AMMP-5618_13 [AVAGO]

6–20 GHz General Purpose Amplifier; 6A ???? 20 GHz的通用放大器
AMMP-5618_13
型号: AMMP-5618_13
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

6–20 GHz General Purpose Amplifier
6A ???? 20 GHz的通用放大器

放大器
文件: 总7页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMP-5618  
6–20 GHz General Purpose Amplifier  
Data Sheet  
Description  
Features  
5x 5 mm surface mount package  
Avago’s AMMP-5618 is a high power, medium gain  
amplifier that operates from 6 GHz to 20 GHz. The  
amplifier is designed to be an easy-to-use component  
for any surface mount PCB application. In communication  
systems, it can be used as a LO buffer, or as a transmit  
driver amplifier. During typical operation with a single  
5V supply, each gain stage is biased for Class-A operation  
for optimal power output with minimal distortion. The  
amplifier has integrated 50Ω I/O match, DC blocking,  
self-bias and choke to eliminate complex tuning and  
assembly processes typically required by hybrid (discrete-  
FET) amplifiers. The package is fully SMT compatible with  
backside grounding and I/O to simplify assembly.  
Broad band performance 6–20 GHz  
High +19 dBm output power  
Medium 13 dB typical gain  
50Ω input and output match  
Single 5V (107 mA) supply bias  
Applications  
Microwave radio systems  
Satellite VSAT  
Commercial grade military  
Note: These devices are ESD sensitive. The following pre-  
cautions are strongly recommended. Ensure that an ESD  
approved carrier is used when dice are transported from  
one destination to another. Personal grounding is to be  
worn at all times when handling these devices.  
Package Diagram  
Functional Block Diagram  
NC  
1
Vd  
2
NC  
3
Pin  
1
2
Function  
NC  
1
2
3
Vd  
3
4
5
NC  
RF_out  
NC  
4
8
RF IN  
8
4
RF OUT  
6
7
NC  
NC  
7
6
5
8
RF_in  
7
6
5
NC  
NC  
NC  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model (Class A) = 50V  
ESD Human Body Model (Class 0) = 150V  
Refer to Avago Application Note A004R:  
Electrostatic Discharge Damage and Control.  
Electrical Specifications  
1. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25°C, Vd=5V, Idq=107mA.  
2. Pre-assembly into package performance verified 100% on-wafer per AMMC-5618 published specifications  
3. This final package part performance is verified by a functional test correlated to actual performance at one or  
more frequencies  
4. Specifications are derived from measurements in a 50Ω test environment. Aspects of the amplifier performance  
may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise  
(Γopt) matching.  
Table 1. RF Electrical Characteristics (TA= 25°C, Vd= 5.0V, Idq=107 mA, Zo=50 Ω)  
Parameter  
Typ.  
Sigma  
Unit  
Frequency  
Small-signal Gain, Gain  
12  
13  
0.40  
dB  
5-6 GHz  
Noise Figure into 50 Ω, NF  
4.4  
19  
0.2  
0.9  
1.2  
dB  
Output Power at 1dB Gain Compression, P1dB  
dBm  
dBm  
Third Order Intercept Point;  
∆f=100MHz; Pin=-20dBm, OIP3  
25  
30  
5-6 GHz  
Input Return Loss, RLin  
Output Return Loss, Rlout  
Reverse Isolation, Isolation  
-12  
-12  
-40  
0.7  
0.6  
1.2  
dB  
dB  
dB  
Table 2. Recommended Operating Range  
1. Ambient operational temperature TA = 25°C unless otherwise noted.  
2. Channel-to-backside Thermal Resistance (Tchannel (Tc) = 34°C) as measured using infrared microscopy. Thermal  
Resistance at backside temperature (Tb)= 25°C calculated from measured data.  
Specifications  
Description  
Min.  
Typical  
Max.  
Unit  
Comments  
Drain Supply Current, Id  
107  
140  
mA  
(Vd = 5 V, Under any RF power  
drive and temperature  
Table 3. Thermal Properties  
Parameter  
Test Conditions  
Value  
Thermal Resistance, qch-b  
Backside Temperature, TA =25°C  
qch-b = 34 °C/W  
Absolute Minimum and Maximum Ratings  
Table 4. Minimum and Maximum Ratings  
Specifications  
Description  
Min.  
Max.  
7
Unit  
V
Comments  
Positive Drain Voltage, Vd  
Drain Current, Id  
150  
20  
mA  
dBm  
°C  
RF Input Power (Pin), RFin  
Channel Temperature, Tch  
Storage Temperature, Tstg  
Max. Assembly Temp, Tmax  
Notes:  
CW  
+150  
+150  
-65  
°C  
+300  
°C  
30 second maximum  
1. Operation in excess of any one of these conditions may result in permanent damage to this device.  
2
Selected performance plots  
These measurements are in 50Ω test environment at TA = 25°C, Vd = 5V, Id = 107 mA. Aspects of the amplifier per-  
formance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise  
(Γopt) matching.  
15  
12  
9
0
-10  
-20  
-30  
-40  
-50  
6
3
0
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
Figure 1. Gain.  
Figure 2. Isolation.  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
Figure 4. Output Return Loss.  
Figure 3. Input Return Loss.  
8
7
6
5
4
3
35  
30  
25  
20  
15  
10  
5
OP1dB  
OIP3  
0
6
8
10  
12  
14  
16  
18  
20  
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 5. Noise Figure.  
Figure 6. Typical Power, OP-1dB and OIP3.  
3
Over Temperature Performance Plots  
These measurements are in 50Ω test environment at TA = 25°C, Vd = 5V, Id = 107 mA. Aspects of the amplifier per-  
formance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise  
(Γopt) matching.  
20  
15  
10  
5
0
-10  
-20  
-30  
-40  
-50  
-60  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
0
-5  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
Figure 7. Gain Over Temperature.  
Figure 8. Isolation Over Temperature.  
0
-5  
0
-5  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
Figure 9. Input RL Over Temperature.  
Figure 10. Output Return Loss Over Temperature.  
8
7
6
5
4
3
108  
106  
104  
102  
100  
98  
25°C  
40°C  
85°C  
25°C  
40°C  
85°C  
96  
94  
6
8
10  
12  
FREQUENCY (GHz)  
Figure 11. NF Over Temperature.  
14  
16  
18  
20  
3
3.5  
4
4.5  
5
Vdd (V)  
Figure 12. Bias Current Over Temperature.  
4
Over Voltage plots  
These measurements are in 50Ω test environment at TA = 25°C, Vd = 5V, Id = 107 mA. Aspects of the amplifier per-  
formance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise  
(Γopt) matching.  
0
-10  
-20  
-30  
-40  
-50  
-60  
16  
12  
8
3V  
4V  
5V  
3V  
4V  
5V  
4
0
4
6
8
10 12 14 16 18 20  
FREQUENCY (GHz)  
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
Figure 14. Isolation Over Vdd.  
Figure 13. Gain Over Vdd.  
0
-5  
0
-5  
3V  
4V  
5V  
3V  
4V  
5V  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
4
6
8
10 12 14 16 18 20  
FREQUENCY (GHz)  
4
6
8
10 12 14 16 18 20  
FREQUENCY (GHz)  
Figure 15. Input RL Over Vdd.  
Figure 16. Output Return Loss Over Vdd.  
20  
16  
12  
8
35  
30  
25  
20  
15  
10  
5
3V  
4V  
5V  
3V  
4V  
5V  
4
0
0
6
8
10  
12  
FREQUENCY (GHz)  
Figure 17. Output Power Over Vdd.  
14  
16  
18  
20  
6
8
10  
12  
FREQUENCY (GHz)  
Figure 18. OIP3 Over Vdd.  
14  
16  
18  
20  
5
Typical Scattering Parameters  
Biasing and Operation  
Please refer to <http://www.avagotech.com> for typical The AMMC-5618 is normally biased with a single positive  
scattering parameters data.  
drain supply connected to both VD pins through bypass  
capacitors as shown in Figure 19. The recommended  
supply voltage is 5V. It is important to have 0.1 µF bypass  
capacitor, and the capacitor should be placed as close to  
the component as possible.  
The AMMC-5618 does not require a negative gate voltage  
to bias any of the two stages. No ground wires are  
needed because all ground connections are made with  
plated through-holes to the backside of the package.  
Refer to the Absolute Maximum Ratings table for allowed  
DC and thermal conditions.  
Application Circuit  
Vd  
(Typ 5V)  
0.1 F  
3
1
7
2
RFin  
RFout  
4
8
Figure 21. Demonstration Board  
(available upon request).  
6
5
BASE  
GND  
Figure 19. Typical Application.  
VD2  
VD1  
Feedback  
Network  
Feedback  
Network  
Matching  
RF Output  
Matching  
RF Input  
Matching  
VG1  
VG2  
Figure 20. Simplified MMIC Schematic.  
6
Package Dimension, PCB Layout and Tape and Reel information  
Please refer to Avago Technologies Application Note 5520, AMxP-xxxx production Assembly Process (Land Pattern A).  
Part Number Ordering Information  
Devices  
Part Number  
per Container  
Container  
antistatic bag  
7Reel  
AMMP-5618-BLK  
AMMP-5618-TR1  
AMMP-5618-TR2  
10  
100  
500  
7Reel  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes 5989-3545EN  
AV02-0485EN - July 8, 2013  

相关型号:

AMMP-5620

6 20 GHz High Gain Amplifier in SMT Package
AVAGO

AMMP-5620-BLKG

6 20 GHz High Gain Amplifier in SMT Package
AVAGO

AMMP-5620-TR1G

6 20 GHz High Gain Amplifier in SMT Package
AVAGO

AMMP-5620-TR2G

6 20 GHz High Gain Amplifier in SMT Package
AVAGO

AMMP-5620_13

6 – 20 GHz High Gain Amplifier in SMT Package
AVAGO

AMMP-6120

8-24 GHz x2 Frequency Multiplier 5x5mm Surface Mount Package
AVAGO

AMMP-6120-BLK

8-24 GHz x2 Frequency Multiplier 5x5mm Surface Mount Package
AVAGO

AMMP-6120-TR1

8-24 GHz x2 Frequency Multiplier 5x5mm Surface Mount Package
AVAGO

AMMP-6120-TR2

8-24 GHz x2 Frequency Multiplier 5x5mm Surface Mount Package
AVAGO

AMMP-6130

30 GHz Power Amplifier with Frequency Multiplier (x2)
AVAGO

AMMP-6130-BLKG

30 GHz Power Amplifier with Frequency Multiplier (x2)
AVAGO

AMMP-6130-TR1G

30 GHz Power Amplifier with Frequency Multiplier (x2)
AVAGO