AP3431M-G1 [BCDSEMI]

1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter; 为1.0MHz , 2.0A ,同步降压DC- DC转换器
AP3431M-G1
型号: AP3431M-G1
厂家: BCD SEMICONDUCTOR MANUFACTURING LIMITED    BCD SEMICONDUCTOR MANUFACTURING LIMITED
描述:

1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter
为1.0MHz , 2.0A ,同步降压DC- DC转换器

转换器
文件: 总19页 (文件大小:1260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Features  
General Description  
High Efficiency Buck Power Converter  
Output Current: 2A  
The AP3431 is a high efficiency step-down DC-DC  
voltage converter. The chip operation is optimized  
by peak-current mode architecture with built-in  
synchronous power MOS switchers. The oscillator  
and timing capacitors are all built-in providing an  
internal switching frequency of 1MHz that allows  
the use of small surface mount inductors and  
capacitors for portable product implementations.  
Low RDS(ON) Internal Switches : 120m(VIN=5V)  
Adjustable Output Voltage from 0.8V to 0.9×VIN  
Wide Operating Voltage Range: 2.7V to 5.5V  
Built-in Power Switches for Synchronous  
Rectification with High Efficiency  
Feedback Voltage: 800mV  
Switching Frequency: 1.0MHz  
Thermal Shutdown Protection  
Internal Soft Start  
Integrated Soft Start (SS), Under Voltage Lock Out  
(UVLO), Thermal Shutdown Detection (TSD) and  
short circuit protection are designed to provide  
reliable product applications.  
Applications  
The device is available in adjustable output voltage  
LCD TV  
Set Top Box  
Post DC-DC Voltage Regulation  
PDA and Notebook Computer  
versions ranging from 0.8V to 0.9×VIN when input  
voltage range is from 2.7V to 5.5V , and is able to  
deliver up to 2.0A.  
The AP3431 is available in SOIC-8 package.  
SOIC-8  
Figure 1. Package Type of AP3431  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
1
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Pin Configuration  
M Package  
(SOIC-8)  
8
7
1
2
3
4
6
5
Figure 2. Pin Configuration of AP3431 (Top View)  
Pin Description  
Pin Number  
Pin Name  
Function  
1
2
3
VCC  
NC  
Supply input for the analog circuit  
No connection  
Ground pin  
GND  
Feedback pin. Receives the feedback voltage from a resistive  
divider connected across the output  
Chip enable pin. Active high, internal pull-high with  
200kresistor  
4
5
FB  
EN  
6
7
8
PGND  
SW  
Power switch ground pin  
Switch output pin  
Power supply input for the MOSFET switch  
VIN  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
2
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Functional Block Diagram  
Figure 3. Functional Block Diagram of AP3431  
Ordering Information  
AP3431  
A
-
G1:Green  
Circuit Type  
Package  
M: SOIC-8  
Blank: Tube  
TR: Tape & Reel  
Marking ID Packing Type  
3431M-G1  
3431M-G1  
Temperature  
Range  
Package  
Part Number  
AP3431M-G1  
AP3431MTR-G1  
Tube  
SOIC-8  
-40 to 80°C  
Tape & Reel  
BCD Semiconductor's Pb-free products, as designated with "G1" in the part number, are RoHS compliant and  
green.  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
3
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Absolute Maximum Ratings (Note 1)  
Parameter  
Symbol  
VCC  
Value  
0 to 6.0  
0 to 6.0  
-0.3 to VIN+0.3  
-0.3 to VIN+0.3  
2.9  
Unit  
V
Supply Input for the Analog Circuit  
Power Supply Input for the MOSFET Switch  
VIN  
V
V
SW Pin Switch Voltage  
VSW  
VEN  
ISW  
Enable Voltage  
V
A
SW Pin Switch Current  
Power Dissipation (on PCB, TA=25°C)  
Thermal Resistance (Junction to Ambient, Simulation)  
Junction Temperature  
PD  
1.45  
W
θJA  
68.63  
°C/W  
°C  
°C  
°C  
V
TJ  
160  
Operating Temperature  
TOP  
TSTG  
VHBM  
VMM  
-40 to 85  
-55 to 150  
2000  
Storage temperature  
ESD (Human Body Model)  
ESD (Machine Model)  
V
200  
Note 1: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only, and functional operation of the device at these or any other conditions  
beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to “Absolute  
Maximum Ratings” for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
2.7  
Max  
5.5  
Unit  
V
Supply Input Voltage  
Junction Temperature Range  
Ambient Temperature Range  
TJ  
-40  
125  
80  
°C  
TA  
-40  
°C  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
4
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Electrical Characteristics  
VIN=VCC=VEN=5V, VOUT=1.2V, VFB=0.8V, L=2.2µH, CIN=10µF, COUT=22µF, TA=25°C, unless otherwise  
specified.  
Parameter  
Symbol  
VIN  
Conditions  
Min Typ Max Unit  
Input Voltage Range  
Shutdown Current  
Active Current  
2.7  
5.5  
V
IOFF  
VEN=0V  
VFB = 0.95V  
4
µA  
µA  
ION  
460  
Regulated1Feedback  
Voltage  
VFB  
VOUT/VOUT  
IPK  
For Adjustable Output Voltage 0.784 0.8 0.816  
VIN=2.7V to 5.5V,  
V
%
A
Regulated  
Output  
-3  
3
Voltage Accuracy  
IOUT=0 to 2.0A  
Peak  
Inductor  
2.9  
Current  
Oscillator Frequency  
PMOSFET RON  
fOSC  
VIN = 2.7V to 5.5V  
VIN = 5V  
1.0  
120  
120  
MHz  
mΩ  
RON(P)  
RON(N)  
NMOSFET RON  
VIN = 5V  
mΩ  
EN High-level Input  
Voltage  
EN Low-level Input  
Voltage  
VEN_H  
1.5  
90  
V
V
VEN_L  
IEN  
tSS  
0.4  
EN Input Current  
Soft-start Time  
2
µA  
µs  
450  
Maximum  
Cycle  
Duty  
DMAX  
%
Rising  
2.4  
2.3  
0.1  
160  
V
V
Under Voltage Lock  
Out Threshold  
Falling  
Hysteresis  
Hysteresis=30°C  
V
Thermal Shutdown  
TSD  
°C  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
5
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics  
Figure 4. Efficiency vs. Output Current  
Figure 5. Efficiency vs. Output Current  
Figure 6. 2.5V Load Regulation  
Figure 7. 1.8V Load Regulation  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
6
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 8. 2.5V Line Regulation  
Figure 9. 1.8V Line Regulation  
Figure 10. Efficiency vs. Output Current  
Figure 11. Efficiency vs. Output Current  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
7
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 12. 1.2V Load Regulation  
Figure 13. 1.0V Load Regulation  
Figure 14. 1.2V Line Regulation  
Figure 15. 1.0V Line Regulation  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
8
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 16. Efficiency vs. Output Current  
Figure 17. Frequency vs. Input Voltage  
Figure 18. 3.3V Load Regulation  
Figure 19. Temperature vs. Output Current  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
9
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 20. EN Pin Threshold vs. Input Voltage  
Figure 21. FB Voltage vs. Output Current  
Figure 22. VOUT Ripple  
Figure 23. Dynamic Mode  
(VIN=5V, VOUT=3.3V, IOUT=500mA)  
(Load=200mA to 1200mA, VIN=5V, VOUT=3.3V)  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
10  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 24. VOUT Ripple  
Figure 25. Dynamic Mode (Rising)  
(VIN=5V, VOUT=3.3V, IOUT=1A)  
Figure 26. VOUT Ripple  
Figure 27. Dynamic Mode (Falling)  
(VIN=5V, VOUT=3.3V, IOUT=2A)  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
11  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 28. EN Pin, Low to High  
(VIN=5V, VOUT=3.3V, IOUT=100mA)  
Figure 29. Soft Start  
(VIN=5V, VOUT=3.3V, IOUT=0A)  
Figure 30. EN Pin, Low to High  
(VIN=5V, VOUT=3.3V, IOUT=1A)  
Figure 31. Soft Start  
(VIN=5V, VOUT=3.3V, IOUT=1A)  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
12  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Performance Characteristics (Continued)  
Figure 32. EN Pin, High to Low  
(VIN=5V, VOUT=3.3V, IOUT=1A)  
Figure 33. OTP  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
13  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Application Information  
qw  
The basic AP3431 application circuit is shown in Figure  
35, external components selection is determined by the  
load current and is critical with the selection of inductor  
and capacitor values.  
deviations do not much relieve. The selection of COUT  
is determined by the Effective Series Resistance  
(ESR) that is required to minimize output voltage  
ripple and load step transients, as well as the amount  
of bulk capacitor that is necessary to ensure that the  
control loop is stable. Loop stability can be also  
checked by viewing the load step transient response  
as described in the following section. The output  
ripple, VOUT, is determined by:  
1. Inductor Selection  
For most applications, the value of inductor is chosen  
based on the required ripple current with the range of  
1µH to 6.8µH.  
1
VOUT ≤ ∆IL[ESR +  
]
1
VOUT  
VIN  
8× f ×COUT  
IL =  
VOUT (1−  
)
f × L  
The output ripple is the highest at the maximum input  
voltage since IL increases with input voltage.  
The largest ripple current occurs at the highest input  
voltage. Having a small ripple current reduces the ESR  
loss in the output capacitor and improves the efficiency.  
The highest efficiency is realized at low operating  
frequency with small ripple current. However, larger  
value inductors will be required. A reasonable starting  
point for ripple current setting is IL=40%IMAX . For a  
maximum ripple current stays below a specified  
value, the inductor should be chosen according to the  
following equation:  
3. Load Transient  
A switching regulator typically takes several cycles to  
respond to the load current step. When a load step  
occurs, VOUT immediately shifts by an amount equal  
to ILOAD×ESR, where ESR is the effective series  
resistance of output capacitor. ILOAD also begins to  
charge or discharge COUT generating a feedback error  
signal used by the regulator to return VOUT to its  
steady-state value. During the recovery time, VOUT  
can be monitored for overshoot or ringing that would  
indicate a stability problem.  
VOUT  
VOUT  
L = [  
][1−  
]
f × ∆IL (MAX )  
VIN (MAX )  
4. Output Voltage Setting  
The output voltage of AP3431 can be adjusted by a  
resistive divider according to the following formula:  
The DC current rating of the inductor should be at  
least equal to the maximum output current plus half  
the highest ripple current to prevent inductor core  
saturation. For better efficiency,  
DC-resistance inductor should be selected.  
a
lower  
R
R1  
R2  
VOUT = VREF × (1+ 1 ) = 0.8V × (1+  
)
R2  
2. Capacitor Selection  
The resistive divider senses the fraction of the output  
voltage as shown in Figure 34.  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET.  
To prevent large ripple voltage, a low ESR input  
capacitor sized for the maximum RMS current must  
be used. The maximum RMS capacitor current is  
given by:  
VOUT  
R1  
FB  
1
AP3431  
R2  
[VOUT (VIN VOUT )]2  
IRMS = IOMAX  
×
GND  
VIN  
It indicates a maximum value at VIN=2VOUT, where  
RMS=IOUT/2. This simple worse-case condition is  
I
commonly used for design because even significant  
Figure 34. Setting the Output Voltage  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
14  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Application Information (Continued)  
the VIN and this effect will be more serious at higher  
input voltages.  
5. Short Circuit Protection  
When the AP3431 output node is shorted to GND, as  
VFB drop under 0.4V, the chip will enter soft-start  
mode to protect itself, when short circuit is removed,  
and VFB rise over 0.4V, the AP3431 recover back to  
normal operation again. If the AP3431 reach OCP  
threshold while short circuit, the AP3431 will enter  
soft-start cycle until the current under OCP threshold.  
6.2 I2R losses are calculated from internal switch  
resistance, RSW and external inductor resistance RL.  
In continuous mode, the average output current  
flowing through the inductor is chopped between  
power PMOSFET switch and NMOSFET switch.  
Then, the series resistance looking into the SW pin is  
a function of both PMOSFET and NMOSFET RDS(ON)  
resistance and the duty cycle (D) are as follows:  
6. Efficiency Considerations  
The efficiency of switching regulator is equal to the  
output power divided by the input power times 100%.  
It is usually useful to analyze the individual losses to  
determine what is limiting efficiency and which  
change could produce the largest improvement.  
Efficiency can be expressed as:  
R
DS(ON) resistance and the duty cycle (D):  
RSW = RDS P × D + RDS  
×
(
1D  
)
(
ON  
)
(
ON N  
)
Therefore, to obtain the I2R losses, simply add RSW to  
RL and multiply the result by the square of the  
average output current.  
Efficiency=100%-L1-L2-…..  
Other losses including CIN and COUT ESR dissipative  
losses and inductor core losses generally account for  
less than 2 % of total additional loss.  
Where L1, L2, etc. are the individual losses as a  
percentage of input power.  
Although all dissipative elements in the regulator  
produce losses, two major sources usually account for  
most of the power losses: VIN quiescent current and  
I2R losses. The VIN quiescent current loss dominates  
the efficiency loss at very light load currents and the  
I2R loss dominates the efficiency loss at medium to  
heavy load currents.  
7. Thermal Characteristics  
In most applications, the part does not dissipate much  
heat due to its high efficiency. However, in some  
conditions when the part is operating in high ambient  
temperature with high RDS(ON) resistance and high  
duty cycles, such as in LDO mode, the heat  
dissipated may exceed the maximum junction  
temperature. To avoid the part from exceeding  
maximum junction temperature, the user should do  
some thermal analysis. The maximum power  
dissipation depends on the layout of PCB, the thermal  
resistance of IC package, the rate of surrounding  
airflow and the temperature difference between  
junction and ambient.  
6.1 The VIN quiescent current loss comprises two  
parts: the DC bias current as given in the electrical  
characteristics and the internal MOSFET switch gate  
charge currents. The gate charge current results from  
switching the gate capacitance of the internal power  
MOSFET switches. Each cycle the gate is switched  
from high to low, then to high again, and the packet  
of charge, dQ moves from VIN to ground. The  
resulting dQ/dt is the current out of VIN that is  
typically larger than the internal DC bias current. In  
continuous mode,  
8. PCB Layout Considerations  
When laying out the printed circuit board, the  
following checklist should be used to optimize the  
performance of AP3431.  
IGATE = f × (QP + QN )  
Where QP and QN are the gate charge of power  
PMOSFET and NMOSFET switches. Both the DC  
bias current and gate charge losses are proportional to  
1) The power traces, including the GND trace, the SW  
trace and the VIN trace should be kept direct, short  
and wide.  
2) Put the input capacitor as close as possible to the V  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
15  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Application Information (Continued)  
-IN and GND pins.  
3) The FB pin should be connected directly to the  
feedback resistor divider.  
4) Keep the switching node, SW, away from the  
sensitive FB pin and the node should be kept small  
area.  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
16  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Typical Application  
R
Note 2: VOUT = VFB × (1+ 1 ) .  
R2  
Figure 35. Typical Application Circuit of AP3431  
Table 1. Component Guide  
VOUT(V)  
3.3  
R1(k)  
31.25  
21.5  
12.5  
5
R2(k)  
10  
L1(µH)  
2.2  
2.5  
10  
2.2  
1.8  
10  
2.2  
1.2  
10  
2.2  
1.0  
3
10  
2.2  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
17  
Data Sheet  
1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter  
AP3431  
Mechanical Dimensions  
SOIC-8  
Unit: mm(inch)  
4.700(0.185)  
0.320(0.013)  
1.350(0.053)  
1.750(0.069)  
5.100(0.201)  
0.675(0.027)  
0.725(0.029)  
D
5.800(0.228)  
6.200(0.244)  
1.270(0.050)  
TYP  
D
20:1  
0.800(0.031)  
0.200(0.008)  
0.100(0.004)  
0.300(0.012)  
0°  
8°  
1.000(0.039)  
3.800(0.150)  
4.000(0.157)  
0.190(0.007)  
0.250(0.010)  
1°  
5°  
0.330(0.013)  
0.510(0.020)  
0.900(0.035)  
06)  
.0  
0(0  
.15  
R0  
0.450(0.017)  
0.800(0.031)  
Note: Eject hole, oriented hole and mold mark is optional.  
Nov. 2011 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
18  
BCD Semiconductor Manufacturing Limited  
http://www.bcdsemi.com  
- Headquarters  
- Wafer Fab  
BCD Semiconductor Manufacturing Limited  
Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.  
No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China  
800 Yi Shan Road, Shanghai 200233, China  
Tel: +86-21-24162266, Fax: +86-21-24162277  
Tel: +86-21-6485 1491, Fax: +86-21-5450 0008  
REGIONAL SALES OFFICE  
Shenzhen Office  
Taiwan Office  
USA Office  
Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office  
BCD Semiconductor (Taiwan) Company Limited  
BCD Semiconductor Corp.  
Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,  
4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,  
30920 Huntwood Ave. Hayward,  
China  
Taiwan  
Tel: +886-2-2656 2808  
CA 94544, USA  
Tel: +86-755-8826 7951  
Tel : +1-510-324-2988  
Fax: +86-755-8826 7865  
Fax: +886-2-2656 2806  
Fax: +1-510-324-2788  

相关型号:

AP3431MTR-G1

1.0MHz, 2.0A, Synchronous Step Down DC-DC Converter
BCDSEMI

AP3432DNTR-G1

Switching Regulator, Current-mode, 3.5A, 1500kHz Switching Freq-Max, PDSO6, DFN-6
DIODES

AP3433FNTR-G1

Switching Regulator, Current-mode, 3A, 2000kHz Switching Freq-Max, QFN-16
DIODES

AP3434FNTR-G1

Switching Controller,
DIODES

AP3435MPTR-G1

Switching Regulator, Current-mode, 4.5A, 1000kHz Switching Freq-Max, PDSO8, SOP-8
DIODES

AP3436

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3436A

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3436ADNTR-G1

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3436DNTR-G1

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3441

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3441LSHE-7B

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3441SHE-7B

STEP-DOWN DC-DC BUCK CONVERTER
DIODES