CS5322-BLZ [CIRRUS]

24-bit, Variable-bandwidth A/D Converter Chipset; 24位可变带宽A / D转换器芯片组
CS5322-BLZ
型号: CS5322-BLZ
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

24-bit, Variable-bandwidth A/D Converter Chipset
24位可变带宽A / D转换器芯片组

转换器 模数转换器
文件: 总36页 (文件大小:654K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5321/22  
24-bit, Variable-bandwidth A/D Converter Chipset  
Features  
Description  
The CS5321/CS5322 chipset functions as a unique  
A/D converter intended for very high-resolution  
measurement of signals below 1600 Hz. It is specif-  
ically designed for applications that require both a  
high dynamic range and a low total harmonic distor-  
tion. The chipset performs sampling, A/D  
conversion, and anti-alias filtering.  
z CMOS A/D Converter Chipset  
z Dynamic Range  
- 130 dB @ 25 Hz Bandwidth  
- 121 dB @ 411 Hz Bandwidth  
z Delta-sigma Architecture  
- Fourth-order Modulator  
- Variable Oversampling: 64X to 4096X  
- Internal Track-and-hold Amplifier  
The CS5321 uses Delta-Sigma modulation to pro-  
duce highly accurate conversions. The ∆Σ  
modulator oversamples, virtually eliminating the  
need for external analog anti-alias filters. The  
CS5322 linear-phase FIR digital filter decimates the  
output to any one of seven selectable update peri-  
ods: 16, 8, 4, 2, 1, 0.5, and 0.25 milliseconds. Data  
is output from the digital filter in a 24-bit serial  
format.  
z CS5321 Signal-to-distortion: 115 dB  
z Clock-jitter-tolerant Architecture  
z Input Voltage Range: +4.5 V  
z Flexible Filter Chip  
- Hardware- or Software-selectable Options  
- Seven Selectable Filter Corners (-3 dB)  
Frequencies: 25, 51, 102, 205, 411, 824 and  
1650 Hz  
ORDERING INFORMATION  
z Low Power Dissipation: <100 mW  
See page 36.  
CS5321  
CS5322  
V
V
V
V
ss2  
VD+  
SYNC CLKIN CS R/W  
dd1  
ss1  
dd2  
LPWR  
OFST  
RESET  
RSEL  
SCLK  
SID  
MSYNC  
SOD  
MFLG  
MCLK  
AINR  
AIN+  
Digital  
Filter  
ERROR  
DRDY  
ORCAL  
DECA  
DECB  
DECC  
Analog  
Modulator  
MDATA  
AIN-  
MDATA  
HBR  
VD+  
DGND  
CSEL  
VREF+  
VREF-  
AGND  
DGND  
H/S TDATA PWDN USEOR DGND  
SEP ‘05  
DS454F2  
Copyright © Cirrus Logic, Inc. 2005  
http://www.cirrus.com  
(All Rights Reserved)  
CS5321/22  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS............................................... 4  
CS5321 ANALOG CHARACTERISTICS .................................................... 4  
CS5321 SWITCHING CHARACTERISTICS .............................................. 6  
CS5321 DIGITAL CHARACTERISTICS ..................................................... 7  
CS5321 RECOMMENDED OPERATION CONDITIONS ........................... 7  
CS5321 ABSOLUTE MAXIMUM RATINGS ............................................... 7  
CS5322 FILTER CHARACTERISTICS ...................................................... 8  
CS5322 POWER SUPPLY ....................................................................... 10  
CS5322 SWITCHING CHARACTERISTICS ............................................ 10  
CS5322 DIGITAL CHARACTERISTICS ................................................... 15  
CS5322 RECOMMENDED OPERATION CONDITIONS ......................... 15  
CS5322 ABSOLUTE MAXIMUM RATINGS ............................................. 15  
2. GENERAL DESCRIPTION ............................................................................ 16  
2.1. Analog Input ...................................................................................... 18  
2.2. The OFST Pin.................................................................................... 18  
2.3. Input Range and Overrange Conditions ............................................ 19  
2.4. Voltage Reference............................................................................. 20  
2.5. Clock Source ..................................................................................... 20  
2.6. Low Power Mode............................................................................... 21  
2.7. Digital Interface and Data Format...................................................... 21  
2.8. Performance ...................................................................................... 22  
2.9. Power Supply Considerations............................................................ 23  
2.10. Power Supply Rejection Ratio ......................................................... 23  
2.11. RESET Operation............................................................................ 23  
2.12. Power-down Operation.................................................................... 23  
2.13. SYNC Operation.............................................................................. 24  
2.14. Serial Read Operation ..................................................................... 24  
2.15. Serial Write Operation ..................................................................... 24  
2.16. Offset Calibration Operation ............................................................ 25  
2.17. Status Bits ....................................................................................... 26  
2.18. Board Layout Considerations .......................................................... 28  
3. CS5321 PIN DESCRIPTIONS ....................................................................... 29  
Power Supplies ......................................................................................... 29  
Analog Inputs ............................................................................................ 29  
Digital Inputs ............................................................................................. 30  
Digital Outputs .......................................................................................... 30  
4. CS5322 PIN DESCRIPTIONS ....................................................................... 31  
Power Supplies ......................................................................................... 31  
Digital Outputs .......................................................................................... 31  
Digital Inputs ............................................................................................. 32  
5. PARAMETER DEFINITIONS......................................................................... 34  
6. PACKAGE DIMENSIONS.............................................................................. 35  
7. ORDERING INFORMATION ......................................................................... 36  
8. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION ... 36  
9. REVISION HISTORY .................................................................................... 36  
2
DS454F2  
CS5321/22  
LIST OF FIGURES  
Figure 1. Rise and Fall Times ..................................................................................... 6  
Figure 2. CS5321 Interface Timing, HBR=1 ............................................................... 6  
Figure 3. CS5322 Filter Response ............................................................................. 8  
Figure 4. CS5322 Digital Filter Passband Ripple, f = 62.5 Hz .................................. 8  
0
Figure 5. CS5322 Digital Filter Passband Ripple, f = 125 Hz ................................... 8  
0
Figure 6. CS5322 Digital Filter Passband Ripple, f = 250 Hz ................................... 8  
0
Figure 7. CS5322 Digital Filter Passband Ripple, f = 500 Hz ................................... 9  
0
Figure 8. CS5322 Digital Filter Passband Ripple, f = 1000 Hz ................................. 9  
0
Figure 9. CS5322 Digital Filter Passband Ripple, f = 2000 Hz ................................. 9  
0
Figure 10. CS5322 Digital Filter Passband Ripple, f = 4000 Hz ............................... 9  
0
Figure 11. CS5322 Impulse Response, f = 62.5 Hz .................................................. 9  
0
Figure 12. CS5322 Impulse Response, f = 1000 Hz ................................................. 9  
0
Figure 13. CS5322 Serial Port Timing ...................................................................... 11  
Figure 14. TDATA Setup/Hold Timing ...................................................................... 12  
Figure 15. DRDY Timing .......................................................................................... 13  
Figure 16. RESET Timing ......................................................................................... 13  
Figure 17. CS5321/CS5322 Interface Timing ........................................................... 14  
Figure 18. CS5321 Block Diagram ........................................................................... 16  
Figure 19. CS5322 Block Diagram ........................................................................... 17  
Figure 20. System Connection Diagram ................................................................... 19  
Figure 21. 4.5 Voltage Reference with two filter options .......................................... 20  
Figure 22. 1024 Point FFT Plot with -20 dB Input,  
100 Hz Input, ten averages 22  
Figure 23. 1024 Point FFT Plot with Full Scale Input,  
100 Hz Input, HBR = 1, ten averages ............................................. 22  
Figure 24. 1024 Point FFT Plot with Full Scale Input,  
100 Hz Input, HBR = 0, ten averages ............................................. 22  
LIST OF TABLES  
Table 1. Output Coding for the CS5321 and CS5322 Combination ....................... 21  
Table 2. Configuration Data Bits ............................................................................ 25  
Table 3. Status Data (from the SOD Pin) ............................................................... 26  
Table 4. Bandwidth Selection: Truth Table ............................................................ 27  
DS454F2  
3
CS5321/22  
1. CHARACTERISTICS AND SPECIFICATIONS  
CS5321 ANALOG CHARACTERISTICS (T = (See Note 1); V , V = -5 V; V , V = +5 V;  
A
ss1 ss2  
dd1 dd2  
VD+ = 5 V; AGND = DGND = 0 V; HBR = V LPWR = 0, MCLK = 1.024 MHz; Device connected as shown in Figure 20,  
dd  
CS5322 used for filtering; Logic 1 = VD+, Logic 0 = 0V; unless otherwise specified.)  
CS5321  
Parameter*  
Symbol  
Min  
Typ  
Max  
Unit  
Dynamic Performance  
Dynamic Range  
HBR = 1  
OFST = 1  
(Note 2)  
DR  
f = 4000 Hz  
-
-
103  
118  
121  
124  
127  
129  
130  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
O
f = 2000 Hz  
O
f = 1000 Hz  
116  
O
f = 500 Hz  
-
-
-
-
O
f = 250 Hz  
O
f = 125 Hz  
O
f = 62.5 Hz  
O
HBR = 0  
OFST = 1  
f = 4000 Hz  
-
-
-
-
-
-
-
99  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
O
f = 2000 Hz  
115  
118  
121  
124  
126  
127  
O
f = 1000 Hz  
O
f = 500 Hz  
O
f = 250 Hz  
O
f = 125 Hz  
O
f = 62.5 Hz  
O
Signal-to-Distortion  
(Note 3)  
HBR = 1  
HBR = 0  
SDR  
108  
110  
115  
120  
-
-
dB  
dB  
Intermodulation Distortion  
DC Accuracy  
(Note 4)  
IMD  
FSE  
-
110  
-
dB  
Full Scale Error  
Full Scale Drift  
(Note 5)  
(Note 5,6)  
(Note 5)  
(Note 7)  
(Note 8)  
-
-
-
-
-
-
1
5
-
-
-
-
-
-
%
ppm/°C  
mV  
TC  
FS  
Offset  
V
10  
ZSE  
Offset after Calibration  
Offset Calibration Range  
Offset Drift  
±100  
100  
60  
µV  
%F.S.  
µV/°C  
(Note 5,6) TC  
ZSE  
o
o
o
o
Notes: 1. CS5321-BL is guaranteed from -55 to +85 C, CS5322-BL is guaranteed from -40 to +85 C.  
2. f = CS5322 output word rate. Refer to “CS5322 FILTER CHARACTERISTICS” on page 8 for details  
O
on the FIR Filter.  
3. Characterized with full scale input signal of 50 Hz; fo = 500 Hz.  
4. Characterized with input signals of 30 Hz and 50 Hz, each 6 dB down from full scale with fo = 1000 Hz.  
5. Specification is for the parameter over the specified temperature range and is for the CS5321 device  
only (VREF = +4.5 V). It does not include the effects of external components; OFST = 0.  
6. Drift specifications are guaranteed by design and/or characterization.  
7. The offset after calibration specification applies to the effective offset voltage for a ± 4.5 volt input to the  
CS5321 modulator, but is relative to the output digital codes from the CS5322 after ORCAL and USEOR  
have been made active.  
8. The CS5322 offset calibration is performed digitally and includes ± ±full scale (± 4.5 volts into CS5321).  
Calibration of offsets greater than ± 5% of full scale will begin to subtract from the dynamic range.  
4
DS454F2  
CS5321/22  
CS5321 ANALOG CHARACTERISTICS (Continued)  
CS5321  
Typ  
Parameter*  
Symbol  
Min  
Max  
Unit  
Input Characteristics  
Input Signal Frequencies  
Input Voltage Range  
(Note 9)  
(Note 10)  
(Note 10)  
BW  
DC  
-4.5  
-
-
-
-
1600  
+4.5  
5
Hz  
V
V
IN  
Input Overrange Voltage  
Power Supplies  
I
%F.S.  
OVR  
DC Power Supply Currents  
(Note 11)  
LPWR = 0 Positive Supplies  
Negative Supplies  
-
-
5.5  
5.5  
3.0  
3.0  
7.5  
7.5  
4.5  
4.5  
mA  
mA  
mA  
mA  
LPWR = 1 Positive Supplies  
Negative Supplies  
Power Consumption  
(Note 11)  
Normal Operating Mode (Note12)  
Lower Power Mode (Note 13)  
P
P
-
-
55  
30  
75  
45  
mW  
mW  
DN  
DL  
Power Down  
P
-
-
2
-
-
mW  
dB  
D
Power Supply Rejection  
(dc to 128 kHz) (Note 14)  
PSR  
60  
Notes: 9. The upper bandwidth limit is determined by the CS5322 digital filter.  
10. This input voltage range is for the configuration shown in Figure 20, the System Connection Diagram,  
and applies to signal from dc to f3 Hz. Refer to CS5322 Filter Characteristics for the values of f3.  
11. All outputs unloaded. All logic inputs forced to V or GND respectively.  
dd  
12. LPWR = 0.  
13. The CS5321 power dissipation can be reduced under the following conditions:  
a) LPWR=1; MCLK=512 kHz, HBR=1  
b) LWPR=1; MCLK=1.024 MHz, HBR=0  
14. Characterized with a 100 mVp-p sine wave applied separately to each supply.  
* Refer to Parameter Definitions (immediately following pin descriptions at the end of this data sheet).  
Specifications are subject to change without notice.  
DS454F2  
5
CS5321/22  
CS5321 SWITCHING CHARACTERISTICS (T = (See Note 1); V , V = 5 V ± ±5%; V  
,
ss1  
A
dd1  
dd2  
V
= -5 V ± ±5%; Inputs: Logic 0 = 0 V Logic 1 = V+; C = 50 pF (Note 15))  
ss2  
L
Parameter  
Symbol  
Min  
0.250  
40  
Typ  
Max  
1.2  
60  
Units  
MHz  
%
MCLK Frequency  
MCLK Duty Cycle  
MCLK Jitter (In-band)  
Rise Times:  
(Note 16)  
f
1.024  
c
-
-
-
300  
ps  
Any Digital Input  
Any Digital Output  
(Note 17)  
(Note 17)  
t
-
-
-
50  
100  
200  
ns  
ns  
risein  
t
riseout  
Fall Times:  
Any Digital Input  
Any Digital Output  
t
-
-
-
50  
100  
200  
ns  
ns  
fallin  
t
fallout  
MSYNC Setup Time to MCLK rising  
MSYNC Hold Time after MCLK rising  
MCLK rising to Valid MFLG  
t
t
20  
20  
-
-
-
ns  
ns  
ns  
ns  
mss  
msh  
-
-
t
140  
170  
255  
300  
mfh  
MCLK rising to Valid MDATA  
t
-
mdv  
Notes: 15. Guaranteed by design, characterization, or test.  
16. If MCLK is removed, the modulator will enter the power down mode.  
17. Excludes MCLK input. MCLK should be driven with a signal having rise and fall times of 25 ns or faster.  
t
t
fallin  
risein  
t
t
fallout  
riseout  
4.0 V  
1.0 V  
4.6 V  
0.4 V  
Figure 1. Rise and Fall Times  
MCLK  
t
mss  
t
msh  
MSYNC  
MDATA  
t
t
m dv  
mdv  
mfh  
VALID DATA  
VALID DATA  
t
MFLG  
Figure 2. CS5321 Interface Timing, HBR=1  
6
DS454F2  
CS5321/22  
CS5321 DIGITAL CHARACTERISTICS (T = (See Note 1); V = V  
= 5.0 V ± 5%; GND =  
dd2  
A
dd1  
0 V; measurements performed under static conditions)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
V
High-Level Input Drive Voltage  
Low-Level Input Drive Voltage  
High-Level Output Voltage IOUT = -40 µA  
Low-Level Output Voltage IOUT = +40 µA  
Input Leakage Current  
(Note 18)  
(Note 18)  
(Note 19)  
(Note 19)  
V
(V )-0.6  
-
-
-
1.0  
-
IH  
dd  
V
-
V
IL  
V
(V )-0.3  
-
V
OH  
dd  
V
-
-
-
-
-
0.3  
±10  
-
V
OL  
I
-
µA  
pF  
pF  
LKG  
Digital Input Capacitance  
C
9
9
IN  
Digital Output Capacitance  
C
-
OUT  
Notes: 18. Device is intended to be driven with CMOS logic levels.  
19. Device is intended to be interfaced to CMOS logic. Resistive loads are not recommended on these pins.  
CS5321 RECOMMENDED OPERATION CONDITIONS (Voltages with respect to GND =  
0 V, See Note 20)  
Parameter  
Symbol  
Positive V  
Min  
Typ  
Max  
Units  
DC Supply:  
V
4.75  
-4.75  
5.0  
-5.0  
5.25  
-5.25  
V
V
dd1, dd2  
Negative V ,V  
ss1 ss2  
Ambient Operating Temperature  
-BL  
T
-55  
-
+85  
°C  
A
Notes: 20. The maximum voltage differential between the Positive Supply of the CS5321 and the Positive Digital  
Supply of the CS5322 must be less than 0.25 V.  
CS5321 ABSOLUTE MAXIMUM RATINGS * (Voltages with respect to GND = 0 V)  
Parameter  
Symbol  
Min  
Max  
Units  
DC Supply:  
Positive  
Negative  
V
V
V
-0.3  
+0.3  
6.0  
-6.0  
V
V
dd1, dd2  
,V  
ss1 ss2  
Input Current, Any Pin Except Supplies  
Output Current  
(Note 21)  
I
-
-
±10  
25  
1
mA  
mA  
W
in  
I
out  
Total Power (all supplies and outputs)  
Digital Input Voltage  
P
-
t
V
-0.3  
-65  
(V )+0.3  
V
IND  
dd  
Storage Temperature  
T
150  
°C  
stg  
Notes: 21. Transient currents of up to 100 mA will not cause SCR latch up.  
*WARNING: Operation beyond these limits may result in permanent damage to the device. Normal operation is  
not guaranteed at these extremes.  
DS454F2  
7
CS5321/22  
CS5322 FILTER CHARACTERISTICS (T = (See Note 1); VD+ = 5.0 V; GND = 0 V;  
A
CLKIN = 1.024 MHz; transfer function shown in Figure 3; unless otherwise specified.)  
Output Word Rate  
Passband Flatness  
(dB)  
Passband f1  
(Hz)  
-3dB Freq. f2 Stopband f3 (Hz)  
Group Delay  
(ms)  
f (Hz)  
R
PB  
(Hz)  
(Note 22)  
0
4000  
2000  
1000  
500  
250  
125  
1500  
750  
375  
187.5  
93.8  
46.9  
23.4  
0.2  
1652.5  
824.3  
411.9  
205.9  
102.9  
51.5  
2000  
1000  
500  
250  
125  
7.25  
14.5  
29  
0.04  
0.08  
0.1  
0.1  
0.1  
58  
116  
232  
464  
62.5  
31.25  
62.5  
0.1  
25.7  
Notes: 22. G = -130 dB for all Output Word Rates.  
SB  
dB  
0
-3  
G
SB  
-130  
f1  
f2 f3  
f
Figure 3. CS5322 Filter Response  
f0 = 62.5 Hz  
Figure 4. CS5322 Digital Filter Passband Ripple  
Figure 5. CS5322 Digital Filter Passband Ripple  
f0 = 125 Hz  
Figure 6. CS5322 Digital Filter Passband Ripple  
f0 = 250 Hz  
8
DS454F2  
CS5321/22  
Figure 7. CS5322 Digital Filter Passband Ripple  
f0 = 500 Hz  
Figure 8. CS5322 Digital Filter Passband Ripple  
f0 = 1000 Hz  
Figure 9. CS5322 Digital Filter Passband Ripple  
f0 = 2000 Hz  
Figure 10. CS5322 Digital Filter Passband Ripple  
f0 = 4000 Hz  
-5,206,250  
-5,212,500  
-5,218,750  
-5,225,000  
-5,231,250  
-5,206,250  
-5,208,328  
-5,212,500  
-5,218,750  
-5,225,000  
-5,231,250  
-5,237,500  
-5,243,750  
-5,250,000  
-5,240,723  
-5,237,500  
-5,243,750  
-5,250,000  
1
8
15  
22  
29  
36  
43  
50  
57  
1
8
15  
22  
29  
36  
43  
50  
57  
Tim e (# of O utput W ords)  
Tim e (# of O utput W ords)  
Figure 11. CS5322 Impulse Response,  
f0 = 62.5 Hz  
Figure 12. CS5322 Impulse Response,  
f0 = 1000 Hz  
DS454F2  
9
CS5321/22  
CS5322 POWER SUPPLY (T = (See Note 1); VD+ = 5 V; CLKIN = 1.024 MHz)  
A
CS5322-BL  
Parameter  
Min  
Typ  
Max  
Unit  
Power Supply Current:  
Power Dissipation:  
ID+  
(Note 11)  
-
2.2  
4
mA  
(Note 11)  
PWDN Low  
PWDN High  
-
-
11  
0.6  
20  
2.5  
mW  
mW  
CS5322 SWITCHING CHARACTERISTICS (T = (See Note 1); VD+ = 5 V ± 5%; DGND = 0 V;  
A
Inputs: Logic 0 = 0 V Logic 1 = VD+; C = 50 pF (Note 23)  
L
Parameter  
CLKIN Frequency  
Symbol  
Min  
0.512  
40  
Typ  
1.024  
-
Max  
1.2  
60  
Units  
MHz  
%
f
c
CLKIN Duty Cycle  
Rise Times:  
Any Digital Input  
Any Digital Output  
t
-
-
-
50  
100  
100  
ns  
ns  
rise  
Fall Times:  
Any Digital Input  
Any Digital Output  
t
-
-
-
50  
100  
100  
ns  
ns  
fall  
Serial Port Read Timing  
DRDY to Data Valid  
t
-
50  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ddv  
RSEL Setup Time before Data Valid  
Read Setup before CS Active  
Read Active to Data Valid  
t
rss  
rsc  
rdv  
rdd  
rph  
t
-
t
50  
50  
-
SCLK rising to New SOD bit  
SCLK Pulse Width High  
t
t
-
30  
30  
100  
-
SCLK Pulse Width Low  
t
-
rpl  
SCLK Period  
t
-
rsp  
SCLK falling to DRDY falling  
CS High to Output Hi-Z  
t
50  
20  
-
rst  
rch  
rhc  
rds  
t
t
t
-
Read Hold Time after CS Inactive  
Read Select Setup to SCLK falling  
Serial Port Write Timing  
20  
20  
-
Write Setup Before CS Active  
SCLK Pulse Width Low  
t
20  
30  
30  
100  
20  
20  
20  
20  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
wsc  
t
wpl  
SCLK Pulse Width High  
t
wph  
SCLK Period  
t
wsp  
wws  
Write Setup Time to First SCLK falling  
Data Setup Time to First SCLK falling  
Write Select Hold Time after SCLK falling  
Write Hold Time after CS Inactive  
Data Hold Time after SCLK falling  
t
t
wds  
t
wwh  
t
whc  
t
wdh  
23. Guaranteed by design, characterization and/or test.  
10  
DS454F2  
CS5321/22  
t
rss  
RSEL  
D RDY  
R/W  
t
ddv  
t
rst  
t
rsc  
t
rhc  
CS  
t
rch  
t
rdv  
Hi-Z  
Hi-Z  
SO D  
M SB-1  
LSB  
M SB  
LSB+1  
t
rdd  
SCLK  
t
rsp  
t
t
rpl  
rph  
t
rds  
Serial Port Read Timing  
(R/W = 1, CS = 0, RSEL = 1 DRDY Does not toggle if reading status, RSEL = 0)  
CS  
t
w hc  
t
wsc  
R/W  
t
wph  
t
w w s  
t
w w h  
SCLK  
t
w sp  
t
w ds  
t
wpl  
t
w dh  
LSB  
M SB  
M SB-1  
LSB+1  
SID  
Serial Port Write Timing  
Figure 13. CS5322 Serial Port Timing  
DS454F2  
11  
CS5321/22  
CS5322 SWITCHING CHARACTERISTICS (continued)  
Parameter  
Test Data (TDATA) Timing  
Symbol  
Min  
Typ  
Max  
Units  
SYNC Setup Time to CLKIN rising  
SYNC Hold Time after CLKIN rising  
TDATA Setup Time to CLKIN rising after SYNC  
TDATA Hold Time after CLKIN rising  
ORCAL Setup Time to CLKIN rising  
ORCAL Hold Time after CLKIN rising  
DRDY Timing  
t
20  
20  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ss  
t
sh  
t
20  
150  
-
tds  
tdh  
t
-
t
20  
20  
os  
t
-
oh  
CLKIN rising to DRDY falling  
t
-
-
-
140  
150  
140  
-
-
-
ns  
ns  
ns  
df  
dr  
ec  
CLKIN falling to DRDY rising  
t
CLKIN rising to ERROR change  
RESET Timing  
t
RESET Setup Time to CLKIN rising  
RESET Hold Time after CLKIN rising  
SYNC Setup Time to CLKIN rising  
SYNC Hold Time after CLKIN rising  
t
20  
20  
20  
20  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
rs  
rh  
ss  
sh  
t
t
t
CLKIN  
t
sh  
t
t
ss  
os  
SYNC  
t
oh  
ORCAL  
LSYNC*  
t
tds  
t
t
t
tdh  
rdh  
tds  
TDATA  
VALID  
VALID  
FILTER  
SA MPLES  
DATA  
Figure 14. TDATA Setup/Hold Timing  
12  
DS454F2  
CS5321/22  
C LK IN  
S YN C  
LS YN C *  
D R D Y  
t
t
df  
dr  
t
ec  
E R R O R  
*N ote: For overw rite case, D R D Y w ill rem ain high.  
Figure 15. DRDY Timing  
CLKIN  
t
rh  
t
rs  
RESET  
t
sh  
t
ss  
SYNC  
Figure 16. RESET Timing  
DS454F2  
13  
CS5321/22  
CS5322 SWITCHING CHARACTERISTICS (continued)  
Parameter  
Symbol  
Min  
0.512  
40  
Typ  
1.024  
-
Max  
1.1  
60  
Units  
MHz  
%
MCLK Frequency  
MCLK Duty Cycle  
Rise Times:  
(Note 24)  
f
c
Any Digital Input  
Any Digital Output  
(Note 25)  
(Note 25)  
t
-
-
-
50  
100  
200  
ns  
ns  
rise  
Fall Times:  
Any Digital Input  
Any Digital Output  
t
-
-
-
50  
100  
200  
ns  
ns  
fall  
SYNC Setup Time to CLKIN rising  
SYNC Hold Time after CLKIN rising  
CLKIN edge to MCLK edge  
t
20  
20  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ss  
t
-
sh  
t
30  
50  
90  
mss  
msh  
msd  
MCLK rising to Valid MDATA  
t
t
-
MSYNC Delay from MCLK rising  
(Note 26)  
-
Notes: 24. If MCLK is removed, the modulator will enter the power down mode.  
25. Excludes MCLK input. MCLK should be driven with a signal having rise and fall times of 25 ns or faster.  
26. Only the rising edge of MSYNC relative to MCLK is used to synchronize the device. MSYNC can return  
low at any time as long as it remains high for at least one MCLK cycle.  
C LKIN  
t
sh  
t
ss  
S Y N C  
LSY N C*  
M C LK  
t
m ss  
t
t
m sd  
m sd  
M S Y N C  
M D A TA  
t
t
m sh  
m sh  
VALID D A TA  
V A LID D A TA  
FILTER  
SA M PLES  
D A TA  
M FL G  
* Internal tim ing signal generated in the C S 5322  
Figure 17. CS5321/CS5322 Interface Timing  
14  
DS454F2  
CS5321/22  
CS5322 DIGITAL CHARACTERISTICS (T = (See Note 1); VD+ = 5.0 V ± 5%; GND = 0 V;  
A
measurements performed under static conditions)  
Parameter  
High-Level Input Drive Voltage  
Symbol  
Min  
Typ  
Max  
-
Units  
V
V
(VD+)-0.3  
-
-
IH  
Low-Level Input Drive Voltage  
V
-
0.3  
-
V
IL  
High-Level Input Threshold  
(Note 27)  
(Note 27)  
(Note 28)  
(Note 28)  
(VD+)-1.0  
-
V
Low-Level Input Threshold  
-
-
1.0  
-
V
High-Level Output Voltage IOUT = -40µA  
Low-Level Output Voltage IOUT = +1.6 mA  
V
(VD+)-0.6  
-
V
OH  
V
-
-
-
-
-
-
0.4  
±10  
±10  
-
V
OL  
Input Leakage Current  
All pins except MFLG, SOD  
I
-
µA  
µA  
pF  
pF  
LKG  
Three-State Leakage Current  
Digital Input Capacitance  
Digital Output Capacitance  
I
-
OZ  
C
9
9
IN  
C
-
OUT  
Notes: 27. Device is intended to be driven with CMOS logic levels.  
28. Device is intended to be interfaced to CMOS logic. Resistive loads are not recommended on these pins.  
CS5322 RECOMMENDED OPERATION CONDITIONS (Voltages with respect to GND =  
0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Supply:  
(Note 29)  
Positive  
Negative  
VD+  
VD-  
4.75  
-4.75  
5.0  
-5.0  
5.25  
-5.25  
V
V
Ambient Operating Temperature  
-BL  
T
-40  
-
+85  
°C  
A
Notes: 29. The maximum voltage differential between the Positive Supply of the CS5321 and the Positive Digital  
Supply of the CS5322 must be less than 0.25 V.  
CS5322 ABSOLUTE MAXIMUM RATINGS * (Voltages with respect to GND = 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Supply:  
(Note 29)  
(Note 30)  
Positive  
Negative  
VD+  
VD-  
-0.3  
0.3  
-
-
(VD+)+0.3  
-6.0  
V
V
Input Current, Any Pin Except Supplies  
Digital Input Voltage  
I
-
-
-
-
±10  
(VD+)+0.3  
150  
mA  
V
in  
VIND  
-0.3  
-65  
Storage Temperature  
T
°C  
stg  
Notes: 30. Transient currents of up to 100 mA will not cause SCR latch up.  
*WARNING: Operation beyond these limits may result in permanent damage to the device. Normal operation is  
not guaranteed at these extremes.  
DS454F2  
15  
CS5321/22  
2. GENERAL DESCRIPTION  
The CS5321 is a fourth-order CMOS monolithic The CS5322 is a monolithic digital Finite Impulse  
analog modulator designed specifically for very Response (FIR) filter with programmable decima-  
high resolution measurement of signals between dc tion. The CS5322 and CS5321 are intended to be  
and 1600 Hz. Configuring the CS5321 with the used together to form a unique high dynamic range  
CS5322 FIR filter results in a high resolution A/D ADC chipset. The CS5322 provides the digital  
converter system that performs sampling and A/D anti-alias filter for the CS5321 modulator output.  
conversion with a dynamic range exceeding 120 The CS5322 consists of: a multi-stage FIR filter,  
dB.  
four registers (status, data, offset, and configura-  
tion), a flexible serial input and output port, and a  
2-channel input data multiplexer that selects data  
from the CS5321 (MDATA) or user test data  
(TDATA). The CS5322 decimates (64x to 4096x)  
the output to any of seven selectable up-date peri-  
ods: 16, 8, 4, 2, 1, 0.5 and 0.25 milliseconds. Data  
is output from the digital filter in a 24-bit serial for-  
mat. Figure 19 illustrates the CS5322 Block Dia-  
gram.  
The CS5321 uses a fourth-order oversampling ar-  
chitecture to achieve high resolution A/D conver-  
sion. The modulator consists of a 1-bit A/D  
converter embedded in a negative feedback loop.  
The modulator provides an oversampled serial bit  
stream at 256 kbits per second (HBR=1) and 128  
kbits per second (HBR=0) operating with a clock  
rate of 1.024 MHz. Figure 18 illustrates the  
CS5321 block diagram.  
AGND  
DGND  
Vdd1  
Vss1  
Vdd2  
Vss2  
LPWR  
OFST  
Digital  
Control  
Osc.  
Detect  
MFLG  
AINR  
AIN+  
AIN-  
Σ
HBR  
Clock  
Generation  
MCLK  
A/D  
MSYNC  
MDATA  
MDATA  
D/A  
VREF+  
VREF-  
Figure 18. CS5321 Block Diagram  
16  
DS454F2  
CS5321/22  
SID  
TDATA  
M D ATA  
CSEL  
PW DN  
ORC AL  
US EO R  
D EC C  
DE CB  
DE CA  
DATA M UX  
CO N FIG REG  
CO NFIG M UX  
FIR 1  
H/S  
SCLK  
CLKIN  
RESET  
SYNC  
C S  
FIR 2  
R/W  
M FLG  
CON TROL  
D R DY  
ERRO R  
M SYN C  
M C LK  
FIR 3  
DATA REG  
STATUS REG  
BIT SELECT  
BIT SELECT  
M UX  
SO D  
RSEL  
Figure 19. CS5322 Block Diagram  
DS454F2  
17  
CS5321/22  
ing may be accomplished in an amplifier stage  
ahead of the CS5321 modulator or with the RC in-  
put filter at the AIN+ and AINR input pins. The RC  
filter at the AIN+ and AINR pins is recommended  
to reduce the "charge kick" that the driving ampli-  
fier sees as the switched capacitor sampling is per-  
formed.  
2.1 Analog Input  
The CS5321 modulator uses a switched capacitor  
architecture for its signal and voltage reference in-  
puts. The signal input uses three pins; AINR, AIN+,  
and AIN-. The AIN- pin acts as the return pin for  
the AINR and AIN+ pins. The AINR pin is a  
switched capacitor "rough charge" input for the  
AIN+ pin. The input impedance for the rough Figure 20 illustrates the CS5321 and CS5322 sys-  
charge pin (AINR) is 1/fC where f is two times the tem connections. The input components on AINR  
modulator sampling clock rate and C is the internal  
and AIN+ should be identical values for optimum  
sampling capacitor (about 40 pF). Using a 1.024 performance. In choosing the components the ca-  
MHz master clock (HBR = 1) yields an input im- pacitor should be a minimum of 0.1 µF (C0G di-  
pedance of about 1/(512 kHz)X(40 pF) or about 50 electric ceramic preferred). For minimum board  
k. Internal to the chip the rough charge input pre-  
charges the sampling capacitor used on the AIN+  
input, therefore the effective input impedance on  
the AIN+ pin is orders of magnitude above the im-  
pedance seen on the AINR pin.  
space, the RC components on the AINR input can  
be removed, but this will force the driving amplifi-  
er to source the full dynamic charging current of  
the AINR input. This can increase distortion in the  
driving amplifier and reduce system performance.  
In choosing the RC filter components, increasing C  
and minimizing R is preferred. Increasing C reduc-  
es the instantaneous voltage change on the pin, but  
may require paralleling capacitors to maintain  
smaller size (the recommended 0.1 µF C0G ceram-  
ic capacitor is larger than other similar-valued ca-  
pacitors with different dielectrics). Larger resistor  
values will increase the voltage drop across the re-  
sistor as the recharging current charges the  
switched capacitor input.  
The analog input structure inside the VREF+ pin is  
very similar to the AINR pin but includes addition-  
al circuitry whose operating current can change  
over temperature and from device to device. There-  
fore, if gain accuracy is important, the VREF+ pin  
should be driven from a low source impedance.  
The current demand of the VREF+ pin will produce  
a voltage drop of approximately 45 mV across the  
200 source resistor of Figure 20 and Figure 21  
Option A with MCLK = 1.024 MHz, HBR = 1, and  
temperature = 25°C.  
2.2 The OFST Pin  
When the CS5321 modulator is operated with a 4.5  
V reference it will accept a 9 V p-p input signal, but  
modulator loop stability can be adversely affected  
by high frequency out-of-band signals. Therefore,  
input signals must be band-limited by an input fil-  
ter. The -3 dB corner of the input filter must be  
equal to the modulator sampling clock divided by  
64. The modulator sampling clock is MCLK/4  
when HBR = 1 or MCLK/8 when HBR = 0. With  
MCLK = 1.024 MHz, HBR = 1, the modulator  
sampling clock is 256 kHz which requires an input  
filter with a -3 dB corner of 4 kHz. The bandlimit-  
The CS5321 modulator can produce "idle tones"  
which occur in the passband when the input signal  
is steady state dc signal within about  
± 50 mV of bipolar zero. In the CS5321 these tones  
are about 135 dB down from full scale. The user  
can force these idle tones "out-of-band" by adding  
100 mV of dc offset to the signal at the AIN input.  
Alternately, if the user circuitry has a low offset  
voltage such that the input signal is within ± 50 mV  
of bipolar zero when no AC signal is present, the  
OFST pin on the CS5321 can be activated. When  
OFST = 1, +100 mV of input referred offset will be  
18  
DS454F2  
CS5321/22  
added internal to the CS5321 and guarantee that  
See the Voltage Reference section of this data sheet  
any idle tones present will lie out-of-band. The user for voltage reference requirements.  
should be certain that when OFST is active (OFST  
The modulator is a fourth order delta-sigma and is  
=1) that the offset voltage generated by the user cir-  
cuitry does not negate the offset added by the  
OFST pin.  
therefore conditionally stable. The modulator may  
go into an oscillatory condition if the analog input  
is overranged. Input signals which exceed either  
plus or minus full scale by more than 5 % can intro-  
duce instability in the modulator. If an unstable  
condition is detected, the modulator will be re-  
duced to a first order system until loop stability is  
achieved. If this occurs the MFLG pin will transi-  
tion from a low to a high and result in an error bit  
being set in the CS5322. The input signal must be  
reduced to within the full scale range of the con-  
verter for at least 32 MCLK cycles for the modula-  
tor to recover from this error condition.  
2.3 Input Range and Overrange  
Conditions  
The analog input is applied to the AIN+ and AINR  
pins with the AIN- pin connected to GND. The in-  
put is fully differential but for proper operation the  
AIN- pin must remain at GND potential.  
The analog input span is defined by the voltage ap-  
plied between the VREF+ and VREF- input pins.  
+5V  
Analog  
Supply  
+5 V  
Digital  
Supply  
+
10 µF  
0.1 µF  
0.01 µF  
22  
2
0.1 µF  
21  
VD+  
20  
V
V
23  
dd1  
dd2  
DGND  
1
GND11  
GND1  
25  
24  
SID  
28  
27  
26  
SOD  
OFST  
LPWR  
HBR  
Control  
Logic  
26  
1
SCLK  
CS  
200  
Serial  
Data  
5
6
+4.5V  
VREF  
28  
22  
VREF+  
VREF-  
25  
5
6
R/W  
+
µ
68  
F
0.1 µF  
MSYNC  
MFLG  
MSYNC  
MFLG  
TANT.  
DRDY  
Interface  
24  
20  
27  
23  
RSEL  
7
402  
MCLK  
MCLK  
ERROR  
10  
12  
10  
18  
AINR  
0.1 µF  
COG  
CSEL  
MDATA  
MDATA  
402 Ω  
9
8
Signal  
Source  
CS5321  
AIN+  
AIN-  
CS5322  
0.1 µF  
COG  
13  
14  
15  
19  
18  
17  
16  
4
H/S  
PWDN  
USEOR  
ORCAL  
DECA  
17  
11  
Test  
Data  
MDATA  
TDATA  
14  
13  
12  
GND7  
GND6  
GND5  
Hardware  
Control  
15  
16  
3
2
GND8  
GND9  
CLKIN  
SYNC  
11  
7
Clock  
DECB  
GND4  
GND3  
Source  
DECC  
19  
4
RESET  
GND10  
GND2  
V
V
ss1  
ss2  
21  
VD+  
8
DGND  
9
0.1 µF  
3
Unused logic  
inputs must be  
connected to  
DGND or VD+  
-5V  
Analog  
Supply  
0.01 µF  
+5 V  
Digital  
Supply  
+
10 µF  
0.1 µF  
Figure 20. System Connection Diagram  
DS454F2  
19  
CS5321/22  
for dc-measurement applications. Due to its dy-  
namic (switched-capacitor) input the input imped-  
ance of the +VREF pin of the CS5321 will change  
any time MCLK or HBR is changed. Therefore the  
current required from the voltage reference will  
change any time MCLK or HBR is changed. This  
can affect gain accuracy due to the high source im-  
pedance of the filter resistor in Figure 20 and Fig-  
ure 21 Option A. If gain error is to be minimized,  
especially when MCLK or HBR is changed, the  
voltage reference should have lower output imped-  
ance. The buffer of Figure 21 Option B offers lower  
output impedance and will exhibit better system  
gain stability.  
2.4 Voltage Reference  
The CS5321 is designed to operate with a voltage  
reference in the range of 4.0 to 4.5 Volts. The volt-  
age reference is applied to the VREF+ pin with the  
VREF- pin connected to the GND. A 4.5 V refer-  
ence will result in the best S/N performance but  
most 4.5 V references require a power supply volt-  
age greater than 5.0 V for operation. A 4.0 V refer-  
ence can be used for those applications which must  
operate from only 5.0 V supplies, but will yield a  
S/N slightly lower (1-2 dB) than when using a 4.5  
V reference. The voltage reference should be de-  
signed to yield less than 2 µVrms of noise in band  
at the VREF+ pin of the CS5321. The CS5322 filter  
selection will determine the bandwidth over which  
the voltage reference noise will affect the  
CS5321/22 dynamic range.  
2.5 Clock Source  
For proper operation, the CS5321 must be provided  
with a CMOS-compatible clock on the MCLK pin.  
The MCLK for the CS5321 is usually provided by  
the CS5322 filter. MCLK is usually 1.024 MHz to  
set the seven selectable output word rates from the  
CS5322. The MCLK frequency can be as low as  
250 kHz and as high as 1.2 MHz. The choice of  
clock frequency can affect performance; see the  
Performance section of the data sheet. The clock  
For a 4.5 V reference, the LT1019-4.5 voltage ref-  
erence yields low enough noise if the output is fil-  
tered with a low pass RC filter as shown in Figure  
21 Option A. The filter in Figure 21 Option A is ac-  
ceptable for most spectral measurement applica-  
tions, but a buffered version with lower source  
impedance (Figure 21 Option B) may be preferred  
10  
Option A  
+9 to  
15V  
200  
µ
0.1  
F
To V R E F+  
µ
µ
F
0.1  
F
68  
+
LT1019-4.5  
+9 to 15 V  
Option B  
1k  
49.9  
100  
1k  
+
-
To V R E F+  
+
+
µ
100  
AL  
F
F
µ
µ
10k  
0.1  
F
68  
F
+
Tant  
µ
100  
AL  
LT1007  
Figure 21. 4.5 Voltage Reference with two filter options  
20  
DS454F2  
CS5321/22  
must have less than 300 ps jitter to maintain data CS5321 must be furnished with an MSYNC signal  
sheet performance from the device. The CS5321 is  
equipped with loss of clock detection circuitry erated by the CS5322, resets the MCLK counter-di-  
which will cause the CS5321 to enter a powered- vider in the CS5321 to the correct phase so that the  
prior to data conversion. The MSYNC signal, gen-  
down state if the MCLK is removed or reduced to bitstream can be properly sampled by the CS5322  
a very low frequency. The HBR pin on the CS5321 digital filter.  
modifies the sampling clock rate of the modulator.  
When operated with the CS5322 digital filter the  
When HBR = 1, the modulator sampling clock will  
output codes from the CS5321/22 will range from  
be at MCLK/4; with HBR = 0 the modulator sam-  
approximately decimal -5,242,880 to +5,242,879  
pling clock will be at MCLK/8. The chip set will ex-  
for an input to the CS5321 of ± 4.5 V. Table 1 illus-  
trates the output coding for various input signal am-  
hibit about 3 dB less S/N performance when the  
HBR pin is changed from a logic "1" to a logic "0"  
plitudes. Note that with a signal input defined as a  
for the same output word rate from the CS5322.  
full scale signal (4.5 V with VREF+ = 4.5 V) the  
CS5321/22 chipset does not output a full scale dig-  
2.6 Low Power Mode  
ital code of 8,388,607 but is scaled to a lower value  
The CS5321 includes a low power operating mode  
to allow some overrange capability. Input signals  
(LPWR =1). When operated with LPWR = 1, the  
can exceed the defined full scale by up to 5% and  
CS5321 modulator sampling clock must be restrict-  
still be converted properly.  
ed to rates of 128 kHz or less. Operating in low  
power mode with modulator sample rates greater  
CS5322 Filter  
than 128 kHz will greatly degrade performance.  
Output Code  
HEX Decimal  
Error Flag Possible  
Modulator Input  
Signal  
2.7 Digital Interface and Data Format  
> (+VREF + 5%)  
(+VREF + 5%)  
+VREF  
The MCLK signal (normally 1.024 MHz) is divid-  
ed by four, or by eight inside the CS5321 to gener-  
ate the modulator oversampling clock. The HBR  
pin determines whether the clock divider inside the  
CS5321 divides by four (HBR =1) or by eight  
(HBR = 0). The modulator outputs a ones density  
bit stream from its MDATA and MDATA pins pro-  
portional to the analog input signal, but at a bit rate  
determined by the modulator over sampling clock.  
For proper synchronization of the bitstream, the  
53FFFF(H)  
+5505023  
+5242879  
0
4FFFFF(H)  
000000(H)  
B00000(H)  
AC0000(H)  
0V  
-VREF  
-5242880  
-5505024  
- (+VREF +5%)  
> - (+VREF +5%)  
Error Flag Possible  
Table 1. Output Coding for the CS5321 and  
CS5322 Combination  
DS454F2  
21  
CS5321/22  
2.8 Performance  
0
Dynamic Range = 122.0 dB  
HBR = 1  
OFST = 0  
LPW R = 0  
Figure 22, 23 and 24 illustrate the spectral perfor-  
mance of the CS5321/22 and chipset when operat-  
ing from a 1.024 MHz master clock. Ten 1024  
point FFTs were averaged to produce the plots.  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
Figure 22 illustrates the chip set with a 100 Hz,  
-20 dB input signal. The sample rate was set at 1  
kHz. Dynamic range is 122 dB.  
The dynamic range calculated by the test soft-ware  
is reduced somewhat in Figures 23 and 24 because  
of jitter in the signal test oscillator. Jitter in the  
100 Hz signal source is interpreted by the signal  
processing software to be increased noise.  
0
500  
Figure 22. 1024 Point FFT Plot with -20 dB Input, 100 Hz  
Input, ten averages  
0
The choice of master clock frequency will affect  
performance. The CS5321 will exhibit the best Sig-  
nal to Distortion performance with slower modula-  
tor sampling clock rates as slower sample rates  
allow more time for amplifier settling.  
S/D = 116.0 dB  
S/N = 118.4 dB  
S/N+D = 114.2 dB  
HBR = 1  
O FST = 0  
LPW R = 0  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
see text  
For lowest offset drift, the CS5321 should be oper-  
ated with MCLK = 1.024 MHz and HBR = 1. Slow-  
er modulator sampling clock rates will exhibit  
more offset drift. Changing MCLK to 512 kHz  
(HBR = 1) or changing HBR to zero (MCLK =  
1.024 MHz) will cause the drift rate to double. Off-  
set drift is not linear over temperature so it is diffi-  
cult to specify an exact drift rate. Offset drift  
characteristics vary from part to part and will vary  
as the power supply voltages vary. Therefore, if the  
CS5321 is to be used in precision dc measurement  
applications where offset drift is to be minimized,  
the power supplies should be well regulated. The  
CS5321 will exhibit about 6 ppm/°C of offset drift  
with MCLK = 1 and HBR = 1. Gain drift of the  
CS5321 itself is about 5 ppm/°C and is not affected  
by either modulator sample rate or by power supply  
variation.  
0
500  
Figure 23. 1024 Point FFT Plot with Full Scale Input,  
100 Hz Input, HBR = 1, ten averages  
0
S/D = 122.7 dB  
S/N = 117.1 dB  
S/N+D = 116.4 dB  
HBR = 0  
OFST = 0  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
LPW R = 0  
see text  
0
500  
Figure 24. 1024 Point FFT Plot with Full Scale Input,  
100 Hz Input, HBR = 0, ten averages  
22  
DS454F2  
CS5321/22  
2.9 Power Supply Considerations  
2.11 RESET Operation  
The system connection diagram, Figure 20, illus-  
trates the recommended power supply arrange-  
ments. There are two positive power supply pins  
The RESET pin puts the CS5322 into a known ini-  
tialized state. RESET is recognized on the next  
CLKIN rising edge after the RESET pin has been  
for the CS5321 and two negative power supply brought high (RESET=1). All internal logic is ini-  
pins. Power must be supplied to all four pins and tialized when RESET is active.  
each of the supply pins should be de-coupled with  
a 0.1 µF capacitor to the nearest ground pin on the  
device.  
Normal device operation begins on the second  
CLKIN rising edge after RESET is brought low.  
The CS5322 will remain in an idle state, not per-  
When used with the CS5322 digital filter, the max- forming convolutions, until triggered by a SYNC  
imum voltage differential between the positive sup- event.  
plies of the CS5321 and the positive digital supply  
A RESET operation clears memory, sets the data  
of the CS5322 must be less than 0.25 V. Operation  
output register, offset register, and status flags to all  
beyond this constraint may result in loss of analog  
zeroes, and sets the configuration register to the  
performance in the CS5321/22 system perfor-  
state of the corresponding hardware pins (PWDN,  
ORCAL, DECC, DECB, DECA, USEOR, and  
mance.  
Many seismic or portable data acquisition systems CSEL). The reset state is entered on power on, in-  
are battery powered and utilize dc-dc converters to dependent of the RESET pin. If RESET is low, the  
generate the necessary supply voltages for the sys- first CLKIN will exit the power on reset state.  
tem. To minimize the effects of power supply inter-  
2.12 Power-down Operation  
ference, it is desirable to operate the dc-dc  
The PWDN pin puts the CS5322 into the power-  
down state. The power-down state is entered on the  
first CLKIN rising edge after the PWDN pin is  
brought high. While in the power-down state, the  
MCLK and MSYNC signals to the CS5321 analog  
modulator are held low. The loss of the MCLK sig-  
nal to the modulator causes it to power-down. The  
signals on the MDATA and MFLG pins are ig-  
nored. The serial interface of the CS5322 remains  
active allowing read and write operations. Informa-  
tion in the data register, offset register, configura-  
tion register, and convolution data memory are  
maintained during power-down. The internal con-  
troller requires 64 clock cycles after PWDN is as-  
serted before CLKIN stops.  
converter at a frequency which is rejected by the  
digital filter, or locked to the modulator sample  
clock rate.  
A synchronous dc-dc converter, whose operating  
frequency is derived from the 1.024 MHz clock  
used to drive the CS5322, will minimize the poten-  
tial for "beat frequencies" appearing in the pass-  
band between dc and the corner frequency of the  
digital filter.  
2.10 Power Supply Rejection Ratio  
The PSRR of the CS5321 is frequency dependent.  
The CS5322 digital filter attenuation will aid in re-  
jection of power supply noise for frequencies  
above the corner frequency setting of the CS5322.  
For frequencies between dc and the corner frequen- The CS5322 exits the power-down state on the first  
cy of the digital filter, the PSRR is nearly constant CLKIN rising edge after the PWDN pin is brought  
at about 60 dB.  
low. The CS5322 then enters an idle state until trig-  
gered by a SYNC event.  
DS454F2  
23  
CS5321/22  
To avoid possible high current states while in the SCLK falling edge, each SCLK rising edge shifts  
power down state, the following conditions apply:  
out a new bit. Status reads are 16 bits, and data  
reads are 24 bits. Both streams are supplied as MSB  
first, LSB last.  
1) CLKIN must be active for at least 64 clock cy-  
cles after PWDN entry.  
In the event more SCLK pulses are supplied than  
necessary to clock out the requested information,  
trailing zeroes will be output for data reads and  
trailing LSB’s for status reads. If the read operation  
is terminated before all the bits are read, the inter-  
nal bit pointer is reset to the MSB so that a re-read  
will give the same data as the first read, with one  
exception. The status error flags are cleared on read  
and will not be available on a re-read.  
2) CSEL and TDATA must not both be asserted  
high.  
2.13 SYNC Operation  
The SYNC pin is used to start convolutions and  
synchronize the CS5322 and CS5321 to an external  
sampling source or timing reference. The SYNC  
event is recognized on the first CLKIN rising edge  
after the SYNC pin goes high. SYNC may remain  
high indefinitely. Only the sequence of SYNC ris-  
ing followed by CLKIN rising generates a SYNC  
event.  
The status error flags must be read before entering  
the power-down state. If an error has occurred be-  
fore entering powerdown and the status bit (ER-  
ROR) has not been read, the status bits (ERROR,  
OVERWRITE, MFLG, ACC1 and ACC2) may not  
be cleared on status reads. Upon exiting the power-  
down state and entering normal operation, the user  
may be flagged that an error is still present.  
The SYNC event aligns the output sample and  
causes the filter to begin convolutions. The first  
SYNC event causes an immediate DRDY provided  
DRDY is low. Subsequent data ready events will  
occur at a rate determined by the decimation rate  
inputs DECC, DECB, and DECA. Multiple SYNC  
events can be applied with no effect on operation if  
they are perfectly timed according to the decima-  
tion rate. Any SYNC event not in step with the dec-  
imation rate will cause a realignment and loss of  
data.  
The SOD pin floats when read operation is deacti-  
vated (R/W=1, CS=1). This enables the SID and  
SOD pins to be tied together to form a bi-direction-  
al serial data bus. There is an internal nominal  
100 kΩ±pull-up resistor on the SOD pin.  
2.15 Serial Write Operation  
2.14 Serial Read Operation  
Serial write is used to write data to the configura-  
tion register. The CS, R/W, SCLK and SID pins  
control the serial write operation. The serial write  
operation is activated when CS goes low (CS=0)  
with R/W pin low (R/W=0).  
Serial read is used to obtain status or conversion  
data. The CS, R/W, SCLK, RSEL, and SOD pins  
control the read operation. The serial read opera-  
tion is activated when CS goes low (CS=0) with the  
R/W pin high (R/W=1). The RSEL pin selects be-  
tween conversion data (data register) or status in-  
formation (status register). The selected serial bit  
stream is output on the SOD (Serial Output Data)  
pin.  
Serial input data on the SID pin is sampled on the  
falling edge of SCLK. The input bits are stored in a  
temporary buffer until either the write operation is  
terminated or 8 bits have been received. The data is  
then parallel loaded into the configuration register.  
If fewer than 8 bits are input before the write termi-  
nation, the other bits may be indeterminate.  
On read select, SCLK can either be high or low, the  
first bit appears on the SOD pin and should be  
latched on the falling edge of SCLK. After the first  
24  
DS454F2  
CS5321/22  
Note that a write will occur when CS = 0 and R/W  
cept when ORCAL = 1 and the CS5322 is RESET  
= 0 even if SCLK is not toggled. Failure to clock in as this toggles the ORCAL internally). After OR-  
data with the appropriate number of SCLKs can CAL has been toggled, the SYNC signal must be  
leave the configuration register in an indeterminate applied to the CS5322. The filter settles on the in-  
condition.  
put value in 56 output words. The output word rate  
is determined by the state of the decimation rate  
control pins, DECC, DECB, and DECA. On the  
57th output word, the CS5322 issues the OR-  
CALD status flag, outputs the offset data sample,  
and internally loads the offset register. During cal-  
ibration, the offset register value is not used.  
The serial bit stream is received MSB first, LSB  
last. The order of the input control data is PWDN  
first, followed by ORCAL, USEOR, CSEL, Re-  
served, DECC, DECB, and DECA. The configura-  
tion data bits are defined in Table 2. The  
configuration data controls device operation only  
when in the software mode, i.e., the H/S pin is low If USEOR is high (USEOR=1), subsequent sam-  
(H/S = 0). The Reserved configuration data bit  
must always be written low.  
ples will have the offset subtracted from the output.  
The state of USEOR must remain high for the com-  
plete duration of the convolution cycle. If USEOR  
is low (USEOR=0), the output word is not correct-  
ed, but the offset register retains its value for later  
use. The results of the last calibration will be held  
in the offset register until the end of a new calibra-  
tion, or until the CS5322 is reset using the RESET  
pin. USEOR does not alter the offset register value,  
only its usage.  
2.16 Offset Calibration Operation  
The offset calibration routine computes the offset  
produced by the CS5321 modulator and stores this  
value in the offset register. The USEOR pin or bit  
determines if the offset register data is to be used to  
correct output words.  
After power is applied to the chip set the CS5322  
must be RESET. To begin an offset calibration, the  
CS5321 analog input must represent the offset val-  
ue. Then in software mode (H/S = 0) the ORCAL  
bit must be toggled from a low to a high. In hard-  
ware mode the ORCAL pin must be toggled low  
for at least one CLKIN cycle, then taken high (ex-  
To restart a calibration, ORCAL and SYNC must  
be taken low for at least one CLKIN cycle. OR-  
CAL must then be taken high. The calibration will  
restart on the next SYNC event. If the ORCAL pin  
remains in a high state, only a single calibration  
will start on the first SYNC signal.  
Equivalent Hardware  
Input Bit #  
Function  
PWDN  
ORCAL  
USEOR  
CSEL  
Description  
Standby mode  
1 (MSB)  
2
Self-offset calibration  
Use Offset Register  
Channel Select  
3
4
5
Reserved  
DECC  
Factory use only  
Filter BW selection  
Filter BW selection  
Filter BW selection  
6
7
DECB  
8 (LSB)  
DECA  
Table 2. Configuration Data Bits  
DS454F2  
25  
CS5321/22  
tempted, the CS5322 assumes that data is not want-  
ed and does not assert OVERWRITE, and the old  
data is over-written by the new data. On an OVER-  
WRITE condition, the old partially read data is pre-  
served, and the new data word is lost.  
2.17 Status Bits  
The Status Register is a 16-bit register which al-  
lows the user to read the flags and configuration  
settings of the CS5322. Table 3 documents the data  
bits of the Status Register.  
Status reads have no effect on OVERWRITE assert  
operations. The OVERWRITE bit is cleared on a  
status register read or RESET.  
The ERROR bit and ERROR pin value are the  
OR’ed result of OVERWRITE, MFLG, ACC1, and  
ACC2. The ERROR bit is active high whenever  
any of the four error bits are set due to a fault con- The MFLG error bit reflects the CS5321 MFLG  
dition. The ERROR pin output is active low and signal. Any high level on the CS5322 MFLG pin  
has a nominal 100 kΩ±internal pull-up resistor.  
will set the MFLG status bit. The bit is cleared on a  
status register read or RESET operation, only if the  
MFLG pin on the CS5322 has returned low. A in-  
ternal nominal 100 kΩ±pulldown resistor is on the  
MFLG pin.  
The OVERWRITE bit is set when new conversion  
data is ready to be loaded into the data register, but  
the previous data was not completely read out. This  
can occur on either of two conditions: a read oper-  
ation is in progress or a read operation was started,  
The accumulator error bits, ACC1 and ACC2, indi-  
then aborted, and not completed. These two condi- cate that an underflow or overflow has occurred in  
tions are data read attempts. The attempt is identi- the FIR1 filter for ACC1, or the FIR2 and FIR3 fil-  
fied by the first SCLK low edge (MSB read) of a  
ters for ACC2. Both errors are cleared on a status  
data register read. If a data register read is not at- read, provided the error conditions are no longer  
Output Bit #  
Function  
Error  
Description  
Detects one of the errors below  
Overwrite Error  
1 (MSB)  
2
3
OVERWRITE Error  
MFLG Error  
ACC1 Error  
ACC2 Error  
DRDY  
Modulator Flag Error  
Accumulator 1 Error  
Accumulator Error  
4
5
6
Data Ready  
7
1SYNC  
First sample after SYNC  
Offset calibration done  
Standby mode  
8
ORCALD  
PWDN  
9
10  
11  
12  
13  
14  
15  
16  
ORCAL  
Self-offset Calibration  
Use Offset Register  
Channel Select  
USEOR  
CSEL  
Reserved  
DECC  
Factory use only  
Bandwidth Selection Status  
Bandwidth Selection Status  
Bandwidth Selection Status  
DECB  
DECA  
Table 3. Status Data (from the SOD Pin)  
26  
DS454F2  
CS5321/22  
present. In normal operation the ACC1 error will  
only occur when the input data stream to FIR1 is all  
1’s for more than 32 bits. The ACC2 error cannot  
occur in normal operation.  
able in the output register. This flag is high only  
during that sample and is otherwise low.  
The remaining five status bits (PWDN, ORCAL,  
USEOR, CSEL, Reserved, DECC, DECB, and DE-  
The DRDY bit reflects the state of the DRDY pin. CA) provide configuration readback for the user.  
DRDY rising edge indicates that a new data word These bits echo the control source for the CS5322  
has been loaded into the data register and is avail- such that in the hardware mode (H/S=1), they fol-  
able for reading. DRDY will fall after the SCLK low the corresponding input pins. In host mode  
falling edge that reads the data register LSB. If no-  
(H/S=0) they follow the corresponding configura-  
data read attempt is made, DRDY will pulse low tion bits.  
for 1/2 CLKIN cycle, providing a positive edge on  
A brief explanation of the eight bits are as follows:  
the new data availability. In the OVERWRITE  
case, DRDY remains high because new data is not  
loaded at the normal end of conversion time.  
PWDN - When high, indicates that the CS5322 is in  
the power-down state.  
ORCAL - When high, indicates a potential calibra-  
tion start.  
The 1SYNC status bit provides an indication of the  
filter group delay. It goes high on the second output  
sample after SYNC and is valid for only that sam-  
ple. For repetitive SYNC operations, SYNC must  
run at one fourth the output word rate or slower to  
avoid interfering with the 1SYNC operation. With  
these slower repetitive SYNC’s or non-periodic  
SYNC’s separated by at least three output words,  
1SYNC will occur on the second output sample af-  
ter SYNC.  
USEOR - When high, indicates the Offset Register is  
used. During calibration, this bit will read zero indi-  
cating the offset register is not being used during cal-  
ibration.  
CSEL- When high, TDATA is selected as the filter  
source. When low, the MDATA output signal from  
the CS5321 is selected as the input source to the fil-  
ter.  
ORCALD indicates that calibration of the offset  
register is complete and the offset sample is avail-  
Reserved - Always read low.  
DECC, DECB, and DECA - Indicate the decimation  
rate of the filter and are defined in Table 4.  
DECC  
DECB  
DECA  
Output Word Rate (Hz)  
Clocks Filter Output  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
62.5  
125  
16384  
8192  
4096  
2048  
1024  
512  
250  
500  
1000  
2000  
4000  
Reserved  
256  
-
Table 4. Bandwidth Selection: Truth Table  
DS454F2  
27  
CS5321/22  
AINR pins should be placed with their leads on the  
same axis, not side-by-side. If these capacitors are  
placed side-by-side their electric fields can interact  
and cause increased distortion. The chip should be  
surrounded with a ground plane. Trace fill should  
be used around the analog input components.  
2.18 Board Layout Considerations  
All of the 0.1 µF filter capacitors on the power sup-  
plies, AIN+, and AINR, should be placed very  
close to the chip and connect to the nearest ground  
pin on the device. The capacitors between VREF+  
and VREF- should be located as close to the chip as  
possible. The 0.l µF capacitors on the AIN+ and  
28  
DS454F2  
CS5321/22  
3. CS5321 PIN DESCRIPTIONS  
Power Supplies  
Vdd1 – Positive Power One, PIN 2  
Positive supply voltage. Nominally +5 Volts.  
Vdd2 – Positive Power Two, PIN 22  
Positive supply voltage. Nominally +5 Volts.  
Vss1 – Negative Power One, PIN 3  
Negative supply voltage. Nominally -5 Volts.  
Vss2 – Negative Power Two, PIN 21  
Negative supply voltage. Nominally -5 Volts.  
GND1 through GND11 – Ground, PINS 1, 4, 7, 11, 12, 13, 14, 15, 16, 19, 23.  
Ground reference.  
Analog Inputs  
AIN+ - Positive Analog Input, PIN 9  
Nominally ± ±4.5V  
AIN- - Negative Analog Input, PIN 8  
This pin is tied to ground.  
DS454F2  
29  
CS5321/22  
AINR - Analog Input Rough, PIN 10  
Allows a non-linear current to bypass the main external anti-aliasing filter which if allowed to  
happen, would cause harmonic distortion in the modulator. Please refer to the System  
Connection Diagram and the Analog Input and Voltage Reference section of the data sheet for  
recommended use of this pin.  
VREF+ – Positive Voltage Reference Input, PIN 5  
This pin accepts an external +4.5 V voltage reference.  
VREF- – Negative Voltage Reference Input, PIN 6  
This pin is tied to ground.  
Digital Inputs  
MCLK – Clock Input, PIN 20  
A CMOS-compatible clock input to this pin (nominally 1.024 MHz) provides the necessary  
clock for operation of the modulator and data output portions of the A/D converter. MCLK is  
normally supplied by the CS5322  
MSYNC – Modulator Sync, PIN 25  
A transition from a low to high level on this input will re-initialize the CS5321. MSYNC resets  
a divider-counter to align the MDATA output bit stream from the CS5321 with the timing  
inside the CS5322.  
OFST - Offset, PIN 28  
When high, adds approximately 100 mV of input referred offset to guarantee that any zero  
input limit cycles are out of band if present. When low, zero offset is added.  
LPWR - Low Power Mode, PIN 27  
The CS5321 power dissipation can be reduced from its nominal value of 55 mW to 30 mW  
under the following conditions:  
LPWR=1; MCLK = 512 kHz, HBR=1; or LPWR=1; MCLK = 1.024 MHz, HBR=0  
HBR – High Bit Rate, Pin 26  
Selects either 1 4 MCLK (HBR=1) or 1 8MCLK (HBR=0) for the modulator sampling clock.  
Digital Outputs  
MDATA – Modulator Data Output, PIN 18  
Data will be presented in a one-bit serial data stream at a bit rate of 256 kHz (HBR=1) or  
128 kHz (HBR=0) with MCLK operating at 1.024 MHz.  
MDATA – Modulator Data Output, PIN 17  
Inverse of the MDATA output.  
MFLG – Modulator Flag, PIN 24  
A transition from a low to high level signals that the CS5321 modulator is unstable due to an  
overrange on the analog input  
30  
DS454F2  
CS5321/22  
4. CS5322 PIN DESCRIPTIONS  
CHIP SELECT  
CS  
FRAME SYNC SYNC  
CLOCK INPUT CLKIN  
R/W  
READ/WRITE  
RSEL REGISTER SELECT  
SCLK SERIAL CLOCK  
RESET RESET  
MODULATOR SYNC MSYNC  
MODULATOR FLAG MFLG  
MODULATOR CLOCK MCLK  
SID  
SERIAL INPUT DATA  
SERIAL OUTPUT DATA  
4
3
2
1
28 27 2 6  
SOD  
5
25  
24  
23  
22  
21  
20  
19  
6
CS5322  
ERROR ERROR FLAG  
DRDY DATA READY  
7
TOP  
POSITIVE DIGITAL POWER  
VD+  
8
VIEW  
9
DIGITAL GROUND DGND  
MODULATOR DATA MDATA  
TEST DATA TDATA  
VD+  
POSITIVE DIGITAL POWER  
10  
11  
DGND DIGITAL GROUND  
ORCAL OFFSET CALIBRATION  
DECA DECIMATION RATE CONTROL  
12 13 14 15 16 17 18  
CHANNEL SELECT CSEL  
HARDWARE/SOFTWARE MODE  
H/S  
DECIMATION RATE CONTROL  
DECIMATION RATE CONTROL  
DECB  
DECC  
POWER DOWN PWDN  
USEOR USE OFFSET REGISTER  
Power Supplies  
VD+ – Positive Digital Power, Pin 8, 21  
Positive digital supply voltage. Nominally +5 volts.  
DGND – Digital Ground, Pin 9, 20  
Digital ground reference.  
Digital Outputs  
MCLK – Modulator Clock Output, Pin 7  
A CMOS-compatible clock output (nominally 1.024 MHz) that provides the necessary clock for  
operation of the modulator.  
MSYNC – Modulator Sync, Pin 5  
The transition from a low to high level on this output will re-initialize the CS5321.  
ERROR - Error Flag, Pin 23  
This signal is the output of an open pull-up NOR gate with a nominal 100 k±pull-up resistor  
to which the error status data (OVERWRITE error, MFLG error, ACC1 error and ACC2 error)  
are inputs. When low, it notifies the host processor that an error condition exists. The ERROR  
signal can be wire OR’d together with other filters’ outputs. The value of the internal pull-up  
resistor is 100 k.  
DRDY - Data Ready, Pin 22  
When high, data is ready to be shifted out of the serial port data register.  
DS454F2  
31  
CS5321/22  
SOD - Serial Output Data, Pin 24  
The output coding is 2’s complement with the data bits presented MSB first, LSB last. Data  
changes on the rising edge of SCLK. An internal nominal 100 kΩ±pull-up resistor is included.  
Digital Inputs  
MDATA – Modulator Data, Pin 10  
Data will be presented in a one-bit serial data stream at a bit rate of 256 kHz; (CLKIN =  
1.024 MHz).  
TDATA - Test Data, Pin 11  
Input for user test data.  
MFLG – Modulator Flag, Pin 6  
A transition from a low to high level signals that the CS5321 modulator is unstable due to an  
over-range on the analog input. A Status Bit will be set in the digital filter indicating an error  
condition. An internal nominal 100 kΩ±pull-down resistor included on the input pin.  
RESET - Filter Reset, Pin 4  
Performs a hard reset on the chip, all registers and accumulators are cleared. All signals to the  
device are locked out except CLKIN. The error flags in the Status Register are set to zero and  
the Data Register and Offset Register are set to zero. The configuration register is set to the  
values of the corresponding input pins. SYNC must be applied to resume convolutions after  
RESET deasserts.  
CLKIN - Clock Input, Pin 3  
A CMOS-Compatible clock input to this pin (nominally 1.024 MHz) provides the necessary  
clock for operation the modulator and filter.  
SYNC - Frame Sync, Pin 2  
Conversion synchronization input. This signal synchronizes the start of the filter convolution.  
More than one SYNC signal can occur with no effect on filter performance, providing the  
SYNC signals are perfectly timed at intervals equal to the output sample period.  
CSEL - Channel Select, Pin 12  
When high, information on the TDATA pin is presented to the digital filter. A low causes data  
on the MDATA input to be presented to the digital filter.  
PWDN - Powerdown, Pin 14  
Powers down the filter when taken high. Convolution cycles in the digital filter and the MCLK  
signal are stopped. The registers maintain their data and the serial port remains active. SYNC  
must be applied to resume convolutions after PWDN deasserts.  
DECA - Decimation Rate Control, Pin 18  
See Table 4.  
DECB - Decimation Rate Control, Pin 17  
See Table 4.  
32  
DS454F2  
CS5321/22  
DECC - Decimation Rate Control, Pin 16  
See Table 4.  
H/S - Hardware/Software Mode Select, Pin 13  
When high, the device pins control device operation; when low, the value entered by a prior  
configuration write controls device operation.  
CS - Chip Select, Pin 1  
When high, all signal activity on the SID, R/W and SCLK pins is ignored. The DRDY and  
ERROR signals indicate the status of the chip’s internal operation.  
R/W - Read/Write, Pin 28  
Used in conjunction with CS such that when both signals are low, the filter inputs data from the  
SID pin on the falling edge of SCLK. If CS is low and R/W is high, the filter outputs data on  
the SOD pin on the rising edge of SCLK. R/W low floats the SOD pin allowing SID and SOD  
to be tied together, forming a bidirectional serial data bus.  
SCLK - Serial Clock, Pin 26  
Clock signal generated by host processor to either input data on the SID input pin, or output  
data on the SOD output pin. For write, data must be valid on the SID pin on the falling edge of  
SCLK. Data changes on the SOD pin on the rising edge of SCLK.  
SID - Serial Data Input, Pin 25  
Data bits are presented MSB first, LSB last. Data is latched on the falling edge of SCLK.  
RSEL - Register Select, Pin 27  
Selects conversion data when high, or status data when low.  
USEOR - Use Offset Register, Pin 15  
Use offset register value to correct output words when high. Output words will not be offset  
corrected when low.  
ORCAL - Offset Register Calibrate, Pin 19  
Initiates an offset calibration cycle when SYNC goes high after ORCAL has been toggled from  
low to high. The offset value is output on the 57th word following SYNC. Subsequent words  
will have their offset correction controlled by USEOR.  
DS454F2  
33  
CS5321/22  
5. PARAMETER DEFINITIONS  
Dynamic Range  
The ratio of the full-scale (rms) signal to the broadband (rms) noise signal. Broadband noise is  
measured with the input grounded within the bandwidth of 1 Hz to f3 Hz (See “CS5322  
FILTER CHARACTERISTICS” on page 8). Units in dB.  
Signal-to-Distortion  
The ratio of the full-scale (rms) signal to the rms sum of all harmonics up to f3 Hz.  
Units in dB.  
Intermodulation Distortion  
The ratio of the rms sum of the two test frequencies (30 and 50 Hz) which are each 6 dB down  
from full-scale to the rms sum of all intermodulation components within the bandwidth of dc to  
f3 Hz. Units in dB.  
Full Scale Error  
The ratio of the difference between the value of the voltage reference and analog input voltage  
to the full scale span (two times the voltage reference value). This ratio is calculated after the  
effects of offset and the external bias components are removed and the analog input voltage is  
adjusted. Measurement of this parameter uses the circuitry illustrated in the System Connection  
Diagram. Units in %.  
Full Scale Drift  
The change in the Full Scale value with temperature. Units in %/°C.  
Offset  
The difference between the analog ground and the analog voltage necessary to yield an output  
code from the CS5321/22 of 000000(H). Measurement of this parameter uses the circuit  
configuration illustrated in the System Connection Diagram. Units in mV.  
Offset Drift  
The change in the Offset value with temperature. Measurement of this parameter uses the  
circuit configuration illustrated in the System Connection Diagram. Units in µV/°C.  
34  
DS454F2  
CS5321/22  
6. PACKAGE DIMENSIONS  
28L PLCC PACKAGE DRAWING  
e
D2/E2  
E1 E  
B
D1  
D
A1  
A
INCHES  
MILLIMETERS  
DIM  
A
A1  
B
MIN  
MAX  
MIN  
4.043  
2.205  
MAX  
4.572  
3.048  
0.165  
0.090  
0.013  
0.485  
0.450  
0.390  
0.485  
0.450  
0.390  
0.040  
0.180  
0.120  
0.021  
0.495  
0.456  
0.430  
0.495  
0.456  
0.430  
0.060  
0.319  
0.533  
D
11.883  
11.025  
9.555  
11.883  
11.025  
9.555  
12.573  
11.582  
10.922  
12.573  
11.582  
10.922  
1.524  
D1  
D2  
E
E1  
E2  
e
0.980  
JEDEC #: MS-018  
DS454F2  
35  
CS5321/22  
7. ORDERING INFORMATION  
Model  
CS5321-BL  
Temperature  
Package  
-55 to +85 °C  
CS5321-BLZ (Lead Free)  
CS5322-BL  
28-pin SSOP  
-40 to +85 °C  
CS5322-BLZ (Lead Free)  
8. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
CS5321-BL  
Peak Reflow Temp  
225 °C  
MSL Rating*  
Max Floor Life  
260 °C  
CS5321-BLZ (Lead Free)  
CS5322-BL  
2
365 Days  
225 °C  
260 °C  
CS5322-BLZ (Lead Free)  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
9. REVISION HISTORY  
Revision  
Date  
Changes  
PP3  
OCT 2003  
Initial Release.  
Update ordering information. MSL data added. Change CS5321 T spec to -40 to  
A
F1  
F2  
AUG 2005  
SEP 2005  
+85 degrees.  
Change CS5321 T spec to -55 to +85 degrees.  
A
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-  
STOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED,  
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT  
THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL  
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND  
OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION  
WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
36  
DS454F2  

相关型号:

CS5322-KL

24-Bit Variable Bandwidth A/D Converter Chipset
CIRRUS

CS5322/D

Two-Phase Buck Controller with Integrated Gate Drivers and 5-Bit DAC
ETC

CS5322GDW28

Two−Phase Buck Controller with Integrated Gate Drivers and 5−Bit DAC
ONSEMI

CS5322GDWR28

Two−Phase Buck Controller with Integrated Gate Drivers and 5−Bit DAC
ONSEMI

CS5323

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI

CS5323-BL

Other/Special/Miscellaneous Converter
ETC

CS5323-D

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI

CS5323-KL

Other/Special/Miscellaneous Converter
ETC

CS5323/D

Three-Phase Buck Controller with 5-Bit DAC
ETC

CS5323D

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI

CS5323GDW20

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI

CS5323GDWR20

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI