DAC8801IDRBT [BB]

14-Bit, Serial Input Multiplying Digital-to-Analog Converter; 14位串行输入乘法数位类比转换器
DAC8801IDRBT
型号: DAC8801IDRBT
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

14-Bit, Serial Input Multiplying Digital-to-Analog Converter
14位串行输入乘法数位类比转换器

转换器 光电二极管
文件: 总16页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
DAC8801  
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
14-Bit, Serial Input Multiplying Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
14-Bit Monotonic  
The DAC8801 multiplying digital-to-analog converter  
is designed to operate from a single 2.7-V to 5.5-V  
supply.  
±1 LSB INL  
±0.5 LSB DNL  
The applied external reference input voltage VREF  
determines the full-scale output current. An internal  
feedback resistor (RFB) provides temperature tracking  
for the full-scale output when combined with an  
external I-to-V precision amplifier.  
Low Noise: 12 nV/Hz  
Low Power: IDD = 2 µA  
+2.7 V to +5.5 V Analog Power Supply  
2 mA Full-Scale Current ±20%  
with VREF = 10 V  
A serial-data interface offers high-speed, three-wire  
microcontroller compatible inputs using data-in (SDI),  
clock (CLK), and chip select (CS).  
0.5 µs Settling Time  
4-Quadrant Multiplying Reference-Input  
Reference Bandwidth: 10 MHz  
±10 V Reference Input  
The DAC8801 is packaged in space-saving 8-lead  
SON and MSOP packages.  
Reference Dynamics: -105 THD  
3-Wire 50-MHz Serial Interface  
DAC8801  
R
FB  
V
DD  
Tiny 8-Lead 3 x 3 mm SON and 3 x 5 mm  
MSOP Packages  
D/A  
Converter  
I
V
REF  
OUT  
Industry-Standard Pin Configuration  
14  
DAC  
Register  
APPLICATIONS  
CS  
Automatic Test Equipment  
Instrumentation  
Digitally Controlled Calibration  
Industrial Control PLCs  
14  
Shift  
Register  
CLK  
SDI  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004, Texas Instruments Incorporated  
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated  
circuits be handled with appropriate precautions. Failure to observe proper handling and installation  
procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision  
integrated circuits may be more susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
(1)  
PACKAGE/ORDERING INFORMATION  
MINIMUM  
RELATIVE  
ACCURACY NONLINEARITY  
DIFFERENTIAL  
SPECIFIED  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA,  
QUANTITY  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
PRODUCT  
(LSB)  
(LSB)  
Tape and Reel,  
250  
DAC8801  
±1  
±0.5  
MSOP-8  
MSOP-8  
SON-8  
DGK  
DGK  
DRB  
DRB  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
F01  
F01  
E01  
E01  
DAC8801IDGKT  
DAC8801IDGKR  
DAC8801IDRBT  
DAC8801IDRBR  
Tape and Reel,  
2500  
DAC8801  
DAC8801  
DAC8801  
±1  
±1  
±1  
±0.5  
±0.5  
±0.5  
Tape and Reel,  
250  
Tape and Reel,  
2500  
SON-8  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or refer to our  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
DAC8801  
-0.3 to +7  
-0.3 to +VDD + 0.3  
-0.3 to +VDD + 0.3  
-40 to +105  
-65 to +150  
+125  
UNITS  
V
VDD to GND  
Digital Input voltage to GND  
VOUT to GND  
V
V
Operating temperature range  
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
°C  
°C  
°C  
W
(TJ max - TA) / RΘJA  
+55  
Thermal impedance, RΘJA  
Lead temperature, soldering  
Lead temperature, soldering  
ESD rating, HBM  
°C/W  
°C  
°C  
V
Vapor phase (60s)  
Infrared (15s)  
+215  
+220  
1500  
ESD rating, CDM  
1000  
V
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
ELECTRICAL CHARACTERISTICS  
VDD = +2.7 V to +5.5 V; IOUT = Virtual GND, GND = 0 V; VREF = 10 V; TA = Full Operating Temperature; all specifications  
-40°C to +85°C unless otherwise noted.  
DAC8801  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
14  
Bits  
Relative accuracy  
±1  
±0.5  
10  
LSB  
Differential nonlinearity  
Output leakage current  
Output leakage current  
Full-scale gain error  
Full-scale tempco  
LSB  
Data = 0000h, TA = 25°C  
nA  
Data = 0000h, TA = TMAX  
10  
nA  
mV  
All ones loaded to DAC register  
±1  
±3  
±4  
ppm of FSR/°C  
OUTPUT CHARACTERISTICS(1)  
Output current  
2
mA  
pF  
Output capacitance  
REFERENCE INPUT  
VREF Range  
Code dependent  
50  
-15  
15  
V
Input resistance  
5
5
kΩ  
pF  
Input capacitance  
LOGIC INPUTS AND OUTPUT(1)  
Input low voltage  
VIL VDD = +2.7V  
0.6  
0.8  
V
V
Input low voltage  
VIL VDD = +5V  
VIH VDD = +2.7V  
VIH VDD = +5V  
IIL  
Input high voltage  
2.1  
2.4  
V
Input high voltage  
V
Input leakage current  
Input capacitance  
10  
10  
µA  
pF  
CIL  
INTERFACE TIMING  
Clock input frequency  
Clock pulse width high  
Clock pulse width low  
CS to Clock setup time  
Clock to CS hold time  
Data setup time  
fCLK  
50  
MHz  
ns  
10  
10  
0
ns  
ns  
10  
5
ns  
ns  
Data hold time  
10  
ns  
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
5
V
IDD (normal operation)  
VDD = +4.5V to +5.5V  
VDD = +2.7V to +3.6V  
AC CHARACTERISTICS  
Output voltage settling time  
Reference multiplying BW  
DAC glitch impulse  
Feedthrough error  
Logic inputs = 0 V  
µA  
µA  
µA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
3
1
5
2.5  
0.5  
10  
2
µs  
MHz  
nV/s  
dB  
VREF = 5 VPP, Data = 3FFFh  
VREF = 0 V, Data = 3FFFh to 2000h  
VREF = 100 mVRMS, 100kHz, Data = 0000h  
-70  
2
Digital feedthrough  
Total harmonic distortion  
Output spot noise voltage  
nV/s  
dB  
100Hz to 20kHz  
-105  
12  
f = 1 kHz, BW = 1 Hz  
nV/Hz  
(1) Specified by design and characterization, not production tested.  
3
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
PIN ASSIGNMENTS  
DGK PACKAGE  
(TOP VIEW)  
DRB PACKAGE  
(TOP VIEW)  
8
7
6
5
CS  
CLK  
SDI  
1
8
7
CLK  
SDI  
1
2
CS  
V
DD  
2
V
DD  
3
4
R
FB  
GND  
R
FB  
3
4
6
5
GND  
I
V
REF  
OUT  
V
REF  
I
OUT  
TERMINAL FUNCTIONS  
PIN  
NAME  
DESCRIPTION  
1
CLK  
Clock input, positive edge triggered clocks data into shift register  
Serial register input, data loads directly into the shift register MSB first. Extra leading  
bits are ignored.  
2
3
4
SDI  
RFB  
Internal matching feedback resistor. Connect to external op amp output.  
DAC reference input pin. Establishes DAC full-scale voltage. Constant input resistance  
versus code.  
VREF  
5
6
7
IOUT  
GND  
VDD  
DAC current output. Connects to inverting terminal of external precision I to V op amp.  
Analog and digital ground  
Posiitve power supply input. Specified range of operation 2.7 V to 5.5 V.  
Chip select, active low digital input. Transfers shift register data to DAC register on  
rising edge. See Table 1 for operation.  
8
CS  
4
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
TYPICAL CHARACTERISTICS: VDD = +5 V  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 1.  
Figure 2.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 5.  
Figure 6.  
5
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE BANDWIDTH  
1.6  
1.4  
6
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
66  
72  
78  
84  
90  
96  
VDD = +5.0V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
102  
108  
114  
VDD = +2.7V  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Bandwidth (Hz)  
Figure 7.  
Figure 8.  
DAC SETTLING TIME  
DAC GLITCH  
Voltage Output Settling  
Code: 3FFFh to 2000h  
Trigger Pulse  
Trigger Pulse  
µ
Time (0.1 s/div)  
µ
Time (0.2 s/div)  
Figure 9.  
Figure 10.  
6
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
TYPICAL CHARACTERISTICS: VDD = +2.7V  
At TA = +25°C, +VDD = +2.7V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 11.  
Figure 12.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 13.  
Figure 14.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 15.  
Figure 16.  
7
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
THEORY OF OPERATION  
The DAC8801 is a single channel current output, 16-bit digital-to-analog converter (DAC). The architecture,  
illustrated in Figure 17, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the  
ladder is either switched to GND or the IOUT terminal. The IOUT terminal of the DAC is held at a virtual GND  
potential by the use of an external I/V converter op amp. The R-2R ladder is connected to an external reference  
input VREF that determines the DAC full-scale current. The R-2R ladder presents a code independent load  
impedance to the external reference of 5 kΩ± 25%. The external reference voltage can vary in a range of -10 V  
to 10 V, thus providing bipolar IOUT current operation. By using an external I/V converter and the DAC8801 RFB  
resistor, output voltage ranges of -VREF to VREF can be generated.  
When using an external I/V converter and the DAC8801 RFB resistor, the DAC output voltage is given by  
Equation 1:  
CODE  
16384  
VOUT + −VREF  
 
(1)  
R
R
R
V
REF  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
R
FB  
I
OUT  
GND  
Figure 17. Equivalent R-2R DAC Circuit  
Each DAC code determines the 2R leg switch position to either GND or IOUT. Because the DAC output  
impedance as seen looking into the IOUT terminal changes versus code, the external I/V converter noise gain will  
also change. Because of this, the external I/V converter op amp must have a sufficiently low offset voltage such  
that the amplifier offset is not modulated by the DAC IOUT terminal impedance change. External op amps with  
large offset voltages can produce INL errors in the transfer function of the DAC8801 due to offset modulation  
versus DAC code. For best linearity performance of the DAC8801, an op amp (OPA277) as shown in Figure 18  
is recommended. This circuit allows VREF to swing from -10V to +10V.  
V
DD  
U1  
V
DD  
R
FB  
15 V  
U2  
V+  
_
DAC8801  
I
V
REF  
OUT  
OPA277  
V
O
+
GND  
V−  
−15 V  
Figure 18. Voltage Output Configuration  
8
 
 
DAC8801  
www.ti.com  
SDI  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
D13 D12 D11 D10 D9  
D8 D7  
D6  
D1 D0  
CLK  
t
(DS)  
t
(CH)  
t
t
(CL)  
(DH)  
t
t
(CSH)  
(CSS)  
CS  
Figure 19. DAC8801 Timing Diagram  
Table 1. Control Logic Truth Table(1)  
CLK  
X
CS  
H
Serial Shift Register  
DAC Register  
No effect  
Latched  
+  
X
L
Shift register data advanced one bit  
No effect  
Latched  
H
Latched  
X
+  
Shift register data transferred to DAC register  
New data loaded from serial register  
(1) + Positive logic transition; X = Don't care  
Table 2. Serial Input Register Data Format, Data Loaded MSB First  
B13  
B0  
Bit  
Data(1)  
(MSB)  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
(LSB)  
D13  
D0  
(1) A full 16-bit data word can be loaded into the serial register, but only the last 14 bits are transferred to the DAC register when CS goes  
high.  
9
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
APPLICATION INFORMATION  
Stability Circuit  
For a current-to-voltage design as shown in Figure 20, the DAC8801 current output (IOUT) and the connection  
with the inverting node of the op amp should be as short as possible and according to correct PCB layout design.  
For each code change there is a step function. If the GBP of the op amp is limited and parasitic capacitance is  
excessive at the inverting node then gain peaking is possible. Therefore, for circuit stability, a compensation  
capacitor C1 (4 pF to 20 pF typ) can be added to the design as shown in Figure 20.  
V
DD  
V
DD  
R
FB  
C1  
_
+
I
U1  
V
REF  
V
REF  
OUT  
V
OUT  
U2  
GND  
Figure 20. Gain Peaking Prevention Circuit With Compensation Capacitor  
Positive Voltage Output Circuit  
As shown in Figure 21, in order to generate a positive voltage output, a negative reference is input to the  
DAC8801. This design is suggested instead of using an inverting amp to invert the output due to tolerance errors  
of the resistor. For a negative reference, VOUT and GND of the reference are level-shifted to a virtual ground and  
a -2.5 V input to the DAC8801 with an op amp.  
V
DD  
+2.5V Reference  
V
IN  
V
OUT  
GND  
R
FB  
V
DD  
C1  
OPA277  
V
+
REF  
DAC8801  
GND  
+
−2.5 V  
I
OUT  
V
OUT  
OPA277  
0 3 V  
3 +2.5 V  
OUT  
Figure 21. Positive Voltage Output Circuit  
10  
 
 
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
Bipolar Output Circuit  
The DAC8801, as a 2-quadrant multiplying DAC, can be used to generate a unipolar output. The polarity of the  
full-scale output IOUT is the inverse of the input reference voltage at VREF  
.
Some applications require full 4-quadrant multiplying capabilities or bipolar output swing. As shown in Figure 22,  
external op amp U4 is added as a summing amp and has a gain of 2X that widens the output span to 5 V. A  
4-quadrant multiplying circuit is implemented by using a 2.5-V offset of the reference voltage to bias U4.  
According to the circuit transfer equation given in Equation 2, input data (D) from code 0 to full scale produces  
OUT = -2.5 V to VOUT = +2.5 V.  
outpu+t vǒoltages of V  
Ǔ
D
VOUT  
* 1   VREF  
16, 384  
(2)  
10 kW  
10 kW  
V
DD  
5 kW  
C2  
RFB  
V
V
OUT  
DD  
+
C1  
U4  
OPA277  
V
REF  
DAC8801  
GND  
+2.5 V  
(+10 V)  
I
−2.5 V 3 V  
(−10 V 3 V  
3 +2.5 V  
3 +10 V)  
OUT  
OUT  
+
U2  
OPA277  
OUT  
Figure 22. Bipolar Output Circuit  
Programmable Current Source Circuit  
A DAC8801 can be integrated into the circuit in Figure 23 to implement an improved Howland current pump for  
precise voltage to current conversions. Bidirectional current flow and high voltage compliance are two features of  
the circuit. A application of this circuit includes a 4-mA to 20-mA current transmitter with up to a 500-load. With  
a matched resistor network, the load current of the circuit is shown in Equation 3:  
(
)
R2 ) R3 ń R1  
IL +  
  VREF   D  
R3  
(3)  
R2  
15 kW  
C1  
10 pF  
R14  
R34  
U2  
OPA277  
V
DD  
150 kW  
50 W  
+
V
R
V
OUT  
DD  
FB  
U2  
R2  
15 kW  
R1  
150 kW  
OPA277  
R3  
V
U1  
DAC8801  
REF  
V
REF  
50 W  
I
OUT  
+
I
L
GND  
LOAD  
Figure 23. Programmable Bidirectional Current Source Circuit  
11  
 
 
DAC8801  
www.ti.com  
SLAS403ANOVEMBER 2004REVISED DECEMBER 2004  
The value of R3 in the previous equation can be reduced to increase the output current drive of U3. U3 can drive  
±20 mA in both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination of the  
circuit compensation capacitor C1 in the circuit is not suggested because of the change in the output impedance  
ZO, according to Equation 4:  
R1ȀR3(R1 ) R2)  
R1(R2Ȁ ) R3Ȁ) * R1Ȁ(R2 ) R3)  
ZO +  
(4)  
As shown in Equation 4, with matched resistors, ZO is infinite and the circuit is optimum for use as a current  
source. However, if unmatched resistors are used, ZO is positive or negative with negative output impedance  
being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems  
are eliminated. The value of C1 can be determined for critical applications; however, for most applications a  
value of several pF is suggested.  
Cross-Reference  
The DAC8801 has an industry-standard pinout. Table 3 provides the cross-reference information.  
Table 3. Cross Reference  
SPECIFIED  
INL  
(LSB)  
DNL  
(LSB)  
TEMPERATURE  
RANGE  
PACKAGE  
DESCIPTION  
PACKAGE  
OPTION  
CROSS  
REFERENCE  
PRODUCT  
DAC8801IDGK  
DAC8801IDRB  
±1  
±1  
±1  
±1  
-40°C to +85°C  
-40°C to +85°C  
8-Lead MicroSOIC  
MSOP-8  
SON-8  
ADS5553CRM  
N/A  
8-Lead Small Outline  
12  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
MSOP  
MSOP  
SON  
Drawing  
DAC8801IDGKR  
DAC8801IDGKT  
DAC8801IDRBR  
DAC8801IDRBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGK  
8
8
8
8
2000  
250  
TBD  
TBD  
TBD  
TBD  
CU SNPB  
CU SNPB  
CU  
Level-1-220C-UNLIM  
Level-1-220C-UNLIM  
Level-1-240C-UNLIM  
Level-1-240C-UNLIM  
DGK  
DRB  
2500  
250  
SON  
DRB  
CU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

DAC8802

Dual, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8802IPW

Dual, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8802IPWG4

Dual, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8802IPWR

Dual, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8802IPWRG4

Dual, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8803

Quad, Current Output, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8803IDBR

Quad, Current Output, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8803IDBRG4

Quad, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8803IDBT

Quad, Current Output, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8803IDBTG4

14-Bit, Quad Channel, Serial Interface, Multiplying Digital-to-Analog Converter 28-SSOP -40 to 85
TI

DAC8803_15

Quad, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8805

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB