fact, the fractional divider divides Q1 times by (P1 + 1) and (223 – Q1) times by P1  
during 223 cycles.  
Q × (P + 1) + (223 Q )P  
1
Q
1
1
1
1
-----------------------------------------------------------------------------  
= P + ---------  
1
223  
223  
For each comparison cycle (fRef1 = 557.5 kHz), the accumulator content is incremented by the  
Q1 value and the divider divides by the P1 value. When the accumulator value reaches or  
exceeds 223, the divider divides by the value (P1 + 1). Then, the accumulator holds the excess  
value (accumulator value - 223). After 223 cycles, the correct division is executed.  
6
U3600BM  
4516D–CT0–10/05  
U3600BM  
3.7  
Serial Bus Interface  
The circuit is remoted by an external microcontroller through the serial bus.  
The data is a 12-bit word:  
A0 - A3: address of the destination register (0 to 15)  
D7 - D0: contents of register  
The data line must be stable when the clock is high and data must be serially shifted.  
After 12 clock periods, the transfer to the destination register is (internally) generated by a low to  
high transition of the data line when the clock is high.  
Figure 3-1. Serial Bus  
Data  
D
Micro-  
processor  
Clock  
C
Figure 3-2.  
Serial Bus Transmission  
Data  
(D)  
D0  
D1  
D2  
A0  
A1  
A2  
A3  
Clock  
(C)  
1st word  
2nd word  
Word transmission  
Transfer condition  
Figure 3-3. Serial Bus Structure  
Data  
8
4
Clock  
0
128  
Address  
Decoder  
Latches  
15  
Commands  
7
4516D–CT0–10/05  
Figure 3-4. Serial Bus Timing Diagram  
Data  
(D)  
A1  
A2  
A3  
D0  
Clock  
(C)  
teon  
teh  
teoff  
tcl  
tsud  
thd  
tch  
3.8  
Content of Internal Registers  
The registers have the following structure  
D7  
R0: Reference for D/A converter  
MUXDA DA6 DA5  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DA4  
DA3  
DA2  
DA1  
DA0  
MUXDA: D/A multiplexing VBAT/RSSI  
DA(0:6): Reference voltage D/A  
R1: Gain of earpeace amplifier and demodulator  
GEA4 GEA3 GEA2 GEA1 GEA0  
GDEM  
free  
free  
GEA[0:4]: Gain of earpeace amplifier; “0” is LSB, “4” is MSB  
GDEM: Demodulator gain (1 = low gain)  
R2: Switches and mutes for receive and data reception  
DATRX  
BEXP  
EEA  
ERXO  
ERX1  
ERXHF  
MRX  
ERX2  
DATRX:  
BEXP:  
EEA:  
Switch data comparator output to “DACO”-pin  
Bypass expander  
Enable earpiece amplifier  
ERXO:  
ERX1:  
ERXHF:  
MRX:  
Enable RXO output driver  
Enable RX low frequency part 1  
Enable Mixer2 and IF-amplifier  
Mute RX low frequency path (expander) keeping circuit enabled  
Enable RX low frequency part 2 (expander)  
ERX2:  
8
U3600BM  
4516D–CT0–10/05  
U3600BM  
R3: Switches and mutes for transmit and power managemant  
PDVDD  
RBAT  
free  
free  
free  
free  
MTX  
ETX  
PDVDD:  
RBAT:  
MTX:  
Enable pull-down transistor in power-down mode  
Battery detection high/low range  
Mute TX low frequency path (compressor) keeping circuit enabled  
Enable TX low frequency part  
ETX:  
R4: free (not used, for future extensions )  
free  
free  
free  
free  
free  
free  
free  
free  
free  
free  
R5: Gain VCO2  
free free  
KV23  
KV22  
KV21  
M12  
KV2[1:3]: Gain of VCO2  
M12: Double phase comparator frequency of PLL2  
R6: Miscellaneus settings in synthesizer part  
ETXO M1CP FRMT IMIXI  
ETXO: Enable HF-transmit output  
GMOD1  
GMOD0  
SU1  
(TM)  
M1CP:  
Changes 1 dB compression point and current consumption of Mixer1  
(“0” –> high, “1” –> low)  
FRMT:  
IMIXI:  
Output frequency range of MixerT  
Invert inputs of phase comparator in PLL2  
GMOD[0:1]: Modulation gain of VCO1  
SU1:  
(TM):  
Speed-up phase comparator for PLL1  
Enable the internal test mode. It is mandatory that TM is kept to “0”!  
(if not 0, the circuit will not work as expected or described here in this paper)  
R7: PLL1 setting  
DR1I1 DR1I0  
RA11  
RA10  
DV1I3  
DV1I2  
DV1I1  
DV1I0  
DR1I[0:1]: Additional divider reference frequency PLL1  
RA1[0:1]: Rough adjustment VCO1  
DV1I[0:3]: Divider setting PLL1 integer part; “0” is LSB, “3” is MSB  
R8: Divider PLL1 fractional part  
DV1F7  
DV1F6  
DV1F5  
DV1F4  
DV1F3  
DV1F2  
DV1F1  
DV1F0  
DV1F[0:7]: Divider setting PLL1 fractional part; “0” is LSB, “7” is MSB  
9
4516D–CT0–10/05  
R9: Divider PLL3 LSBs  
DV3I7 DV3I6  
DV3I5  
DV3I4  
DV3I3  
DV3I2  
DV3I1  
DV3I9  
DV3I0  
DV3I8  
R10: Divider PLL3 MSBs and MSB of VCO3 fine adjustment  
FA34 DV3I14 DV3I13 DV3I12 DV3I11 DV3I10  
FA34: Fine adjustment VCO3 (frequency reduction) MSB  
DV1I[0:14]: Divider setting PLL3 integer part; “0” is LSB, “14” is MSB  
R11: Setting PLL2 and VCO3  
FA33  
FA32  
FA31  
FA30  
AMIX2  
AMIX1  
RA21  
RA20  
FA3[0:4]: Fine adjustment of VCO3 (frequency reduction); “0” is LSB, “4” is MSB  
AMIX[1:2]: Lengthening antibacklash signal PLL2  
RA2[1:0]: Rough adjustment VCO2  
R12: Divider for country setting, fine adjustment oscillator  
FAOS2  
FAOS1  
FAOS0  
D31  
D30  
D20  
D11  
D10  
FAOS[0:2]: Fine adjustment of crystal oscillator (frequency reduction);  
“0” is LSB, “2” is MSB  
D3[0:1]:  
D20:  
D1[0:1]:  
Setting divider D3  
Setting divider D2  
Setting divider D1  
R13: VCO1 enable and fine adjustment  
EVCO1  
SAFA1  
EAFA1  
FA14  
FA13  
FA12  
FA11  
FA10  
EVCO1:  
SAFA1:  
EAFA1:  
Enable VCO1  
Sign for automatic fine adjustment of VCO1  
Enable automatic fine adjustment of VCO1  
FA1(0:4): Manual fine adjustment of VCO1 (frequency reduction);  
“0” is LSB, “4” is MSB  
R14: VCO2 enable and fine adjustment  
EVCO2  
SAFA2  
EAFA2  
FA24  
FA23  
FA22  
FA21  
FA20  
EVCO2:  
SAFA2:  
EAFA2:  
Enable VCO2 and MixerT  
Sign for automatic fine adjustment of VCO2  
Enable automatic fine adjustment of VCO2  
FA2(0:4): Manual fine adjustment of VCO2 (frtequency reduction);  
“0” is LSB, “4” is MSB  
10  
U3600BM  
4516D–CT0–10/05  
U3600BM  
R15: VCO3 enable, speed-up and referencq frequency, crystal oscillator enable  
EVCO3  
EOSC  
SU3  
E25K  
E12K5  
E10K  
E6K25  
E5K  
EVCO3:  
EOSC:  
SU3:  
Enable VCO3 and Mixer1  
Enable crystal oscillator (11.15 MHz)  
Speed-up phase comparator for PLL3  
E25K:  
E12K5:  
E10K:  
E6K25:  
E5K:  
Selection phase comparator frequency for PLL3: fRef3 = 25 kHz  
Selection phase comparator frequency for PLL3: fRef3 = 12.5 kHz  
Selection phase comparator frequency for PLL3: fRef3 = 10 kHz  
Selection phase comparator frequency for PLL3: fRef3 = 6.25 kHz  
Selection phase comparator frequency for PLL3: fRef3 = 5 kHz  
E5K, E6K25, E10K, E15K5, E25K = 0:  
Selection phase comparator frequency for PLL3: fRef3 = 2.5 kHz  
4. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Symbol  
VBatt, VDD  
Tj  
Value  
5.5  
Unit  
V
Supply voltage  
Junction temperature  
Ambient temperature  
Storage temperature  
Power dissipation Tamb = 60°C  
+125  
°C  
°C  
°C  
W
Tamb  
–25 to +75  
–50 to +125  
0.9  
Tstg  
Ptot  
5. Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient SSO44  
RthJA  
70  
K/W  
11  
4516D–CT0–10/05  
6. Electrical Characteristics  
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified.  
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table “Crystal Specifications”.  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Power Supply  
Operating voltage range  
3.1  
3.6  
5.2  
V
Current Consumption  
Operating current in inactive  
mode (low voltage)  
VRF = VAF = RFOVB = 2.9V  
VDD = 0V  
30  
30  
65  
100  
7.5  
8.5  
85  
µA  
µA  
Operating current in standby  
mode  
VRF = VAF = RFOVB = 3.6V  
ERXHF = EVCO3 = EOSC = 1  
350  
10.4  
11.5  
Operating current in RX mode  
“waiting for RSSI”  
mA  
mA  
Operating current in RX mode  
“receiving data”  
ERXHF = EVCO3 = EOSC = ERX1  
= ERXO = 1  
Operating current in  
conversation mode: all blocks  
enabled  
ERXHF = EVCO3 = EOSC = ERX1 = ERXO  
= ERX2 = EEA = EVCO2 = ETXO = 1  
no load at RFO pin 3  
20  
29  
mA  
Charge Pump of LL1  
Charge pump output voltage  
Output high  
2.38  
1.15  
2.5  
1.4  
2.63  
1.65  
V
V
Precharge voltage at the loop  
filter  
SB127 = 1, SB119 = 0  
VMLF = 1.25V, output low  
VMLF = 1.25V, output high  
VMLF = 1.25V, output low  
VMLF = 1.25V, output high  
VMLF = 1.25V, output tristate  
190  
–400  
4.3  
400  
–190  
8
µA  
µA  
µA  
µA  
nA  
Charge pump output current  
in speed-up mode  
6.2  
Charge pump output current  
–8  
–6.2  
–4.3  
+150  
Charge pump leakage current  
Charge Pump of PLL3  
–150  
Charge pump output voltage  
Output high  
2.38  
220  
–420  
80  
2.5  
2.63  
420  
V
VPCLO = 1.25V, output low  
VPCLO = 1.25V, output high  
VPCLO = 1.25V, output low  
VPCLO = 1.25V, output high  
VPCLO = 1.25V, output tristate  
µA  
µA  
µA  
µA  
nA  
Charge pump output current  
in speed-up mode  
–220  
160  
Charge pump output current  
Charge pump leakage current  
–160  
–50  
–80  
+50  
Receiver Input Mixer (Mixer1), EVCO3 = EOSC = 1  
Input frequency range  
20  
50  
MHz  
MHz  
kΩ  
Output frequency  
10.7  
3.0  
Input resistance  
Input capacitance  
Output impedance  
MIX1IN1/MIX1IN2 to GND  
MIX1IN1/MIX1IN2 to GND  
MIX1O  
3.5  
pF  
210  
330  
390  
MIX1IN1/2 -> MIX1O  
Voltage gain  
“Loaded” (330 with serial capacitance)  
“Unloaded”  
11.5  
17.5  
dB  
dB  
Input noise voltage  
9
nV Hz–1/2  
12  
U3600BM  
4516D–CT0–10/05  
U3600BM  
6. Electrical Characteristics (Continued)  
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified.  
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table “Crystal Specifications”.  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
“Loaded” (330with serial capacitance)  
M1CP=0  
M1CP=1  
“unloaded”  
M1CP=1  
140  
40  
mV  
mV  
Input 1-dB compression point  
100  
430  
mV  
mV  
Third order input intercept  
point  
“Loaded” (330with seial capacitance)  
M1CP=0  
IF Mixer (Mixer2), EOSC = ERXHF = 1; Input Frequency: 10.7 MHz  
Input resistance  
Input capacitance  
Output impedance  
MIX2IN to GND  
MIX2IN to GND  
MIX2O  
2.0  
2.5  
3.0  
3
4.0  
3.5  
kΩ  
pF  
1200  
1500  
1800  
MIX2IN -> MIX2O  
“Loaded” (1500with serial capacitance)  
Voltage gain  
13  
32  
80  
15  
17  
dB  
mV  
mV  
Input 1-dB compression point  
“Loaded” (1500with serial capacitance)  
Third order input intercept  
point  
“Loaded” (1500with serial capcitance)  
IF Amplifier and Demodulator, ERXHF=1, ERX1=1, ERXO=1; Input Signal: 450 kHz, 500 µV, FM-modulation Frequency = 1 kHz  
Recovered audio at RXO,  
demodulator gain  
GDEM=0  
GDEM=1  
180  
90  
mV/kHz  
mV/kHz  
AM rejection ratio  
30% AM, 2.5 kHz FM  
35  
dB  
Expander, ERX2 = 1; 470 nF from ETC to GND (VSS)  
Gain reference level = G.R.L.  
(gain = 0 dB)  
70  
80  
90  
mVrms  
VEXIN = 10 dB less than G.R.L.  
VEXIN = 20 dB less than G.R.L.  
VEXIN = 30 dB less than G.R.L.  
–11  
–21  
–35  
–10  
–20  
–30  
–9  
–19  
–25  
dB  
dB  
dB  
Gain versus input signal level  
(“gain tracking”)  
VEXIN = step 25 mV –> 50 mV  
Attack time  
measure time after step, when output  
voltage has 0.75 times of final value  
16  
16  
ms  
VEXIN = step 50 mV –> 25 mV  
measure time after step, when output  
voltage has 1.5 times of final value  
Release time  
ms  
Input resistance  
9.5  
15  
kΩ  
Earpiece Amplifier, EEA = 1, ERX2 = 1, BEXP = 1; Apply Input Voltage to EXIN; Measure Differentially at RECO1/2  
Minimum gain  
Medium gain  
GEA[4:0]=0  
GEA[4:0]=16  
GEA[4:0]=31  
0
1
17  
32  
1
2
dB  
dB  
dB  
dB  
16  
31  
0.8  
18  
33  
1.2  
Maximum gain  
Gain adjust step  
Maximum gain; 1 kload; increase input  
voltage until distortion 5%  
Output voltage swing  
Input resistance  
4.8  
7.3  
5
Vpp  
12.5  
kΩ  
13  
4516D–CT0–10/05  
6. Electrical Characteristics (Continued)  
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified.  
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table “Crystal Specifications”.  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
IF Amplifier: RSSI  
Input frequency  
Input resistance  
ERXHF=1  
450  
2.0  
kHz  
1.6  
2.5  
kΩ  
VIF = 0 µV  
starting from 0 increase RSSI-level until  
mean of sampled signal at DACO is 0.5.  
RSSI-level = ION0  
RSSI sensitivity  
1
VIF = 25.4 µV, f = 450 kHz  
increase RSSI level again until mean of  
sampled signal at DACO is 0.5.  
RSSI-level = ION1  
RSSI-sensitivity = ION1-ION0  
RSSI input voltage dynamic  
range  
65  
dB  
dB  
dB  
RSSI level number of  
programmable steps (see  
folowing table “RSSI Level  
Programming (Typical Values)  
127  
0.46  
RSSI level step size in the  
logarithmic region  
0.35  
0.6  
Table 6-1.  
RSSI Level Programming (Typical Values)  
Input Voltage VIF (µV)  
RSSI Level (Decimal)  
0
5
8
25.4  
42.4  
424  
14  
54  
97  
111  
4240  
42400  
14  
U3600BM  
4516D–CT0–10/05  
U3600BM  
7. Electrical Characteristics  
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified. Test circuit, see Figure 8-1 on page 18.  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Data Comparator, ERX1 = DATRX = 1  
Hysteresis  
50  
1.5  
100  
mV  
V
Threshold voltage  
Input impedance  
DAIN  
kΩ  
DACO, without load  
(CMOS-output –> full swing)  
Output high voltage  
3.5  
V
DACO, without load  
(CMOS-output –> full swing)  
Output low voltage  
0.1  
6
V
Output impedance  
DACO  
kΩ  
Battery Switch  
Decrease VBAT until internal switch  
between VBAT and VDD becomes high  
ohmic (“off”)  
“Off” threshold  
“On” threshold  
2.85  
3.1  
2.95  
3.1  
V
V
Increase VBAT until internal switch  
between VBAT and VDD becomes low  
ohmic (“on”)  
3.2  
3.35  
Hysteresis  
Difference between on and off threshold  
250  
mV  
µA  
“Off”-leakage current  
Switch “On”-resistance  
10  
50  
Battery Management, MUXDA = 1  
Maximum bat low  
DA[6:0] = 127, RBAT = 1  
3.7  
3.05  
4.75  
3.83  
3.5  
3.95  
3.2  
4.1  
3.35  
V
V
Minimum bat low over switch  
Maximum bat high  
DA[6:0] = 27, RBAT = 1  
DA[6:0] = 127, RBAT = 0  
DA[6:0] = 0, RBAT = 0  
5.05  
4.1  
5.25  
V
Minimum bat high  
4.27  
V
Adjust step  
7.5  
11.5  
mV  
mV  
Maximum - Minimum  
Microphone Amplifier, ETX=1  
Open loop gain  
852.5  
952.5  
1052.5  
80  
3
dB  
Gain bandwidth product  
MHz  
Input noise voltage,  
BW = 300 Hz to 3.4 kHz,  
psophometrically weighted  
0.8  
2
µVrmsp  
Compressor, ETX = 1; 470 nF from CTC to GND (VSS)  
Gain reference level = G.R.L.  
(gain = 0 dB)  
298  
316  
340  
mVrms  
dB  
VCOIN = 20 dB less than G.R.L.  
10  
20  
25  
30  
9
19  
22  
11  
21  
28  
Gain versus input signal level  
(“gain tracking”)  
VCOIN = 40 dB less than G.R.L.  
VCOIN = 50 dB less than G.R.L.  
VCOIN = 60 dB less than G.R.L  
VCOIN = step 31.6 mV –> 126 mV,  
(-30 dBV –> –18 dBV)  
measure time after step, when output  
voltage has 1.5 times of final value  
Attack time  
3.5  
ms  
15  
4516D–CT0–10/05  
7. Electrical Characteristics (Continued)  
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified. Test circuit, see Figure 8-1 on page 18.  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
14.4  
19.5  
Max.  
Unit  
VCOIN = step 126 mV –> 31.6 mV  
(–18 dBV –> –30 dBV)  
measure time after step, when output  
voltage has 0.75 times of final value  
Release time  
ms  
Input resistance  
14  
26  
kΩ  
Splatter Amplifier, ETX = 1  
Open loop gain  
90  
dB  
Gain bandwidth product  
150  
kHz  
Maximum output voltage  
swing  
2.4  
Vpp  
Limiter Amplifier, ETX = 1, Tj = 25°C  
Gain for signals below  
limitation  
LIMIN –> TXO,  
20 mVRMS applied to LIMIN (AC coupled)  
26  
dB  
%
Distortion for signals below  
limitation  
LIMIN –> TXO,  
20 mVRMS applied to LIMIN (AC coupled)  
2
Maximum output voltage  
swing (above limitation,  
clipping)  
1.8  
15  
2.1  
20  
2.35  
25  
Vpp  
Input resistance at LIMIN  
kΩ  
Note:  
The gain and maximum output voltage swing of the limiter amplifier changes with temperature to compensate the tempera-  
ture dependancy of MODIN (“tx conversion gain” of RF transmit part), fundamentally determined by the structure of the  
circuitry.  
RF Transmitter, ETXO = EVCO1 = EVCO2 = EVCO3 = EOSC = 1; Tj = 25°C  
MODIN input impedance  
70  
100  
300  
130  
390  
0.3  
kΩ  
RFO output impedance  
RFO output voltage level  
Load = 200 ø  
230  
ETXO = 0; no load  
V
49.99  
00  
Highest operating frequency  
USA Base Channel 9 (US1b9)  
MHz  
For the complete programming see  
“Channel Frequencies, Dividers and  
Country Settings” on page 20“  
USA1:  
GMOD[1:0] = 00; fMod = ~7.6 MHz  
5.2  
5.2  
kHz/V  
kHz/V  
TX conversion gain  
MODIN - RFO  
USA2:  
GMOD[1:0] = 01; fMod = ~5.7 MHz  
France:  
GMOD[1:0] = 01; fMod = 4.3 MHz  
GMOD[1:0] = 00; fMod = 4.3 MHz  
3.8  
2.7  
kHz/V  
kHz/V  
Spain/Netherlands:  
GMOD[1:0] = 10; fMod = 1.8 MHz  
7.9  
1.5  
kHz/V  
%
Modulation frequency: 1 kHz  
Demodulated distortion THD  
MODIN - RFO  
US:  
F = 4.0 kHz  
5
France: F = 2.5 kHz  
16  
U3600BM  
4516D–CT0–10/05  
U3600BM  
7. Electrical Characteristics (Continued)  
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified. Test circuit, see Figure 8-1 on page 18.  
Parameters Test Conditions Symbol Min. Typ. Max. Unit  
Note:  
The tx conversion gain of the RF transmitter is somehow dependent on temperature. This is determined by the fundamental  
principle of this circuitry. Means have been taken inside the limiter amplifier, being in the signal path before MODIN, which are  
able to completely compensate this temperature behavior.  
Logical Part  
Inputs: C, D  
Low voltage input  
High voltage input  
Vil  
Vih  
0.2 × VDD  
0.8 × VD  
D
Input leakage current  
(0 < VI < VDD)  
Ii  
+5  
+5  
µA  
µA  
–1  
–5  
Input leakage current  
Pin XCK (0 < VI < VDD)  
Serial bus (Figure 8-2)  
Data set-up time  
Data hold time  
Clock low time  
Clock high time  
tsud  
thd  
tcl  
tch  
teon  
0.1  
0
2
2
0.1  
µs  
µs  
µs  
µs  
µs  
Hold time before transfer  
condition  
Data low pulse on transfer  
condition  
Data high pulse on transfer  
condition  
teh  
0.2  
0.2  
µs  
µs  
teoff  
8. Fine Adjustment of the Oscillator Frequency  
To set the frequency of the oscillator exact to 11.15 MHz, the frequency is adjustable in 8 steps, by adding 3 different internal capacities  
the frequency could be reduced.  
Parameters  
Test Conditions/Pins  
FAOS (0:2) = 0  
Min.  
Typ.  
Max.  
Unit  
Oscillator frequency without  
reduction  
11.15  
+∆  
MHz  
FAOS2 FAOS1 FAOS0  
0
0
1
1
0
1
0
0
1
0
0
1
140  
280  
560  
700  
Changing of oscillator frequency  
with FOSC reduction  
Hz  
17  
4516D–CT0–10/05  
Figure 8-1. Test Circuit  
BZT55C51  
56K  
MIX1IN2  
MIX1IN1  
10N  
10N  
24K  
5P  
MIX1O  
PCLO  
RFOGND  
RFO  
LO1  
LO2  
330  
1
0
GNDLO  
MIX1IN2  
MIX1IN1  
MIX1O  
OSCGND  
XCK  
TX-/Modulator-  
Loop Filter  
RFOVB  
AGND  
VBIAS  
VRF  
10N  
MODIN  
5.6K  
1U 100N  
VRF  
2
1
MLF  
VAF  
470N  
LFGND  
MODIN  
VDD  
VAF  
MIX2O  
MIX2GND  
MIX2IN  
IFIN1  
MIX2O  
DATA  
VSS  
470N  
DATA  
1500  
CLOCK  
DACO  
IFIN2  
ETC  
470N  
CLOCK  
OPOUT  
EIN  
OPIN  
TXO  
RECO1  
RECO2  
RXO  
MIX2IN  
10N  
LIMIN  
COUT  
CTC  
DACO  
DAIN  
MIC  
CIN  
MICO  
IFIN1  
IFIN2  
10N  
10N  
850  
EIN  
220N  
RECO1  
RECO2  
RXO  
DAIN  
This schematics is only a basic(simplified)  
NOTE:  
representation of the current production tes  
t circuit  
18  
U3600BM  
4516D–CT0–10/05  
U3600BM  
Figure 8-2. Application Circuit  
e t l r i F e l x p u D  
n e n t a A n  
19  
4516D–CT0–10/05  
9. Channel Frequencies, Dividers and Country Settings  
To meet all requirements of various countries France (F), Spain (E), Netherlands (NL), USA,  
Portugal (P), Taiwan, New Zealand and Korea and modes base (b), handset (h) several  
bits have to be set which do not change for the different channels. These settings are called  
country settings.  
• The country-setting bits contain:  
• Rough adjustments for 2 VCOs  
• Setting three integer divider in the mixer PLL and modulator PLL  
• Conversion gain adjustment of mixer PLL  
• Modulator gain  
• Setting of the pulling direction of PLL2 (value dependent, if TX frequency is higher or lower  
than LO frequency)  
• Demodulator gain  
Number of  
Name Register  
RA1[1:0]  
RA2[1:0]  
D1[1:0]  
Function  
Notes  
Positions  
Rough adjust VCO1  
Rough adjust VCO2  
Integer divider D1  
Integer divider D2  
00: is the highest frequency  
00: is the highest frequency  
Division by 2, 4, 6, 8  
Division by 6, 8  
3
4
4
2
D20  
Doubles reference frequency  
of PLL2 when set to “1”  
M12  
Integer divider M12  
2
D3[1:0]  
KV[3:1]  
Integer divider D3  
Conversion gain VCO2  
Modulator gain  
Division by 1, 2, 4  
3
6
3
GMOD[1:0]  
00: gain minimal  
Reverse inputs of PC of  
PLL  
IMIXI  
0: if fVCO2 lower than fVCO3  
2
“0” means no reduction, >0  
only necessary in E, NL,  
Portugal  
Additional divider M for  
reference frequency fRef1  
DR1[1:0]  
4
Frequency range  
Mixer T  
FRMT  
GDEM  
0: output frequency < 5 MHz  
2
2
0: high gain  
1: low gain  
Demodulator gain  
Note:  
Setting the fractional dividers:  
For N, QM, send the binary equivalent of the numbers given below.  
For PM (integer part of modulator PLL), send the D2 complement (16 – PM)  
i.e., Fb1 (PM = 7, QM = 159 => integer: send 16 – PM = 9, fractional: send 159)  
20  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10. Tables for Programming of the Dividers (Refer to Block Diagram)  
Table 10-1. Divider D1 for PLL2  
D11 (bit)  
D10 (bit)  
Decimally  
D1 (Block Diagram),if M12 = 0  
D1 (Block Diagram),if M12 = 1  
0
0
1
1
0
1
0
1
0
1
2
3
2
8
6
4
1
4
3
2
Table 10-2. Divider D2 between PLL1 and PLL2  
D20 (bit)  
Decimally  
D2 (Block Diagram),if M12 = 0  
D2 (Block Diagram),if M12 = 1  
0
0
0
1
6
8
3
4
Table 10-3. Divider D3 for PLL1  
D31 (bit)  
D30 (bit)  
Decimally  
D3 (Block Diagram)  
0
0
1
1
0
1
0
1
0
1
2
3
1
2
6
4
10.1 Divider M for Reference Frequency of PLL1  
There are several countries like Spain, the Netherlands and Portugal with relatively low modula-  
tor frequencies fMod. In case of modulation there will be a big maximum time shift between  
pulses coming from fractional divider and pulses coming from reference frequency divider. As a  
consequence the phase comparator enters an undesired operation mode. To avoid entering this  
operation mode the reference frequency fRef1 has to be reduced by a factor M. Simultaneously,  
keeping fMod constant, the factors of fractional dividers have to be changed as well.  
The connection between the additional reference frequency divider M and the factors PM and QM  
of fractional divider is given below. The subscript M denotes which value of M refers to the fac-  
tors PM and QM of fractional divider. The formulas take into account that the numerator of the  
fraction QM/223 must not exceed 223.  
PM = P1 × M + integer (Q × M/223)  
QM = Q1 × M - 223 × integer (Q1 × M/223)  
21  
4516D–CT0–10/05  
10.2 France Base  
Table 10-4. Country Setting  
Name  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
D3[1:0] KV2[3:1]  
GMOD[1:0]  
IMIXI DR1I[1:0] FRMT GDEM  
Setting  
00  
11  
11  
1
01  
100  
01 (1)  
0
00  
0
0
high  
gain  
Value  
max  
min  
D1 = 4  
D2 = 8  
D3 = 2  
supra  
M = 1  
low  
Note:  
Alternatively, GMOD[1:0] could be set to “00”. This reduces the TX conversion gain (MODIN –> RFO) from  
about 3.8 kHz/V to about 2.7 kHz/V, a value, which should be still sufficient for a maximum f of 2.5 kHz  
that is useful in the French case.  
Table 10-5. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel  
(MHz)  
Rx Channel Frequency  
(MHz)  
fLO = 1/2 fVCO3  
(MHz)  
DV3I[14:0] = N  
4898  
1
2
26.3125  
26.3250  
26.3375  
26.3500  
26.3625  
26.3750  
26.3875  
26.400  
41.3125  
41.3250  
41.3375  
41.3500  
41.3625  
41.3750  
41.3875  
41.4000  
41.4125  
41.4250  
41.4375  
41.4500  
41.4625  
41.4750  
41.4875  
30.6125  
30.6250  
30.6375  
30.6500  
30.6625  
30.6750  
30.6875  
30.7000  
30.7125  
30.7250  
30.7375  
30.7500  
30.7625  
30.7750  
30.7875  
4900  
3
4902  
4
4904  
5
4906  
6
4908  
7
4910  
8
4912  
9
26.4125  
26.4250  
26.4375  
26.4500  
26.4625  
26.4750  
26.4875  
4914  
10  
11  
12  
13  
14  
15  
4916  
4918  
4920  
4922  
4924  
4926  
10.2.1  
France Modulation Loop Frequency and Divider  
f
Mod = 4.3 MHz, PM = 7, QM = 159, M = 1  
22  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.3 France Hand  
Table 10-6. Country Setting  
Name  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
D3[1:0] KV2[3:1]  
GMOD[1:0]  
IMIXI DR1I[1:0] FRMT GDEM  
Setting  
00  
01  
11  
1
01  
101  
01 (1)  
1
00  
0
0
high  
gain  
Value  
max  
D1 = 4  
D2 = 8  
D3 = 2  
infra  
M = 1  
low  
Note:  
Alternatively, GMOD[1:0] could be set to “00”. This reduces the TX conversion gain (MODIN –> RFO) from  
about 3.8 kHz/V to about 2.7 kHz/V, a value, which should be still sufficient for a maximum f of 2.5 kHz  
that is useful in the French case.  
Table 10-7. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
(MHz)  
fLO = 1/2 fVCO3  
(MHz)  
DV3I[14:0] = N  
5922  
1
2
41.3125  
41.3250  
41.3375  
41.3500  
41.3625  
41.3750  
41.3875  
41.4000  
41.4125  
41.4250  
41.4375  
41.4500  
41.4625  
41.4750  
41.4875  
26.3125  
26.3250  
26.3375  
26.3500  
26.3625  
26.3750  
26.3875  
26.4000  
26.4125  
26.4250  
26.4375  
26.4500  
26.4625  
26.4750  
26.4875  
37.0125  
37.0250  
37.0375  
37.0500  
37.0625  
37.0750  
37.0875  
37.1000  
37.1125  
37.1250  
37.1375  
37.1500  
37.1625  
37.1750  
37.1875  
5924  
3
5926  
4
5928  
5
5930  
6
5932  
7
5934  
8
5936  
9
5938  
10  
11  
12  
13  
14  
15  
5940  
5942  
5944  
5946  
5948  
5950  
10.3.1  
France Modulation Loop Frequency and Divider  
f
Mod = 4.3 MHz, PM = 7, QM = 159, M = 1  
23  
4516D–CT0–10/05  
10.4 Spain Base  
Table 10-8. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
10  
10  
00  
001  
10  
11  
1
1
D1 = 2  
D2 = 8  
D3 = 4  
infra  
M = 4  
high  
low gain  
Table 10-9. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
39.925  
39.950  
39.975  
40.000  
40.025  
40.050  
40.075  
40.100  
40.150  
40.175  
40.200  
40.225  
DV3I[14:0] = N  
4676  
1
2
31.025  
31.050  
31.075  
31.100  
31.125  
31.150  
31.175  
31.200  
31.250  
31.275  
31.300  
31.325  
29.225  
29.250  
29.275  
29.300  
29.325  
29.350  
29.375  
29.400  
29.450  
29.475  
29.500  
29.525  
4680  
3
4684  
4
4688  
5
4692  
6
4696  
7
4700  
8
4704  
9
4712  
10  
11  
12  
4716  
4720  
4724  
10.4.1  
Spain Modulation Loop Frequency and Divider  
f
Ref1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4  
24  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.5 Spain Hand  
Table 10-10. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
10  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
10  
01  
00  
100  
11  
1
1
high  
D1 = 2  
D2 = 8  
D3 = 4  
high  
supra  
M = 4  
high  
low gain  
Table 10-11. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
31.025  
31.050  
31.075  
31.100  
31.125  
31.150  
31.175  
31.200  
31.250  
31.275  
31.300  
31.325  
DV3I[14:0] = N  
6676  
1
2
39.925  
39.950  
39.975  
40.000  
40.025  
40.050  
40.075  
40.100  
40.150  
40.175  
40.200  
40.225  
41.725  
41.750  
41.775  
41.800  
41.825  
41.850  
41.875  
41.900  
41.950  
41.975  
42.000  
42.025  
6680  
3
6684  
4
6688  
5
6692  
6
6696  
7
6700  
8
6704  
9
6712  
10  
11  
12  
6716  
6720  
6724  
10.5.1  
Spain Modulation Loop Frequency and Divider  
f
Ref1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4  
25  
4516D–CT0–10/05  
10.6 Netherlands Base  
Table 10-12. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
10  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
10  
10  
00  
001  
11  
1
1
low  
D1 = 2  
D2 = 8  
D3 = 4  
high  
infra  
M = 4  
high  
low gain  
Table 10-13. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
4678  
1
2
31.0375  
31.0625  
31.0875  
31.1125  
31.1375  
31.1625  
31.1875  
31.2125  
31.2375  
31.2625  
31.2875  
31.3125  
39.9375  
39.9625  
39.9875  
40.0125  
40.0375  
40.0625  
40.0875  
40.1125  
40.1375  
40.1625  
40.1875  
40.2125  
29.2375  
29.2625  
29.2875  
29.3125  
29.3375  
29.3625  
29.3875  
29.4125  
29.4375  
29.4625  
29.4875  
29.5125  
4682  
3
4686  
4
4690  
5
4694  
6
4698  
7
4702  
8
4706  
9
4710  
10  
11  
12  
4714  
4718  
4722  
10.6.1  
Netherlands Modulation Loop Frequency and Divider  
f
Ref1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4  
26  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.7 Netherlands Hand  
Table 10-14. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
10  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
10  
01  
00  
001  
11  
1
1
high  
D1 = 2  
D2 = 8  
D3 = 4  
high  
supra  
M = 4  
high  
low gain  
Table 10-15. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
6678  
1
2
39.9375  
39.9625  
39.9875  
40.0125  
40.0375  
40.0625  
40.0875  
40.1125  
40.1375  
40.1625  
40.1875  
40.2125  
31.0375  
31.0625  
31.0875  
31.1125  
31.1375  
31.1625  
31.1875  
31.2125  
31.2375  
31.2625  
31.2875  
31.3125  
41.7375  
41.7625  
41.7875  
41.8125  
41.8375  
41.8625  
41.8875  
41.9125  
41.9375  
41.9625  
41.9875  
42.0125  
6682  
3
6686  
4
6690  
5
6694  
6
6698  
7
6702  
8
6706  
9
6710  
10  
11  
12  
6714  
6718  
6722  
10.7.1  
Netherlands Modulation Loop Frequency and Divider  
f
Ref1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4  
27  
4516D–CT0–10/05  
10.8 U.K. Base  
Table 10-16. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
10  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
10  
10  
00  
001  
11  
1
1
low  
D1 = 2  
D2 = 8  
D3 = 4  
high  
infra  
M = 4  
high  
low gain  
Table 10-17. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
DV3I[14:0] = N  
(MHz)  
1
2
3
4
31.0375  
31.0625  
31.0875  
31.1125  
39.9375  
39.9625  
39.9875  
40.0125  
29.2375  
29.2625  
29.2875  
29.3125  
4678  
4682  
4686  
4690  
10.8.1  
U.K. Modulation Loop Frequency and Divider  
f
Ref1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4  
10.9 U.K. Handset  
Table 10-18. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
10  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
10  
01  
00  
001  
11  
1
1
high  
D1 = 2  
D2 = 8  
D3 = 4  
high  
supra  
M = 4  
high  
low gain  
Table 10-19. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
DV3I[14:0] = N  
(MHz)  
1
2
3
4
39.9375  
39.9625  
39.9875  
40.0125  
31.0375  
31.0625  
31.0875  
31.1125  
41.7375  
41.7625  
41.7875  
41.8125  
6678  
6682  
6686  
6690  
10.9.1  
U.K. Modulation Loop Frequency and Divider  
f
Ref1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4  
28  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.10 USA Base  
Table 10-20. Country Setting Channels (Channel 1 – 10, USA1)  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
10  
00  
01  
100  
00  
00  
1
1
max  
D1 = 8  
D2 = 8  
D3 = 1  
low  
infra  
M = 1  
high  
low gain  
Table 10-21. Country Setting New Channels (Channel 11 – 25, USA2)  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
0
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
01  
01  
10  
110  
01  
00  
0
1
high  
D1 = 6  
D2 = &  
D3 = 1  
infra  
M = 1  
low  
low gain  
Table 10-22. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
DV3I[14:0] = N  
(MHz)  
49.670  
49.845  
49.860  
49.770  
49.875  
49.830  
49.890  
49.930  
49.990  
49.970  
1
2
46.610  
46.630  
46.670  
46.710  
46.730  
46.770  
46.830  
46.870  
46.930  
46.970  
38.970  
39.145  
39.160  
39.070  
39.175  
39.130  
39.190  
39.230  
39.290  
39.270  
7794  
7829  
7832  
7814  
7835  
7826  
7838  
7846  
7858  
7854  
3
4
5
6
7
8
9
10  
Table 10-23. New Channel  
Channel  
Number  
TX Channel Frequency  
RX Channel Frequency  
(MHz)  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
43.720  
43.740  
43.820  
43.840  
43.920  
43.960  
44.120  
44.160  
44.180  
44.200  
44.320  
44.360  
44.400  
44.460  
44.480  
DV3I[14:0] = N  
7612  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
48.760  
48.840  
48.860  
48.920  
49.020  
49.080  
49.100  
49.160  
49.200  
49.240  
49.280  
49.360  
49.400  
49.460  
49.500  
38.06  
38.14  
38.16  
38.22  
38.32  
38.38  
38.40  
38.46  
38.50  
38.54  
38.58  
38.66  
38.70  
38.76  
38.80  
7628  
7632  
7644  
7664  
7676  
7680  
7692  
7700  
7708  
7716  
7732  
7740  
7752  
7760  
29  
4516D–CT0–10/05  
10.11 USA Hand  
Table 10-24. Country Setting Channels (Channel 1 – 10, USA1):  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
10  
00  
01  
100  
00  
00  
1
1
max  
D1 = 8  
D2 = 8  
D3 = 1  
supra  
M = 1  
high  
low gain  
Table 10-25. Country Setting New Channels (Channel 11 – 25, USA2):  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
0
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
01  
00  
10  
110  
01  
00  
0
1
high  
D1 = 6  
D2 = &  
D3 = 1  
supra  
M = 1  
low  
low gain  
Table 10-26. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
46.610  
46.630  
46.670  
46.710  
46.730  
46.770  
46.830  
46.870  
46.930  
46.970  
DV3I[14:0] = N  
11462  
1
2
49.670  
49.845  
49.860  
49.770  
49.875  
49.830  
49.890  
49.930  
49.990  
49.970  
57.31  
57.33  
57.37  
57.41  
57.43  
57.47  
57.53  
57.57  
57.63  
57.67  
11466  
3
11474  
4
11482  
5
11486  
6
11494  
7
11506  
8
11514  
9
11526  
10  
11534  
Table 10-27. New channel  
Channel  
Number  
TX Channel Frequency  
RX Channel Frequency  
(MHz)  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
48.760  
48.840  
48.860  
48.920  
49.020  
49.080  
49.100  
49.160  
49.200  
49.240  
49.260  
49.360  
49.400  
49.460  
49.500  
DV3I[14:0] = N  
10884  
10888  
10904  
10908  
10924  
10932  
10964  
10972  
10976  
10980  
11004  
11012  
11020  
11032  
11036  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
43.720  
43.740  
43.820  
43.840  
43.920  
43.960  
44.120  
44.160  
44.180  
44.200  
44.320  
44.360  
44.400  
44.460  
44.480  
54.42  
54.44  
54.52  
54.54  
54.62  
54.66  
54.82  
54.86  
54.88  
54.90  
55.02  
55.06  
55.10  
55.16  
55.18  
30  
U3600BM  
4516D–CT0–10/05  
U3600BM  
Table 10-28. USA Modulation Loop Frequencies and Dividers  
N Channel  
PM  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
QM  
157  
95  
fMod (MHz)  
7.640  
7.485  
7.510  
7.640  
7.555  
7.640  
7.640  
7.640  
7.640  
7.700  
1
2
3
105  
157  
123  
157  
157  
157  
157  
181  
4
5
6
7
8
9
10  
Table 10-29. New Channel  
N Channel  
PM  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
QM  
34  
10  
34  
18  
10  
2
fMod (MHz)  
5.66  
5.60  
5.66  
5.62  
5.60  
5.58  
5.72  
5.70  
5.68  
5.66  
5.74  
5.70  
5.70  
5.70  
5.68  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
58  
50  
42  
34  
66  
50  
50  
50  
42  
31  
4516D–CT0–10/05  
10.12 Portugal Base  
Table 10-30. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
01  
10  
00  
001  
10  
11  
1
1
D1 = 2  
D2 = 8  
D3 = 4  
infra  
M = 4  
high  
low gain  
Table 10-31. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
37.000  
37.025  
37.050  
37.075  
37.100  
37.125  
37.150  
37.175  
37.200  
37.225  
37.250  
37.275  
DV3I[14:0] = N  
4208  
1
2
27.550  
27.575  
27.600  
27.625  
27.650  
27.675  
27.700  
27.725  
27.750  
27.775  
27.800  
27.825  
26.300  
26.325  
26.350  
26.375  
26.400  
26.425  
26.450  
26.475  
26.500  
26.525  
26.550  
26.575  
4212  
3
4216  
4
4220  
5
4224  
6
4228  
7
4232  
8
4236  
9
4240  
10  
11  
12  
4244  
4248  
4252  
10.12.1 Portugal Modulation Loop Frequency and Divider  
Ref1 = 557.5 kHz/4, fMod = 1.25 MHz/4,PM = 8,QM = 216, M = 4  
f
32  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.13 Portugal Hand  
Table 10-32. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
11  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
01  
01  
00  
001  
10  
11  
1
1
D1 = 2  
D2 = 8  
D3 = 4  
supra  
M = 4  
high  
low gain  
Table 10-33. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
27.550  
27.575  
27.600  
27.625  
27.650  
27.675  
27.700  
27.725  
27.750  
27.775  
27.800  
27.825  
DV3I[14:0] = N  
6120  
1
2
37.000  
37.025  
37.050  
37.075  
37.100  
37.125  
37.150  
37.175  
37.200  
37.225  
37.250  
37.275  
38.250  
38.275  
38.300  
38.325  
38.350  
38.375  
38.400  
38.425  
38.450  
38.475  
38.500  
38.525  
6124  
3
6128  
4
6132  
5
6136  
6
6140  
7
6144  
8
6148  
9
6152  
10  
11  
12  
6156  
6160  
6164  
10.13.1 Portugal Modulation Loop Frequency and Divider  
Ref1 = 557.5 kHz/4, fMod = 1.25 MHz/4,PM = 8,QM = 216, M = 4  
f
33  
4516D–CT0–10/05  
10.14 Taiwan Base  
Table 10-34. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
10  
00  
01  
110  
01  
00  
1
1
max  
D1 = 8  
D2 = 8  
D3 = 1  
infra  
M = 1  
high  
low gain  
Table 10-35. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
6008  
1
2
45.2500  
45.2750  
45.3000  
45.3250  
45.3500  
45.3750  
45.4000  
45.4250  
45.4500  
45.4750  
48.2500  
48.2750  
48.3000  
48.3250  
48.3500  
48.3750  
48.4000  
48.4250  
48.4500  
48.4750  
37.5500  
37.5750  
37.6000  
37.6250  
37.6500  
37.6750  
37.7000  
37.7250  
37.7500  
37.7750  
6012  
3
6016  
4
6020  
5
6024  
6
6028  
7
6032  
8
6036  
9
6040  
10  
6044  
10.14.1 Taiwan Modulation Loop Frequency and Divider  
Mod = 7.7 MHz, PM = 13,QM = 181, M = 1  
f
34  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.15 Taiwan Hand  
Table 10-36. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
10  
00  
01  
110  
00  
00  
1
1
max  
D1 = 8  
D2 = 8  
D3 = 1  
supra  
M = 1  
high  
low gain  
Table 10-37. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
8952  
1
2
48.2500  
48.2750  
48.3000  
48.3250  
48.3500  
48.3750  
48.4000  
48.4250  
48.4500  
48.4750  
45.2500  
45.2750  
45.3000  
45.3250  
45.3500  
45.3750  
45.4000  
45.4250  
45.4500  
45.4750  
55.9500  
55.9750  
56.0000  
56.0250  
56.0500  
56.0750  
56.1000  
56.1250  
56.1500  
56.1750  
8956  
3
8960  
4
8964  
5
8968  
6
8972  
7
8976  
8
8980  
9
8984  
10  
8988  
10.15.1 Taiwan Modulation Loop Frequency and Divider  
Mod = 7.7 MHz, PM = 13,QM = 181, M = 1  
f
35  
4516D–CT0–10/05  
10.16 China Base  
Table 10-38. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
10  
00  
01  
110  
01  
00  
1
1
max  
D1 = 8  
D2 = 8  
D3 = 1  
infra  
M = 1  
high  
low gain  
Table 10-39. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
5968  
5972  
5976  
5980  
5984  
5988  
5992  
5996  
6000  
6004  
6008  
6012  
6016  
6020  
6024  
6028  
6032  
6036  
6040  
6044  
1
2
45.0000  
45.0250  
45.0500  
45.0750  
45.1000  
45.1250  
45.1500  
45.1750  
45.2000  
45.2250  
45.2500  
45.2750  
45.3000  
45.3250  
45.3500  
45.3750  
45.4000  
45.4250  
45.4500  
45.4750  
48.0000  
48.0250  
48.0500  
48.0750  
48.1000  
48.1250  
48.1500  
48.1750  
48.2000  
48.2250  
48.2500  
48.2750  
48.3000  
48.3250  
48.3500  
48.3750  
48.4000  
48.4250  
48.4500  
48.4750  
37.3000  
37.3250  
37.3500  
37.3750  
37.4000  
37.4250  
37.4500  
37.4750  
37.5000  
37.5250  
37.5500  
37.5750  
37.6000  
37.6250  
37.6500  
37.6750  
37.7000  
37.7250  
37.7500  
37.7750  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10.16.1 China Modulation Loop Frequency and Divider  
Mod = 7.7 MHz, PM = 13,QM = 181, M = 1  
f
36  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.17 China Hand  
Table 10-40. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
00  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
10  
00  
01  
110  
00  
00  
1
1
max  
D1 = 8  
D2 = 8  
D3 = 1  
supra  
M = 1  
high  
low gain  
Table 10-41. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
8912  
8916  
8920  
8924  
8928  
8932  
8936  
8940  
8944  
8948  
8952  
8956  
8960  
8964  
8968  
8972  
8976  
8980  
8984  
8988  
1
2
48.000  
48.0250  
48.0500  
48.0750  
48.1000  
48.1250  
48.1500  
48.1750  
48.2000  
48.2250  
48.2500  
48.2750  
48.3000  
48.3250  
48.3500  
48.3750  
48.4000  
48.4250  
48.4500  
48.4750  
45.0000  
45.0250  
450500  
450750  
45.1000  
45.1250  
45.1500  
45.1750  
45.2000  
45.2250  
45.2500  
45.2750  
45.3000  
45.3250  
45.3500  
45.3750  
45.4000  
45.4250  
45.4500  
45.4750  
55.7000  
55.7250  
55.7500  
55.7750  
55.8000  
55.8250  
55.8500  
55.8750  
55.9000  
55.9250  
55.9500  
55.9750  
56.0000  
56.0250  
56.0500  
56.0750  
56.1000  
56.1250  
56.1500  
56.1750  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10.17.1 China Modulation Loop Frequency and Divider  
Mod = 7.7 MHz, PM = 13,QM = 181, M = 1  
f
37  
4516D–CT0–10/05  
10.18 New Zealand Base  
Table 10-42. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
01  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
1
DR1I[1:0] FRMT GDEM  
00  
01  
11  
110  
01  
00  
0
1
D1 = 4  
D2 = 8  
D3 = 2  
infra  
M = 1  
low  
low gain  
Table 10-43. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
4728  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
34.2500  
34.2750  
34.3000  
34.3250  
34.3500  
34.3750  
34.4000  
34.4250  
34.4500  
34.4750  
40.2500  
40.2750  
40.3000  
40.3250  
40.3500  
40.3750  
40.4000  
40.4250  
40.4500  
40.4750  
29.5500  
29.5750  
29.6000  
29.6250  
29.6500  
29.6750  
29.7000  
29.7250  
29.7500  
29.7750  
4732  
4736  
4740  
4744  
4748  
4752  
4756  
4760  
4764  
10.18.1 New Zealand Modulation Loop Frequency and Divider  
Mod = 4.7 MHz/4, PM = 8,QM = 96, M = 1  
f
38  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.19 New Zealand Hand  
Table 10-44. Country Setting  
Name  
Setting  
Value  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
1
D3[1:0]  
01  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
0
DR1I[1:0] FRMT GDEM  
00  
01  
11  
101  
01  
00  
0
1
max  
min  
D1 = 4  
D2 = 8  
D3 = 2  
supra  
M = 1  
low  
low gain  
Table 10-45. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
7192  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40.2500  
40.2750  
40.3000  
40.3250  
40.3500  
40.3750  
40.4000  
40.4250  
40.4500  
40.4750  
34.2500  
34.2750  
34.3000  
34.3250  
34.3500  
34.3750  
34.4000  
34.4250  
34.4500  
34.4750  
44.9500  
44.9750  
45.0000  
45.0250  
45.0500  
45.0750  
45.1000  
45.1250  
45.1500  
45.1750  
7196  
7200  
7204  
7208  
7212  
7216  
7220  
7224  
7228  
10.19.1 New Zealand Modulation Loop Frequency and Divider  
Mod = 4.7 MHz/4, PM = 8,QM = 96, M = 1  
f
39  
4516D–CT0–10/05  
10.20 Korea Base  
Table 10-46. Country Setting  
Name  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
D3[1:0]  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
DR1I[1:0] FRMT GDEM  
Setting  
10  
00  
01  
1
00  
100  
00  
1
00  
1
1
high  
gain  
Value  
max  
D1 = 8  
D2 = 8  
D3 = 1  
infra  
M = 1  
high  
Table 10-47. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
7794  
1
2
46.6100  
46.6300  
46.6700  
46.7100  
46.7300  
46.7700  
46.8300  
46.8700  
46.9300  
46.9700  
46.5100  
46.5300  
46.5500  
46.5700  
46.5900  
49.6700  
49.8450  
49.8600  
49.7700  
49.8750  
49.8300  
49.8900  
49.9300  
49.9900  
49.9700  
49.6950  
49.7100  
49.7250  
49.7400  
49.7550  
38.9700  
39.1450  
39.1600  
39.0700  
39.1750  
39.1300  
39.1900  
39.2300  
39.2900  
39.2700  
39.9950  
39.0100  
39.0250  
39.0400  
39.0550  
7829  
3
7832  
4
7814  
5
7835  
6
7826  
7
7838  
8
7846  
9
7858  
10  
11  
12  
13  
14  
15  
7854  
7799  
7802  
7805  
7808  
7811  
40  
U3600BM  
4516D–CT0–10/05  
U3600BM  
10.21 Korea Hand  
Table 10-48. Country Setting  
Name  
RA1[1:0] RA2[1:0] D1[1:0]  
D20  
D3[1:0]  
KV2[3:1]  
GMOD[1:0]  
IMIXI  
DR1I[1:0] FRMT GDEM  
Setting  
10  
00  
01  
1
00  
100  
00  
0
00  
1
1
high  
gain  
Value  
max  
D1 = 8  
D2 = 8  
D3 = 1  
supra  
M = 1  
high  
Table 10-49. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz  
Channel  
Number  
TX Channel Frequency  
(MHz)  
RX Channel Frequency  
fLO = 1/2 fVCO3  
(MHz)  
(MHz)  
DV3I[14:0] = N  
11462  
11466  
11474  
11482  
11486  
11494  
11506  
11514  
11526  
11534  
11442  
11446  
11450  
11454  
11458  
1
2
49.6700  
49.8450  
49.8600  
49.7700  
49.8750  
49.8300  
49.8900  
49.9300  
49.9900  
49.9700  
49.6950  
49.7100  
49.7250  
49.7400  
49.7550  
46.6100  
46.6300  
46.6700  
46.7100  
46.7300  
46.7700  
46.8300  
46.8700  
46.9300  
46.9700  
46.5100  
46.5300  
46.5500  
46.5700  
46.5900  
57.3100  
57.3300  
57.3700  
57.4100  
57.4300  
57.4700  
57.5300  
57.5700  
57.6300  
57.6700  
57.2100  
57.2300  
57.2500  
57.2700  
57.2900  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
41  
4516D–CT0–10/05  
Table 10-50. Korea Modulation Loop Frequencies and Dividers  
N Channel  
PM  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
QM  
157  
95  
fMod (MHz)  
7.640  
7.485  
7.510  
7.640  
7.555  
7.640  
7.640  
7.640  
7.640  
7.700  
7.515  
7.520  
7.525  
7.530  
7.535  
1
2
3
105  
157  
123  
157  
157  
157  
157  
181  
107  
109  
111  
113  
115  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Table 10-51. Crystal Specifications  
Drive level < 0.01 µW  
Parameters  
Symbol  
Min.  
Typ.  
11.15  
14  
Max.  
Unit  
MHz  
pF  
Load resonance frequency with 14 pF load capacitance  
Load capacitance  
Frequency tolerance  
–30  
9.2  
+30  
3.1  
ppm  
Shunt capacitance  
pF  
Motional capacitance  
fF (1)  
Series resistance  
20  
Note:  
(1) Necessary to stay within adjustment range of oscillator FAOS (0:2) = 0 ... 5  
42  
U3600BM  
4516D–CT0–10/05  
U3600BM  
11. Ordering Information  
Extended Type Number  
Package  
SSO44  
SSO44  
Remarks  
U3600BM-NFNY  
Tube, Pb-free  
U3600BM-NFNG3Y  
Taped and reeled, Pb-free  
12. Package Information  
9.15  
8.65  
Package SSO44  
Dimensions in mm  
18.05  
17.80  
7.50  
7.30  
2.35  
0.3  
0.8  
0.25  
0.10  
0.25  
10.50  
10.20  
16.8  
44  
23  
technical drawings  
according to DIN  
specifications  
1
22  
43  
4516D–CT0–10/05  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trade-  
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
4516D–CT0–10/05  

相关型号:

U3600BM-MFNG3

RF and Baseband Circuit, Bipolar, PDSO44, SSO-44
TEMIC

U3600BM-NFN

SINGLE CHIP CORDLESS TELEPHONE IC
ATMEL

U3600BM-NFNG3

SINGLE CHIP CORDLESS TELEPHONE IC
ATMEL

U3600BM-NFNG3Y

Single-chip Cordless Telephone IC
ATMEL

U3600BM-NFNY

Single-chip Cordless Telephone IC
ATMEL

U3600BM_05

Single-chip Cordless Telephone IC
ATMEL

U3660M

Baseband Delay Line (64 Us)
TEMIC

U3660M-B

Baseband Delay Line (64 Us)
TEMIC

U3661M

Baseband Delay Line
TEMIC

U3661M-ADP

Baseband Delay Line
TEMIC

U3661M-AFP

Baseband Delay Line
TEMIC

U3665M

Baseband Delay Line 64 us (Improved Version)
TEMIC