BCM4339XKWBGT [CYPRESS]

Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver;
BCM4339XKWBGT
型号: BCM4339XKWBGT
厂家: CYPRESS    CYPRESS
描述:

Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver

文件: 总183页 (文件大小:4237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products. Although the document is marked with the name  
Broadcom”, the company that originally developed the specification, Cypress will continue to offer these products to  
new and existing customers.  
CONTINUITY OF SPECIFICATIONS  
There is no change to this document as a result of offering the device as a Cypress product. Any changes that have  
been made are the result of normal document improvements and are noted in the document history page, where  
supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.  
CONTINUITY OF ORDERING PART NUMBERS  
Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part  
Numbers listed in this document.  
FOR MORE INFORMATION  
Please visit our website at www.cypress.com or contact your local sales office for additional information about  
Cypress products and services.  
OUR CUSTOMERS  
Cypress is for true innovators in companies both large and small.  
Our customers are smart, aggressive, out-of-the-box thinkers who design and develop game-changing products that  
revolutionize their industries or create new industries with products and solutions that nobody ever thought of before.  
ABOUT CYPRESS  
Founded in 1982, Cypress is the leader in advanced embedded system solutions for the world’s most innovative  
automotive, industrial, home automation and appliances, consumer electronics and medical products. Cypress’s  
programmable systems-on-chip, general-purpose microcontrollers, analog ICs, wireless and USB-based connectivity  
solutions and reliable, high-performance memories help engineers design differentiated products and get them to  
market first.  
Cypress is committed to providing customers with the best support and engineering resources on the planet enabling  
innovators and out-of-the-box thinkers to disrupt markets and create new product categories in record time. To learn  
more, go to www.cypress.com.  
Cypress Semiconductor Corporation  
Document Number: 002-14784 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 1, 2016  
Preliminary Data Sheet  
BCM4339  
Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/Radio  
with Integrated Bluetooth 4.1 and FM Receiver  
GENERAL DESCRIPTION  
GENERAL DESCRIPTION  
®
The Broadcom BCM4339 single-chip device provides  
Using advanced design techniques and process  
technology to reduce active and idle power, the  
BCM4339 is designed to address the needs of mobile  
devices that require minimal power consumption  
and compact size. It includes a power management  
unit which simplifies the system power topology and  
allows for direct operation from a mobile platform  
battery while maximizing battery life.  
the highest level of integration for a mobile or  
handheld wireless system with integrated single-  
stream IEEE 802.11ac MAC/baseband/radio,  
Bluetooth 4.1 and FM radio receiver. In IEEE 802.11ac  
mode, the WLAN operation supports rates of MCS0–  
MCS9 (up to 256 QAM) in 20 MHz, 40 MHz, and 80  
MHz channels for data rates up to 433.3 Mbps. In  
addition, all the rates specified in IEEE 802.11a/b/g/n  
are supported. Included on-chip are 2.4 GHz and  
5 GHz transmit amplifiers, and receive low-noise  
amplifiers. Optional external PAs, LNAs, and antenna  
diversity are also supported.  
The BCM4339 implements highly sophisticated  
enhanced collaborative coexistence hardware  
mechanisms and algorithms, which ensure that  
WLAN and Bluetooth collaboration is optimized for  
maximum performance. In addition, coexistence  
support for external radios (such as LTE cellular,  
GPS, and WiMAX) is provided via an external  
interface. As a result, enhanced overall quality for  
simultaneous voice, video, and data transmission is  
achieved.  
For the WLAN section, several alternative host  
interface options are included: an SDIO v3.0 interface  
that can operate in 4b, 1b, or gSPI modes and a PCIe  
Gen1 interface (3.0 compliant). For the Bluetooth  
section, host interface options of a high-speed 4-wire  
UART and USB 2.0 full-speed (12 Mbps) are  
provided.  
4339-DS106-R  
5300 California Avenue • Irvine, CA 92617 • Phone: 949-926-5000 • Fax: 949-926-5203  
November 17, 2014  
Figure 1: Functional Block Diagram  
VIO VBAT  
WL_REG_ON  
5 GHz WLAN TX  
FEM or  
T/R  
Switch  
WLAN  
Host I/F  
PCIe  
5 GHz WLAN RX  
SDIO*/SPI  
External  
Coexistence I/F  
COEX  
2.4 GHz WLAN TX  
FEM or  
T/R  
Switch  
2.4 GHz WLAN/BT RX  
CLK_REQ  
BT_REG_ON  
UART  
CBF  
BCM4339  
Bluetooth TX  
Bluetooth Host I/F  
FM Rx Host I/F  
USB 2.0  
I2S  
PCM  
BT_DEV_WAKE  
BT_HOST_WAKE  
FM Rx  
FM Audio Out  
I2S  
FM I/F  
Broadcom Corporation  
5300 California Avenue  
Irvine, CA 92617  
© 2014 by Broadcom Corporation  
All rights reserved  
Printed in the U.S.A.  
Broadcom®, the pulse logo, Connecting everything®, and the Connecting everything logo are among the  
trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the  
EU. Any other trademarks or trade names mentioned are the property of their respective owners.  
This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed,  
intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations,  
pollution control, hazardous substances management, or other high-risk application. BROADCOM PROVIDES  
THIS DATA SHEET “AS-IS,” WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL  
WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-  
INFRINGEMENT.  
BCM4339 Preliminary Data Sheet  
Revision History  
FEATURES  
FEATURES  
Integrated ARMCR4processor with tightly coupled  
memory for complete WLAN subsystem functionality,  
minimizing the need to wake up the applications  
processor for standard WLAN functions. This allows for  
further minimization of power consumption, while  
maintaining the ability to field upgrade with future  
features. On-chip memory includes 768 KB SRAM and  
640 KB ROM.  
IEEE 802.11x Key Features  
IEEE 802.11ac compliant.  
Single-stream spatial multiplexing up to  
433.3 Mbps data rate.  
Supports 20, 40, and 80 MHz channels with  
optional SGI (256 QAM modulation).  
Full IEEE 802.11a/b/g/n legacy compatibility  
with enhanced performance.  
OneDriversoftware architecture for easy migration  
from existing embedded WLAN and Bluetooth devices  
as well as future devices.  
Tx and Rx low-density parity check (LDPC)  
support for improved range and power  
efficiency.  
Bluetooth and FM Key Features  
Supports Rx space-time block coding  
(STBC)  
Complies with Bluetooth Core Specification Version 4.1  
with provisions for supporting future specifications.  
Supports IEEE 802.11ac/n beamforming.  
Bluetooth Class 1 or Class 2 transmitter operation.  
On-chip power amplifiers and low-noise  
amplifiers for both bands.  
Supports extended synchronous connections (eSCO),  
for enhanced voice quality by allowing for retransmission  
of dropped packets.  
Support for optional front-end modules  
(FEM) with external PAs and LNAs  
Adaptive frequency hopping (AFH) for reducing radio  
frequency interference.  
Shared Bluetooth and WLAN receive signal  
path eliminates the need for an external  
power splitter while maintaining excellent  
sensitivity for both Bluetooth and WLAN.  
Interface support, host controller interface (HCI) using a  
USB or high-speed UART interface and PCM for audio  
data.  
Internal fractional nPLL allows support for a  
wide range of reference clock frequencies  
USB 2.0 full-speed (12 Mbps) supported (FCFBGA and  
WLCSP packages).  
Supports IEEE 802.15.2 external  
coexistence interface to optimize bandwidth  
utilization with other co-located wireless  
technologies such as LTE, GPS, or WiMAX  
The FM unit supports HCI for communication.  
Low power consumption improves battery life of  
handheld devices.  
Supports standard SDIO v3.0 (including  
DDR50 mode at 50 MHz and SDR104 mode  
at 208 MHz, 4-bit and 1-bit), and gSPI (48  
MHz) host interfaces.  
FM receiver: 65 MHz to 108 MHz FM bands; supports  
the European radio data systems (RDS) and the North  
American radio broadcast data system (RBDS)  
standards.  
Backward compatible with SDIO v2.0 host  
interfaces.  
Supports multiple simultaneous Advanced Audio  
Distribution Profiles (A2DP) for stereo sound.  
PCIe mode (FCBGA package only) complies  
with PCI Express base specification revision  
3.0 compliant Gen1 interface for ×1 lane and  
power management base specification.  
Automatic frequency detection for standard crystal and  
TCXO values.  
Supports serial flash interfaces.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 3  
BCM4339 Preliminary Data Sheet  
Revision History  
FEATURES  
FEATURES  
• Security:  
General Features  
– WPAand WPA2(Personal) support for powerful  
encryption and authentication  
Supports battery voltage range from 3.0V to  
5.25V supplies with internal switching  
regulator.  
– AES and TKIP in hardware for faster data encryption  
and IEEE 802.11i compatibility  
– Reference WLAN subsystem provides Cisco®  
Compatible Extensions (CCX, CCX 2.0, CCX 3.0,  
CCX 4.0, CCX 5.0)  
Programmable dynamic power management  
OTP: 502 bytes of user-accessible memory  
GPIOs: 12 on FCFBGA, nine on WLBGA,  
and 16 on WLCSP  
Package options:  
– Reference WLAN subsystem provides Wi-Fi  
Protected Setup (WPS)  
– 160 ball FCFBGA (8 mm x 8 mm, 0.4 mm  
pitch)  
Worldwide regulatory support: Global products  
supported with worldwide homologated design.  
– 145 ball WLBGA (4.87 mm × 5.413 mm,  
0.4 mm pitch)  
– 286 bump WLCSP (4.87 mm × 5.413 mm,  
0.2 mm pitch)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 4  
BCM4339 Preliminary Data Sheet  
Revision History  
Revision History  
Revision  
Date  
Change Description  
4339-DS106-R  
11/17/14  
Updated:  
Table 55: “SDIO Bus Input Timing Parameters (SDR Modes),” on  
page 163.  
4339-DS105-R  
05/28/14  
Updated:  
The Features listed in the front matter of the document.  
By changing all instances of Bluetooth 4.0 to Bluetooth 4.1  
throughout the document.  
By removing the word draft after all instances of IEEE 802.11ac  
throughout the document.  
“Features” on page 22.  
“External 32.768 kHz Low-Power Oscillator” on page 34.  
“Advanced Bluetooth/WLAN Coexistence” on page 46.  
“SDIO v3.0” on page 73.  
Table 20: “FCFBGA, WLBGA, and WLCSP Signal Descriptions,”  
on page 105 by fixing an incorrect WLBGA ball. The second  
instance of M12 was changed to M10.  
Table 21: “WLAN GPIO Functions and Strapping Options,” on  
page 114.  
Table 24: “Host Interface Selection (WLBGA and WLCSP  
Packages),” on page 115  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 5  
BCM4339 Preliminary Data Sheet  
Revision History  
Revision  
Date  
Change Description  
4339-DS104-R  
04/02/14  
Updated:  
The cover page and the general features on page 6.  
By deleting the HSIC interface throughout, leaving pin and signal  
names unchanged.  
By changing to PCI Express Base Specification (revision 3.0  
compliant Gen1 interface) throughout.  
“External Frequency Reference” on page 37.  
Table 2: “Crystal Oscillator and External Clock — Requirements  
and Performance,” on page 37.  
“Frequency Selection” on page 39.  
Figure 10: “Startup Signaling Sequence,” on page 48.  
Figure 22: “UART Timing,” on page 66.  
“One-Time Programmable Memory” on page 76.  
Figure 50: “160-Ball FCFBGA (Top View),” on page 103 by  
changing BT_VDDO to BT_VDDIO.  
Figure 54: “286-Bump WLCSP (Bottom View),” on page 107.  
Table 19: “286-Bump WLCSP Coordinates,” on page 108 by  
changing BT_VDDO to BT_VDDIO.  
Table 20: “FCFBGA, WLBGA, and WLCSP Signal Descriptions,”  
on page 117 by changing BT_VDDO to BT_VDDIO and adding a  
note to the GPIO pin description.  
Table 31: “I/O States,” on page 134.  
Table 34: “ESD Specifications,” on page 139.  
Table 35: “Recommended Operating Conditions and DC  
Characteristics,” on page 140 by changing CIN to COUT  
.
Table 36: “Bluetooth Receiver RF Specifications,” on page 144 by  
deleting what was footnote e, altering footnote b, and adding  
footnote b to one additional place.  
“Introduction” on page 155.  
RSSI accuracy in Table 42: “WLAN 2.4 GHz Receiver  
Performance Specifications,” on page 157 and Table 44: “WLAN  
5 GHz Receiver Performance Specifications,” on page 164.  
Table 43: “WLAN 2.4 GHz Transmitter Performance  
Specifications,” on page 162 and the note preceding it.  
Table 45: “WLAN 5 GHz Transmitter Performance  
Specifications,” on page 168 and the note preceding it.  
Section 18: “Internal Regulator Electrical Specifications,” on page  
170.  
“WLAN Current Consumption” on page 175.  
Figure 65: “SDIO Bus Output Timing (SDR Modes up to 100  
MHz),” on page 183.  
Figure 66: “SDIO Bus Output Timing (SDR Modes 100 MHz to  
208 MHz),” on page 183.  
4339-DS103-R  
11/08/13  
Updated:  
BT_VDDO to BT_VDDIO throughout the document.  
Table 34: “ESD Specifications,” on page 140.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 6  
BCM4339 Preliminary Data Sheet  
Revision History  
Revision  
Date  
Change Description  
4339-DS102-R  
07/02/13  
Updated:  
Figure 1: “Functional Block Diagram,” on page 2.  
Figure 2: “BCM4339 Block Diagram,” on page 22.  
Figure 5: “Typical Power Topology for BCM4339,” on page 29.  
Table 20: “FCFBGA, WLBGA, and WLCSP Signal Descriptions,”  
on page 118.  
Table 35: “Recommended Operating Conditions and DC  
Characteristics,” on page 141 by changing DC supply voltage for  
VBAT from 4.8V to 5.25V.  
Table 47: “Core Buck Switching Regulator (CBUCK)  
Specifications,” on page 171 by changing input supply voltage  
(DC) Max from 4.8V to 5.25V.  
Table 48: “LDO3P3 Specifications,” on page 172 by changing  
input supply voltage, VIN Max from 4.8V to 5.25V.  
Table 49: “BTLDO2P5 Specifications,” on page 173 by changing  
input supply voltage Max from 4.8V to 5.25V.  
Table 52: “Typical WLAN Power Consumption (External PA  
configuration),” on page 176.  
Table 53: “Bluetooth BLE and FM Current Consumption,” on page  
178.  
Section 24: “Ordering Information,” on page 202.  
4339-DS101-R  
03/12/13  
Updated:  
Package option dimensions on page 4.  
Table 19: “286-Bump WLCSP Coordinates,” on page 109 by  
replacing the PACKAGEOPTION_0 through  
PACKAGEOPTION_3 signal names with VSSC.  
The Power Rail column in Table 31: “I/O States,” on page 135.  
Table 32: “Absolute Maximum Ratings,” on page 139.  
Table 35: “Recommended Operating Conditions and DC  
Characteristics,” on page 141.  
Table 43: “WLAN 2.4 GHz Transmitter Performance  
Specifications,” on page 163.  
Table 45: “WLAN 5 GHz Transmitter Performance  
Specifications,” on page 169.  
“WLAN Current Consumption” on page 176.  
Table 53: “Bluetooth BLE and FM Current Consumption,” on page  
178.  
Figure 77: “145-Ball WLBGA Package Mechanical Information,”  
on page 198.  
Section 24: “Ordering Information,” on page 202.  
4339-DS100-R  
02/15/13  
Initial release.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 7  
BCM4339 Preliminary Data Sheet  
Table of Contents  
Table of Contents  
About This Document ................................................................................................................................ 18  
Purpose and Audience.......................................................................................................................... 18  
Acronyms and Abbreviations................................................................................................................. 18  
Document Conventions......................................................................................................................... 18  
References............................................................................................................................................ 18  
Technical Support ...................................................................................................................................... 19  
Section 1: Overview .......................................................................................................... 20  
Overview...................................................................................................................................................... 20  
Features....................................................................................................................................................... 22  
Standards Compliance...............................................................................................................................23  
Mobile Phone Usage Model....................................................................................................................... 24  
Section 2: Power Supplies and Power Management ..................................................... 25  
Power Supply Topology............................................................................................................................. 25  
PMU Features.............................................................................................................................................. 25  
WLAN Power Management........................................................................................................................ 27  
PMU Sequencing ........................................................................................................................................ 28  
Power-Off Shutdown.................................................................................................................................. 29  
Power-Up/Power-Down/Reset Circuits..................................................................................................... 29  
Section 3: Frequency References.................................................................................... 30  
Crystal Interface and Clock Generation ................................................................................................... 30  
External Frequency Reference.................................................................................................................. 31  
Frequency Selection .................................................................................................................................. 33  
External 32.768 kHz Low-Power Oscillator .............................................................................................. 34  
Section 4: Bluetooth + FM Subsystem Overview ........................................................... 35  
Features....................................................................................................................................................... 35  
Bluetooth Radio.......................................................................................................................................... 37  
Transmit ................................................................................................................................................ 37  
Digital Modulator ................................................................................................................................... 37  
Digital Demodulator and Bit Synchronizer............................................................................................. 37  
Power Amplifier..................................................................................................................................... 37  
Receiver................................................................................................................................................ 38  
Digital Demodulator and Bit Synchronizer............................................................................................. 38  
Receiver Signal Strength Indicator........................................................................................................ 38  
Local Oscillator Generation................................................................................................................... 38  
Calibration ............................................................................................................................................. 38  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 8  
BCM4339 Preliminary Data Sheet  
Table of Contents  
Section 5: Bluetooth Baseband Core .............................................................................. 39  
Bluetooth 4.1 Features...............................................................................................................................39  
Bluetooth Low Energy ...............................................................................................................................39  
Link Control Layer...................................................................................................................................... 40  
Test Mode Support..................................................................................................................................... 40  
Bluetooth Power Management Unit.......................................................................................................... 41  
RF Power Management ........................................................................................................................ 41  
Host Controller Power Management ..................................................................................................... 41  
BBC Power Management...................................................................................................................... 43  
FM Power Management........................................................................................................................ 43  
Wideband Speech................................................................................................................................. 43  
Packet Loss Concealment..................................................................................................................... 44  
Audio Rate-Matching Algorithms........................................................................................................... 44  
Codec Encoding.................................................................................................................................... 45  
Multiple Simultaneous A2DP Audio Streams........................................................................................ 45  
FM Over Bluetooth ................................................................................................................................ 45  
Burst Buffer Operation........................................................................................................................... 45  
Adaptive Frequency Hopping.................................................................................................................... 45  
Advanced Bluetooth/WLAN Coexistence................................................................................................. 46  
Fast Connection (Interlaced Page and Inquiry Scans) ........................................................................... 46  
Section 6: Microprocessor and Memory Unit for Bluetooth.......................................... 47  
RAM, ROM, and Patch Memory................................................................................................................. 47  
Reset............................................................................................................................................................ 47  
Section 7: Bluetooth Peripheral Transport Unit ............................................................. 48  
SPI Interface................................................................................................................................................ 48  
SPI/UART Transport Detection.................................................................................................................. 48  
PCM Interface.............................................................................................................................................. 49  
Slot Mapping ......................................................................................................................................... 49  
Frame Synchronization ......................................................................................................................... 49  
Data Formatting..................................................................................................................................... 49  
Wideband Speech Support ................................................................................................................... 50  
Multiplexed Bluetooth and FM Over PCM............................................................................................. 50  
Burst PCM Mode................................................................................................................................... 50  
PCM Interface Timing............................................................................................................................ 51  
Short Frame Sync, Master Mode ................................................................................................... 51  
Short Frame Sync, Slave Mode ..................................................................................................... 52  
Long Frame Sync, Master Mode.................................................................................................... 53  
Long Frame Sync, Slave Mode...................................................................................................... 54  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 9  
BCM4339 Preliminary Data Sheet  
Table of Contents  
Short Frame Sync, Burst Mode...................................................................................................... 55  
Long Frame Sync, Burst Mode ...................................................................................................... 56  
USB Interface.............................................................................................................................................. 57  
Features................................................................................................................................................ 57  
Operation............................................................................................................................................... 57  
USB Hub and UHE Support .................................................................................................................. 58  
USB Full-Speed Timing......................................................................................................................... 58  
UART Interface............................................................................................................................................ 59  
I2S Interface................................................................................................................................................. 61  
I2S Timing.............................................................................................................................................. 62  
Section 8: FM Receiver Subsystem................................................................................. 64  
FM Radio ..................................................................................................................................................... 64  
Digital FM Audio Interfaces ....................................................................................................................... 64  
FM Over Bluetooth ..................................................................................................................................... 64  
eSCO............................................................................................................................................................ 64  
Wide Band Speech Link............................................................................................................................. 65  
A2DP............................................................................................................................................................ 65  
Autotune and Search Algorithms ............................................................................................................. 65  
Audio Features ........................................................................................................................................... 66  
RDS/RBDS................................................................................................................................................... 69  
Section 9: WLAN Global Functions ................................................................................. 70  
WLAN CPU and Memory Subsystem........................................................................................................ 70  
One-Time Programmable Memory............................................................................................................ 70  
GPIO Interface............................................................................................................................................. 71  
External Coexistence Interface ................................................................................................................. 71  
UART Interface............................................................................................................................................ 72  
JTAG Interface............................................................................................................................................ 72  
SPROM Interface (FCBGA Package only) ............................................................................................... 72  
Section 10: WLAN Host Interfaces................................................................................... 73  
SDIO v3.0..................................................................................................................................................... 73  
SDIO Pins.............................................................................................................................................. 73  
Generic SPI Mode....................................................................................................................................... 75  
SPI Protocol .......................................................................................................................................... 76  
Command Structure....................................................................................................................... 77  
Write............................................................................................................................................... 77  
Write/Read ..................................................................................................................................... 77  
Read............................................................................................................................................... 77  
Status............................................................................................................................................. 78  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 10  
BCM4339 Preliminary Data Sheet  
Table of Contents  
gSPI Host-Device Handshake............................................................................................................... 80  
Boot-Up Sequence................................................................................................................................ 80  
PCI Express Interface (FCBGA Package Only)........................................................................................ 83  
Transaction Layer Interface................................................................................................................... 84  
Data Link Layer..................................................................................................................................... 84  
Physical Layer....................................................................................................................................... 84  
Logical Subblock................................................................................................................................... 84  
Scrambler/Descrambler......................................................................................................................... 84  
8B/10B Encoder/Decoder...................................................................................................................... 85  
Elastic FIFO........................................................................................................................................... 85  
Electrical Subblock................................................................................................................................ 85  
Configuration Space.............................................................................................................................. 85  
Section 11: Wireless LAN MAC and PHY ........................................................................ 86  
IEEE 802.11ac MAC .................................................................................................................................... 86  
PSM ............................................................................................................................................... 87  
WEP............................................................................................................................................... 87  
TXE................................................................................................................................................ 88  
RXE................................................................................................................................................ 88  
IFS.................................................................................................................................................. 88  
TSF ................................................................................................................................................ 89  
NAV................................................................................................................................................ 89  
MAC-PHY Interface........................................................................................................................ 89  
IEEE 802.11ac PHY..................................................................................................................................... 90  
Section 12: WLAN Radio Subsystem ............................................................................. 92  
Receiver Path.............................................................................................................................................. 92  
Transmit Path.............................................................................................................................................. 92  
Calibration................................................................................................................................................... 92  
Section 13: Pinout and Signal Descriptions ................................................................... 94  
Ball Maps..................................................................................................................................................... 94  
Pin Lists....................................................................................................................................................... 97  
Signal Descriptions.................................................................................................................................. 105  
WLAN GPIO Signals and Strapping Options ......................................................................................... 114  
Multiplexed Bluetooth GPIO Signals................................................................................................... 116  
GPIO/SDIO Alternative Signal Functions ............................................................................................... 118  
I/O States................................................................................................................................................... 119  
Section 14: DC Characteristics ...................................................................................... 122  
Absolute Maximum Ratings .................................................................................................................... 122  
Environmental Ratings ............................................................................................................................ 123  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 11  
BCM4339 Preliminary Data Sheet  
Table of Contents  
Electrostatic Discharge Specifications .................................................................................................. 123  
Recommended Operating Conditions and DC Characteristics ........................................................... 124  
Section 15: Bluetooth RF Specifications ...................................................................... 126  
Section 16: FM Receiver Specifications........................................................................ 133  
Section 17: WLAN RF Specifications ............................................................................ 138  
Introduction............................................................................................................................................... 138  
2.4 GHz Band General RF Specifications............................................................................................... 138  
WLAN 2.4 GHz Receiver Performance Specifications .......................................................................... 139  
WLAN 2.4 GHz Transmitter Performance Specifications ..................................................................... 143  
WLAN 5 GHz Receiver Performance Specifications ............................................................................. 145  
WLAN 5 GHz Transmitter Performance Specifications ........................................................................ 149  
General Spurious Emissions Specifications ......................................................................................... 150  
Section 18: Internal Regulator Electrical Specifications ............................................. 151  
Core Buck Switching Regulator.............................................................................................................. 151  
3.3V LDO (LDO3P3) .................................................................................................................................. 152  
2.5V LDO (BTLDO2P5) ............................................................................................................................. 153  
CLDO ......................................................................................................................................................... 154  
LNLDO ....................................................................................................................................................... 155  
Section 19: System Power Consumption...................................................................... 156  
WLAN Current Consumption................................................................................................................... 156  
Bluetooth and FM Current Consumption............................................................................................... 158  
Section 20: Interface Timing and AC Characteristics.................................................. 159  
SDIO/gSPI Timing..................................................................................................................................... 159  
SDIO Default Mode Timing ................................................................................................................. 159  
SDIO High-Speed Mode Timing.......................................................................................................... 161  
SDIO Bus Timing Specifications in SDR Modes ................................................................................. 162  
Clock Timing ................................................................................................................................ 162  
Device Input Timing ..................................................................................................................... 163  
Device Output Timing................................................................................................................... 164  
SDIO Bus Timing Specifications in DDR50 Mode............................................................................... 166  
Data Timing, DDR50 Mode.......................................................................................................... 167  
gSPI Signal Timing.............................................................................................................................. 168  
PCI Express Interface Parameters.......................................................................................................... 169  
JTAG Timing ............................................................................................................................................. 171  
Section 21: Power-Up Sequence and Timing ............................................................... 172  
Sequencing of Reset and Regulator Control Signals ........................................................................... 172  
Description of Control Signals............................................................................................................. 172  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 12  
BCM4339 Preliminary Data Sheet  
Table of Contents  
Control Signal Timing Diagrams.......................................................................................................... 173  
Section 22: Package Information................................................................................... 175  
Package Thermal Characteristics........................................................................................................... 175  
Junction Temperature Estimation and PSIJT Versus THETAJC ........................................................... 175  
Environmental Characteristics................................................................................................................ 175  
Section 23: Mechanical Information .............................................................................. 176  
Section 24: Ordering Information .................................................................................. 181  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 13  
BCM4339 Preliminary Data Sheet  
List of Figures  
List of Figures  
Figure 1: Functional Block Diagram................................................................................................................... 2  
Figure 2: BCM4339 Block Diagram ................................................................................................................. 21  
Figure 3: Typical Power Topology for BCM4339 ............................................................................................. 26  
Figure 4: Recommended Oscillator Configuration ........................................................................................... 30  
Figure 5: Recommended Circuit to Use with an External Reference Clock..................................................... 31  
Figure 6: Startup Signaling Sequence ............................................................................................................. 42  
Figure 7: CVSD Decoder Output Waveform Without PLC............................................................................... 44  
Figure 8: CVSD Decoder Output Waveform After Applying PLC..................................................................... 44  
Figure 9: Functional Multiplex Data Diagram................................................................................................... 50  
Figure 10: PCM Timing Diagram (Short Frame Sync, Master Mode).............................................................. 51  
Figure 11: PCM Timing Diagram (Short Frame Sync, Slave Mode)................................................................ 52  
Figure 12: PCM Timing Diagram (Long Frame Sync, Master Mode)............................................................... 53  
Figure 13: PCM Timing Diagram (Long Frame Sync, Slave Mode)................................................................. 54  
Figure 14: PCM Burst Mode Timing (Receive Only, Short Frame Sync)......................................................... 55  
Figure 15: PCM Burst Mode Timing (Receive Only, Long Frame Sync) ......................................................... 56  
Figure 16: USB Compounded Device Configuration ....................................................................................... 57  
Figure 17: USB Full-Speed Timing .................................................................................................................. 59  
Figure 18: UART Timing .................................................................................................................................. 60  
Figure 19: I2S Transmitter Timing.................................................................................................................... 63  
Figure 20: I2S Receiver Timing........................................................................................................................ 63  
Figure 21: Example Blend/Switch Usage......................................................................................................... 66  
Figure 22: Example Blend/Switch Separation.................................................................................................. 67  
Figure 23: Example Soft Mute Characteristic .................................................................................................. 68  
Figure 24: Broadcom GCI or BT-SIG Mode LTE Coexistence Interface for BCM4339 ................................... 71  
Figure 25: Signal Connections to SDIO Host (SD 4-Bit Mode)........................................................................ 74  
Figure 26: Signal Connections to SDIO Host (SD 1-Bit Mode)........................................................................ 74  
Figure 27: Signal Connections to SDIO Host (gSPI Mode) ............................................................................. 75  
Figure 28: gSPI Write Protocol ........................................................................................................................ 76  
Figure 29: gSPI Read Protocol ........................................................................................................................ 76  
Figure 30: gSPI Command Structure............................................................................................................... 77  
Figure 31: gSPI Signal Timing Without Status (32-bit Big Endian).................................................................. 78  
Figure 32: gSPI Signal Timing with Status (Response Delay = 0; 32-bit Big Endian) ..................................... 79  
Figure 33: WLAN Boot-Up Sequence.............................................................................................................. 82  
Figure 34: PCI Express Layer Model............................................................................................................... 83  
Figure 35: WLAN MAC Architecture ................................................................................................................ 86  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 14  
BCM4339 Preliminary Data Sheet  
List of Figures  
Figure 36: WLAN PHY Block Diagram............................................................................................................. 91  
Figure 37: Radio Functional Block Diagram .................................................................................................... 93  
Figure 38: 160-Ball FCFBGA (Top View)......................................................................................................... 94  
Figure 39: 145-Ball WLBGA (Top View) .......................................................................................................... 95  
Figure 40: 286-Bump WLCSP (Bottom View).................................................................................................. 96  
Figure 41: Port Locations for Bluetooth Testing............................................................................................. 126  
Figure 42: Port Locations Showing Optional ePA and eLNA (Applies to 2.4 GHz and 5 GHz) ..................... 138  
Figure 43: SDIO Bus Timing (Default Mode) ................................................................................................. 159  
Figure 44: SDIO Bus Timing (High-Speed Mode).......................................................................................... 161  
Figure 45: SDIO Clock Timing (SDR Modes) ................................................................................................ 162  
Figure 46: SDIO Bus Input Timing (SDR Modes) .......................................................................................... 163  
Figure 47: SDIO Bus Output Timing (SDR Modes up to 100 MHz)............................................................... 164  
Figure 48: SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)..................................................... 164  
Figure 49: tOP Consideration for Variable Data Window (SDR 104 Mode) ................................................ 165  
Figure 50: SDIO Clock Timing (DDR50 Mode).............................................................................................. 166  
Figure 51: SDIO Data Timing (DDR50 Mode) ............................................................................................... 167  
Figure 52: gSPI Timing .................................................................................................................................. 168  
Figure 53: WLAN = ON, Bluetooth = ON ....................................................................................................... 173  
Figure 54: WLAN = OFF, Bluetooth = OFF.................................................................................................... 173  
Figure 55: WLAN = ON, Bluetooth = OFF ..................................................................................................... 174  
Figure 56: WLAN = OFF, Bluetooth = ON .................................................................................................... 174  
Figure 57: 160-Ball FCFBGA Package Mechanical Information.................................................................... 176  
Figure 58: 145-Ball WLBGA Package Mechanical Information ..................................................................... 177  
Figure 59: WLBGA Keep-out Areas for PCB Layout—Bottom View with Balls Facing Up............................ 178  
Figure 60: 286-Bump WLCSP Package Mechanical Information .................................................................. 179  
Figure 61: WLCSP Keep-out Areas for PCB Layout—Bottom View with Bumps Facing Up......................... 180  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 15  
BCM4339 Preliminary Data Sheet  
List of Tables  
List of Tables  
Table 1: Power-Up/Power-Down/Reset Control Signals.................................................................................. 29  
Table 2: Crystal Oscillator and External Clock—Requirements and Performance ......................................... 31  
Table 3: External 32.768 kHz Sleep Clock Specifications ............................................................................... 34  
Table 4: Power Control Pin Description........................................................................................................... 41  
Table 5: SPI to UART Signal Mapping............................................................................................................. 48  
Table 6: PCM Interface Timing Specifications (Short Frame Sync, Master Mode).......................................... 51  
Table 7: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)............................................ 52  
Table 8: PCM Interface Timing Specifications (Long Frame Sync, Master Mode) .......................................... 53  
Table 9: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode) ............................................ 54  
Table 10: PCM Burst Mode (Receive Only, Short Frame Sync)...................................................................... 55  
Table 11: PCM Burst Mode (Receive Only, Long Frame Sync) ...................................................................... 56  
Table 12: USB Full-Speed Timing Specifications ............................................................................................ 59  
Table 13: Example of Common Baud Rates.................................................................................................... 60  
Table 14: UART Timing Specifications ............................................................................................................ 60  
Table 15: Timing for I2S Transmitters and Receivers...................................................................................... 62  
Table 16: SDIO Pin Description....................................................................................................................... 73  
Table 17: gSPI Status Field Details ................................................................................................................. 79  
Table 18: gSPI Registers................................................................................................................................. 80  
Table 19: 286-Bump WLCSP Coordinates ...................................................................................................... 97  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions.................................................................... 105  
Table 21: WLAN GPIO Functions and Strapping Options ............................................................................. 114  
Table 22: SDIO/gSPI I/O Voltage Selection (All Packages) .......................................................................... 114  
Table 23: Host Interface Selection (FCBGA Package only) .......................................................................... 115  
Table 24: Host Interface Selection (WLBGA and WLCSP Packages)........................................................... 115  
Table 25: OTP/SPROM Select ...................................................................................................................... 115  
Table 26: GPIO Multiplexing Matrix ............................................................................................................... 116  
Table 27: Multiplexed GPIO Signals.............................................................................................................. 117  
Table 28: BCM4339 GPIO/SDIO Alternative Signal Functions .................................................................... 118  
Table 29: I/O States....................................................................................................................................... 119  
Table 30: Absolute Maximum Ratings ........................................................................................................... 122  
Table 31: Environmental Ratings................................................................................................................... 123  
Table 32: ESD Specifications ........................................................................................................................ 123  
Table 33: Recommended Operating Conditions and DC Characteristics...................................................... 124  
Table 34: Bluetooth Receiver RF Specifications............................................................................................ 127  
Table 35: Bluetooth Transmitter RF Specifications........................................................................................ 130  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 16  
BCM4339 Preliminary Data Sheet  
List of Tables  
Table 36: Local Oscillator Performance......................................................................................................... 132  
Table 37: BLE RF Specifications ................................................................................................................... 132  
Table 38: FM Receiver Specifications ........................................................................................................... 133  
Table 39: 2.4 GHz Band General RF Specifications...................................................................................... 138  
Table 40: WLAN 2.4 GHz Receiver Performance Specifications .................................................................. 139  
Table 41: WLAN 2.4 GHz Transmitter Performance Specifications .............................................................. 143  
Table 42: WLAN 5 GHz Receiver Performance Specifications ..................................................................... 145  
Table 43: WLAN 5 GHz Transmitter Performance Specifications ................................................................. 149  
Table 44: General Spurious Emissions Specifications .................................................................................. 150  
Table 45: Core Buck Switching Regulator (CBUCK) Specifications.............................................................. 151  
Table 46: LDO3P3 Specifications.................................................................................................................. 152  
Table 47: BTLDO2P5 Specifications ............................................................................................................. 153  
Table 48: CLDO Specifications...................................................................................................................... 154  
Table 49: LNLDO Specifications.................................................................................................................... 155  
Table 50: Typical WLAN Current Consumption (BCM4339 Current Only) .................................................... 156  
Table 51: Bluetooth BLE and FM Current Consumption................................................................................ 158  
Table 52: SDIO Bus Timing Parameters (Default Mode)............................................................................... 159  
Table 53: SDIO Bus Timing Parameters (High-Speed Mode) ....................................................................... 161  
Table 54: SDIO Bus Clock Timing Parameters (SDR Modes)....................................................................... 162  
Table 55: SDIO Bus Input Timing Parameters (SDR Modes)........................................................................ 163  
Table 56: SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)............................................. 164  
Table 57: SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz) .................................. 165  
Table 58: SDIO Bus Clock Timing Parameters (DDR50 Mode) .................................................................... 166  
Table 59: SDIO Bus Timing Parameters (DDR50 Mode) .............................................................................. 167  
Table 60: gSPI Timing Parameters................................................................................................................ 168  
Table 61: PCI Express Interface Parameters ................................................................................................ 169  
Table 62: JTAG Timing Characteristics ......................................................................................................... 171  
Table 63: Package Thermal Characteristics.................................................................................................. 175  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 17  
BCM4339 Preliminary Data Sheet  
About This Document  
About This Document  
Purpose and Audience  
This data sheet provides details on the functional, operational, and electrical characteristics for the Broadcom®  
BCM4339. It is intended for hardware design, application, and OEM engineers.  
Acronyms and Abbreviations  
In most cases, acronyms and abbreviations are defined on first use. For a comprehensive list of acronyms and  
other terms used in Broadcom documents, go to http://www.broadcom.com/press/glossary.php.  
Document Conventions  
The following conventions may be used in this document:  
Convention  
Description  
Bold  
User input and actions: for example, type exit, click OK, press ALT+C  
Monospace  
Code: #include <iostream>  
HTML: <td rowspan = 3>  
Command line commands and parameters: wl [-l] <command>  
< >  
[ ]  
Placeholders for required elements: enter your <username> or wl <command>  
Indicates optional command-line parameters: wl [-l]  
Indicates bit and byte ranges (inclusive): [0:3] or [7:0]  
References  
The references in this section may be used in conjunction with this document.  
Note: Broadcom provides customer access to technical documentation and software through its  
Customer Support Portal (CSP) and Downloads & Support site (see Technical Support).  
For Broadcom documents, replace the “xx” in the document number with the largest number available in the  
repository to ensure that you have the most current version of the document.  
Document (or Item) Name  
Number  
Source  
[1] Bluetooth MWS Coexistence 2-wire Transport Interface –  
www.bluetooth.com  
Specification  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 18  
BCM4339 Preliminary Data Sheet  
Technical Support  
Technical Support  
Broadcom provides customer access to a wide range of information, including technical documentation,  
schematic diagrams, product bill of materials, PCB layout information, and software updates through its  
customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering  
support representative.  
In addition, Broadcom provides other product support through its Downloads & Support site  
(http://www.broadcom.com/support/).  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 19  
BCM4339 Preliminary Data Sheet  
Overview  
Section 1: Overview  
Overview  
The Broadcom® BCM4339 single-chip device provides the highest level of integration for a mobile or handheld  
wireless system, with integrated IEEE 802.11 a/b/g/n/ac MAC/baseband/radio, Bluetooth 4.1 + enhanced data  
rate (EDR), and FM receiver.  
It provides a small form-factor solution with minimal external components to drive down cost for mass volumes  
and allows for handheld device flexibility in size, form, and function. Comprehensive power management  
circuitry and software ensure the system can meet the needs of highly mobile devices that require minimal  
power consumption and reliable operation.  
The following figure shows the interconnect of all the major physical blocks in the BCM4339 and their associated  
external interfaces, which are described in greater detail in the following sections.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 20  
Overview  
BCM4339 Preliminary Data Sheet  
Figure 2: BCM4339 Block Diagram  
SECI UART  
and GCI-GPIOs  
GCI  
WL_HOST_WAKE  
WL_DEV_WAKE  
JTAG  
Other GPIOs  
TCM  
RAM768KB  
ROM640KB  
WLAN RAM  
RAM  
Sharing  
ROM  
BT_HOST_WAKE  
BT_DEV_WAKE  
UART  
SDIOD  
SDIO 3.0  
UART  
I2S  
USB 2.0  
PCM  
USB  
ARMCM3  
ARMCR4  
PCM  
I2S  
Other GPIOs  
BT Access  
WLAN ab  
WLAN  
Master  
Slave  
AXI2AHB  
AHB2AXI  
PCIE 1.1  
PCIE  
Registers  
DMA  
Chip  
Common  
OTP  
WL_REG_ON  
BT_REG_ON  
AXI2APB  
JTAG  
Master  
RX/TX  
BLE  
PMU  
VBAT  
DOT11MAC (D11)  
GCI Coex I/F  
LCU  
GPIO  
Timers  
WD  
Pause  
APU  
Shared LNA Control  
and Other Coex I/Fs  
RF Switch Controls  
XTAL  
1 x 1 802.11ac PHY  
BlueRF  
2.4 GHz/5 GHz 802.11ac  
Dual-Band Radio  
Modem  
FM  
RX  
FM Analog Audio  
Bluetooth RF  
32 kHz External LPO  
BT  
PA  
WLAN  
Bluetooth FM  
FEM or  
SP3T  
FEM or  
SPDT  
CLB  
2.4 GHz  
5 GHz  
Diplexer  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 21  
BCM4339 Preliminary Data Sheet  
Features  
Features  
The BCM4339 supports the following features:  
IEEE 802.11a/b/g/n/ac dual-band radio with virtual-simultaneous dual-band operation  
Bluetooth v4.1 + EDR with integrated Class 1 PA  
Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation  
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality  
WLAN host interface options:  
– SDIO v3.0 (1-bit/4-bit)—up to 208 MHz clock rate in SDR104 mode  
– gSPI—up to 48 MHz clock rate  
BT host digital interface (which can be used concurrently with the above interfaces):  
– UART (up to 4 Mbps)  
BT supports full-speed USB version 1.1 for FCBGA package.  
ECIenhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN  
receptions  
I2S/PCM for FM/BT audio, HCI for FM block control  
HCI high-speed UART (H4, H4+, H5) transport support  
Wideband speech support (16 bits linear data, MSB first, left justified at 4K samples/s for transparent air  
coding, both through I2S and PCM interface)  
Bluetooth SmartAudio® technology improves voice and music quality to headsets  
Bluetooth low-power inquiry and page scan  
Bluetooth Low Energy (BLE) support  
Bluetooth Packet Loss Concealment (PLC)  
Bluetooth Wide Band Speech (WBS)  
FM advanced internal antenna support  
FM auto search/tuning functions  
FM multiple audio routing options: I2S, PCM, eSCO, and A2DP  
FM mono-stereo blend and switch, and soft mute support  
FM audio pause detection support  
Audio rate-matching algorithms  
Multiple simultaneous A2DP audio streams  
FM over Bluetooth operation and on-chip stereo headset emulation (SBC)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 22  
BCM4339 Preliminary Data Sheet  
Standards Compliance  
Standards Compliance  
The BCM4339 supports the following standards:  
Bluetooth 2.1 + EDR  
Bluetooth 3.0  
Bluetooth 4.1 (Bluetooth Low Energy)  
65 MHz to 108 MHz FM bands (US, Europe, and Japan)  
IEEE802.11ac single-stream mandatory and optional requirements for 20 MHz, 40 MHz, and 80 MHz  
channels  
IEEE 802.11n—Handheld Device Class (Section 11)  
IEEE 802.11a  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
Security:  
– WEP  
– WPAPersonal  
– WPA2Personal  
– WMM  
– WMM-PS (U-APSD)  
– WMM-SA  
– AES (Hardware Accelerator)  
– TKIP (HW Accelerator)  
– CKIP (SW Support)  
Proprietary Protocols:  
– CCXv2  
– CCXv3  
– CCXv4  
– CCXv5  
IEEE 802.15.2 Coexistence Compliance—on silicon solution compliant with IEEE 3 wire requirements  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 23  
BCM4339 Preliminary Data Sheet  
Mobile Phone Usage Model  
The BCM4339 will support the following future drafts/standards:  
IEEE 802.11r—Fast Roaming (between APs)  
IEEE 802.11wSecure Management Frames  
IEEE 802.11 Extensions:  
– IEEE 802.11e QoS Enhancements (as per the WMM® specification is already supported)  
– IEEE 802.11h 5 GHz Extensions  
– IEEE 802.11i MAC Enhancements  
– IEEE 802.11k Radio Resource Measurement  
Mobile Phone Usage Model  
The BCM4339 incorporates a number of unique features to simplify integration into mobile phone platforms. Its  
flexible PCM and UART interfaces enable it to transparently connect with existing platform circuits. In addition,  
the TCXO and LPO inputs allow the use of existing handset features to further minimize the size, power, and  
cost of the complete system.  
The PCM interface provides multiple modes of operation to support both master and slave as well as hybrid  
interfacing to single or multiple external codec devices.  
The UART interface supports hardware flow control with tight integration to power-control sideband  
signaling to support the lowest power operation.  
The crystal oscillator interface accommodates any of the typical reference frequencies used by mobile  
platform architectures.  
FM digital interfaces can use either I2S or PCM.  
The highly linear design of the radio transceiver ensures that the device has the lowest spurious emissions  
output regardless of the state of operation. It has been fully characterized in the global cellular bands.  
The transceiver design has excellent blocking and intermodulation performance in the presence of a  
cellular transmission (LTE, GSM®, GPRS, CDMA, WCDMA, or iDEN).  
The BCM4339 is designed to directly interface with new and existing handset platform designs.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 24  
BCM4339 Preliminary Data Sheet  
Power Supplies and Power Management  
Section 2: Power Supplies and Power  
Management  
Power Supply Topology  
One buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the  
BCM4339. All regulators are programmable via the PMU. These blocks simplify power supply design for  
Bluetooth, WLAN, and FM functions in embedded designs.  
A single VBAT (3.0V to 5.25V DC maximum) and VIO supply (1.8V to 3.3V) can be used, with all additional  
voltages being provided by the regulators in the BCM4339.  
Two control signals, BT_REG_ON and WL_REG_ON, are used to power up the regulators and take the  
respective section out of reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are  
deasserted. All regulators are powered down only when both BT_REG_ON and WL_REG_ON are deasserted.  
The CLDO and LNLDO may be turned off and on based on the dynamic demands of the digital baseband.  
The BCM4339 allows for an extremely low power-consumption mode by completely shutting down the CBUCK,  
CLDO, and LNLDO regulators. When in this state, LPLDO1 and LPLDO2 (which are low-power linear regulators  
that are supplied by the system VIO supply) provide the BCM4339 with all the voltages it requires, further  
reducing leakage currents.  
PMU Features  
VBAT to 1.35V (275 mA nominal, 600 mA maximum) Core-Buck (CBUCK) switching regulator  
VBAT to 3.3V (200 mA nominal, 450 mA maximum) LDO3P3  
VBAT to 2.5V (15 mA nominal, 70 mA maximum) BTLDO2P5  
1.35V to 1.2V (100 mA nominal, 150 mA maximum) LNLDO  
1.35V to 1.2V (175 mA nominal, 300 mA maximum) CLDO with bypass mode for deep-sleep  
Additional internal LDOs (not externally accessible)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 25  
PMU Features  
BCM4339 Preliminary Data Sheet  
The following figure shows the regulators and a typical power topology.  
Figure 3: Typical Power Topology for BCM4339  
Internal LNLDO  
80 mA  
1.2V  
WL RF – AFE  
Shaded areas are internal to the BCM4339  
Internal LNLDO  
80 mA  
Internal VCOLDO  
80 mA  
Internal LNLDO  
80 mA  
1.2V  
1.2V  
WL RF – TX (2.4 GHz, 5 GHz)  
WL RF – LOGEN (2.4 GHz, 5 GHz)  
WL RF – RX/LNA (2.4 GHz, 5 GHz)  
1.2V  
XTAL LDO  
30 mA  
1.2V  
WL RF – XTAL  
WL RF – RFPLL PFD/MMD  
1.2V  
LNLDO  
100 mA  
BT RF/FM  
DFE/DFLL  
WL_REG_ON  
PCIE PLL/RXTX  
BT_REG_ON  
Core Buck  
Regulator  
WLAN BBPLL/DFLL  
WLAN/BT/CLB/Top, always on  
VBAT  
1.35V  
CBUCK  
Peak 600 mA  
Average 275 mA  
WL OTP  
WL PHY  
CLDO  
Peak 300 mA  
Average 175 mA  
(Bypass in deep  
sleep)  
1.1V  
LPLDO1  
3 mA  
1.2V– 1.1V  
VDDIO  
WL DIGITAL  
BT DIGITAL  
WL/BT SRAMs  
MEMLPLDO  
3 mA  
0.9V  
VDDIO  
BTLDO2P5  
Peak 70 mA  
Average 15 mA  
2.5V  
3.3V  
BT CLASS 1 PA  
WL PA/PAD (2.4 GHz, 5 GHz)  
VDDIO_RF  
WL OTP 3.3V  
LDO3P3  
Peak 800–450 mA  
Average 200 mA  
Internal LNLDO  
25 mA  
WL RF – VCO  
WL RF – CP  
Internal LNLDO  
8 mA  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 26  
BCM4339 Preliminary Data Sheet  
WLAN Power Management  
WLAN Power Management  
The BCM4339 has been designed with the stringent power consumption requirements of mobile devices in  
mind. All areas of the chip design are optimized to minimize power consumption. Silicon processes and cell  
libraries were chosen to reduce leakage current and supply voltages. Additionally, the BCM4339 integrated  
RAM is a high Vt memory with dynamic clock control. The dominant supply current consumed by the RAM is  
leakage current only. Additionally, the BCM4339 includes an advanced WLAN power management unit (PMU)  
sequencer. The PMU sequencer provides significant power savings by putting the BCM4339 into various power  
management states appropriate to the current environment and activities that are being performed. The power  
management unit enables and disables internal regulators, switches, and other blocks based on a computation  
of the required resources and a table that describes the relationship between resources and the time needed to  
enable and disable them. Power-up sequences are fully programmable. Configurable, free-running counters  
(running at the 32.768 kHz LPO clock frequency) in the PMU sequencer are used to turn on and turn off  
individual regulators and power switches. Clock speeds are dynamically changed (or gated altogether) for the  
current mode. Slower clock speeds are used wherever possible.  
The BCM4339 WLAN power states are described as follows:  
Active mode— All WLAN blocks in the BCM4339 are powered up and fully functional with active carrier  
sensing and frame transmission and receiving. All required regulators are enabled and put in the most  
efficient mode based on the load current. Clock speeds are dynamically adjusted by the PMU sequencer.  
Doze mode—The radio, analog domains, and most of the linear regulators are powered down. The rest of  
the BCM4339 remains powered up in an IDLE state. All main clocks (PLL, crystal oscillator or TCXO) are  
shut down to reduce active power consumption to the minimum. The 32.768 kHz LPO clock is available  
only for the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip  
and transition to Active mode. In Doze mode, the primary power consumed is due to leakage current.  
Deep-sleep mode—Most of the chip, including both analog and digital domains, and most of the regulators  
are powered off. Logic states in the digital core are saved and preserved into a retention memory in the  
always-ON domain before the digital core is powered off. Upon a wake-up event triggered by the PMU  
timers, an external interrupt, or a host resume through the SDIO bus, logic states in the digital core are  
restored to their pre-deep-sleep settings to avoid lengthy HW reinitialization.  
Power-down mode—The BCM4339 is effectively powered off by shutting down all internal regulators. The  
chip is brought out of this mode by external logic reenabling the internal regulators.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 27  
BCM4339 Preliminary Data Sheet  
PMU Sequencing  
PMU Sequencing  
The PMU sequencer is responsible for minimizing system power consumption. It enables and disables various  
system resources based on a computation of the required resources and a table that describes the relationship  
between resources and the time needed to enable and disable them.  
Resource requests may come from several sources: clock requests from cores, the minimum resources defined  
in the ResourceMin register, and the resources requested by any active resource request timers. The PMU  
sequencer maps clock requests into a set of resources required to produce the requested clocks.  
Each resource is in one of four states (enabled, disabled, transition_on, and transition_off) and has a timer that  
contains 0 when the resource is enabled or disabled and a nonzero value in the transition states. The timer is  
loaded with the time_on or time_off value of the resource when the PMU determines that the resource must be  
enabled or disabled. That timer decrements on each 32.768 kHz PMU clock. When it reaches 0, the state  
changes from transition_off to disabled or transition_on to enabled. If the time_on value is 0, the resource can  
go immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can go  
immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either the  
immediate transition or the timer load-decrement sequence.  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are non zero. If a timer reaches 0, the PMU clears the  
ResourcePending bit for the resource and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled  
or disabled.  
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no  
powered up dependents.  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its  
dependencies enabled.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 28  
BCM4339 Preliminary Data Sheet  
Power-Off Shutdown  
Power-Off Shutdown  
The BCM4339 provides a low-power shutdown feature that allows the device to be turned off while the host, and  
any other devices in the system, remain operational. When the BCM4339 is not needed in the system,  
VDDIO_RF and VDDC are shut down while VDDIO remains powered. This allows the BCM4339 to be effectively  
off while keeping the I/O pins powered so that they do not draw extra current from any other devices connected  
to the I/O.  
During a low-power shut-down state, the provided VDDIO remains applied to the BCM4339, all outputs are  
tristated, and most input signals are disabled. Input voltages must remain within the limits defined for normal  
operation. This is done to prevent current paths or create loading on any digital signals in the system, and  
enables the BCM4339 to be fully integrated in an embedded device and take full advantage of the lowest power-  
savings modes.  
When the BCM4339 is powered on from this state, it is the same as a normal power-up, and the device does  
not retain any information about its state from before it was powered down.  
Power-Up/Power-Down/Reset Circuits  
The BCM4339 has two signals (see Table 1) that enable or disable the Bluetooth and WLAN circuits and the  
internal regulator blocks, allowing the host to control power consumption. For timing diagrams of these signals  
and the required power-up sequences, see Section 21: “Power-Up Sequence and Timing,” on page 172.  
Table 1: Power-Up/Power-Down/Reset Control Signals  
Signal  
Description  
WL_REG_ON This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section. It is also  
OR-gated with the BT_REG_ON input to control the internal BCM4339 regulators. When this  
pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is  
low, the WLAN section is in reset. If BT_REG_ON and WL_REG_ON are both low, the  
regulators are disabled. This pin has an internal 200 kpull-down resistor that is enabled by  
default. It can be disabled through programming.  
BT_REG_ON This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down  
the internal BCM4339 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators  
will be disabled. This pin has an internal 200 kpull-down resistor that is enabled by default.  
It can be disabled through programming.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 29  
BCM4339 Preliminary Data Sheet  
Frequency References  
Section 3: Frequency References  
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative,  
an external frequency reference may be used. In addition, a low-power oscillator (LPO) is provided for lower  
power mode timing.  
Crystal Interface and Clock Generation  
The BCM4339 can use an external crystal to provide a frequency reference. The recommended configuration  
for the crystal oscillator, including all external components, is shown in Figure 4. Consult the reference  
schematics for the latest configuration and recommended components.  
Figure 4: Recommended Oscillator Configuration  
C *  
WRF_XTAL_IN  
37.4 MHz  
C *  
X ohms *  
WRF_XTAL_OUT  
* Values determined by crystal drive  
level. See reference schematics for details.  
A fractional-N synthesizer in the BCM4339 generates the radio frequencies, clocks, and data/packet timing,  
enabling the BCM4339 to operate using a wide selection of frequency references.  
For SDIO applications, the recommended default frequency reference is a 37.4 MHz crystal. The signal  
characteristics for the crystal interface are listed in Table 2 on page 31.  
Note: Although the fractional-N synthesizer can support alternative reference frequencies,  
frequencies other than the default require support to be added in the driver, plus additional extensive  
system testing. Contact Broadcom for details.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 30  
BCM4339 Preliminary Data Sheet  
External Frequency Reference  
External Frequency Reference  
As an alternative to a crystal, an external precision frequency reference can be used. The recommended default  
frequency is 37.4 MHz. This must meet the phase noise requirements listed in Table 2.  
If used, the external clock should be connected to the WRF_XTAL_IN pin through an external 1000 pF coupling  
capacitor, as shown in Figure 5. The internal clock buffer connected to this pin will be turned off when the  
BCM4339 goes into sleep mode. When the clock buffer turns on and off, there will be a small impedance  
variation. Power must be supplied to the WRF_XTAL_BUCK_VDD1P5 pin.  
Figure 5: Recommended Circuit to Use with an External Reference Clock  
1000 pF  
Reference  
WRF_XTAL_IN  
Clock  
NC  
WRF_XTAL_OUT  
Table 2: Crystal Oscillator and External Clock—Requirements and Performance  
External Frequency  
Crystala  
Referenceb c  
Parameter  
Conditions/Notes  
Min. Typ. Max. Min. Typ. Max. Units  
Frequency  
2.4 GHz and 5 GHz bands,  
IEEE 802.11ac operation  
35  
37.4 38.4  
37.4 38.4 35  
Ranges between 19 MHz and 38.4 MHzd  
37.4  
MHz  
Frequency  
Frequency  
5 GHz band, IEEE 802.11n  
operation only  
19  
37.4 38.4 MHz  
2.4 GHz band IEEE 802.11n  
operation, and both bands  
legacy 802.11a/b/g operation  
only  
Frequency tolerance Without trimming  
over the lifetime of the  
equipment, including  
temperaturee  
–20  
20  
–20  
20  
ppm  
pF  
Crystal load  
capacitance  
12  
ESR  
60  
Drive level  
External crystal must be able to 200  
tolerate this drive level.  
µW  
Input impedance  
(WRF_XTAL_IN)  
Resistive  
30k  
100k  
Capacitive  
7.5  
7.5  
0.2  
pF  
V
WRF_XTAL_IN  
input low level  
DC-coupled digital signal  
0
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 31  
BCM4339 Preliminary Data Sheet  
External Frequency Reference  
Table 2: Crystal Oscillator and External Clock—Requirements and Performance (Cont.)  
External Frequency  
Referenceb c  
Crystala  
Parameter  
Conditions/Notes  
Min. Typ. Max. Min. Typ. Max. Units  
WRF_XTAL_IN  
input high level  
DC-coupled digital signal  
1.0  
1.26  
V
WRF_XTAL_IN  
input voltage  
AC-coupled analog signal  
1000  
1200 mVp-p  
(see Figure 5)  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
Phase noisef  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–129 dBc/Hz  
–136 dBc/Hz  
(IEEE 802.11b/g)  
Phase noisef  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–137 dBc/Hz  
–144 dBc/Hz  
(IEEE 802.11a)  
Phase noisef  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–134 dBc/Hz  
–141 dBc/Hz  
(IEEE 802.11n,  
2.4 GHz)  
Phase noisef  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–142 dBc/Hz  
–149 dBc/Hz  
(IEEE 802.11n,  
5 GHz)  
Phase noisef  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–148 dBc/Hz  
–155 dBc/Hz  
(IEEE 802.11ac,  
5 GHz)  
a. (Crystal) Use WRF_XTAL_IN and WRF_XTAL_OUT.  
b. See “External Frequency Reference” on page 31 for alternative connection methods.  
c. For a clock reference other than 37.4 MHz, 20 × log10(f/37.4) dB should be added to the limits, where f = the  
reference clock frequency in MHz.  
d. The frequency step size is approximately 80 Hz.  
e. It is the responsibility of the equipment designer to select oscillator components that comply with these  
specifications.  
f. Assumes that external clock has a flat phase-noise response above 100 kHz.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 32  
BCM4339 Preliminary Data Sheet  
Frequency Selection  
Frequency Selection  
Any frequency within the ranges specified for the crystal and TCXO reference may be used. These include not  
only the standard mobile platform reference frequencies of 19.2, 19.8, 24, 26, 33.6, 37.4, and 38.4 MHz, but  
also other frequencies in this range with an approximate resolution of 80 Hz. The BCM4339 must have the  
reference frequency set correctly in order for any of the UART or PCM interfaces to function correctly, since all  
bit timing is derived from the reference frequency.  
Note: The fractional-N synthesizer can support many reference frequencies. However, frequencies  
other than the default require support to be added in the driver plus additional, extensive system  
testing. Contact Broadcom for details.  
The reference frequency for the BCM4339 may be set in the following ways:  
Set the xtalfreq=xxxxx parameter in the nvram.txt file (used to load the driver) to correctly match the crystal  
frequency.  
Autodetect any of the standard handset reference frequencies using an external LPO clock.  
For applications such as handsets and portable smart communication devices, where the reference frequency  
is one of the standard frequencies commonly used, the BCM4339 automatically detects the reference frequency  
and programs itself to the correct reference frequency. In order for automatic frequency detection to work  
correctly, the BCM4339 must have a valid and stable 32.768 kHz LPO clock that meets the requirements listed  
in Table 3 on page 34 and is present during power-on reset.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 33  
BCM4339 Preliminary Data Sheet  
External 32.768 kHz Low-Power Oscillator  
External 32.768 kHz Low-Power Oscillator  
The BCM4339 uses a secondary low-frequency clock for low-power-mode timing. Either the internal low-  
precision LPO or an external 32.768 kHz precision oscillator is required. The internal LPO frequency range is  
approximately 33 kHz ± 30% over process, voltage, and temperature, which is adequate for some applications.  
However, one trade-off caused by this wide LPO tolerance is a small current consumption increase during power  
save mode that is incurred by the need to wake up earlier to avoid missing beacons.  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock that meets the  
requirements listed in Table 3.  
Table 3: External 32.768 kHz Sleep Clock Specifications  
Parameter  
LPO Clock  
Units  
Nominal input frequency  
Frequency accuracy  
Duty cycle  
32.768  
kHz  
ppm  
%
±200  
30–70  
Input signal amplitude  
Signal type  
200–1800  
mV, p-p  
Square-wave or sine-wave  
Input impedancea  
>100k  
<5  
pF  
Clock jitter (during initial start-up)  
<10,000  
ppm  
a. When power is applied or switched off.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 34  
BCM4339 Preliminary Data Sheet  
Bluetooth + FM Subsystem Overview  
Section 4: Bluetooth + FM Subsystem  
Overview  
The Broadcom BCM4339 is a Bluetooth 4.1 + EDR-compliant, baseband processor/2.4 GHz transceiver with  
an integrated FM/RDS/RBDS receiver. It features the highest level of integration and eliminates all critical  
external components, thus minimizing the footprint, power consumption, and system cost of a Bluetooth plus  
FM radio solution.  
The BCM4339 is the optimal solution for any Bluetooth voice and/or data application that also requires an FM  
radio receiver. The Bluetooth subsystem presents a standard Host Controller Interface (HCI) via a high-speed  
UART and PCM for audio. The FM subsystem supports the HCI control interface, analog output, as well as I2S  
and PCM interfaces. The BCM4339 incorporates all Bluetooth 4.1 features including Secure Simple Pairing,  
Sniff Subrating, and Encryption Pause and Resume.  
The BCM4339 Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent  
mobile phone temperature applications and the tightest integration into handsets and portable devices. It is fully  
compatible with any of the standard TCXO frequencies and provides full radio compatibility to operate  
simultaneously with GPS, WLAN, and cellular radios.  
The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability.  
Features  
Major Bluetooth features of the BCM4339 include:  
Supports key features of upcoming Bluetooth standards  
Fully supports Bluetooth Core Specification version 4.1 + (Enhanced Data Rate) EDR features:  
– Adaptive Frequency Hopping (AFH)  
– Quality of Service (QoS)  
– Extended Synchronous Connections (eSCO)Voice Connections  
– Fast Connect (interlaced page and inquiry scans)  
– Secure Simple Pairing (SSP)  
– Sniff Subrating (SSR)  
– Encryption Pause Resume (EPR)  
– Extended Inquiry Response (EIR)  
– Link Supervision Timeout (LST)  
UART baud rates up to 4 Mbps  
Supports Bluetooth 4.1 packet types  
Supports maximum Bluetooth data rates over HCI UART  
BT supports full-speed USB version 1.1 in the FCBGA package  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 35  
BCM4339 Preliminary Data Sheet  
Features  
Multipoint operation with up to seven active slaves  
– Maximum of seven simultaneous active ACL links  
– Maximum of three simultaneous active SCO and eSCO connections with scatternet support  
Trigger Broadcom fast connect (TBFC)  
Narrowband and wideband packet loss concealment  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and  
BT_HOST_WAKE signaling (see “Host Controller Power Management” on page 41)  
Channel quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
– Bluetooth clock request  
– Bluetooth standard sniff  
– Deep-sleep modes and software regulator shutdown  
TCXO input and autodetection of all standard handset clock frequencies. Also supports a low-power  
crystal, which can be used during power save mode for better timing accuracy.  
Major FM Radio Features Include:  
65 MHz to 108 MHz FM bands supported (US, Europe, and Japan)  
FM subsystem control using the Bluetooth HCI interface  
FM subsystem operates from reference clock inputs.  
Improved audio interface capabilities with full-featured bidirectional PCM and I2S  
I2S can be master or slave.  
FM Receiver-Specific Features Include:  
Excellent FM radio performance with 1 µV sensitivity for 26 dB (S+N)/N  
Signal-dependent stereo/mono blending  
Signal-dependent soft mute  
Auto search and tuning modes  
Audio silence detection  
RSSI, IF frequency, status indicators  
RDS and RBDS demodulator and decoder with filter and buffering functions  
Automatic frequency jump  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 36  
BCM4339 Preliminary Data Sheet  
Bluetooth Radio  
Bluetooth Radio  
The BCM4339 has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth wireless  
systems. It has been designed to provide low-power, low-cost, robust communications for applications operating  
in the globally available 2.4 GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification  
and EDR specification and meets or exceeds the requirements to provide the highest communication link  
quality.  
Transmit  
The BCM4339 features a fully integrated zero-IF transmitter. The baseband transmit data is GFSK-modulated  
in the modem block and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path  
performs signal filtering, I/Q upconversion, output power amplification, and RF filtering. The transmitter path also  
incorporates /4-DQPSK and 8-DPSK modulations for 2 Mbps and 3 Mbps EDR support, respectively. The  
transmitter section is compatible to the Bluetooth Low Energy specification. The transmitter PA bias can also be  
adjusted to provide Bluetooth Class 1 or Class 2 operation.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4-DQPSK, and  
8-DPSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation  
characteristics of the transmitted signal and is much more stable than direct VCO modulation schemes.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit-synchronization algorithm.  
Power Amplifier  
The fully integrated PA supports Class 1 or Class 2 output using a highly linearized, temperature-compensated  
design. This provides greater flexibility in front-end matching and filtering. Due to the linear nature of the PA  
combined with some integrated filtering, external filtering is required to meet the Bluetooth and regulatory  
harmonic and spurious requirements. For integrated handset applications in which Bluetooth is integrated next  
to the cellular radio, external filtering can be applied to achieve near-thermal-noise levels for spurious and  
radiated noise emissions. The transmitter features a sophisticated on-chip transmit signal strength indicator  
(TSSI) block to keep the absolute output power variation within a tight range across process, voltage, and  
temperature.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 37  
BCM4339 Preliminary Data Sheet  
Bluetooth Radio  
Receiver  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital  
demodulator and bit synchronizer. The receiver path provides a high degree of linearity, an extended dynamic  
range, and high-order on-chip channel filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The  
front-end topology, with built-in out-of-band attenuation, enables the BCM4339 to be used in most applications  
with minimal off-chip filtering. For integrated handset operation, in which the Bluetooth function is integrated  
close to the cellular transmitter, external filtering is required to eliminate the desensitization of the receiver by  
the cellular transmit signal.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the BCM4339 provides a Receiver Signal Strength Indicator (RSSI) signal to the baseband,  
so that the controller can determine whether the transmitter should increase or decrease its output power.  
Local Oscillator Generation  
Local Oscillator (LO) generation provides fast frequency hopping (1600 hops/second) across the 79 maximum  
available channels. The LO generation subblock employs an architecture for high immunity to LO pulling during  
PA operation. The BCM4339 uses an internal RF and IF loop filter.  
Calibration  
The BCM4339 radio transceiver features an automated calibration scheme that is fully self contained in the  
radio. No user interaction is required during normal operation or during manufacturing to provide the optimal  
performance. Calibration optimizes the performance of all the major blocks within the radio to within 2% of  
optimal conditions, including gain and phase characteristics of filters, matching between key components, and  
key gain blocks. This takes into account process variation and temperature variation. Calibration occurs during  
normal operation during the settling time of the hops and calibrates for temperature variations as the device  
cools and heats during normal operation in its environment.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 38  
BCM4339 Preliminary Data Sheet  
Bluetooth Baseband Core  
Section 5: Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time critical functions required for high-performance  
Bluetooth operation. The BBC manages the buffering, segmentation, and routing of data for all connections. It  
also buffers data that passes through it, handles data flow control, schedules SCO/ACL TX/RX transactions,  
monitors Bluetooth slot usage, optimally segments and packages data into baseband packets, manages  
connection status indicators, and composes and decodes HCI packets. In addition to these functions, it  
independently handles HCI event types, and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase reliability  
and security of the TX/RX data:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic  
redundancy check (CRC), data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and  
data whitening in the transmitter.  
Bluetooth 4.1 Features  
The BBC supports all Bluetooth 4.1 features, with the following benefits:  
Dual-mode bluetooth Low Energy (BT and BLE operation)  
Extended Inquiry Response (EIR): Shortens the time to retrieve the device name, specific profile, and  
operating mode.  
Encryption Pause Resume (EPR): Enables the use of Bluetooth technology in a much more secure  
environment.  
Sniff Subrating (SSR): Optimizes power consumption for low duty cycle asymmetric data flow, which  
subsequently extends battery life.  
Secure Simple Pairing (SSP): Reduces the number of steps for connecting two devices, with minimal or no  
user interaction required.  
Link Supervision Time Out (LSTO): Additional commands added to HCI and Link Management Protocol  
(LMP) for improved link time-out supervision.  
QoS enhancements: Changes to data traffic control, which results in better link performance. Audio, human  
interface device (HID), bulk traffic, SCO, and enhanced SCO (eSCO) are improved with the erroneous data  
(ED) and packet boundary flag (PBF) enhancements.  
Bluetooth Low Energy  
The BCM4339 supports the Bluetooth Low Energy operating mode.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 39  
BCM4339 Preliminary Data Sheet  
Link Control Layer  
Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the  
link control unit (LCU). This layer consists of the command controller that takes commands from the software,  
and other controllers that are activated or configured by the command controller to perform the link control tasks.  
Each task performs a different state in the Bluetooth Link Controller.  
Major states:  
– Standby  
– Connection  
Substates:  
– Page  
– Page Scan  
– Inquiry  
– Inquiry Scan  
– Sniff  
Test Mode Support  
The BCM4339 fully supports Bluetooth Test mode as described in Part I:1 of the Specification of the Bluetooth  
System Version 3.0. This includes the transmitter tests, normal and delayed loopback tests, and reduced  
hopping sequence.  
In addition to the standard Bluetooth Test Mode, the BCM4339 also supports enhanced testing features to  
simplify RF debugging, qualification, and type-approval testing. These features include:  
Fixed-frequency carrier-wave (unmodulated) transmission  
– Simplifies some type-approval measurements (Japan)  
– Aids in transmitter performance analysis  
Fixed-frequency constant-receiver mode  
– Receiver output directed to I/O pin  
– Allows for direct BER measurements using standard RF test equipment  
– Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
– Eight-bit fixed pattern or PRBS-9  
– Enables modulated signal measurements with standard RF test equipment  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 40  
BCM4339 Preliminary Data Sheet  
Bluetooth Power Management Unit  
Bluetooth Power Management Unit  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by  
either software through power management registers or packet handling in the baseband core. The power  
management functions provided by the BCM4339 are:  
RF Power Management  
Host Controller Power Management  
“BBC Power Management” on page 43  
“FM Power Management” on page 43  
RF Power Management  
The BBC generates power-down control signals to the 2.4 GHz transceiver for the transmit path, receive path,  
PLL, and power amplifier. The transceiver then processes the power-down functions accordingly.  
Host Controller Power Management  
When running in UART mode, the BCM4339 may be configured so that dedicated signals are used for power  
management handshaking between the BCM4339 and the host. The basic power saving functions supported  
by those handshaking signals include the standard Bluetooth defined power savings modes and standby modes  
of operation.  
Table 4 describes the power-control handshake signals used with the UART interface.  
Table 4: Power Control Pin Description  
Signal  
Mapped to Pin  
Type Description  
BT_DEV_WAKE BT_GPIO_0  
I
Bluetooth device wake-up: Signal from the host to the  
BCM4339 indicating that the host requires attention.  
Asserted: The Bluetooth device must wake-up or remain  
awake.  
Deasserted: The Bluetooth device may sleep when sleep  
criteria are met.  
The polarity of this signal is software configurable and can be  
asserted high or low.  
BT_HOST_WAK BT_GPIO_1  
E
O
Host wake up. Signal from the BCM4339 to the host  
indicating that the BCM4339 requires attention.  
Asserted: host device must wake-up or remain awake.  
Deasserted: host device may sleep when sleep criteria  
are met.  
The polarity of this signal is software configurable and can be  
asserted high or low.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 41  
BCM4339 Preliminary Data Sheet  
Bluetooth Power Management Unit  
Table 4: Power Control Pin Description (Cont.)  
Signal  
Mapped to Pin  
Type Description  
O The BCM4339 asserts CLK_REQ when either the Bluetooth  
CLK_REQ  
BT_CLK_REQ_OUT  
WL_CLK_REQ_OUT  
or WLAN block wants the host to turn on the reference clock.  
The CLK_REQ polarity is active-high. Add an external 100  
kpull-down resistor to ensure the signal is deasserted  
when the BCM4339 powers up or resets when VDDIO is  
present.  
Note: Pad function Control Register is set to 0 for these pins. See “DC Characteristics” on page 122 for more  
details.  
Figure 6: Startup Signaling Sequence  
LPO  
Host IOs  
VDDIO  
unconfigured  
Host IOs configured  
T1  
HostResetX  
BT_GPIO_0  
(BT_DEV_WAKE)  
BT_REG_ON  
T2  
BTH IOs  
unconfigured  
BTH IOs configured  
BT_GPIO_1  
(BT_HOST_WAKE)  
T3  
Host drives  
this low.  
BT_UART_CTS_N  
BTH device drives this  
low indicating  
BT_UART_RTS_N  
CLK_REQ_OUT  
T4  
transport is ready.  
T5  
Driven  
Pulled  
Notes :  
ꢀꢁ T1 is the time for the host to settle its IOs after a reset.  
ꢀꢁ T2 is the time for the host to drive BT_REG_ON high after the host IOs are configured.  
ꢀꢁ T3 is the time for the BTH device to settle its IOs after a reset and the reference clock settling time has elapsed.  
ꢀꢁ T4 is the time for the BTH device to drive BT_UART_RTS_N low after the host drives BT_UART_CTS_N low. This assumes  
the BTH device has completed initialization.  
ꢀꢁ T5 is the time for the BTH device to drive CLK_REQ_OUT high after BT_REG_ON goes high. The CLK_REQ_OUT pin is used  
in designs that have an external reference clock source from the host. It is irrelevant on clock-based designs where the  
BTH device generates its own reference clock from an external crystal connected to its oscillator circuit.  
ꢀꢁ The timing diagram assumes that VBAT is present.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 42  
BCM4339 Preliminary Data Sheet  
Bluetooth Power Management Unit  
BBC Power Management  
The following are low-power operations for the BBC:  
Physical layer packet-handling turns the RF on and off dynamically within transmit/receive packets.  
Bluetooth-specified low-power connection modes: sniff, hold, and park. While in these modes, the  
BCM4339 runs on the low-power oscillator and wakes up after a predefined time period.  
A low-power shutdown feature allows the device to be turned off while the host and any other devices in the  
system remain operational. When the BCM4339 is not needed in the system, the RF and core supplies are  
shut down while the I/O remains powered. This allows the BCM4339 to effectively be off while keeping the  
I/O pins powered so they do not draw extra current from any other devices connected to the I/O.  
During the low-power shut-down state, provided VDDIO remains applied to the BCM4339, all outputs are  
tristated, and most input signals are disabled. Input voltages must remain within the limits defined for normal  
operation. This is done to prevent current paths or create loading on any digital signals in the system and  
enables the BCM4339 to be fully integrated in an embedded device to take full advantage of the lowest  
power-saving modes.  
Two BCM4339 input signals are designed to be high-impedance inputs that do not load the driving signal  
even if the chip does not have VDDIO power supplied to it: the frequency reference input (WRF_TCXO_IN)  
and the 32.768 kHz input (LPO). When the BCM4339 is powered on from this state, it is the same as a  
normal power-up, and the device does not contain any information about its state from the time before it was  
powered down.  
FM Power Management  
The BCM4339 FM subsystem can operate independently of, or in tandem with, the Bluetooth RF and BBC  
subsystems. The FM subsystem power management scheme operates in conjunction with the Bluetooth RF and  
BBC subsystems. The FM block does not have a low power state, it is either on or off.  
Wideband Speech  
The BCM4339 provides support for wideband speech (WBS) using on-chip SmartAudio technology. The  
BCM4339 can perform subband-codec (SBC), as well as mSBC, encoding and decoding of linear 16 bits at  
16 kHz (256 kbps rate) transferred over the PCM bus.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 43  
BCM4339 Preliminary Data Sheet  
Bluetooth Power Management Unit  
Packet Loss Concealment  
Packet Loss Concealment (PLC) improves apparent audio quality for systems with marginal link performance.  
Bluetooth messages are sent in packets. When a packet is lost, it creates a gap in the received audio bitstream.  
Packet loss can be mitigated in several ways:  
Fill in zeros.  
Ramp down the output audio signal toward zero (this is the method used in current Bluetooth headsets).  
Repeat the last frame (or packet) of the received bitstream and decode it as usual (frame repeat).  
These techniques cause distortion and popping in the audio stream. The BCM4339 uses a proprietary waveform  
extension algorithm to provide dramatic improvement in the audio quality. Figure 7 and Figure 8 show audio  
waveforms with and without Packet Loss Concealment. Broadcom PLC and bit-error correction (BEC)  
algorithms also support wideband speech.  
Figure 7: CVSD Decoder Output Waveform Without PLC  
Packet Loss Causes Ramp-down  
Figure 8: CVSD Decoder Output Waveform After Applying PLC  
Audio Rate-Matching Algorithms  
The BCM4339 has an enhanced rate-matching algorithm that uses interpolation algorithms to reduce audio  
stream jitter that may be present when the rate of audio data coming from the host is not the same as the  
Bluetooth or FM audio data rates.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 44  
BCM4339 Preliminary Data Sheet  
Adaptive Frequency Hopping  
Codec Encoding  
The BCM4339 can support SBC and mSBC encoding and decoding for wideband speech.  
Multiple Simultaneous A2DP Audio Streams  
The BCM4339 has the ability to take a single audio stream and output it to multiple Bluetooth devices  
simultaneously. This allows a user to share his or her music (or any audio stream) with a friend.  
FM Over Bluetooth  
FM over Bluetooth enables the BCM4339 to stream data from FM over Bluetooth without requiring the host to  
be awake. This can significantly extend battery life for usage cases where someone is listening to FM radio on  
a Bluetooth headset.  
Burst Buffer Operation  
The BCM4339 has a data buffer that can buffer data being sent over the HCI and audio transports, then send  
the data at an increased rate. This mode of operation allows the host to sleep for the maximum amount of time,  
dramatically reducing system current consumption.  
Adaptive Frequency Hopping  
The BCM4339 gathers link quality statistics on a channel by channel basis to facilitate channel assessment and  
channel map selection. The link quality is determined using both RF and baseband signal processing to provide  
a more accurate frequency-hop map.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 45  
BCM4339 Preliminary Data Sheet  
Advanced Bluetooth/WLAN Coexistence  
Advanced Bluetooth/WLAN Coexistence  
The BCM4339 includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN  
integrated die solution. These coexistence technologies are targeted at small form-factor platforms, such as cell  
phones and media players, including applications such as VoWLAN + SCO and Video-over-WLAN + High  
Fidelity BT Stereo.  
Support is provided for platforms that share a single antenna between Bluetooth and WLAN. The BCM4339  
radio architecture allows for lossless simultaneous Bluetooth and WLAN reception for shared antenna  
applications. This is possible only via an integrated solution (shared LNA and joint AGC algorithm). It has  
superior performance versus implementations that need to arbitrate between Bluetooth and WLAN reception.  
The BCM4339 integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing via  
an enhanced coexistence interface. Information is exchanged between the Bluetooth and WLAN cores without  
host processor involvement.  
The BCM4339 also supports Transmit Power Control (TPC) on the STA together with standard Bluetooth TPC  
to limit mutual interference and receiver desensitization. Preemption mechanisms are utilized to prevent AP  
transmissions from colliding with Bluetooth frames. Improved channel classification techniques have been  
implemented in Bluetooth for faster and more accurate detection and elimination of interferers (including non-  
WLAN 2.4 GHz interference).  
The Bluetooth AFH classification is also enhanced by the WLAN core’s channel information.  
Fast Connection (Interlaced Page and Inquiry Scans)  
The BCM4339 supports page scan and inquiry scan modes that significantly reduce the average inquiry  
response and connection times. These scanning modes are compatible with the Bluetooth version 2.1 page and  
inquiry procedures.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 46  
BCM4339 Preliminary Data Sheet  
Microprocessor and Memory Unit for Bluetooth  
Section 6: Microprocessor and Memory  
Unit for Bluetooth  
The Bluetooth microprocessor core is based on the ARM® Cortex-M332-bit RISC processor with embedded  
ICE-RT debug and JTAG interface units. It runs software from the link control (LC) layer, up to the host controller  
interface (HCI).  
The ARM core is paired with a memory unit that contains 608 KB of ROM memory for program storage and boot  
ROM, 192 KB of RAM for data scratch-pad and patch RAM code. The internal ROM allows for flexibility during  
power-on reset to enable the same device to be used in various configurations. At power-up, the lower-layer  
protocol stack is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or feature  
additions. These patches may be downloaded from the host to the BCM4339 through the UART transports. The  
mechanism for downloading via UART is identical to the proven interface of the BCM4329 and BCM4330  
devices.  
RAM, ROM, and Patch Memory  
The BCM4339 Bluetooth core has 192 KB of internal RAM which is mapped between general purpose scratch-  
pad memory and patch memory and 608 KB of ROM used for the lower-layer protocol stack, test mode software,  
and boot ROM. The patch memory capability enables feature additions and bug fixes to the ROM memory.  
Reset  
The BCM4339 has an integrated power-on reset circuit that resets all circuits to a known power-on state. The  
BT power-on reset (POR) circuit is out of reset after BT_REG_ON goes high. If BT_REG_ON is low, then the  
POR circuit is held in reset.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 47  
BCM4339 Preliminary Data Sheet  
Bluetooth Peripheral Transport Unit  
Section 7: Bluetooth Peripheral Transport  
Unit  
SPI Interface  
The BCM4339 supports a slave SPI HCI transport with an input clock range of up to 16 MHz. Higher clock rates  
are possible. The physical interface between the SPI master and the BCM4339 contains the four SPI signals  
(SPI_CSB, SPI_CLK, SPI_SI, and SPI_SO) and one interrupt signal (SPI_INT). The SPI signals are muxed onto  
the UART signals, see Table 5. The BCM4339 can be configured to accept active-low or active-high polarity on  
the SPI_CSB chip-select signal. It can also be configured to drive an active-low or active-high SPI_INT interrupt  
signal. Bit ordering on the SPI_SI and SPI_SO data lines can be configured as either little-endian or big-endian.  
Additionally, proprietary sleep mode and half-duplex handshaking is implemented between the SPI master and  
the BCM4339. The SPI_INT is required to negotiate the start of a transaction. The SPI interface does not require  
flow control in the middle of a payload. The FIFO is large enough to handle the largest packet size. Only the SPI  
master can stop the flow of bytes on the data lines, since it controls SPI_CSB and SPI_CLK. Flow control should  
be implemented in the higher layer protocols.  
Table 5: SPI to UART Signal Mapping  
SPI Signals  
UART Signals  
SPI_CLK  
SPI_CSB  
SPI_MISO  
SPI_MOSI  
SPI_INT  
UART_CTS_N  
UART_RTS_N  
UART_RXD  
UART_TXD  
BT_HOST_WAKE  
SPI/UART Transport Detection  
The BT_HOST_WAKE (BT_GPIO1) pin is also used for BT transport detection. Transport detection occurs  
during the power-up sequence. Either UART or SPI transport operation is selected based on the following pin  
state:  
If the BT_HOST_WAKE (BT_GPIO1) pin is pulled low by an external pull-down during power-up, the SPI  
transport interface is selected.  
If the BT_HOST_WAKE (BT_GPIO1) pin is not pulled low externally during power-up, then the default  
internal pull-up is detected as a high and the UART transport interface is selected.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 48  
BCM4339 Preliminary Data Sheet  
PCM Interface  
PCM Interface  
The BCM4339 supports two independent PCM interfaces that share pins with the I2S interfaces. The PCM  
Interface on the BCM4339 can connect to linear PCM codec devices in master or slave mode. In master mode,  
the BCM4339 generates the PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are provided  
by another master on the PCM interface and are inputs to the BCM4339.  
The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCI  
commands.  
Slot Mapping  
The BCM4339 supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM  
interface. These three channels are time-multiplexed onto the single PCM interface by using a time-slotting  
scheme where the 8 kHz or 16 kHz audio sample interval is divided into as many as 16 slots. The number of  
slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or 1024 kHz. The corresponding number  
of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM data from an SCO  
channel is always mapped to the same slot. The PCM data output driver tri-states its output on unused slots to  
allow other devices to share the same PCM interface signals. The data output driver tristates its output after the  
falling edge of the PCM clock during the last bit of the slot.  
Frame Synchronization  
The BCM4339 supports both short- and long-frame synchronization in both master and slave modes. In short-  
frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate  
that is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks  
for a high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge  
of the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse  
at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first  
bit of the first slot.  
Data Formatting  
The BCM4339 may be configured to generate and accept several different data formats. For conventional  
narrowband speech mode, the BCM4339 uses 13 of the 16 bits in each PCM frame. The location and order of  
these 13 bits can be configured to support various data formats on the PCM interface. The remaining three bits  
are ignored on the input and may be filled with 0s, 1s, a sign bit, or a programmed value on the output. The  
default format is 13-bit 2’s complement data, left justified, and clocked MSB first.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 49  
BCM4339 Preliminary Data Sheet  
PCM Interface  
Wideband Speech Support  
When the host encodes Wideband Speech (WBS) packets in transparent mode, the encoded packets are  
transferred over the PCM bus for an eSCO voice connection. In this mode, the PCM bus is typically configured  
in master mode for a 4 kHz sync rate with 16-bit samples, resulting in a 64 Kbps bit rate. The BCM4339 also  
supports slave transparent mode using a proprietary rate-matching scheme. In SBC-code mode, linear 16-bit  
data at 16 kHz (256 Kbps rate) is transferred over the PCM bus.  
Multiplexed Bluetooth and FM Over PCM  
In this mode of operation, the BCM4339 multiplexes both FM and Bluetooth audio PCM channels over the same  
interface, reducing the number of required I/Os. This mode of operation is initiated through an HCI command  
from the host. The format of the data stream consists of three channels: a Bluetooth channel followed by two  
FM channels (audio left and right). In this mode of operation, the bus data rate only supports 48 kHz operation  
per channel with 16 bits sent for each channel.  
This is done to allow the low data rate Bluetooth data to coexist in the same interface as the higher speed I2S  
data. To accomplish this, the Bluetooth data is repeated six times for 8 kHz data and three times for 16 kHz data.  
An initial sync pulse on the PCM_SYNC line is used to indicate the beginning of the frame.  
To support multiple Bluetooth audio streams within the Bluetooth channel, both 16 kHz and 8 kHz streams can  
be multiplexed. This mode of operation is only supported when the Bluetooth host is the master. Figure 9 shows  
the operation of the multiplexed transport with three simultaneous SCO connections. To accommodate  
additional SCO channels, the transport clock speed is increased. To change between modes of operation, the  
transport must be halted and restarted in the new configuration.  
Figure 9: Functional Multiplex Data Diagram  
1 frame  
BT SCO 1 Rx  
BT SCO 1 Tx  
BT SCO 2 Rx  
BT SCO 2 Tx  
BT SCO 3 Rx  
FM right  
FM right  
FM left  
FM left  
PCM_OUT  
PCM_IN  
BT SCO 3 Tx  
PCM_SYNC  
PCM_CLK  
CLK  
16 bits per SCO frame  
16 bits per frame  
16 bits per frame  
Each SCO channel duplicates the data 6 times. Each  
WBS frame duplicates the data 3 times per frame  
Burst PCM Mode  
In this mode of operation, the PCM bus runs at a significantly higher rate of operation to allow the host to duty  
cycle its operation and save current. In this mode of operation, the PCM bus can operate at a rate of up to  
24 MHz. This mode of operation is initiated with an HCI command from the host.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 50  
BCM4339 Preliminary Data Sheet  
PCM Interface  
PCM Interface Timing  
Short Frame Sync, Master Mode  
Figure 10: PCM Timing Diagram (Short Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
HIGH IMPEDANCE  
7
5
6
PCM_IN  
Table 6: PCM Interface Timing Specifications (Short Frame Sync, Master Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 51  
BCM4339 Preliminary Data Sheet  
PCM Interface  
Short Frame Sync, Slave Mode  
Figure 11: PCM Timing Diagram (Short Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
HIGH IMPEDANCE  
8
6
7
PCM_IN  
Table 7: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 52  
BCM4339 Preliminary Data Sheet  
PCM Interface  
Long Frame Sync, Master Mode  
Figure 12: PCM Timing Diagram (Long Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
HIGH IMPEDANCE  
7
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
6
PCM_IN  
Table 8: PCM Interface Timing Specifications (Long Frame Sync, Master Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 53  
BCM4339 Preliminary Data Sheet  
PCM Interface  
Long Frame Sync, Slave Mode  
Figure 13: PCM Timing Diagram (Long Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
Bit 0  
Bit 0  
HIGH IMPEDANCE  
8
Bit 1  
6
7
Bit 1  
PCM_IN  
Table 9: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 54  
BCM4339 Preliminary Data Sheet  
PCM Interface  
Short Frame Sync, Burst Mode  
Figure 14: PCM Burst Mode Timing (Receive Only, Short Frame Sync)  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
7
6
PCM_IN  
Table 10: PCM Burst Mode (Receive Only, Short Frame Sync)  
Ref No. Characteristics  
Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
PCM bit clock frequency  
24  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
8
ns  
PCM_IN hold  
8
ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 55  
BCM4339 Preliminary Data Sheet  
PCM Interface  
Long Frame Sync, Burst Mode  
Figure 15: PCM Burst Mode Timing (Receive Only, Long Frame Sync)  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
7
6
Bit 0  
PCM_IN  
Bit 1  
Table 11: PCM Burst Mode (Receive Only, Long Frame Sync)  
Ref No. Characteristics  
Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
PCM bit clock frequency  
24  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
8
ns  
PCM_IN hold  
8
ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 56  
BCM4339 Preliminary Data Sheet  
USB Interface  
USB Interface  
Features  
The following USB interface features are supported:  
USB Protocol, Revision 2.0, full-speed (12 Mbps) compliant including the hub  
Optional hub compound device with up to three device cores internal to device  
Bus or self-power, dynamic configuration for the hub  
Global and selective suspend and resume with remote wakeup  
Bluetooth HCI  
HID, DFU, UHE (proprietary method to emulate an HID device at system bootup)  
Integrated detach resistor  
Operation  
The BCM4339 can be configured to boot up as either a single USB peripheral or a USB hub with several USB  
peripherals attached. As a single peripheral, the host detects a single USB Bluetooth device. In hub mode, the  
host detects a hub with one to three of the ports already connected to USB devices (see Figure 16).  
Figure 16: USB Compounded Device Configuration  
Host  
USB Compounded Device  
Hub Controller  
USB Device 1  
HID Keyboard  
USB Device 2  
HID Mouse  
USB Device 3  
Bluetooth  
Depending on the desired hub mode configuration, the BCM4339 can boot up showing the three ports  
connected to logical USB devices internal to the BCM4339: a generic Bluetooth device, a mouse, and a  
keyboard. In this mode, the mouse and keyboard are emulated devices, since they connect to real HID devices  
via a Bluetooth link. The Bluetooth link to these HID devices is hidden from the USB host. To the host, the mouse  
and/or keyboard appear to be directly connected to the USB port. This Broadcom proprietary architecture is  
called USB HID Emulation (UHE).  
The USB device, configuration, and string descriptors are fully programmable, allowing manufacturers to  
customize the descriptors, including vendor and product IDs, the BCM4339 uses to identify itself on the USB  
port. To make custom USB descriptor information available at boot time, stored it in external NVRAM.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 57  
BCM4339 Preliminary Data Sheet  
USB Interface  
Despite the mode of operation (single peripheral or hub), the Bluetooth device is configured to include the  
following interfaces:  
Interface 0  
Interface 1  
Interface 2  
Contains a Control endpoint (Endpoint 0x00) for HCI commands, a Bulk In Endpoint (Endpoint  
0x82) for receiving ACL data, a Bulk Out Endpoint (Endpoint 0x02) for transmitting ACL data,  
and an Interrupt Endpoint (Endpoint 0x81) for HCI events.  
Contains Isochronous In and Out endpoints (Endpoints 0x83 and 0x03) for SCO traffic. Several  
alternate Interface 1 settings are available for reserving the proper bandwidth of isochronous  
data (depending on the application).  
Contains Bulk In and Bulk Out endpoints (Endpoints 0x84 and 0x04) used for proprietary testing  
and debugging purposes. These endpoints can be ignored during normal operation.  
USB Hub and UHE Support  
The BCM4339 supports the USB hub and device model (USB, Revision 2.0, full-speed compliant). Optional  
mouse and keyboard devices utilize Broadcom’s proprietary USB HID Emulation (UHE) architecture, which  
allows these devices appear as standalone HID devices even though connected through a Bluetooth link.  
The presence of UHE devices requires the hub to be enabled. The BCM4339 cannot appear as a single  
keyboard or a single mouse device without the hub. Once either mouse or keyboard UHE device is enabled, the  
hub must also be enabled.  
When the hub is enabled, the BCM4339 handles all standard USB functions for the following devices:  
HID keyboard  
HID mouse  
Bluetooth  
All hub and device descriptors are firmware-programmable. This USB compound device configuration (see  
Figure 16 on page 57) supports up to three downstream ports. This configuration can also be programmed to a  
single USB device core. The device automatically detects activity on the USB interface when connected.  
Therefore, no special configuration is needed to select HCI as the transport.  
The hub’s downstream port definition is as follows:  
Port 1 USB lite device core (for HID applications)  
Port 2 USB lite device core (for HID applications)  
Port 3 USB full device core (for Bluetooth applications)  
When operating in hub mode, all three internal devices do not have to be enabled. Each internal USB device  
can be optionally enabled. The configuration record in NVRAM determines which devices are present.  
USB Full-Speed Timing  
Table 12 shows timing specifications for the VDD_USB = 3.3V, VSS = 0V, and TA = 0°C to 85°C operating  
temperature range.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 58  
BCM4339 Preliminary Data Sheet  
UART Interface  
Table 12: USB Full-Speed Timing Specifications  
Reference Characteristics  
Minimum  
Maximum  
Unit  
1
2
3
4
Transition rise time  
Transition fall time  
4
20  
ns  
4
20  
ns  
Rise/fall timing matching  
Full-speed data rate  
90  
111  
%
12 – 0.25%  
12 + 0.25%  
Mb/s  
Figure 17: USB Full-Speed Timing  
2
1
D+  
D-  
90%  
90%  
VCRS  
10%  
10%  
UART Interface  
The BCM4339 shares a single UART for Bluetooth and FM. The UART is a standard 4-wire interface (RX, TX,  
RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud  
rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through  
a vendor-specific UART HCI command.  
UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is  
conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 4.1  
UART HCI specification: H4, a custom Extended H4, and H5. The default baud rate is 115.2 Kbaud.  
The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification (“Three-wire  
UART Transport Layer”). Compared to H4, the H5 UART transport reduces the number of signal lines required  
by eliminating the CTS and RTS signals.  
The BCM4339 UART can perform XON/XOFF flow control and includes hardware support for the Serial Line  
Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can  
wake the chip from a sleep state.  
Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic  
baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate  
during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust  
the contents of the baud rate registers. The BCM4339 UARTs operate correctly with the host UART as long as  
the combined baud rate error of the two devices is within ±2%.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 59  
BCM4339 Preliminary Data Sheet  
UART Interface  
Table 13: Example of Common Baud Rates  
Desired Rate  
Actual Rate  
Error (%)  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
Figure 18: UART Timing  
UART_CTS_N  
1
2
UART_TXD  
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Table 14: UART Timing Specifications  
Min.  
Ref No. Characteristics  
Typ.  
Max.  
Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid  
1.5  
0.5  
0.5  
Bit period  
Bit period  
Bit period  
Setup time, UART_CTS_N high before midpoint of stop bit  
Delay time, midpoint of stop bit to UART_RTS_N high  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 60  
BCM4339 Preliminary Data Sheet  
I2S Interface  
I2S Interface  
The BCM4339 supports two independent I2S digital audio ports: one for Bluetooth audio, and one for high-  
fidelity FM audio. The I2S interface for FM audio supports both master and slave modes. The I2S signals are:  
I2S clock: I2S SCK  
I2S Word Select: I2S WS  
I2S Data Out: I2S SDO  
I2S Data In: I2S SDI  
I2S SCK and I2S WS become outputs in master mode and inputs in slave mode, while I2S SDO always stays  
as an output. The channel word length is 16 bits and the data is justified so that the MSB of the left-channel data  
is aligned with the MSB of the I2S bus, per the I2S specification. The MSB of each data word is transmitted one  
bit clock cycle after the I2S WS transition, synchronous with the falling edge of bit clock. Left-channel data is  
transmitted when I2S WS is low, and right-channel data is transmitted when I2S WS is high. Data bits sent by  
the BCM4339 are synchronized with the falling edge of I2S_SCK and should be sampled by the receiver on the  
rising edge of I2S_SSCK.  
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using a N/M clock divider.  
In the slave mode, any clock rate is supported to a maximum of 3.072 MHz.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 61  
BCM4339 Preliminary Data Sheet  
I2S Interface  
2
I S Timing  
Note: Timing values specified in Table 15 are relative to high and low threshold levels.  
Table 15: Timing for I2S Transmitters and Receivers  
Transmitter  
Lower LImit Upper Limit  
Receiver  
Lower Limit Upper Limit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
a
Clock Period T  
Ttr  
Tr  
Master Mode: Clock generated by transmitter or receiver  
b
b
HIGH tHC  
LOWtLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Slave Mode: Clock accepted by transmitter or receiver  
c
c
d
HIGH tHC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
LOW tLC  
Rise time tRC  
0.15Ttr  
Transmitter  
Delay tdtr  
e
d
0
0.8T  
Hold time thtr  
Receiver  
f
f
Setup time tsr  
Hold time thr  
0.2Tr  
0
a. The system clock period T must be greater than Ttr and Tr because both the transmitter and receiver have to be  
able to handle the data transfer rate.  
b. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space  
ratio. For this reason, tHC and tLC are specified with respect to T.  
c. In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that  
they can detect the signal. So long as the minimum periods are greater than 0.35Tr, any clock that meets the  
requirements can be used.  
d. Because the delay (tdtr) and the maximum transmitter speed (defined by Ttr) are related, a fast transmitter driven  
by a slow clock edge can result in tdtr not exceeding tRC which means thtr becomes zero or negative. Therefore,  
the transmitter has to guarantee that thtr is greater than or equal to zero, so long as the clock rise-time tRC is not  
more than tRCmax, where tRCmax is not less than 0.15Ttr.  
e. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the  
clock signal and T, always giving the receiver sufficient setup time.  
f. The data setup and hold time must not be less than the specified receiver setup and hold time.  
Note: The time periods specified in Figure 19 and Figure 20 are defined by the transmitter speed. The  
receiver specifications must match transmitter performance.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 62  
BCM4339 Preliminary Data Sheet  
I2S Interface  
Figure 19: I2S Transmitter Timing  
T
tRC  
*
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
totr < 0.8T  
SD and WS  
T = Clock period  
T
tr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 20: I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 63  
BCM4339 Preliminary Data Sheet  
FM Receiver Subsystem  
Section 8: FM Receiver Subsystem  
FM Radio  
The BCM4339 includes a completely integrated FM radio receiver with RDS/RBDS covering all FM bands from  
65 MHz to 108 MHz. The receiver is controlled through commands on the HCI. FM received audio is available  
in analog form or in digital form through I2S or PCM. The FM radio operates from the external clock reference.  
Digital FM Audio Interfaces  
The FM audio can be transmitted via the shared PCM and I2S pins, and the sampling rate is programmable.  
The BCM4339 supports a three-wire PCM or I2S audio interface in either master or slave configuration. The  
master or slave configuration is selected using vendor specific commands over the HCI interface. In addition,  
multiple sampling rates are supported, derived from either the FM or Bluetooth clocks. In master mode, the clock  
rate is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
In slave mode, any clock rate is supported up to a maximum of 3.072 MHz.  
FM Over Bluetooth  
The BCM4339 can output received FM audio onto Bluetooth using one of following three links: eSCO, WBS,  
and A2DP. In all of the above modes, once the link has been set up, the host processor can enter sleep mode  
while the BCM4339 continues to stream FM audio to the remote Bluetooth device, allowing the system current  
consumption to be minimized.  
eSCO  
In this use case, the stereo FM audio is downsampled to 8 kHz and a mono or stereo stream is then sent through  
the Bluetooth eSCO link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections  
must be used to transport stereo.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 64  
BCM4339 Preliminary Data Sheet  
Wide Band Speech Link  
Wide Band Speech Link  
In this case, the stereo FM audio is downsampled to 16 kHz and a mono or stereo stream is then sent through  
the Bluetooth wideband speech link to a remote Bluetooth device, typically a headset. Two Bluetooth voice  
connections must be used to transport stereo.  
A2DP  
In this case, the stereo FM audio is encoded by the on-chip SBC encoder and transported as an A2DP link to a  
remote Bluetooth device. Sampling rates of 48 kHz, 44.1 kHz, and 32 kHz joint stereo are supported. An A2DP  
“lite” stack is implemented in the BCM4339 to support this use case, which eliminates the need to route the SBC-  
encoded audio back to the host to create the A2DP packets.  
Autotune and Search Algorithms  
The BCM4339 supports a number of FM search and tune functions that allows the host to implement many  
convenient user functions, which are accessed through the Broadcom FM stack.  
Tune to Play—Allows the FM receiver to be programmed to a specific frequency.  
Search for SNR > Threshold—Checks the power level of the available channel and the estimated SNR of  
the channel to help achieve precise control of the expected sound quality for the selected FM channel.  
Specifically, the host can adjust its SNR requirements to retrieve a signal with a specific sound quality, or  
adjust this to return the weakest channels.  
Alternate Frequency Jump—Allows the FM receiver to automatically jump to an alternate FM channel that  
carries the same information, but has a better SNR. For example, when traveling, a user may pass through  
a region where a number of channels carry the same station. When the user passes from one area to the  
next, the FM receiver can automatically switch to another channel with a stronger signal to spare the user  
from having to manually change the channel to continue listening to the same station.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 65  
BCM4339 Preliminary Data Sheet  
Audio Features  
Audio Features  
A number of features are implemented in the BCM4339 to provide the best possible audio experience for the  
user.  
Mono/Stereo Blend or SwitchThe BCM4339 provides automatic control of the stereo or mono settings  
based on the FM signal carrier-to-noise ratio (C/N). This feature is used to maintain the best possible audio  
SNR based on the FM channel condition. Two modes of operation are supported:  
– Blend: In this mode, fine control of stereo separation is used to achieve optimal audio quality over a  
wide range of input C/N. The amount of separation is fully programmable. In Figure 21, the separation is  
programmed to maintain a minimum 50 dB SNR across the blend range.  
– Extended blend: In this mode, stereo separation is maximized across a wide range of input CNR.  
Broadcom static suppression typically gives a static-free user experience to within 3 dB of ultimate  
sensitivity.  
Figure 21: Example Blend/Switch Usage  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 66  
BCM4339 Preliminary Data Sheet  
Audio Features  
– Switch—In this mode, the audio switches from full stereo to full mono at a predetermined level to  
maintain optimal audio quality. The stereo-to-mono switch point and the mono-to-stereo switch points  
are fully programmable to provide the desired amount of audio SNR. In Figure 22, the switch point is  
programmed to switch to mono to maintain a 40 dB SNR.  
Figure 22: Example Blend/Switch Separation  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 67  
BCM4339 Preliminary Data Sheet  
Audio Features  
Soft Mute—Improves the user experience by dynamically muting the output audio proportionate to the FM  
signal C/N. This prevents the user from being assaulted with a blast of static. The mute characteristic is  
fully programmable to accommodate fine tuning of the output signal level. An example mute characteristic  
is shown in Figure 23.  
Figure 23: Example Soft Mute Characteristic  
High Cut—A programmable high-cut filter is provided to reduce the amount of high-frequency noise  
caused by static in the output audio signal. Like the soft mute circuit, it is fully programmable to allow for  
any amount of high cut based on the FM signal C/N.  
Audio Pause Detect—The FM receiver monitors the magnitude of the audio signal and notifies the host  
through an interrupt when the magnitude of the signal has fallen below the threshold set for a  
programmable period. This feature can be used to provide alternate frequency jumps during periods of  
silence to minimize disturbances to the listener. Filtering techniques are used within the audio pause  
detection block to provide more robust presence-to-silence detection and silence-to-presence detection.  
Automatic Antenna Tuning—The BCM4339 has an on-chip automatic antenna tuning network. When used  
with a single off-chip inductor, the on-chip circuitry automatically chooses an optimal on-chip matching  
component to obtain the highest signal strength for the desired frequency. The high-Q nature of this  
matching network simultaneously provides out-of-band blocking protection as well as a reduction of  
radiated spurious emissions from the FM antenna. It is designed to accommodate a wide range of external  
wire antennas.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 68  
BCM4339 Preliminary Data Sheet  
RDS/RBDS  
RDS/RBDS  
The BCM4339 integrates a RDS/RBDS modem and codec, the decoder includes programmable filtering and  
buffering functions, and the encoder includes the option to encode messages to PS or RT frame format with  
programmable scrolling in PS mode. The RDS/RBDS data can be read out in receive mode or delivered in  
transmit mode through either the HCI interface.  
In addition, the RDS/RBDS functionality supports the following:  
Receive  
Block decoding, error correction and synchronization  
Flywheel synchronization feature, allowing the host to set parameters for acquisition, maintenance, and  
loss of sync. (It is possible to set up the BCM4339 such that synch is achieved when a minimum of two  
good blocks (error free) are decoded in sequence. The number of good blocks required for sync is  
programmable.)  
Storage capability up to 126 blocks of RDS data  
Full or partial block B match detect and interrupt to host  
Audio pause detection with programmable parameters  
Program Identification (PI) code detection and interrupt to host  
Automatic frequency jump  
Block E filtering  
Soft mute  
Signal dependent mono/stereo blend  
Programmable pre-emphasis  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 69  
BCM4339 Preliminary Data Sheet  
WLAN Global Functions  
Section 9: WLAN Global Functions  
WLAN CPU and Memory Subsystem  
The BCM4339 WLAN section includes an integrated ARM Cortex-R432-bit processor with internal RAM and  
ROM. The ARM Cortex-R4 is a low-power processor that features low gate count, low interrupt latency, and low-  
cost debug capabilities. It is intended for deeply embedded applications that require fast interrupt response  
features. Delivering more than 30% performance gain over ARM7TDMI, the ARM Cortex-R4 implements the  
ARM v7-R architecture with support for the Thumb®-2 instruction set.  
At 0.19 µW/MHz, the Cortex-R4 is the most power efficient general-purpose microprocessor available,  
outperforming 8- and 16-bit devices on MIPS/µW. It supports integrated sleep modes.  
Using multiple technologies to reduce cost, the ARM Cortex-R4 offers improved memory utilization, reduced pin  
overhead, and reduced silicon area. It supports independent buses for Code and Data access (ICode/DCode  
and System buses), and extensive debug features including real time trace of program execution.  
On-chip memory for the CPU includes 768 KB SRAM and 640 KB ROM.  
One-Time Programmable Memory  
Various hardware configuration parameters may be stored in an internal One-Time Programmable (OTP)  
memory, which is read by the system software after device reset. In addition, customer-specific parameters,  
including the system vendor ID and the MAC address can be stored, depending on the specific board design.  
Customer accessible OTP memory is 502 bytes.  
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be  
reprogrammed to 0. The entire OTP array can be programmed in a single write cycle using a utility provided with  
the Broadcom WLAN manufacturing test tools. Alternatively, multiple write cycles can be used to selectively  
program specific bytes, but only bits which are still in the 0 state can be altered during each programming cycle.  
Prior to OTP memory programming, all values should be verified using the appropriate editable nvram.txt file,  
which is provided with the reference board design package.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 70  
BCM4339 Preliminary Data Sheet  
GPIO Interface  
GPIO Interface  
The following number of general-purpose I/O (GPIO) pins are available on the WLAN section of the BCM4339  
that can be used to connect to various external devices:  
FCBGA package – 12 GPIOs  
WLBGA package – 9 GPIOs  
WLCSP package – 16 GPIOs  
Upon power up and reset, these pins become tristated. Subsequently, they can be programmed to be either  
input or output pins via the GPIO control register. In addition, the GPIO pins can be assigned to various other  
functions (see Table 28: “BCM4339 GPIO/SDIO Alternative Signal Functions,” on page 118).  
External Coexistence Interface  
An external handshake interface is available to enable signaling between the device and an external co-located  
wireless device, such as GPS, WiMAX, LTE, or UWB, to manage wireless medium sharing for optimum  
performance.  
Figure 24 shows the LTE coexistence interface. See Table 28: “BCM4339 GPIO/SDIO Alternative Signal  
Functions,” on page 118 for details on multiplexed signals such as the GPIO pins.  
See Table 13: “Example of Common Baud Rates,” on page 60 for UART baud rates.  
Figure 24: Broadcom GCI or BT-SIG Mode LTE Coexistence Interface for BCM4339  
BCM4339  
LTE\IC  
SECI_OUT/BT_TXD  
UART_IN  
GCI  
WLAN  
BTFM  
SECI_IN/BT_TXD  
UART_OUT  
NOTES:  
SECI_OUT/BT_TXD and SECI_IN/BT_RXD, on the BCM4339, are multiplexed on the GPIOs.  
The 2-wire LTE coexistence interface is intended for future compatibility with the BT SIG2-  
wire interface that is being standardized for Core4.1.  
ORing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 71  
BCM4339 Preliminary Data Sheet  
UART Interface  
UART Interface  
One 2-wire UART interface can be enabled by software as an alternate function on GPIO pins (see  
Table 28: “BCM4339 GPIO/SDIO Alternative Signal Functions,” on page 118). Provided primarily for debugging  
during development, this UART enables the BCM4339 to operate as RS-232 data termination equipment (DTE)  
for exchanging and managing data with other serial devices. It is compatible with the industry standard 16550  
UART, and provides a FIFO size of 64 × 8 in each direction.  
JTAG Interface  
The BCM4339 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and  
PCB assembly testing during manufacturing. In addition, the JTAG interface allows Broadcom to assist  
customers by using proprietary debug and characterization test tools during board bringup. Therefore, it is highly  
recommended to provide access to the JTAG pins by means of test points or a header on all PCB designs.  
See Table 28: “BCM4339 GPIO/SDIO Alternative Signal Functions,” on page 118 for JTAG pin assignments.  
SPROM Interface (FCBGA Package only)  
For use only with the PCIe Interface in the FCBGA package, various hardware configuration parameters may  
be stored in an external SPROM instead of the OTP. The SPROM is read by system software after device reset.  
In addition, depending on the board design, customer-specific parameters may be stored in SPROM.  
The four SPROM control signals —SPROM_CS, SPROM_CLK, SPROM_DIN, and SPROM_DOUT are  
multiplexed on the SDIO interface (see Table 28: “BCM4339 GPIO/SDIO Alternative Signal Functions,” on  
page 118 for additional details). By default, the SPROM interface supports 2 kbit serial SPROMs, and it can also  
support 4 kbit and 16 kbit serial SPROMs by using the appropriate strapping option.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 72  
BCM4339 Preliminary Data Sheet  
WLAN Host Interfaces  
Section 10: WLAN Host Interfaces  
SDIO v3.0  
The BCM4339 WLAN section supports SDIO version 3.0, including the new UHS-I modes:  
DS: Default speed (DS) up to 25 MHz, including 1- and 4-bit modes (3.3V signaling).  
HS: High speed up to 50 MHz (3.3V signaling).  
SDR12: SDR up to 25 MHz (1.8V signaling).  
SDR25: SDR up to 50 MHz (1.8V signaling).  
SDR50: SDR up to 100 MHz (1.8V signaling).  
SDR104: SDR up to 208 MHz (1.8V signaling).  
DDR50: DDR up to 50 MHz (1.8V signaling).  
Note: The BCM4339 is backward compatible with SDIO v2.0 host interfaces.  
The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an  
interrupt different from the one provided by the SDIO interface. The ability to force control of the gated clocks  
from within the device is also provided. SDIO mode is enabled by strapping options. Refer to Table 21 on  
page 114 WLAN GPIO Functions and Strapping Options.  
The following three functions are supported:  
Function 0 Standard SDIO function (Max. BlockSize/ByteCount = 32B)  
Function 1 Backplane Function to access the internal system-on-chip (SoC) address space  
(Max. BlockSize/ByteCount = 64B)  
Function 2 WLAN Function for efficient WLAN packet transfer through DMA  
(Max. BlockSize/ByteCount = 512B)  
SDIO Pins  
Table 16: SDIO Pin Description  
SD 4-Bit Mode  
Data line 0  
SD 1-Bit Mode  
gSPI Mode  
Data output  
DATA0  
DATA1  
DATA2  
DATA3  
CLK  
DATA Data line  
DO  
IRQ  
NC  
CS  
Data line 1 or Interrupt IRQ  
Data line 2 or Read Wait RW  
Interrupt  
Read Wait  
Not used  
Clock  
Interrupt  
Not used  
Card select  
Data line 3  
Clock  
N/C  
CLK  
SCLK Clock  
DI Data input  
CMD  
Command line  
CMD Command line  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 73  
BCM4339 Preliminary Data Sheet  
SDIO v3.0  
Figure 25: Signal Connections to SDIO Host (SD 4-Bit Mode)  
CLK  
CMD  
SD Host  
BCM4339  
DAT[3:0]  
Figure 26: Signal Connections to SDIO Host (SD 1-Bit Mode)  
CLK  
CMD  
DATA  
SD Host  
BCM4339  
IRQ  
RW  
Note: Per Section 6 of the SDIO specification, pull-ups in the 10 kto 100 krange are required on  
the four DATA lines and the CMD line. This requirement must be met during all operating states either  
through the use of external pull-up resistors or through proper programming of the SDIO host’s internal  
pull-ups.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 74  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
Generic SPI Mode  
In addition to the full SDIO mode, the BCM4339 includes the option of using the simplified generic SPI (gSPI)  
interface/protocol. Characteristics of the gSPI mode include:  
Supports up to 48 MHz operation  
Supports fixed delays for responses and data from device  
Supports alignment to host gSPI frames (16 or 32 bits)  
Supports up to 2 KB frame size per transfer  
Supports little endian (default) and big endian configurations  
Supports configurable active edge for shifting  
Supports packet transfer through DMA for WLAN  
gSPI mode is enabled using the strapping option pins strap_host_ifc_[3:1].  
Figure 27: Signal Connections to SDIO Host (gSPI Mode)  
SCLK  
DI  
DO  
SD Host  
BCM4339  
IRQ  
CS  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 75  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
SPI Protocol  
The SPI protocol supports both 16-bit and 32-bit word operation. Byte endianness is supported in both modes.  
Figure 28 and Figure 29 show the basic write and write/read commands.  
Figure 28: gSPI Write Protocol  
Figure 29: gSPI Read Protocol  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 76  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
Command Structure  
The gSPI command structure is 32 bits. The bit positions and definitions are as shown in Figure 30.  
Figure 30: gSPI Command Structure  
BCM_SPID Command Structure  
27  
31 30 29 28  
11 10  
0
C
A
F1 F 0  
Address – 17 bits  
P acket length - 11bits *  
*11h0 = 2048 by tes  
F unction N o: 00 – F unc 0Ϭ͗ꢀꢁůůꢀ^W/ꢀƐƉĞĐŝĮĐꢀƌĞŐŝƐƚĞƌƐ  
01 – F unc 1: Registers and meories belonging to other blocks in the chip (64 bytes max)  
10 – F unc 2: DMA channel 1. WLAN packets up to 2048 bytes.  
11 – F unc 3ϯ͗ꢀꢂDꢁꢀĐŚĂŶŶĞůꢀϮꢀ;ŽƉƟŽŶĂůͿ͘ꢀWĂĐŬĞƚƐꢀƵƉꢀƚŽꢀϮϬϰϴꢀďLJƚĞƐ͘  
Acce ss : 0 – F ixed add ress  
1 – Incremental add ress  
C ommand : 0 – R ead  
1 – Write  
Write  
The host puts the first bit of the data onto the bus half a clock-cycle before the first active edge following the CS  
going low. The following bits are clocked out on the falling edge of the gSPI clock. The device samples the data  
on the active edge.  
Write/Read  
The host reads on the rising edge of the clock requiring data from the device to be made available before the  
first rising clock edge of the clock burst for the data. The last clock edge of the fixed delay word can be used to  
represent the first bit of the following data word. This allows data to be ready for the first clock edge without  
relying on asynchronous delays.  
Read  
The read command always follows a separate write to set up the WLAN device for a read. This command differs  
from the write/read command in the following respects: a) chip selects go high between the command/address  
and the data and b) the time interval between the command/address is not fixed.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 77  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
Status  
The gSPI interface supports status notification to the host after a read/write transaction. This status notification  
provides information about any packet errors, protocol errors, information about available packet in the RX  
queue, etc. The status information helps in reducing the number of interrupts to the host. The status-reporting  
feature can be switched off using a register bit, without any timing overhead. The gSPI bus timing for read/write  
transactions with and without status notification are as shown in Figure 31 and Figure 32 on page 79. See  
Table 17 on page 79 for information on status field details.  
Figure 31: gSPI Signal Timing Without Status (32-bit Big Endian)  
Write  
cs  
sclk  
mosi  
C31C30
C1
Command 32 bits  
C0D31D30
D1D0
Write Data 16*n bits  
Write-Read  
cs  
sclk  
mosi  
miso  
C31C30
C0
C0
D31D30
D0
D1
Response  
Delay  
Command  
32 bits  
Read Data 16*n bits  
cs  
Read  
sclk  
mosi  
miso  
C31C30
D31D30
D0
Command  
32 bits  
Response  
Delay  
Read Data  
16*n bits  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 78  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
Figure 32: gSPI Signal Timing with Status (Response Delay = 0; 32-bit Big Endian)  
cs  
sclk  
Write  
mosi  
C31
C1
C0D31
D1
D0
S31
S1
S0
miso  
Command 32 bits  
Write Data 16*n bits  
Status 32 bits  
Write-Read  
cs  
sclk  
mosi  
miso  
C31
C0
S31
S0
D31
D1
D0
Read Data 16*n bits  
Status 32 bits  
Command 32 bits  
Read  
cs  
sclk  
mosi  
miso  
C31
C0
D31
D1
D0S31
S0
Command 32 bits  
Read Data 16*n bits  
Status 32 bits  
Table 17: gSPI Status Field Details  
Description  
Bit  
Name  
0
1
Data not available  
Underflow  
The requested read data is not available  
FIFO underflow occurred due to current (F2, F3) read  
command  
2
Overflow  
FIFO overflow occurred due to current (F1, F2, F3) write  
command  
3
F2 interrupt  
F2 channel interrupt  
4
F3 interrupt  
F3 channel interrupt  
5
F2 RX Ready  
F2 FIFO is ready to receive data (FIFO empty)  
F3 FIFO is ready to receive data (FIFO empty)  
6
F3 RX Ready  
7
Reserved  
8
F2 Packet Available  
F2 Packet Length  
F3 Packet Available  
F3 Packet Length  
Packet is available/ready in F2 TX FIFO  
Length of packet available in F2 FIFO  
Packet is available/ready in F3 TX FIFO  
Length of packet available in F3 FIFO  
9:19  
20  
21:31  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 79  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
gSPI Host-Device Handshake  
To initiate communication through the gSPI after power-up, the host needs to bring up the WLAN/Chip by writing  
to the wake-up WLAN register bit. Writing a 1 to this bit will start up the necessary crystals and PLLs so that the  
BCM4339 is ready for data transfer. The device can signal an interrupt to the host indicating that the device is  
awake and ready. This procedure also needs to be followed for waking up the device in sleep mode. The device  
can interrupt the host using the WLAN IRQ line whenever it has any information to pass to the host. On getting  
an interrupt, the host needs to read the interrupt and/or status register to determine the cause of interrupt and  
then take necessary actions.  
Boot-Up Sequence  
After power-up, the gSPI host needs to wait 150 ms for the device to be out of reset. For this, the host needs to  
poll with a read command to F0 addr 0x14. Address 0x14 contains a predefined bit pattern. As soon as the host  
gets a response back with the correct register content, it implies that the device has powered up and is out of  
reset. After that, the host needs to set the wakeup-WLAN bit (F0 reg 0x00 bit 7). The wakeup-WLAN issues a  
clock request to the PMU.  
For the first time after power-up, the host must wait for the availability of low power clock inside the device. Once  
that is available, the host must write to a PMU register to set the crystal frequency, which turns on the PLL. After  
the PLL is locked, the chipActive interrupt is issued to the host. This interrupt indicates the device awake/ready  
status. See Table 18 for information on gSPI registers.  
In Table 18, the following notation is used for register access:  
R: Readable from host and CPU  
W: Writable from host  
U: Writable from CPU  
Table 18: gSPI Registers  
Address Register  
Bit Access Default Description  
x0000  
Word length  
0
1
4
R/W/U  
R/W/U  
R/W/U  
0
0
1
0: 16 bit word length  
1: 32 bit word length  
Endianness  
0: Little Endian  
1: Big Endian  
High-speed mode  
0: Normal mode. RX and TX at different edges.  
1: High speed mode. RX and TX on same edge  
(default).  
Interrupt polarity  
Wake-up  
5
7
R/W/U  
R/W  
1
0
0: Interrupt active polarity is low  
1: Interrupt active polarity is high (default)  
A write of 1 will denote a wake-up command from  
the host to the device. This will be followed by an F2  
Interrupt from the gSPI device to the host, indicating  
device awake status.  
x0001  
Response delay  
7:0 R/W/U 8‘h04  
Configurable read response delay in multiples of 8  
bits  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 80  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
Table 18: gSPI Registers (Cont.)  
Bit Access Default Description  
Address Register  
x0002  
Status enable  
0
1
2
R/W  
R/W  
R/W  
1
0
0
0: no status sent to host after read/write  
1: status sent to host after read/write  
0: do not interrupt if status is sent  
1: interrupt host even if status is sent  
0: response delay applicable to F1 read only  
1: response delay applicable to all function read  
Interrupt with status  
Response delay for  
all  
x0003  
x0004  
Reserved  
0
0
Interrupt register  
R/W  
Requested data not available; Cleared by writing a  
1 to this location  
1
2
5
6
7
5
6
7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
F2/F3 FIFO underflow due to last read  
F2/F3 FIFO overflow due to last write  
F2 packet available  
F3 packet available  
F1 overflow due to last write  
F1 Interrupt  
x0005  
Interrupt register  
F2 Interrupt  
F3 Interrupt  
x0006–  
x0007  
Interrupt enable  
register  
15:0 R/W/U 16'hE0E7 Particular Interrupt is enabled if a corresponding bit  
is set  
x0008–  
x000B  
Status register  
31:0 R  
32'h0000 Same as status bit definitions  
x000C– F1 info register  
x000D  
0
1
R
R
1
F1 enabled  
0
F1 ready for data transfer  
F1 max packet size  
F2 enabled  
13:2 R/U  
12'h40  
x000E– F2 info register  
x000F  
0
1
R/U  
R
1
0
F2 ready for data transfer  
15:2 R/U  
14'h800 F2 max packet size  
x0010–  
x0011  
F3 info register  
0
1
R/U  
R
1
0
F3 enabled  
F3 ready for data transfer  
15:2 R/U  
31:0 R  
14'h800 F3 max packet size  
x0014–  
x0017  
Test–Read only  
register  
32'hFEE This register contains a predefined pattern, which  
DBEAD the host can read and determine if the gSPI  
interface is working properly.  
x0018–  
x001B  
Test–R/W register  
31:0 R/W/U 32'h0000 This is a dummy register where the host can write  
0000  
some pattern and read it back to determine if the  
gSPI interface is working properly.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 81  
BCM4339 Preliminary Data Sheet  
Generic SPI Mode  
Figure 33 shows the WLAN boot-up sequence from power-up to firmware download.  
Figure 33: WLAN Boot-Up Sequence  
VBAT*  
VDDIO  
WL_REG_ON  
< 950 µs  
VDDC  
(from internal PMU)  
< 104 ms  
Internal POR  
After a fixed delay following Internal POR and WL_REG_ON going high,  
the device responds to host F0 (address 0x14) reads.  
< 4 ms  
Device requests for reference clock  
8 ms  
After 8 ms the reference clock is  
assumed to be up. Access to PLL  
registers is possible.  
Host Interaction:  
Host polls F0 (address 0x14) until it reads a  
predefined pattern.  
Host sets wake-up-wlan bit and  
waits 8 ms, the maximum time for  
reference clock availability.  
After 8 ms, host programs PLL  
registers to set crystal frequency  
Chip active interrupt is asserted after the PLL locks  
Host downloads  
code.  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 82  
BCM4339 Preliminary Data Sheet  
PCI Express Interface (FCBGA Package Only)  
PCI Express Interface (FCBGA Package Only)  
The PCI Express (PCIe) core on the BCM4339 is a high-performance serial I/O interconnect that is protocol  
compliant and electrically compatible with the PCI Express Base Specification (revision 3.0 compliant Gen1  
interface). This core contains all the necessary blocks, including logical and electrical functional subblocks to  
perform PCIe functionality and maintain high-speed links, using existing PCI system configuration software  
implementations without modification.  
Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer, as  
shown in Figure 34. A configuration or link management block is provided for enumerating the PCIe  
configuration space and supporting generation and reception of System Management Messages by  
communicating with PCIe layers.  
Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication  
between the host and BCM4339 device. The transmit side processes outbound packets while the receive side  
processes inbound packets. Packets are formed and generated in the Transaction and Data Link Layer for  
transmission onto the high-speed links and onto the receiving device. A header is added at the beginning to  
indicate the packet type and any other optional fields.  
Figure 34: PCI Express Layer Model  
HW/SW Interface  
HW/SW Interface  
Transaction  
Layer  
Transaction  
Layer  
Data Link  
Layer  
Data Link  
Layer  
Physical Layer  
Physical Layer  
Logical Subblock  
Logical Subblock  
Electrical Subblock  
Electrical Subblock  
TX  
RX  
TX  
RX  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 83  
BCM4339 Preliminary Data Sheet  
PCI Express Interface (FCBGA Package Only)  
Transaction Layer Interface  
The PCIe core employs a packet-based protocol to transfer data between the host and BCM4339 device,  
delivering new levels of performance and features. The upper layer of the PCIe is the Transaction Layer. The  
Transaction layer is primarily responsible for assembly and disassembly of Transaction Layer Packets (TLPs).  
TLP structure contains header, data payload, and End-to-End CRC (ECRC) fields, which are used to  
communicate transactions, such as read and write requests and other events.  
A pipelined full split-transaction protocol is implemented in this layer to maximize efficient communication  
between devices with credit-based flow control of TLP, which eliminates wasted link bandwidth due to retries.  
Data Link Layer  
The data link layer serves as an intermediate stage between the transaction layer and the physical layer. Its  
primary responsibility is to provide reliable, efficient mechanism for the exchange of TLPs between two directly  
connected components on the link. Services provided by the data link layer include data exchange, initialization,  
error detection and correction, and retry services.  
Data Link Layer Packets (DLLPs) are generated and consumed by the data link layer. DLLPs are the  
mechanism used to transfer link management information between data link layers of the two directly connected  
components on the link, including TLP acknowledgement, power management, and flow control.  
Physical Layer  
The physical layer of the PCIe provides a handshake mechanism between the data link layer and the high-speed  
signaling used for Link data interchange. This layer is divided into the logical and electrical functional subblocks.  
Both subblocks have dedicated transmit and receive units that allow for point-to-point communication between  
the host and BCM4339 device. The transmit section prepares outgoing information passed from the data link  
layer for transmission, and the receiver section identifies and prepares received information before passing it to  
the data link layer. This process involves link initialization, configuration, scrambler, and data conversion into a  
specific format.  
Logical Subblock  
The logical sub block primary functions are to prepare outgoing data from the data link layer for transmission  
and identify received data before passing it to the data link layer.  
Scrambler/Descrambler  
This PCIe PHY component generates pseudo-random sequence for scrambling of data bytes and the idle  
sequence. On the transmit side, scrambling is applied to characters prior to the 8b/10b encoding. On the receive  
side, descrambling is applied to characters after 8b/10b decoding. Scrambling may be disabled in polling and  
recovery for testing and debugging purposes.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 84  
BCM4339 Preliminary Data Sheet  
PCI Express Interface (FCBGA Package Only)  
8B/10B Encoder/Decoder  
The PCIe core on the BCM4339 uses an 8b/10b encoder/decoder scheme to provide DC balancing,  
synchronizing clock and data recovery, and error detection. The transmission code is specified in the ANSI  
X3.230-1994, clause 11 and in IEEE 802.3z, 36.2.4.  
Using this scheme, 8-bit data characters are treated as 3 bits and 5 bits mapped onto a 4-bit code group and a  
6-bit code group, respectively. The control bit in conjunction with the data character is used to identify when to  
encode one of the twelve Special Symbols included in the 8b/10b transmission code. These code groups are  
concatenated to form a 10-bit symbol, which is then transmitted serially. Special Symbols are used for link  
management, frame TLPs, and DLLPs, allowing these packets to be quickly identified and easily distinguished.  
Elastic FIFO  
An elastic FIFO is implemented in the receiver side to compensate for the differences between the transmit clock  
domain and the receive clock domain, with worse case clock frequency specified at 600 ppm tolerance. As a  
result, the transmit and receive clocks can shift one clock every 1666 clocks. In addition, the FIFO adaptively  
adjusts the elastic level based on the relative frequency difference of the write and read clock. This technique  
reduces the elastic FIFO size and the average receiver latency by half.  
Electrical Subblock  
The high-speed signals utilize the Common Mode Logic (CML) signaling interface with on-chip termination and  
de-emphasis for best-in-class signal integrity. A de-emphasis technique is employed to reduce the effects of  
Intersymbol Interference (ISI) due to the interconnect by optimizing voltage and timing margins for worst case  
channel loss. This results in a maximally open “eye” at the detection point, thereby allowing the receiver to  
receive data with acceptable Bit-Error Rate (BER).  
To further minimize ISI, multiple bits of the same polarity that are output in succession are de-emphasized.  
Subsequent same bits are reduced by a factor of 3.5 dB in power. This amount is specified by PCIe to allow for  
maximum interoperability while minimizing the complexity of controlling the de-emphasis values. The high-  
speed interface requires AC coupling on the transmit side to eliminate the DC common mode voltage from the  
receiver. The range of AC capacitance allowed is 75 nF to 200 nF.  
Configuration Space  
The PCIe function in the BCM4339 implements the configuration space as defined in the PCI Express Base  
Specification (revision 3.0 compliant Gen1 interface).  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 85  
BCM4339 Preliminary Data Sheet  
Wireless LAN MAC and PHY  
Section 11: Wireless LAN MAC and PHY  
IEEE 802.11ac MAC  
The BCM4339 WLAN MAC is designed to support high-throughput operation with low-power consumption. It  
does so without compromising the Bluetooth coexistence policies, thereby enabling optimal performance over  
both networks. In addition, several power saving modes have been implemented that allow the MAC to consume  
very little power while maintaining network-wide timing synchronization. The architecture diagram of the MAC  
is shown in Figure 35.  
The following sections provide an overview of the important modules in the MAC.  
Figure 35: WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TX-FIFO  
32 KB  
RX-FIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
TKIP, AES, WAPI  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX A-MPDU  
TXE  
TX A-MPDU  
EXT- IHR  
MAC-PHY Interface  
The BCM4339 WLAN media access controller (MAC) supports features specified in the IEEE 802.11 base  
standard, and amended by IEEE 802.11n. The key MAC features include:  
Enhanced MAC for supporting IEEE 802.11ac features  
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT)  
Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP) and  
multiphase PSMP operation  
Support for immediate ACK and Block-ACK policies  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 86  
BCM4339 Preliminary Data Sheet  
IEEE 802.11ac MAC  
Interframe space timing support, including RIFS  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon  
transmission time (TBTT) generation in hardware  
Hardware offload for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key  
management  
Support for coexistence with Bluetooth and other external radios  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality  
Statistics counters for MIB support  
PSM  
The programmable state machine (PSM) is a micro-coded engine, which provides most of the low-level control  
to the hardware, to implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for  
flow control operations, which are predominant in implementations of communication protocols. The instruction  
set and fundamental operations are simple and general, which allows algorithms to be optimized until very late  
in the design process. It also allows for changes to the algorithms to track evolving IEEE 802.11 specifications.  
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for  
instructions, as a data store, and to exchange data between both the host and the MAC data pipeline (via the  
SHM bus). The PSM also uses a scratch-pad memory (similar to a register bank) to store frequently accessed  
and temporary variables.  
The PSM exercises fine-grained control over the hardware engines, by programming internal hardware registers  
(IHR). These IHRs are co-located with the hardware functions they control, and are accessed by the PSM via  
the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program  
counter, instruction literal, or a program stack. For ALU operations the operands are obtained from shared  
memory, scratch-pad, IHRs, or instruction literals, and the results are written into the shared memory, scratch-  
pad, or IHRs.  
There are two basic branch instructions: conditional branches and ALU based branches. To better support the  
many decision points in the IEEE 802.11 algorithms, branches can depend on either a readily available signals  
from the hardware modules (branch condition signals are available to the PSM without polling the IHRs), or on  
the results of ALU operations.  
WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the  
encryption and decryption, and MIC computation and verification. The accelerators implement the following  
cipher algorithms: legacy WEP, WPA TKIP, WPA2 AES-CCMP.  
The PSM determines, based on the frame type and association information, the appropriate cipher algorithm to  
be used. It supplies the keys to the hardware engines from an on-chip key table. The WEP interfaces with the  
TXE to encrypt and compute the MIC on transmit frames, and the RXE to decrypt and verify the MIC on receive  
frames.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 87  
BCM4339 Preliminary Data Sheet  
IEEE 802.11ac MAC  
TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to  
store the transmit frames in the TXFIFO. It interfaces with WEP module to encrypt frames, and transfers the  
frames across the MAC-PHY interface at the appropriate time determined by the channel access mechanisms.  
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical  
queues to support traffic streams that have different QoS priority requirements. The PSM uses the channel  
access information from the IFS module to schedule a queue from which the next frame is transmitted. Once  
the frame is scheduled, the TXE hardware transmits the frame based on a precise timing trigger received from  
the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for  
transmission. The hardware module aggregates the encrypted MPDUs by adding appropriate headers and pad  
delimiters as needed.  
RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMA engine to  
drain the received frames from the RXFIFO. It transfers bytes across the MAC-PHY interface and interfaces with  
the WEP module to decrypt frames. The decrypted data is stored in the RXFIFO.  
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames  
based on several criteria such as receiver address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers,  
and disaggregate them into component MPDUS.  
IFS  
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also  
contains multiple backoff engines required to support prioritized access to the medium as specified by WMM.  
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by  
the PHY. These timers provide precise timing to the TXE to begin frame transmission. The TXE uses this  
information to send response frames or perform transmit frame-bursting (RIFS or SIFS separated, as within a  
TXOP).  
The backoff engines (for each access category) monitor channel activity, in each slot duration, to determine  
whether to continue or pause the backoff counters. When the backoff counters reach 0, the TXE gets notified,  
so that it may commence frame transmission. In the event of multiple backoff counters decrementing to 0 at the  
same time, the hardware resolves the conflict based on policies provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating  
under the IEEE power save mode. In this mode, the MAC is in a suspended state with its clock turned off. A  
sleep timer, whose count value is initialized by the PSM, runs on a slow clock and determines the duration over  
which the MAC remains in this suspended state. Once the timer expires the MAC is restored to its functional  
state. The PSM updates the TSF timer based on the sleep duration ensuring that the TSF is synchronized to  
the network.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 88  
BCM4339 Preliminary Data Sheet  
IEEE 802.11ac MAC  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the  
target beacon transmission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of  
adopting timestamps received from beacon and probe response frames in order to maintain synchronization  
with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such  
as uplink and downlink transmission times used in PSMP.  
NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed  
through the duration field of MAC frames. This ensures that the MAC complies with the protection mechanisms  
specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based  
on received frames. This timing information is provided to the IFS module, which uses it as a virtual carrier-  
sense indication.  
MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition,  
there is an programming interface, which can be controlled either by the host or the PSM to configure and control  
the PHY.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 89  
BCM4339 Preliminary Data Sheet  
IEEE 802.11ac PHY  
IEEE 802.11ac PHY  
The BCM4339 WLAN Digital PHY is designed to comply with IEEE 802.11ac and IEEE 802.11a/b/g/n single-  
stream specifications to provide wireless LAN connectivity supporting data rates from 1 Mbps to 433.3 Mbps for  
low-power, high-performance handheld applications.  
The PHY has been designed to work in the presence of interference, radio nonlinearity, and various other  
impairments. It incorporates optimized implementations of the filters, FFT and Viterbi decoder algorithms.  
Efficient algorithms have been designed to achieve maximum throughput and reliability, including algorithms for  
carrier sense/rejection, frequency/phase/timing acquisition and tracking, channel estimation and tracking. The  
PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY carrier sense has been tuned to  
provide high throughput for IEEE 802.11g/11b hybrid networks with Bluetooth coexistence. It has also been  
designed for shared single antenna systems between WL and BT to support simultaneous RX-RX.  
The key PHY features include:  
Programmable data rates from MCS0–9 in 20 MHz, 40 MHz, and 80 MHz channels, as specified in  
IEEE 802.11ac  
Supports Optional Short GI mode in TX and RX  
TX and RX LDPC for improved range and power efficiency  
Supports optional space-time block code (STBC) receive of two space-time streams for improved  
throughput and range in fading channel environments.  
All scrambling, encoding, forward error correction, and modulation in the transmit direction and inverse  
operations in the receive direction.  
Supports IEEE 802.11h/k for worldwide operation  
Advanced algorithms for low power, enhanced sensitivity, range, and reliability  
Algorithms to improve performance in presence of Bluetooth  
Automatic gain control scheme for blocking and non blocking application scenario for cellular applications  
Closed loop transmit power control  
Digital RF chip calibration algorithms to handle CMOS RF chip non-idealities  
On-the-fly channel frequency and transmit power selection  
Supports per packet RX antenna diversity  
Available per-packet channel quality and signal strength measurements  
Designed to meet FCC and other worldwide regulatory requirements  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 90  
BCM4339 Preliminary Data Sheet  
IEEE 802.11ac PHY  
Figure 36: WLAN PHY Block Diagram  
CCK/DSSS Demodulate  
Filters and Radio  
Comp  
Frequency and  
Timing Synch  
Descramble and  
Deframe  
OFDM Demodulate  
Viterbi Decoder  
Carrier Sense, AGC, and  
Rx FSM  
Buffers  
MAC  
Radio Control Block  
FFT/IFFT  
Interface  
AFE and  
Radio  
Tx FSM  
Modulation and  
Coding  
Common Logic Block  
Frame and  
Scramble  
Filters and Radio Comp  
PA Comp  
Modulate/Spread  
COEX  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 91  
BCM4339 Preliminary Data Sheet  
WLAN Radio Subsystem  
Section 12: WLAN Radio Subsystem  
The BCM4339 includes an integrated dual-band WLAN RF transceiver that has been optimized for use in  
2.4 GHz and 5 GHz Wireless LAN systems. It has been designed to provide low-power, low-cost, and robust  
communications for applications operating in the globally available 2.4 GHz unlicensed ISM or 5 GHz U-NII  
bands. The transmit and receive sections include all on-chip filtering, mixing, and gain control functions.  
Ten RF control signals are available to drive external RF switches and support optional external power amplifiers  
and low-noise amplifiers for each band. See the reference board schematics for further details.  
A block diagram of the radio subsystem is shown in Figure 37 on page 93. Note that integrated on-chip baluns  
(not shown) convert the fully differential transmit and receive paths to single-ended signal pins.  
Receiver Path  
The BCM4339 has a wide dynamic range, direct conversion receiver that employs high order on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band or the entire 5 GHz U-NII band. An on-chip  
low-noise amplifier (LNA) in the 2.4 GHz path is shared between the Bluetooth and WLAN receivers, while the  
5 GHz receive path has a dedicated on-chip LNA. Control signals are available that can support the use of  
optional LNAs for each band, which can increase the receive sensitivity by several dB.  
Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM or 5-GHz U-NII bands, respectively. Linear  
on-chip power amplifiers are included, which are capable of delivering high output powers while meeting  
IEEE 802.11ac and IEEE 802.11a/b/g/n specifications without the need for external PAs. When using the  
internal PAs, closed-loop output power control is completely integrated. As an option, external PAs can be used  
for even higher output power, in which case the closed-loop output power control is provided by means of a-  
band and g-band TSSI inputs from external power detectors.  
Calibration  
The BCM4339 features dynamic and automatic on-chip calibration to continually compensate for temperature  
and process variations across components. These calibration routines are performed periodically in the course  
of normal radio operation. Examples of some of the automatic calibration algorithms are baseband filter  
calibration for optimum transmit and receive performance, and LOFT calibration for carrier leakage reduction.  
In addition, I/Q Calibration, R Calibration, and VCO Calibration are performed on-chip. No per-board calibration  
is required in manufacturing test, which helps to minimize the test time and cost in large volume production.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 92  
BCM4339 Preliminary Data Sheet  
Calibration  
Figure 37: Radio Functional Block Diagram  
WL DAC  
WL PA  
WL PAD  
WL PGA  
WL TXLPF  
WL TX G-Mixer  
WL DAC  
WL A-PA  
WL A-PAD  
WL A-PGA  
WL TXLPF  
WL TX A-Mixer  
WL RX A-Mixer  
Voltage  
Regulators  
WLAN BB  
WL ADC  
WL A-LNA11  
WL A-LNA12  
WL RXLPF  
MUX  
WL ADC  
SLNA  
WL G-LNA12  
WL RXLPF  
WL RX G-Mixer  
WL ATX  
WL ARX  
WL GTX  
WL GRX  
CLB  
WL LOGEN  
WL PLL  
Gm  
BT LNA GM  
Shared XO  
BT RX  
BT TX  
BT LOGEN  
BT PLL  
LPO/Ext LPO/RCAL  
BT ADC  
BT RXLPF  
BT RXLPF  
BT ADC  
BT LNA Load  
BT PA  
BT RX Mixer  
BT BB  
BT FM  
BT DAC  
BT DAC  
BT TX Mixer  
BT TXLPF  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 93  
Pinout and Signal Descriptions  
BCM4339 Preliminary Data Sheet  
Section 13: Pinout and Signal Descriptions  
Ball Maps  
Figure 38 shows the FCFBGA ball map. Figure 39 shows the WLBGA ball map. Figure 40 shows the WLCSP bump map.  
Figure 38: 160-Ball FCFBGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
A
B
C
D
E
SR_VLX  
GPIO_13  
GPIO_5  
GPIO_3  
VDDIO_SD  
SDIO_DATA_1  
PAD_REFCLKN  
PCIE_CLKREQ_L  
A
B
C
D
E
SR_VDDBATP5V SR_VLX  
VDDIO  
GPIO_4  
GPIO_7  
GPIO_6  
SDIO_DATA_3  
SDIO_CLK  
PAD_RDN0  
PAD_RDP0  
PCIE_VSS  
PAD_TDP0  
PAD_TDN0  
PERST_L  
GPIO_1  
PAD_REFCLKP  
PCI_PME_L  
BT_GPIO_4  
SR_VDDBATP5V SR_VDDBATP5V  
SR_PVSS  
SR_VDDBATA5V  
BT_REG_ON JTAG_SEL  
WL_REG_ON GPIO_15  
GPIO_2  
GPIO_14  
GPIO_8  
SDIO_DATA_2 SDIO_DATA_0  
SDIO_CMD  
GPIO_0  
PCIE_VSS  
PAD_PLL_AVDD1P2 PAD_AVDD1P2  
SR_PVSS  
SR_PVSS  
VDDC  
VDDC  
VSSC  
F
LDO_VDD1P5  
LDO_VDD1P5  
NO CONNECT  
NO CONNECT  
F
G
H
J
VOUT_CLDO  
VDDC  
VDDC  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RF_SW_CTRL_7  
RF_SW_CTRL_5 RF_SW_CTRL_6  
RF_SW_CTRL_4  
RF_SW_CTRL_3  
RF_SW_CTRL_0  
BBPLLAVDD  
G
H
J
VOUT_3P3  
VOUT_3P3_SENSE  
VOUT_BTLDO2P5  
VOUT_LNLDO  
PMU_AVSS VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
LPO_IN  
RF_SW_CTRL_1 RF_SW_CTRL_2  
K
L
VDDC  
VSSC  
VSSC  
VDDIO_RF  
K
L
LDO_VDDBAT5V PMU_VDDIO  
BT_VDDIO  
BT_VDDC  
BT_VDDC  
VSSC  
WRF_VCO_GND1P2  
WRF_BUCK_GND1P5  
BBPLLAVSS  
WRF_BUCK_VDD1P5  
WRF_XTAL_GND1P2  
WRF_CP_GND1P2  
WRF_PFD_GND1P2  
OTP_VDD33  
M
BT_DEV_WAKE  
BT_SF_MOSI  
BT_SF_CLK  
VSSC  
VSSC  
VSSC  
WRF_LOGENG_GND1P2  
M
N
P
R
HUSB_DN  
HUSB_DP  
WRF_XTAL_VDD1P5  
N
P
R
BT_VCOVSS  
WRF_RX2G_GND1P2  
WRF_MMD_GND1P2  
WRF_XTAL_GND1P2 WRF_XTAL_IN  
WRF_XTAL_OUT  
BT_SF_CSN  
BT_SF_MISO  
BT_PLLVSS BT_LNAVSS BT_IFVSS  
BT_PAVSS  
WRF_PA2G_VBAT_GND3P3 WRF_AFE_GND1P2  
WRF_TX_GND1P2  
WRF_PADRV_VBATGND3P3 WRF_LOGEN_GND1P2  
BT_I2S_CLK  
T
U
V
BT_UART_CTS_N  
BT_I2S_DI  
WRF_LNA_2G_GND1P2  
WRF_GPIO_OUT  
WRF_LNA_5G_GND1P2  
WRF_RX5G_GND1P2  
WRF_PFD_VDD1P2 WRF_XTAL_VDD1P2  
WRF_MMD_VDD1P2  
T
U
V
BT_I2S_WS  
BT_I2S_DO  
WRF_PA5G_VBAT_GND3P3  
BT_UART_RTS_N  
BT_HOST_WAKE  
BT_VCOVDD BT_PLLVDD  
BT_LNAVDD BT_IFVDD  
BT_PAVDD  
BT_RF  
WRF_TSSI_A  
WRF_PA2G_VBAT_GND3P3 WRF_PA2G_VBAT_VDD3P3 WRF_PADRV_VBAT_VDD3P3 WRF_PA5G_VBAT_VDD3P3 WRF_PA5G_VBAT_GND3P3  
WRF_SYNTH_VBAT_VDD3P3  
W
BT_UART_RXD  
BT_UART_TXD  
CLK_REQ  
WRF_RFIN_2G  
WRF_RFOUT_2G  
WRF_RFOUT_5G  
WRF_RFIN_5G  
NO CONNECT  
W
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 94  
Ball Maps  
BCM4339 Preliminary Data Sheet  
Figure 39: 145-Ball WLBGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
A
B
C
A
SR_PVSS  
SR_VLX  
WL_REG_ON  
LPO_IN  
GPIO_6  
GPIO_3  
GPIO_0  
GPIO_1  
HSIC_DATA  
HSIC_STROBE  
RREFHSIC  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_CLK  
SDIO_CMD  
WL_VDDC  
B
C
SR_VDDBATP5V  
LDO_VDD1P5  
SR_VDDBATA5V PMU_AVSS  
GPIO_4  
WL_VDDC  
HSIC_AVDD12PLL  
HSIC_DVDD12  
VDDIO_SD  
SDIO_DATA_3  
VOUT_CLDO  
BT_REG_ON  
VSSC  
GPIO_7  
GPIO_5  
GPIO_2  
VSSC  
HSIC_AGNDPLL  
SDIO_DATA_2  
RF_SW_CTRL_8  
VSSC  
RF_SW_CTRL_4  
D
E
F
D
E
F
VOUT_3P3  
VOUT_LNLDO  
JTAG_SEL  
BT_UART_CTS VDDIO_RF  
VSSC  
RF_SW_CTRL_3  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_0  
VOUT_BTLDO2P5  
LDO_VDDBAT5V VDDIO  
RF_SW_CTRL_9 BT_UART_RTS BT_UART_TXD  
RF_SW_CTRL_5  
BT_PCM_IN  
GPIO_8  
BT_PCM_CLK  
WL_VDDC  
BT_VDDIO  
BT_VDDC  
WL_VDDC  
BT_VDDC  
VSSC  
BT_UART_RXD RF_SW_CTRL_7  
WL_VDDC  
BBPLL_AVS  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P5  
WRF_CP_GND  
BBPLL_AVDD1P2  
WRF_XTAL_IN  
G
H
J
G
H
J
BT_PCM_SYNC CLK_REQ  
BT_I2S_WS  
BT_I2S_CLK  
WRF_GPIO_OUT  
WRF_TSSI_A  
WRF_WL_LNLDOIN_VDD1P5 RF_SW_CTRL_6  
WRF_VCO_GND  
WRF_PFD_GND1P2  
FM_AUDIOVDD1P2 BT_HOST_WAKE BT_PCM_OUT  
WRF_BUCK_GND1P5  
WRF_MMD_GND1P2  
WRF_XTAL_OUT  
FM_AOUT1  
FM_AOUT2  
FM_VCOVSS  
FM_AUDIOVSS BT_DEV_WAKE VSSC  
FM_PLLVDD1P2 FM_PLLVSS BT_IFVDD1P2  
FM_LNAVSS BT_VCOVSS  
BT_VCOVDD1P2 BT_LNAVDD1P2 BT_RF  
BT_I2S_DI  
BT_I2S_DO  
BT_IFVSS  
WRF_AFE_GND1P2  
WRF_RX2G_GND1P2  
WRF_LO_GND1P2_2  
WRF_TX_GND1P2  
WRF_SYNTH_VBAT_VDD3P3 WRF_MMD_VDD1P2  
WRF_PFD_VDD1P2  
WRF_XTAL_VDD1P2  
WRF_RX5G_GND1P2  
K
L
K
L
BT_PLLVSS  
WRF_PADRV_VBAT_VDD3P3 WRF_PADRV_VBAT_GND3P3 WRF_LO_GND1P2_2  
BT_PLLVDD1P2 BT_PAVSS  
BT_AGPIO  
WRF_LNA_2G_GND1P2 WRF_PA_VBAT_GND3P3_4 WRF_PA_VBAT_GND3P3_3 WRF_PA_VBAT_GND3P3_2 WRF_PA_VBAT_GND3P3_1 WRF_LNA_5G_GND1P2  
M
N
M
N
FM_LNAVCOVDD1P2 FM_RFIN  
BT_PAVDD2P5 WRF_RFIN_2G  
WRF_RFOUT_2G  
8
WRF_PA2G_VBAT_VDD3P3 WRF_PA5G_VBAT_VDD3P3 WRF_RFOUT_5G  
WRF_RFIN_5G  
12  
1
2
3
4
5
6
7
9
10  
11  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 95  
BCM4339 Preliminary Data Sheet  
Ball Maps  
Figure 40: 286-Bump WLCSP (Bottom View)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 96  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Pin Lists  
Table 19 contains the 286-bump WLCSP coordinates.  
Table 19: 286-Bump WLCSP Coordinates  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
1
SR_PVSS  
2275.005  
1992.162  
1709.319  
2133.584  
1850.741  
1567.898  
1992.162  
1709.319  
1850.741  
1567.898  
2275.005  
1992.162  
1709.319  
2133.584  
1850.741  
2275.005  
1992.162  
1709.319  
2133.584  
1850.741  
1567.898  
2275.005  
1992.162  
1709.319  
2133.584  
1850.741  
2275.005  
1992.162  
1709.319  
2133.584  
1850.741  
1567.898  
2275.005  
2003.355  
2003.355  
2003.355  
1861.934  
1861.934  
1861.934  
1720.512  
1720.512  
1579.091  
1579.091  
1437.669  
1437.669  
1437.669  
1296.248  
1296.248  
1154.826  
1154.826  
1154.826  
1013.405  
1013.405  
1013.405  
871.983  
871.983  
871.983  
730.562  
730.562  
589.140  
589.140  
589.140  
447.719  
447.719  
447.719  
306.297  
–2275.005  
–1992.162  
–1709.319  
–2133.584  
–1850.741  
–1567.898  
–1992.162  
–1709.319  
–1850.741  
–1567.898  
–2275.005  
–1992.162  
–1709.319  
–2133.584  
–1850.741  
–2275.005  
–1992.162  
–1709.319  
–2133.584  
–1850.741  
–1567.898  
–2275.005  
–1992.162  
–1709.319  
–2133.584  
–1850.741  
–2275.005  
–1992.162  
–1709.319  
–2133.584  
–1850.741  
–1567.898  
–2275.005  
2003.355  
2003.355  
2003.355  
1861.934  
1861.934  
1861.934  
1720.512  
1720.512  
1579.091  
1579.091  
1437.669  
1437.669  
1437.669  
1296.248  
1296.248  
1154.826  
1154.826  
1154.826  
1013.405  
1013.405  
1013.405  
871.983  
871.983  
871.983  
730.562  
730.562  
589.140  
589.140  
589.140  
447.719  
447.719  
447.719  
306.297  
2
SR_PVSS  
3
WL_REG_ON  
SR_PVSS  
4
5
SR_PVSS  
6
SR_VLX  
7
SR_VLX  
8
SR_VLX  
9
SR_VLX  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
SR_VLX  
SR_VDDBATP5V  
SR_VDDBATP5V  
SR_VLX  
SR_VDDBATP5V  
SR_VDDBATA5V  
LDO_VDD1P5  
VOUT_CLDO  
VOUT_CLDO  
LDO_VDD1P5  
VOUT_CLDO  
PMU_AVSS  
VOUT_3P3  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_3P3  
LDO_VDD1P5  
LDO_VDDBAT5V  
VOUT_3P3  
VOUT_3P3_SENSE  
LDO_VDDBAT5V  
VSSC  
BT_REG_ON  
VOUT_BTLDO2P5  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 97  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
LDO_VDDBAT5V  
VSSC  
1992.162  
1709.319  
2133.584  
1850.741  
1567.898  
2000.397  
2252.010  
2264.169  
1548.201  
1931.412  
1659.396  
1944.471  
2063.397  
1800.498  
1794.801  
1784.397  
2136.414  
1653.744  
1583.904  
1393.104  
632.001  
306.297  
–1992.162  
–1709.319  
–2133.584  
–1850.741  
–1567.898  
–2000.397  
–2252.010  
–2264.169  
–1548.201  
–1931.412  
–1659.396  
–1944.471  
–2063.397  
–1800.498  
–1794.801  
–1784.397  
–2136.414  
–1653.744  
–1583.904  
–1393.104  
–632.001  
306.297  
306.297  
164.876  
164.876  
164.876  
–45.054  
–55.251  
306.297  
LDO_VDDBAT5V  
PMU_VDDIO  
PMU_VDDIO  
LPO_IN  
164.876  
164.876  
164.876  
–45.054  
HUSB_DN  
–55.251  
HUSB_DP  
–255.429  
–773.253  
–980.847  
–597.546  
–623.367  
–268.848  
–434.448  
–223.146  
–839.853  
–959.733  
–991.854  
–1213.488  
–1114.101  
–1226.646  
–1166.652  
–1334.853  
–1650.546  
–1363.752  
–966.654  
–1449.099  
–1031.652  
–1226.646  
–704.151  
–211.653  
–464.652  
–519.930  
–1354.050  
–1453.950  
–1131.651  
–1331.649  
–255.429  
–773.253  
–980.847  
–597.546  
–623.367  
–268.848  
–434.448  
–223.146  
–839.853  
–959.733  
–991.854  
–1213.488  
–1114.101  
–1226.646  
–1166.652  
–1334.853  
–1650.546  
–1363.752  
–966.654  
–1449.099  
–1031.652  
–1226.646  
–704.151  
–211.653  
–464.652  
–519.930  
–1354.050  
–1453.950  
–1131.651  
–1331.649  
BT_I2S_DO  
BT_I2S_DI  
BT_I2S_CLK  
BT_I2S_WS  
BT_PCM_CLK  
BT_PCM_SYNC  
BT_PCM_IN  
BT_PCM_OUT  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_TM1  
BT_VDDC_ISO_1  
CLK_REQ  
859.998  
–859.998  
2156.196  
1652.097  
1925.202  
859.998  
–2156.196  
–1652.097  
–1925.202  
–859.998  
BT_DEV_WAKE  
BT_HOST_WAKE  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_VDDIO  
1688.097  
470.001  
–1688.097  
–470.001  
1139.997  
1358.481  
1489.998  
1475.499  
1265.574  
933.699  
–1139.997  
–1358.481  
–1489.998  
–1475.499  
–1265.574  
–933.699  
BT_VDDIO  
BT_VDDIO  
BT_VDDC_ISO_2  
BT_VDDC  
BT_VDDC  
1482.501  
294.996  
–1482.501  
–294.996  
BT_VDDC  
BT_VDDC  
294.996  
–294.996  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 98  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
71  
BT_VDDC  
294.996  
–931.653  
–294.996  
–864.903  
–1067.997  
–1139.997  
–1479.864  
–1569.797  
–1597.593  
–1756.686  
–1769.795  
–1797.591  
–2045.451  
–2045.451  
–2080.781  
–2118.860  
–2245.449  
–2245.449  
–2261.469  
–2274.852  
–99.975  
–931.653  
72  
BT_VDDC  
864.903  
–482.949  
–482.949  
73  
BT_VDDC  
1067.997  
1139.997  
1479.864  
1569.797  
1597.593  
1756.686  
1769.795  
1797.591  
2045.451  
2045.451  
2080.781  
2118.860  
2245.449  
2245.449  
2261.469  
2274.852  
99.975  
–482.949  
–482.949  
74  
BT_VDDC  
–1026.648  
–2546.550  
–1888.101  
–2333.169  
–2533.167  
–1888.101  
–2333.169  
–1548.549  
–1760.319  
–2546.550  
–1960.317  
–1760.319  
–1548.549  
–2444.675  
–2086.889  
–1842.066  
–2042.064  
–2291.099  
–2422.625  
–2525.544  
–2491.097  
–2116.746  
–2501.330  
–1842.066  
–2042.064  
–2500.155  
–2240.766  
–2150.537  
–2411.789  
–1753.146  
–1572.417  
–2098.656  
–2561.652  
–2570.652  
–1026.648  
–2546.550  
–1888.101  
–2333.169  
–2533.167  
–1888.101  
–2333.169  
–1548.549  
–1760.319  
–2546.550  
–1960.317  
–1760.319  
–1548.549  
–2444.675  
–2086.889  
–1842.066  
–2042.064  
–2291.099  
–2422.625  
–2525.544  
–2491.097  
–2116.746  
–2501.330  
–1842.066  
–2042.064  
–2500.155  
–2240.766  
–2150.537  
–2411.789  
–1753.146  
–1572.417  
–2098.656  
–2561.652  
–2570.652  
75  
FM_RFAUX  
76  
FM_IFVSS  
77  
FM_LNAVSS  
FM_RFIN  
78  
79  
FM_IFVDD  
80  
FM_LNAVDD  
FM_DAC_VSS  
FM_DAC_AVDD  
FM_VCOVSS  
FM_PLLVDD  
FM_DAC_VOUT2  
FM_DAC_VOUT1  
FM_VCOVDD  
FM_PLLVSS  
BT_IFVSS  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
BT_IFVDD  
99.975  
–99.975  
91  
BT_AGPIO  
99.975  
–99.975  
92  
BT_PAVDD  
281.860  
–281.860  
–461.505  
–661.503  
–873.183  
–1005.281  
–1174.454  
–1174.454  
–1208.352  
–1352.595  
2275.490  
2251.986  
2119.686  
1902.494  
1800.006  
1800.006  
1600.008  
93  
BT_RF  
461.505  
94  
BT_PAVSS  
661.503  
95  
BT_LNAVSS  
BT_LNAVDD  
BT_PLLVSS  
BT_PLLVDD  
BT_VCOVDD  
BT_VCOVSS  
WRF_LNA_5G_GND1P2  
WRF_RFIN_5G  
WRF_RX5G_GND1P2  
WRF_LOGEN_GND1P2  
873.183  
96  
1005.281  
1174.454  
1174.454  
1208.352  
1352.595  
–2275.490  
–2251.986  
–2119.686  
–1902.494  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
WRF_PA5G_VBAT_GND3P3 –1800.006  
WRF_RFOUT_5G –1800.006  
WRF_PA5G_VBAT_VDD3P3 –1600.008  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 99  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
WRF_PADRV_VBAT_GND3P3 –1400.010  
WRF_PA5G_VBAT_GND3P3 –1400.010  
WRF_PA5G_VBAT_VDD3P3 –1400.010  
WRF_PA2G_VBAT_GND3P3 –1125.249  
WRF_PADRV_VBAT_VDD3P3 –1089.249  
WRF_PA2G_VBAT_VDD3P3 –1000.014  
WRF_PA2G_VBAT_VDD3P3 –800.016  
–1671.660  
–2098.656  
–2552.652  
–1987.776  
–1666.260  
–2552.652  
–2570.652  
–2552.652  
–2017.656  
–1761.939  
–2471.652  
–2071.656  
–1590.174  
–943.668  
–759.168  
–1125.594  
–1125.594  
–1271.664  
–471.672  
–1047.744  
–847.746  
–647.748  
–1047.744  
–847.746  
–1089.662  
–889.668  
–1271.664  
–980.154  
–353.066  
–554.598  
–353.066  
–1185.062  
–985.064  
–753.062  
–553.063  
–52.326  
1400.010  
1400.010  
1400.010  
1125.249  
1089.249  
1000.014  
800.016  
–1671.660  
–2098.656  
–2552.652  
–1987.776  
–1666.260  
–2552.652  
–2570.652  
–2552.652  
–2017.656  
–1761.939  
–2471.652  
–2071.656  
–1590.174  
–943.668  
–759.168  
–1125.594  
–1125.594  
–1271.664  
–471.672  
–1047.744  
–847.746  
–647.748  
–1047.744  
–847.746  
–1089.662  
–889.668  
–1271.664  
–980.154  
–353.066  
–554.598  
–353.066  
–1185.062  
–985.064  
–753.062  
–553.063  
–52.326  
WRF_RFOUT_2G  
–600.018  
600.018  
WRF_PA2G_VBAT_GND3P3 –542.224  
542.224  
WRF_RX2G_GND1P2  
WRF_RFIN_2G  
–302.509  
–200.022  
–200.022  
–165.822  
–200.022  
–279.173  
–338.919  
–661.308  
–856.014  
–1032.414  
–1066.853  
–1066.853  
–1166.852  
–1266.851  
–1266.851  
302.509  
200.022  
WRF_LNA_2G_GND1P2  
WRF_RX2G_GND1P2  
WRF_TSSI_A  
200.022  
165.822  
200.022  
WRF_GPIO_OUT  
279.173  
WRF_LOGENG_GND1P2  
WRF_AFE_GND1P2  
WRF_TX_GND1P2  
WRF_VCO_GND1P2  
WRF_BUCK_VDD1P5  
WRF_BUCK_VDD1P5  
WRF_BUCK_GND1P5  
WRF_BUCK_VDD1P5  
WRF_BUCK_VDD1P5  
338.919  
661.308  
856.014  
1032.414  
1066.853  
1066.853  
1166.852  
1266.851  
1266.851  
1503.344  
1627.031  
1854.006  
1922.892  
1950.522  
2000.004  
2199.998  
2200.002  
2200.002  
2200.002  
2200.002  
2205.429  
2005.431  
WRF_SYNTH_VBAT_VDD3P3 –1503.344  
WRF_MMD_GND1P2  
WRF_MMD_VDD1P2  
WRF_CP_GND1P2  
WRF_XTAL_VDD1P5  
WRF_XTAL_GND1P2  
WRF_XTAL_IN  
–1627.031  
–1854.006  
–1922.892  
–1950.522  
–2000.004  
–2199.998  
–2200.002  
–2200.002  
–2200.002  
–2200.002  
–2205.429  
–2005.431  
WRF_PFD_VDD1P2  
WRF_PFD_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_OUT  
BBPLLAVDD1P2  
BBPLLAVSS  
–57.348  
–57.348  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 100  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
OTP_VDD33  
VDDIO_RF  
–1831.200  
–2072.022  
–1691.052  
–1895.118  
–1809.960  
–1617.639  
–2129.154  
–1573.278  
–1749.264  
–1944.888  
–1400.001  
–1399.398  
–1400.001  
–2055.795  
–1943.295  
–1689.455  
–2280.795  
–2168.295  
–1830.795  
–1576.959  
–2168.295  
–1943.295  
–1689.455  
–2280.795  
–1830.795  
–2055.795  
–1269.996  
–1269.996  
–1040.001  
–1040.001  
–830.004  
318.141  
1831.200  
2072.022  
1691.052  
1895.118  
1809.960  
1617.639  
2129.154  
1573.278  
1749.264  
1944.888  
1400.001  
1399.398  
1400.001  
2055.795  
1943.295  
1689.455  
2280.795  
2168.295  
1830.795  
1576.959  
2168.295  
1943.295  
1689.455  
2280.795  
1830.795  
2055.795  
1269.996  
1269.996  
1040.001  
1040.001  
830.004  
318.141  
449.946  
517.221  
544.410  
772.110  
713.790  
817.452  
922.392  
449.946  
517.221  
544.410  
772.110  
713.790  
817.452  
922.392  
1019.259  
972.936  
1019.259  
972.936  
808.353  
808.353  
343.350  
343.350  
VDDIO_RF  
543.348  
543.348  
NC  
2207.556  
2041.056  
2041.056  
2207.556  
2041.056  
2207.556  
2207.556  
2374.758  
2374.758  
2374.758  
2541.258  
2541.258  
2541.258  
1963.350  
2168.352  
1963.350  
2168.352  
1963.350  
2168.352  
1763.352  
1763.352  
1963.350  
1963.350  
1568.349  
2207.556  
2041.056  
2041.056  
2207.556  
2041.056  
2207.556  
2207.556  
2374.758  
2374.758  
2374.758  
2541.258  
2541.258  
2541.258  
1963.350  
2168.352  
1963.350  
2168.352  
1963.350  
2168.352  
1763.352  
1763.352  
1963.350  
1963.350  
1568.349  
PAD_PLL_AVDD1P2  
NC  
PAD_PLL_AVSS  
NC  
PAD_PLL_AVSS  
NC  
NC  
NC  
PAD_RXTX_AVDD1P2  
PAD_RXTX_AVSS  
NC  
NC  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
VDDIO_SD  
VDDIO_SD  
STROBE  
–735.000  
735.000  
–1040.001  
–830.004  
1040.001  
830.004  
–545.001  
545.001  
DATA  
–240.000  
240.000  
RREFHSIC  
–805.002  
805.002  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 101  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
AGND12PLL  
DVDD12HSIC2  
AVDD12PLL  
DVDD12HSIC  
NC  
–605.004  
–394.998  
–605.004  
–394.998  
–15.000  
4.998  
1553.346  
1763.352  
1763.352  
1553.346  
2168.352  
1768.347  
1968.354  
1968.354  
1768.347  
2168.352  
1568.349  
1908.351  
1568.349  
1708.353  
1508.346  
1568.349  
1348.353  
1073.349  
1073.349  
1338.354  
1738.350  
1538.352  
1973.349  
2168.352  
668.349  
605.004  
1553.346  
1763.352  
1763.352  
1553.346  
2168.352  
1768.347  
1968.354  
1968.354  
1768.347  
2168.352  
1568.349  
1908.351  
1568.349  
1708.353  
1508.346  
1568.349  
1348.353  
1073.349  
1073.349  
1338.354  
1738.350  
1538.352  
1973.349  
2168.352  
668.349  
394.998  
605.004  
394.998  
15.000  
NC  
–4.998  
NC  
–5.001  
5.001  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_14  
GPIO_13  
GPIO_15  
JTAG_SEL  
VSSC  
239.997  
239.997  
290.001  
284.997  
675.003  
485.004  
675.003  
689.997  
920.001  
820.002  
820.002  
1119.999  
1119.999  
1180.002  
1180.002  
1180.002  
1119.999  
699.996  
699.996  
900.003  
900.003  
605.001  
384.996  
605.001  
–2120.001  
–1920.003  
–1689.999  
–1490.001  
–1490.001  
–1249.998  
–239.997  
–239.997  
–290.001  
–284.997  
–675.003  
–485.004  
–675.003  
–689.997  
–920.001  
–820.002  
–820.002  
–1119.999  
–1119.999  
–1180.002  
–1180.002  
–1180.002  
–1119.999  
–699.996  
–699.996  
–900.003  
–900.003  
–605.001  
–384.996  
–605.001  
2120.001  
1920.003  
1689.999  
1490.001  
1490.001  
1249.998  
VSSC  
468.351  
468.351  
VSSC  
468.351  
468.351  
VSSC  
668.349  
668.349  
VDDIO  
1148.346  
1368.351  
948.348  
1148.346  
1368.351  
948.348  
VDDIO  
VDDIO  
VDDC_PHY  
VDDC_PHY  
VDDC  
1213.353  
1213.353  
–71.649  
1213.353  
1213.353  
–71.649  
VDDC  
–71.649  
–71.649  
VDDC_PHY  
VDDC_PHY  
128.349  
128.349  
128.349  
128.349  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 102  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
VDDC_PHY  
VDDC_PHY  
VDDC_PHY  
VDDC_PHY  
VDDC  
–840.003  
–639.996  
–269.997  
–269.997  
–195.000  
–195.000  
–195.000  
4.998  
578.349  
578.349  
628.353  
828.351  
1568.349  
1768.347  
1268.352  
–6.651  
840.003  
639.996  
269.997  
269.997  
195.000  
195.000  
195.000  
–4.998  
578.349  
578.349  
628.353  
828.351  
1568.349  
1768.347  
1268.352  
–6.651  
VDDC  
VDDC_PHY  
VDDC  
VDDC_SUBCORE  
VDDC_SUBCORE  
VDDC  
4.998  
193.347  
393.354  
628.353  
828.351  
1028.349  
1568.349  
1268.352  
–216.648  
–216.648  
1148.346  
948.348  
–211.653  
–211.653  
–11.646  
–24.588  
1263.348  
1563.354  
1263.348  
1763.352  
–71.649  
1263.348  
–71.649  
1563.354  
–71.649  
128.349  
328.347  
828.351  
1028.349  
1368.351  
–4.998  
193.347  
393.354  
628.353  
828.351  
1028.349  
1568.349  
1268.352  
–216.648  
–216.648  
1148.346  
948.348  
–211.653  
–211.653  
–11.646  
4.998  
–4.998  
4.998  
–4.998  
VDDC  
4.998  
–4.998  
VDDC_SUBCORE  
VDDC_SUBCORE  
VDDC_SUBCORE  
VDDC  
4.998  
–4.998  
4.998  
–4.998  
4.998  
–4.998  
120.000  
319.998  
405.003  
405.003  
689.997  
890.004  
1090.002  
1396.119  
–1374.999  
–1269.996  
–1175.001  
–1269.996  
–1249.998  
–975.003  
–1050.000  
–1040.001  
–840.003  
–840.003  
–840.003  
–840.003  
–840.003  
–805.002  
–120.000  
–319.998  
–405.003  
–405.003  
–689.997  
–890.004  
–1090.002  
–1396.119  
1374.999  
1269.996  
1175.001  
1269.996  
1249.998  
975.003  
1050.000  
1040.001  
840.003  
840.003  
840.003  
840.003  
840.003  
805.002  
VDDC  
VDDC  
VDDC_SUBCORE  
VDDC  
VDDC  
VDDC_SUBCORE  
VDDC_SUBCORE  
VSSC  
–24.588  
1263.348  
1563.354  
1263.348  
1763.352  
–71.649  
1263.348  
–71.649  
1563.354  
–71.649  
128.349  
328.347  
828.351  
1028.349  
1368.351  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 103  
BCM4339 Preliminary Data Sheet  
Pin Lists  
Table 19: 286-Bump WLCSP Coordinates (Cont.)  
Pack age Bump Side View  
(0,0 center of die)  
Package Top Side View  
(0,0 center of die)  
Bump#  
Signal Name  
X
Y
X
Y
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
–639.996  
–639.996  
–439.998  
–439.998  
–439.998  
94.998  
828.351  
1028.349  
128.349  
328.734  
–71.649  
–606.654  
–806.652  
193.347  
1028.349  
628.353  
828.351  
–1457.550  
–446.652  
393.354  
193.347  
–1457.550  
–806.652  
–446.652  
468.351  
668.349  
–6.651  
639.996  
828.351  
639.996  
1028.349  
128.349  
328.734  
–71.649  
–606.654  
–806.652  
193.347  
1028.349  
628.353  
828.351  
–1457.550  
–446.652  
393.354  
193.347  
–1457.550  
–806.652  
–446.652  
468.351  
668.349  
–6.651  
439.998  
439.998  
439.998  
–94.998  
94.998  
–94.998  
204.996  
204.996  
204.996  
204.996  
133.104  
305.004  
204.996  
499.998  
457.401  
499.998  
505.002  
499.998  
499.998  
499.998  
699.996  
699.996  
699.996  
660.603  
900.003  
1090.002  
1100.001  
1229.997  
1229.997  
1290.000  
–204.996  
–204.996  
–204.996  
–204.996  
–133.104  
–305.004  
–204.996  
–499.998  
–457.401  
–499.998  
–505.002  
–499.998  
–499.998  
–499.998  
–699.996  
–699.996  
–699.996  
–660.603  
–900.003  
–1090.002  
–1100.001  
–1229.997  
–1229.997  
–1290.000  
–806.652  
–606.654  
–6.651  
–806.652  
–606.654  
–6.651  
–1457.550  
68.346  
–1457.550  
68.346  
–211.653  
668.349  
508.347  
308.349  
–211.653  
–211.653  
668.349  
508.347  
308.349  
–211.653  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 104  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Signal Descriptions  
The signal name, type, and description of each pin in the BCM4339 is listed in Table 20. The symbols shown  
under Type indicate pin directions (I/O = bidirectional, I = input, O = output) and the internal pull-up/pull-down  
characteristics (PU = weak internal pull-up resistor and PD = weak internal pull-down resistor), if any.  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
WLAN and Bluetooth RF Signal Interface  
N7  
W10  
118  
WRF_RFIN_2G  
I
2.4 GHz Bluetooth and WLAN  
receiver shared input.  
N5  
W8  
93  
BT_RF_TX  
O
I
Bluetooth PA output.  
N12  
N8  
W18  
W12  
W16  
V11  
102  
115  
106  
121  
WRF_RFIN_5G  
WRF_RFOUT_2G  
WRF_RFOUT_5G  
WRF_TSSI_A  
5 GHz WLAN receiver input.  
2.4 GHz WLAN PA output.  
5 GHz WLAN PA output.  
O
O
I
N11  
J7  
5 GHz TSSI input from an  
optional external power  
amplifier/power detector.  
H7  
V10  
122  
WRF_RES_EXT/  
WRF_GPIO_OUT/  
WRF_TSSI_G  
I/O GPIO or 2.4 GHz TSSI input  
from an optional external power  
amplifier/power detector.  
RF Switch Control Lines  
F12  
F11  
E12  
E11  
D12  
F8  
J19  
J17  
J18  
G19  
H17  
G17  
G18  
J16  
G16  
H16  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
O
O
O
O
O
O
O
O
O
O
Programmable RF switch  
control lines. The control lines  
are programmable via the  
driver and NVRAM file.  
H9  
G7  
E10  
F5  
WLAN PCI Express Interface  
A19  
PCIE_CLKREQ_L  
OD PCIe clock request signal which  
indicates when the REFCLK to  
the PCIe interface can be  
gated.  
1 = the clock can be gated  
0 = the clock is required  
B16  
PERST_L  
I (PU) PCIe System Reset. This input  
is the PCIe reset as defined in  
the PCIe base specification  
version 1.1.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 105  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
B13  
C13  
A18  
B18  
PAD_RDN0  
I
I
I
I
Receiver differential pair (x1  
lane).  
PAD_RDP0  
PAD_REFCLKN  
PAD_REFCLKP  
PCIE Differential Clock inputs  
(negative and positive). 100  
MHz differential.  
B15  
B14  
B19  
PAD_TDN0  
PAD_TDP0  
PCI_PME_L  
O
O
Transmitter differential pair (x1  
lane).  
OD PCI power management event  
output. Used to request a  
change in the device or system  
power state. The assertion and  
deassertion of this signal is  
asynchronous to the PCIe  
reference clock. This signal has  
an open-drain output structure,  
as per the PCI Bus Local Bus  
Specification, revision 2.3.  
PAD_TESTP  
PAD_TESTN  
PCIe test pin.  
WLAN SDIO Bus Interface  
Note: These signals can also have alternate functionality depending on package and host interface mode.  
Refer to Table 28: “BCM4339 GPIO/SDIO Alternative Signal Functions,” on page 118 for additional details.  
B11  
B12  
B10  
C10  
D10  
C11  
B11  
C11  
C10  
A11  
C9  
171  
172  
173  
174  
175  
176  
SDIO_CLK  
I
SDIO clock input.  
SDIO_CMD  
I/O SDIO command line.  
I/O SDIO data line 0.  
I/O SDIO data line 1.  
I/O SDIO data line 2.  
I/O SDIO data line 3.  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
B9  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 106  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
WLAN GPIO Interface  
Note: The GPIO signals can be multiplexed via software and the JTAG_SEL pin to behave as various specific  
functions. See Table 28: “BCM4339 GPIO/SDIO Alternative Signal Functions,” on page 118 for additional  
details.  
B6  
C6  
D6  
B5  
C5  
D5  
C4  
D4  
H1  
D9  
C16  
C8  
A7  
B5  
A5  
C7  
B7  
E8  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_14  
GPIO_13  
GPIO_15  
I/O Programmable GPIO pins.  
Note: These GPIO signals can  
be configured by software: as  
either inputs or outputs, to have  
internal pull-ups or pull-downs  
enabled or disabled, and to use  
either a high or low polarity  
upon assertion.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A3  
D8  
D6  
JTAG Interface  
E5  
C6  
205  
JTAG_SEL  
I/O JTAG select. Pull high to select  
the JTAG interface. If the JTAG  
interface is not used, this pin  
may be left floating or  
connected to ground.  
Note:SeeTable 28: “BCM4339  
GPIO/SDIO Alternative Signal  
Functions,” on page 118 for the  
JTAG signal pins.  
Clocks  
H12  
J12  
B4  
P19  
R19  
J7  
138  
142  
39  
WRF_XTAL_IN  
WRF_XTAL_OUT  
LPO_IN  
I
O
I
XTAL oscillator input.  
XTAL oscillator output.  
External sleep clock input  
(32.768 kHz).  
H3  
W3  
56  
CLK_REQ  
O
Reference clock request  
(shared by BT and WLAN).  
FM Transceiver and SFLASH  
N3  
P3  
49  
46  
BT_SF_MOSI  
BT_SF_CLK  
I/O SFLASH_SI  
I/O SFLASH_CLK  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 107  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
R1  
R2  
47  
48  
78  
75  
86  
BT_SF_CSN  
BT_SF_MISO  
FM_RFIN  
I/O SFLASH_CSN  
I/O SFLASH_SO  
N2  
I
I
FM Radio antenna port.  
FM_RFAUX  
FM radio auxiliary antenna port.  
FM DAC output 1.  
K1  
FM_DAC_VOUT1/  
FM_AOUT1  
O
L1  
85  
FM_DAC_VOUT2/  
FM_AOUT2  
O
FM DAC output 2.  
Bluetooth PCM  
G2  
46  
BT_PCM_CLK/BT_PCMCLK I/O PCM clock; can be master  
(output) or slave (input).  
G1  
J3  
48  
49  
47  
BT_PCM_IN  
I
PCM data input.  
PCM data output.  
BT_PCM_OUT  
BT_PCM_SYNC  
O
H2  
I/O PCM sync; can be master  
(output) or slave (input).  
Bluetooth USB Interface  
N1  
40  
41  
HUSB_DN  
HUSB_DP  
I/O USB (Host) data negative.  
Negative terminal of the USB  
transceiver.  
N2  
I/O USB (Host) data positive.  
Positive terminal of the USB  
transceiver.  
Bluetooth UART  
E6  
T3  
50  
51  
BT_UART_CTS_N/  
BT_UART_CTS  
I
UART clear-to-send. Active-low  
clear-to-send signal for the HCI  
UART interface.  
F6  
V1  
BT_UART_RTS_N/  
BT_UART_RTS/BT_LED  
O
UART request-to-send. Active-  
low request-to-send signal for  
the HCI UART interface. BT  
LED control pin.  
G6  
F7  
W1  
W2  
52  
53  
BT_UART_RXD/  
BT_RFDISABLE2  
I
UART serial input. Serial data  
input for the HCI UART  
interface. BT RF disable pin 2.  
BT_UART_TXD  
O
UART serial output. Serial data  
output for the HCI UART  
interface.  
Bluetooth/FM I2S  
I2S clock, can be master  
(output) or slave (input).  
J6  
R3  
44  
BT_I2S_CLK  
I/O  
I2S data output.  
I2S data input.  
K6  
K5  
U2  
U3  
42  
43  
BT_I2S_DO  
BT_I2S_DI  
I/O  
I/O  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 108  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
I2S WS; can be master (output)  
or slave (input).  
H6  
U1  
45  
BT_I2S_WS  
I/O  
Bluetooth Test Mode  
U1  
Bluetooth GPIO  
55  
BT_TM1  
I/O ARM JTAG mode.  
59  
60  
61  
62  
91  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_AGPIO  
I/O Bluetooth general-purpose I/O.  
I/O Bluetooth general-purpose I/O.  
I/O Bluetooth general-purpose I/O.  
I/O Bluetooth general-purpose I/O.  
I/O BT analog GPIO pin.  
C19  
M6  
Miscellaneous  
B3 D5  
3
WL_REG_ON  
I
Used by PMU to power up or  
power down the internal  
BCM4339 regulators used by  
the WLAN section. Also, when  
deasserted, this pin holds the  
WLAN section in reset. This pin  
has an internal 200 kpull-  
down resistor that is enabled by  
default. It can be disabled  
through programming.  
D3  
C5  
32  
BT_REG_ON  
I
Used by PMU to power up or  
power down the internal  
BCM4339 regulators used by  
the Bluetooth/FM section. Also,  
when deasserted, this pin holds  
the Bluetooth/FM section in  
reset. This pin has an internal  
200 kpull-down resistor that  
is enabled by default. It can be  
disabled through programming.  
K3  
J2  
M3  
V3  
57  
BT_DEV_WAKE  
I/O Bluetooth DEV_WAKE.  
I/O Bluetooth HOST_WAKE.  
58  
BT_HOST_WAKE  
B8  
179  
HSIC_STROBE/STROBE  
I/O Unsupported. This pin can be  
connected to ground or left  
unconnected (no-connect).  
B7  
B9  
180  
181  
HSIC_DATA/DATA  
RREFHSIC  
I/O Unsupported. This pin can be  
connected to ground or left  
unconnected (no-connect).  
I
Unsupported. Leave this pin  
unconnected (no-connect).  
Integrated Voltage Regulators  
C2  
C1  
C3  
15  
SR_VDDBATA5V  
SR_VDDBATP5V  
I
I
Quiet VBAT.  
Power VBAT.  
B1, B2, C1 11, 12, 14  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 109  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
B2  
A2, B2  
6–10, 13  
SR_VLX  
O
Cbuck switching regulator  
output. Refer to Table 45 on  
page 151 for details of the  
inductor and capacitor required  
on this output.  
D1  
F2  
F1, F2  
L1  
16, 19, 23, LDO_VDD1P5  
26  
I
I
I
LNLDO input.  
27, 30, 34, LDO_VDDBAT5V  
36  
LDO VBAT.  
H11  
N19  
136  
WRF_XTAL_VDD1P5/  
XTAL LDO input (1.35V).  
WRF_XTAL_BUCK_VDD1P  
5
K12  
T19  
141  
WRF_XTAL_VDD1P2/  
WRF_XTAL_OUT_VDD1P2  
O
XTAL LDO output (1.2V).  
E2  
D2  
F1  
E1  
K2  
G2  
J2  
24  
VOUT_LNLDO  
VOUT_CLDO  
O
O
O
O
O
Output of LNLDO.  
Output of core LDO.  
Output of BT LDO.  
LDO 3.3V output.  
17, 18, 20  
33  
VOUT_BTLDO2P5  
VOUT_3P3  
H1  
H2  
22, 25, 28  
29  
VOUT_3P3_SENSE  
Voltage sense pin for LDO 3.3V  
output.  
Bluetooth Supplies  
N6  
N4  
V8  
92  
96  
BT_PAVDD/BT_PAVDD2P5 PWR Bluetooth PA power supply.  
W5  
BT_LNAVDD/  
PWR Bluetooth LNA power supply.  
BT_LNAVDD1P2  
L4  
M4  
N3  
W6  
V6  
V5  
90  
98  
99  
55  
66  
BT_IFVDD/BT_IFVDD1P2  
PWR Bluetooth IF block power  
supply.  
BT_PLLVDD/  
BT_PLLVDD1P2  
PWR Bluetooth RF PLL power  
supply.  
BT_VCOVDD/  
BT_VCOVDD1P2  
PWR Bluetooth RF power supply.  
BT_VDDC_ISO_1  
PWR Core supply for power-on/off  
island VDDC_G.  
BT_VDDC_ISO_2  
PWR Core supply for power-on/off  
island VDDB.  
FM Transceiver Supplies  
87  
80  
FM_VCOVDD  
PWR FM VCO supply.  
FM_LNAVDD  
PWR FM LNA power supply.  
PWR FM LNA VCO power supply.  
PWR FM PLL power supply.  
N1  
L2  
FM_LNAVCOVDD1P2  
84  
FM_PLLVDD/  
FM_PLLVDD1P2  
79  
82  
FM_IFVDD  
PWR FM IF power supply.  
FM_DAC_AVDD  
PWR FM DAC power supply.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 110  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
J1  
FM_AUDIOVDD1P2  
PWR FM Audio power supply.  
WLAN Supplies  
L15  
127, 128,  
130, 131  
WRF_BUCK_VDD1P5  
PWR Internal capacitor-less LDO  
supply.  
H8  
K9  
L9  
WRF_WL_LNLDOIN_VDD1 PWR LNLDO 1.35V supply.  
P5  
V19  
V14  
132  
112  
WRF_SYNTH_VBAT_VDD3 PWR Synth VDD 3.3V supply.  
P3  
WRF_PADRV_VBAT_VDD3 PWR PA Driver VBAT supply.  
P3  
N10  
N9  
V15  
V13  
U18  
T18  
107, 110  
113, 114  
134  
WRF_PA5G_VBAT_VDD3P3 PWR 5 GHz PA 3.3V VBAT supply.  
WRF_PA2G_VBAT_VDD3P3 PWR 2 GHz PA 3.3V VBAT supply.  
K10  
K11  
WRF_MMD_VDD1P2  
WRF_PFD_VDD1P2  
PWR 1.2V supply.  
PWR 1.2V supply.  
139  
Miscellaneous Supplies  
L18  
155  
OTP_VDD33  
PWR OTP 3.3V supply.  
C7, C12,  
E10, E11,  
213–241  
VDDC/WL_VDDC  
PWR 1.2V core supply for WLAN.  
G4, G5, G8 G14, H14,  
K7  
F3  
B3  
210–212  
VDDIO /VDDIO2  
PWR 1.8V–3.3V supply for WLAN.  
Must be directly connected to  
PMU_VDDIO and BT_VDDIO  
on the PCB.  
H5, J4  
L7, M7  
L2  
67–74  
37, 38  
BT_VDDC  
PWR 1.2V core supply for BT.  
PMU_VDDIO  
PWR 1.8V–3.3V supply for PMU  
controls. Must be directly  
connected to VDDIO and  
BT_VDDIO on the PCB.  
H4  
L3  
63–65  
BT_VDDIO  
PWR 1.8V–3.3V supply for BT. Must  
be directly connected to  
PMU_VDDIO and VDDIO on  
the PCB.  
D9  
E7  
C8  
A9  
K17  
177, 178  
156, 157  
184  
VDDIO_SD  
VDDIO_RF  
PWR 1.8V–3.3V supply for SDIO  
pads.  
PWR IO supply for RF switch control  
pads (3.3V).  
AVDD12PLL/  
HSIC_AVDD12PLL  
PWR HSIC is not supported. Connect  
this pin to ground to minimize  
leakage.  
C9  
185  
DVDD12HSIC/  
HSIC_DVDD12  
PWR HSIC is not supported. Connect  
this pin to ground to minimize  
leakage.  
G12  
L19  
143  
159  
BBPLL_AVDD1P2  
PLL_AVDD1P2  
PWR 1.2V supply for baseband PLL.  
PWR 1.2V supply for PCIe PLL.  
D18  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 111  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
D19  
167  
AVDD1P2  
PWR 1.2V supply for PCIe.  
Ground  
H10  
L12  
126  
WRF_VCO_GND1P2/  
WRF_VCO_GND  
GND VCO/LOGEN ground.  
183  
124  
129  
DVDD12HSIC2  
GND Supply for DVDD12HSIC2.  
GND AFE ground.  
K7  
J8  
R12  
M12  
WRF_AFE_GND1P2  
WRF_BUCK_GND1P5  
GND Internal capacitor-less LDO  
ground.  
M7  
T10  
T15  
R13  
R14  
119  
101  
125  
108  
WRF_LNA_2G_GND1P2  
WRF_LNA_5G_GND1P2  
WRF_TX_GND1P2  
GND 2 GHz internal LNA ground.  
GND 5 GHz internal LNA ground.  
GND TX ground.  
M12  
L8  
L10  
WRF_PADRV_VBAT_GND3 GND PAD ground.  
P3  
G11  
L7  
L12  
M15, P18  
P11  
137  
WRF_XTAL_GND1P2  
WRF_RX2G_GND1P2  
WRF_RX5G_GND1P2  
WRF_LOGEN_GND1P2  
WRF_LOGENG_GND1P2  
WRF_LO_GND1P2_1  
WRF_LO_GND1P2_2  
GND XTAL ground.  
GND RX 2GHz ground.  
GND RX 5GHz ground.  
GND LOGEN ground.  
GND LOGEN ground.  
GND LO ground.  
117, 120  
103  
T16  
R15  
104  
M11  
123  
L11  
K8  
GND LO ground.  
U15, V16  
105, 109  
WRF_PA5G_VBAT_GND3P GND 5 GHz PA ground.  
3
R11, V12  
111, 116  
WRF_PA2G_VBAT_GND3P GND 2 GHz PA ground.  
3
M11  
M10  
M9  
WRF_PA_VBAT_GND3P3_1 GND PA ground.  
WRF_PA_VBAT_GND3P3_2 GND PA ground.  
WRF_PA_VBAT_GND3P3_3 GND PA ground.  
WRF_PA_VBAT_GND3P3_4 GND PA ground.  
M8  
J9  
P14  
N15  
133  
135  
WRF_MMD_GND1P2  
GND Ground.  
GND Ground.  
J11  
WRF_CP_GND1P2/  
WRF_CP_GND  
J10  
P15  
140  
WRF_PFD_GND1P2  
GND Ground.  
D7, D11,  
H9–H12,  
31, 35, 161, VSSC  
GND Core ground for WLAN and BT.  
E3, E8, J5, J8, J12, K8, 163, 168,  
K4  
K12, L8, L11, 242–286  
M8–M10  
B1  
C3  
D8  
D1, E1, E2 1, 2, 4, 5  
SR_PVSS  
GND Power ground.  
GND Quiet ground.  
GND PLL ground.  
H8  
21  
PMU_AVSS  
182  
AGND12PLL/  
HSIC_AGNDPLL  
M5  
T8  
94  
BT_PAVSS  
GND Bluetooth PA ground.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 112  
BCM4339 Preliminary Data Sheet  
Signal Descriptions  
Table 20: FCFBGA, WLBGA, and WLCSP Signal Descriptions (Cont.)  
WLBGA  
Ball#  
FCFBGA  
Ball#  
WLCSP  
Bump#  
Signal Name  
Type Description  
R8  
95  
BT_LNAVSS  
BT_IFVSS  
GND Bluetooth LNA ground.  
GND Bluetooth IF block ground.  
GND Bluetooth PLL ground.  
GND Bluetooth VCO ground.  
GND FM VCO Ground.  
GND FM LNA Ground.  
L6  
L5  
M3  
M1  
M2  
L3  
R9  
89  
R7  
97  
BT_PLLVSS  
BT_VCOVSS  
FM_VCOVSS  
FM_LNAVSS  
FM_PLLVSS  
FM_IFVSS  
P8  
100  
83  
77  
88  
GND FM PLL Ground.  
76  
GND FM IF ground.  
81  
FM_DAC_VSS  
FM_AUDIOVSS  
GND FM DAC ground.  
K2  
G10  
GND FM Audio Ground.  
L13  
144  
AVSS_BBPLL/BBPLLAVSS GND Baseband PLL ground.  
D13, D16  
PCIE_VSS  
VSSC  
GND PCIe ground.  
GND Ground.  
GND Ground.  
GND Ground.  
GND Ground.  
209  
208  
207  
206  
VSSC  
VSSC  
VSSC  
No Connect  
A2, A3, A4, F5, G5, W19 158, 160,  
NC  
No connect  
A6, A7, A9,  
A10, A11  
162, 164,  
165, 166,  
169, 170,  
186, 187,  
188  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 113  
BCM4339 Preliminary Data Sheet  
WLAN GPIO Signals and Strapping Options  
WLAN GPIO Signals and Strapping Options  
The pins listed in Table 21 are sampled at power-on reset (POR) to determine the various operating modes.  
Sampling occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR,  
each pin assumes the GPIO or alternative function specified in the signal descriptions table. Each strapping  
option pin has an internal pull-up (PU) or pull-down (PD) resistor that determines the default mode. To change  
the mode, connect an external PU resistor to VDDIO or a PD resistor to GND, using a 10 kresistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 21: WLAN GPIO Functions and Strapping Options  
FCBGA  
Pin #  
WLBGA  
Pin #  
WLCSP  
Pin #  
Default  
Function  
Pin Name  
Description  
SDIO_SELa  
GPIO_7  
B7  
D4  
196  
1
GPIO_8  
E8  
H1  
197  
202  
171  
0
0
1
SDIO_PADVDDIO  
PCIE_DISABLE  
GPIO_14  
SDIO_CLK  
A3  
CPU-LESS/SPROM_DISABLEa  
SPI_SELa  
B11  
B11  
SDIO_DATA_2  
C9  
D10  
175  
1
a. See Table 22, Table 23, and Table 24.  
Table 22: SDIO/gSPI I/O Voltage Selection (All Packages)  
SDIO_SEL  
SPI_SEL  
SDIO_PADVDDIO  
Mode  
1
1
0
0
0
X
X
1
1
0
0
1
0
1
X
1.8V I/O  
3.3V I/O  
1.8V I/O  
3.3V I/O  
3.3V I/O  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 114  
BCM4339 Preliminary Data Sheet  
WLAN GPIO Signals and Strapping Options  
Table 23: Host Interface Selection (FCBGA Package only)  
SPROM_DISABL  
PCIE_DISABLE Ea  
SDIO_SEL SPI_SEL  
Mode  
1
1
0
0
0
X
X
1
1
0
0
1
0
1
0
X
X
X
X
0
SDIO and PCIe mode  
SDIO mode  
gSPI and PCIe mode  
gSPI mode  
PCIe mode with SPROM on the SDIO pinsb  
PCIe mode (no SPROM)  
0
0
0
1
a. SPROM_DISABLE strapping is valid only in the FCBGA package and only used if SDIO/gSPI is disabled.  
b. SPROM is only available for PCIe mode.  
Table 24: Host Interface Selection (WLBGA and WLCSP Packagesa)  
SDIO_SEL  
SPI_SEL  
CPULESS  
Mode  
1
0
0
0
X
1
0
0
X
X
0
1
SDIO Mode (3.3V or 1.8V I/O)  
gSPI Mode (3.3V or 1.8V I/O)  
Unsupported  
Unsupported  
a. PCIe and SPROM modes are not available in the WLBGA and WLCSP packages.  
Table 25: OTP/SPROM Select  
Mode  
SDIO CIS  
PCIE Configuration  
PCIe Disabled  
From OTP if OTP is programmed;  
ELSE default CIS.  
PCIe Enabled  
Default CIS  
From SPROM if SPROM is present;  
ELSE from OTP (if programmed);  
ELSE default configuration.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 115  
BCM4339 Preliminary Data Sheet  
WLAN GPIO Signals and Strapping Options  
Multiplexed Bluetooth GPIO Signals  
The Bluetooth GPIO pins (BT_GPIO_0 to BT_GPIO_7) are multiplexed pins and can be programmed to be used  
as GPIOs or for other Bluetooth interface signals such as I2S. The specific function for a given BT_GPIO_X pin  
is chosen by programming the Pad Function Control register for that specific pin. Table 26 shows the possible  
options for each BT_GPIO_X pin. Note that each BT_GPIO_X pin's Pad Function Control register setting is  
independent (BT_GPIO_1 can be set to pad function 7 at the same time that BT_GPIO_3 is set to pad  
function 0). When the Pad Function Control register is set to 0, the BT_GPIOs do not have specific functions  
assigned to them and behave as generic GPIOs. The A_GPIO_X pins described below are multiplexed behind  
the BCM4339's PCM and I2S interface pins.  
Table 26: GPIO Multiplexing Matrix  
Pad Function Control Register Setting  
Pin Name  
0
1
2
3
4
5
6
7
15  
BT_UART_CTS_ UART_CTS_N –  
N
A_GPIO[1]  
BT_UART_RTS_ UART_RTS_N –  
N
A_GPIO[0]  
BT_UART_RXD UART_RXD  
GPIO[5]  
GPIO[4]  
BT_UART_TXD  
BT_PCM_IN  
UART_TXD  
A_GPIO[3]  
PCM_IN  
PCM_IN  
HCLK  
I2S_SSDI/  
MSDI  
SF_MISO  
BT_PCM_OUT  
A_GPIO[2]  
PCM_OUT PCM_OUT LINK_IND  
I2S_MSDO –  
I2S_MWS  
I2S_SSDO SF_MOSI  
BT_PCM_SYNC A_GPIO[1]  
PCM_SYNC PCM_SYN HCLK  
C
INT_LPO  
I2S_SWS  
I2S_SSCK  
STATUS  
SF_SPI_CS  
N
BT_PCM_CLK  
A_GPIO[0]  
PCM_CLK  
PCM_CLK  
I2S_MSCK –  
SF_SPI_CL  
K
BT_I2S_DO  
BT_I2S_DI  
A_GPIO[5]  
A_GPIO[6]  
PCM_OUT  
PCM_IN  
I2S_SSDO I2S_MSDO –  
HCLK  
I2S_SSDI/  
MSDI  
TX_CON_FX –  
BT_I2S_WS  
BT_I2S_CLK  
GPIO[7]  
GPIO[6]  
GPIO[5]  
PCM_SYNC  
PCM_CLK  
HCLK  
LINK_IND  
I2S_MWS  
I2S_SWS  
I2S_SSCK  
CLK_REQ  
INT_LPO  
I2S_MSCK –  
a
I2S_MSCK I2S_SSCK  
I2S_MSDO I2S_SSDO  
I2S_MWS I2S_SWS  
BT_GPIO_5  
a
GPIO[4]  
GPIO[3]  
GPIO[2]  
LINK_IND  
BT_GPIO_4  
a
BT_GPIO_3  
a
I2S_SSDI/  
MSDI  
BT_GPIO_2  
BT_GPIO_1  
BT_GPIO_0  
CLK_REQ  
GPIO[1]  
GPIO[0]  
CLASS1[2]  
clk_12p288  
WL/  
A_GPIO[7]  
BT_CLK_REQ  
a. Available only in the WLCSP package.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 116  
BCM4339 Preliminary Data Sheet  
WLAN GPIO Signals and Strapping Options  
The multiplexed GPIO signals are described in Table 27.  
Table 27: Multiplexed GPIO Signals  
Description  
Pin Name  
Type  
UART_CTS_N  
UART_RTS_N  
UART_RXD  
UART_TXD  
PCM_IN  
I
Host UART clear to send.  
O
I
Device UART request to send.  
Device UART receive data.  
O
I
Host UART transmit data.  
PCM data input.  
PCM_OUT  
PCM_SYNC  
PCM_CLK  
O
I/O  
I/O  
I/O  
I/O  
O
PCM data output.  
PCM sync signal, can be master (output) or slave (input).  
PCM clock, can be master (output) or slave (input).  
General-purpose I/O.  
GPIO[7:0]  
A_GPIO[7:0]  
I2S_MSDO  
A group general-purpose I/O.  
I2S master data output.  
I2S master word select.  
I2S master clock.  
I2S_MWS  
O
O
I
I2S_MSCK  
I2S_SSCK  
I2S_SSDO  
I2S_SWS  
I2S slave clock.  
I2S slave data output.  
I2S slave word select.  
O
I
I2S slave/master data input.  
I2S_SSDI/MSDI  
I
STATUS  
O
I
Signals Bluetooth priority status.  
TX_CON_FX  
RF_ACTIVE  
LINK_IND  
WLAN-BT coexist. Transmission confirmation; permission for BT to transmit.  
WLAN-BT coexist. Asserted (logic high) during local BT RX and TX slots.  
BT receiver/transmitter link indicator.  
O
O
O
O
I
CLK_REQ  
SF_SPI_CLK  
SF_MISO  
WLAN/BT clock request output.  
SFlash SCLK: serial clock (output from master).  
SFlash MISO; SOMI: master input, slave output (output from slave).  
SFlash MOSI; SIMO: master output, slave input (output from master).  
SFlash SS: slave select (active low, output from master).  
SF_MOSI  
O
O
SF_SPI_CSN  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 117  
GPIO/SDIO Alternative Signal Functions  
BCM4339 Preliminary Data Sheet  
GPIO/SDIO Alternative Signal Functions  
Table 28: BCM4339 GPIO/SDIO Alternative Signal Functions a b  
Pins  
WLBGA SDIO  
WLCSP SDIO  
FCBGA PCIE  
FCBGA SDIO  
GPIO_0  
GPIO_1  
GPIO_2  
WL_HOST_WAKE  
WL_DEV_WAKE  
WL_HOST_WAKE  
WL_DEV_WAKE  
WL_HOST_WAKE  
WL_HOST_WAKE  
WL_RF_DISABLE_L  
WL_RF_DISABLE_L  
TCK, GCI_GPIO_1, or  
UART RX  
TCK or GCI_GPIO_1  
TCK, GCI_GPIO_1, or UART RX  
TCK, GCI_GPIO_1, or UART RX  
GPIO_3  
TMS or GCI_GPIO_0  
TDI or SECI_IN  
TDO or SECI_OUT  
TRST_L or UART TX  
[Strap, tied High]  
[Strap, tied High or Low]  
N/A  
TMS or GCI_GPIO_0  
TDI  
TMS or GCI_GPIO_0  
TDI or SECI_IN  
TDO or SECI_OUT  
TRST_L or UART TX  
[Strap, tied Low]  
TMS or GCI_GPIO_0  
TDI or SECI_IN  
TDO or SECI_OUT  
TRST_L or UART TX  
[Strap, tied High]  
[Strap, tied High or Low]  
N/A  
GPIO_4  
GPIO_5  
TDO  
GPIO_6  
TRST_L  
GPIO_7  
[Strap, tied High]  
[Strap, tied High or Low]  
GPIO_8  
GPIO_9  
N/A  
GPIO_10  
GPIO_11  
N/A  
SECI_IN  
N/A  
N/A  
N/A  
SECI_OUT  
UART_TX  
UART_RX  
N/A  
N/A  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
N/A  
N/A  
N/A  
N/A  
WL_LED  
WL_LED  
N/A  
N/A  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
[Strap, tied High]  
SPROM_CS  
SPROM_CLK  
SPROM_MISO  
[Strap, tied Low]  
SPROM_MOSI  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
a. N/A = Pin not available in this package.  
b. JTAG signals (TCK, TDI, TDO, TMS, and TRST_L) are selected when JTAG_SEL pin is high.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 118  
I/O States  
BCM4339 Preliminary Data Sheet  
I/O States  
The following notations are used in Table 29:  
I: Input signal  
O: Output signal  
I/O: Input/Output signal  
PU = Pulled up  
PD = Pulled down  
NoPull = Neither pulled up nor pulled down  
Table 29: I/O States  
Out-of-Reset;  
b
Power-down  
Before SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
(WL_REG_ON High and  
BT_REG_ON = 0) and  
VDDIOs Are Present  
Low Power State/Sleep (BT_REG_ON and  
a
Name  
I/O Keeper Active Mode  
(All Power Present)  
Input; PD (pull-down can Input; PD (pull-down can Input; PD (of 200K)  
be disabled) be disabled)  
Input; PD (pull down can Input; PD (pull down can Input; PD (of 200K)  
be disabled) be disabled)  
WL_REG_ON Held Low)  
Power Rail  
WL_REG_ON  
I
N
N
Y
Input; PD (of 200K)  
Input; PD (of 200K)  
Open drain. Active high  
Input; PD (of 200K)  
Input; PD (of 200K)  
Open drain. Active high.  
BT_REG_ON  
CLK_REQ  
I
I/O  
Open drain or push-pull Open drain or push-pull PD  
(programmable). Active (programmable). Active  
BT_VDDIO  
high.  
high  
BT_HOST_WAKE I/O  
BT_DEV_WAKE I/O  
BT_GPIO 2, 3, 4, 5 I/O  
Y
Y
Y
Input/Output; PU, PD,  
Input/Output; PU, PD,  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input, PU  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
NoPull (programmable) NoPull (programmable)  
Input/Output; PU, PD, Input; PU, PD, NoPull  
NoPull (programmable) (programmable)  
Input/Output; PU, PD,  
Input/Output; PU, PD,  
NoPull (programmable) NoPull (programmable)  
BT_UART_CTS  
BT_UART_RTS  
BT_UART_RXD  
BT_UART_TXD  
SDIO Data  
I
Y
Y
Y
Y
N
Input; NoPull  
Output; NoPull  
Input; PU  
Input; NoPull  
Output; NoPull  
Input; NoPull  
Output; NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; PU  
Input; PU  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
VDDIO_SD  
O
I
Input; PU  
Input; PU  
Input; PU  
Input; PU  
O
I/O  
Output; NoPull  
Input; PU  
Input; PU  
Input/Output;  
Input; PU (SDIO Mode) High-Z, NoPull  
Input; PU (SDIO Mode)  
Input; PU (SDIO Mode)  
PU (SDIO Mode)  
SDIO CMD  
SDIO_CLK  
I/O  
I
N
N
Input/Output;  
PU (SDIO Mode)  
Input; PU (SDIO Mode) High-Z, NoPull  
Input; PU (SDIO Mode)  
Input; noPull  
Input; PU (SDIO Mode)  
Input; noPull  
VDDIO_SD  
VDDIO_SD  
Input; NoPull  
Input; noPull  
High-Z, NoPull  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 119  
I/O States  
BCM4339 Preliminary Data Sheet  
Table 29: I/O States (Cont.)  
Out-of-Reset;  
b
Power-down  
Before SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
(WL_REG_ON High and  
BT_REG_ON = 0) and  
VDDIOs Are Present  
Low Power State/Sleep (BT_REG_ON and  
a
Name  
I/O Keeper Active Mode  
(All Power Present)  
WL_REG_ON Held Low)  
Power Rail  
c
c
c
c
BT_PCM_CLK  
I/O  
I/O  
I/O  
Y
Y
Y
Y
Y
Y
Y
Y
Y
High-Z, NoPull  
Output  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input; PD  
BT_VDDIO  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
c
BT_PCM_IN  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; NoPull, Hi-Z  
Output  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
VDDIO  
Input; NoPull  
c
BT_PCM_OUT  
Input; NoPull  
c
c
BT_PCM_SYNC I/O  
Output  
Input; NoPull  
d
d
BT_I2S_WS  
BT_I2S_CLK  
BT_I2S_DI  
I/O  
I/O  
I/O  
I/O  
I/O  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input; PD  
PD  
PD  
d
d
PD  
PD  
d
d
PD  
Input; PD  
d
d
BT_I2S_DO  
WL GPIO_0  
Output  
Output  
Input/Output; PU, PD,  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: PD])  
[Default: PD])  
WL GPIO_1  
WL GPIO_2  
WL GPIO_3  
WL GPIO_4  
WL GPIO_5  
WL GPIO_6  
WL GPIO_7  
WL GPIO_8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y
Y
Y
Y
Y
Y
Y
Y
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; NoPull  
Input; NoPull  
Input; PD  
Input; NoPull  
Input; NoPull  
Input; PD  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
[Default: NoPull])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
[Default: NoPull])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: PD])  
Input/Output; PU, PD,  
[Default: PD])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
Input; NoPull  
Input; PD  
Input; NoPull  
Input; PD  
[Default: NoPull])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: PD])  
Input/Output; PU, PD,  
[Default: PD])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
[Default: NoPull])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
[Default: NoPull])  
e
e
Input/Output; PU, PD,  
Input/Output; PU, PD,  
Input; PD  
Input; PD  
NoPull (programmable NoPull (programmable  
e
e
[Default: PD])  
[Default: PD])  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 120  
I/O States  
BCM4339 Preliminary Data Sheet  
Table 29: I/O States (Cont.)  
Out-of-Reset;  
b
Power-down  
Before SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
(WL_REG_ON High and  
BT_REG_ON = 0) and  
VDDIOs Are Present  
Low Power State/Sleep (BT_REG_ON and  
a
Name  
I/O Keeper Active Mode  
(All Power Present)  
WL_REG_ON Held Low)  
Power Rail  
f
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Y
Y
Y
Y
Y
Y
Y
N
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: PD])  
Input/Output; PU, PD,  
High-Z, NoPull  
Input; PD  
Input; PD  
VDDIO  
WL GPIO_9  
[Default: PD])  
f
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; NoPull  
Input; PD  
Input; NoPull  
Input; PD  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO_RF  
WL GPIO_10  
[Default: NoPull])  
f
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: PD])  
Input/Output; PU, PD,  
WL GPIO_11  
WL GPIO_12  
WL GPIO_13  
WL GPIO_14  
WL GPIO_15  
[Default: PD])  
f
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Output, NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Output, NoPull  
[Default: NoPull])  
g
g
g
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
[Default: NoPull])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
[Default: NoPull])  
Input/Output; PU, PD,  
NoPull (programmable NoPull (programmable  
[Default: NoPull])  
Input/Output; PU, PD,  
[Default: NoPull])  
RF_SW_CTRL_X  
Output, NoPull  
Output, NoPull  
a. Keeper column: N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in Power-down state. If there is no keeper, and it is an input  
and there is Nopull, then the pad should be driven to prevent leakage due to floating pad (SDIO_CLK, for example).  
b. In the Power-down state (xx_REG_ON=0): High-Z; NoPull => the pad is disabled because power is not supplied.  
c. Depending on whether the PCM interface is enabled and the configuration of PCM is in master or slave mode, it can be either output or input.  
d. Depending on whether the I2S interface is enabled and the configuration of I2S is in master or slave mode, it can be either output or input  
e. NoPull when in SDIO mode.  
f. Only available in WLCSP package.  
g. Only available in WLCSP and FCBGA packages.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 121  
BCM4339 Preliminary Data Sheet  
DC Characteristics  
Section 14: DC Characteristics  
Absolute Maximum Ratings  
Caution! The absolute maximum ratings in Table 30 indicate levels where permanent damage to the  
device can occur, even if these limits are exceeded for only a brief duration. Functional operation is  
not guaranteed under these conditions. Operation at absolute maximum conditions for extended  
periods can adversely affect long-term reliability of the device.  
Table 30: Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
DC supply for VBAT and PA driver supplya  
DC supply voltage for digital I/O  
DC supply voltage for RF switch I/Os  
DC input supply voltage for CLDO and LNLDO  
DC supply voltage for RF analog  
DC supply voltage for core  
VBAT  
–0.5 to +6.0  
V
VDDIO  
VDDIO_RF  
–0.5 to 3.9  
–0.5 to 3.9  
–0.5 to 1.575  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5 to 3.63  
–0.5  
V
V
V
V
V
V
V
VDD1P2  
VDDC  
WRF_TCXO_VDD  
Maximum undershoot voltage for I/Ob  
Vundershoot  
Maximum overshoot voltage for I/Ob  
Maximum junction temperature  
Vovershoot  
Tj  
VDDIO + 0.5  
125  
V
°C  
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V (for up to 10 seconds), cumulative  
duration over the lifetime of the device, are allowed. Voltage transients as high as 5.5V (for up to 250 seconds),  
cumulative duration over the lifetime of the device, are allowed.  
b. Duration not to exceed 25% of the duty cycle.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 122  
BCM4339 Preliminary Data Sheet  
Environmental Ratings  
Environmental Ratings  
The environmental ratings are shown in Table 31.  
Table 31: Environmental Ratings  
Characteristic  
Value  
Units  
Conditions/Comments  
Functional operationa  
Ambient Temperature (TA)  
–30 to +85  
°C  
Storage Temperature  
Relative Humidity  
–40 to +125  
Less than 60  
Less than 85  
°C  
%
%
Storage  
Operation  
a. Functionality is guaranteed but specifications require derating at extreme temperatures; see the specification  
tables for details.  
Electrostatic Discharge Specifications  
Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and  
heel grounding straps to discharge static electricity is required when handling these devices. Always store  
unused material in its antistatic packaging.  
Table 32: ESD Specifications  
Pin Type  
Symbol  
Condition  
ESD Rating  
Unit  
ESD, Handling  
Reference:  
ESD_HAND_HBM Human body model contact discharge ±1000  
per JEDEC EID/JESD22-A114  
V
NQY00083, Section  
3.4, Group D9, Table  
B
CDM  
ESD_HAND_CDM Charged device model contact  
discharge per JEDEC EIA/JESD22-  
C101  
±300  
V
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 123  
BCM4339 Preliminary Data Sheet  
Recommended Operating Conditions and DC Characteristics  
Recommended Operating Conditions and DC Characteristics  
Caution! Functional operation is not guaranteed outside of the limits shown in Table 33 and operation  
outside these limits for extended periods can adversely affect long-term reliability of the device.  
Table 33: Recommended Operating Conditions and DC Characteristics  
Value  
Parameter  
Symbol  
Minimum Typical Maximum Unit  
3.0a  
1.14  
1.14  
5.25b  
1.26  
1.26  
1.98  
DC supply voltage for VBAT  
VBAT  
V
DC supply voltage for core  
VDD  
1.2  
1.2  
1.8  
V
V
V
DC supply voltage for RF blocks in chip  
DC supply voltage for TCXO input buffer  
VDD1P2  
WRF_TCXO_VD 1.62  
D
DC supply voltage for digital I/O  
VDDIO,  
VDDIO_SD  
1.71  
3.63  
V
DC supply voltage for RF switch I/Os  
External TSSI input  
VDDIO_RF  
3.13  
0.15  
3.3  
3.46  
0.95  
V
V
WRF_TSSI_A,  
WRF_TSSI_G  
Internal POR threshold  
Vth_POR  
0.4  
0.7  
V
SDIO Interface I/O Pins  
For VDDIO_SD = 1.8V:  
Input high voltage  
VIH  
VIL  
1.27  
V
V
V
V
Input low voltage  
0.58  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO_SD = 3.3V:  
Input high voltage  
VOH  
VOL  
1.40  
0.45  
VIH  
VIL  
0.625 ×  
VDDIO  
V
V
V
V
Input low voltage  
0.25 ×  
VDDIO  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
0.75 ×  
VDDIO  
0.125 ×  
VDDIO  
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
VIH  
VIL  
0.65 ×  
VDDIO  
V
V
Input low voltage  
0.35 ×  
VDDIO  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 124  
BCM4339 Preliminary Data Sheet  
Recommended Operating Conditions and DC Characteristics  
Table 33: Recommended Operating Conditions and DC Characteristics (Cont.)  
Value  
Parameter  
Output high voltage @ 2 mA  
Symbol  
Minimum Typical Maximum Unit  
VOH  
VDDIO –  
0.45  
V
Output low voltage @ 2 mA  
For VDDIO = 3.3V:  
VOL  
0.45  
V
Input high voltage  
VIH  
VIL  
2.00  
V
V
V
Input low voltage  
0.80  
Output high voltage @ 2 mA  
VOH  
VDDIO –  
0.4  
Output low Voltage @ 2 mA  
VOL  
VOH  
0.40  
V
RF Switch Control Output Pinsc  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
VDDIO –  
0.4  
V
Output low voltage @ 2 mA  
Output capacitance  
VOL  
0.40  
5
V
COUT  
pF  
a. The BCM4339 is functional across this range of voltages. Optimal RF performance specified in the data sheet,  
however, is guaranteed only for 3.13V < VBAT < 4.8V.  
b. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V (for up to 10 seconds), cumulative  
duration over the lifetime of the device are allowed. Voltage transients as high as 5.5V (for up to 250 seconds),  
cumulative duration over the lifetime of the device are allowed.  
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 125  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Section 15: Bluetooth RF Specifications  
Unless otherwise stated, limit values apply for the conditions specified in Table 31: “Environmental Ratings,” on  
page 123 and Table 33: “Recommended Operating Conditions and DC Characteristics,” on page 124. Typical  
values apply for the following conditions:  
VBAT = 3.6V  
Ambient temperature +25°C  
Figure 41: Port Locations for Bluetooth Testing  
BCM4339  
RF Switch  
(0.5 dB typical insertion loss)  
WLAN Tx  
BT Tx  
Filter  
WLAN/BT Rx  
Antenna  
Port  
RF Port  
Chip  
Port  
Note: All Bluetooth specifications are measured at the chip port unless otherwise specified.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 126  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Table 34: Bluetooth Receiver RF Specifications  
Conditions Minimum Typical  
Parameter  
Maximum Unit  
Note: The specifications in this table are measured at the chip port output unless otherwise specified.  
General  
Frequency range  
RX sensitivity  
2402  
2480  
MHz  
dBm  
dBm  
GFSK, 0.1% BER, 1 Mbps –  
–93.5  
–95.5  
/4–DQPSK, 0.01% BER,  
2 Mbps  
8–DPSK, 0.01% BER,  
3 Mbps  
–89.5  
dBm  
Input IP3  
–16  
dBm  
dBm  
Maximum input at antenna  
–20  
RX LO Leakage  
2.4 GHz band  
–90.0  
–80.0  
dBm  
Interference Performancea  
C/I co-channel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
8
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1-MHz adjacent channel  
C/I 2-MHz adjacent channel  
–7  
–38  
–56  
–31  
–46  
C/I 3-MHz adjacent channel GFSK, 0.1% BER  
C/I image channel GFSK, 0.1% BER  
C/I 1-MHz adjacent to image GFSK, 0.1% BER  
channel  
C/I co-channel  
/4–DQPSK, 0.1% BER  
9
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1-MHz adjacent channel  
C/I 2-MHz adjacent channel  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
–11  
–39  
–55  
–23  
–43  
C/I 3-MHz adjacent channel /4–DQPSK, 0.1% BER  
C/I image channel /4–DQPSK, 0.1% BER  
C/I 1-MHz adjacent to image /4–DQPSK, 0.1% BER  
channel  
C/I co-channel  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
17  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
–4  
–37  
–53  
–16  
–37  
C/I 3-MHz adjacent channel 8–DPSK, 0.1% BER  
C/I Image channel 8–DPSK, 0.1% BER  
C/I 1-MHz adjacent to image 8–DPSK, 0.1% BER  
channel  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 127  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Table 34: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
Out-of-Band Blocking Performance (CW)  
30–2000 MHz  
0.1% BER  
0.1% BER  
0.1% BER  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
3000 MHz–12.75 GHz  
–27  
–10.0  
Out-of-Band Blocking Performance, Modulated Interferer  
GFSK (1 Mbps)b  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–13.5  
–13.8  
–13.5  
–14.3  
–13.1  
–13.1  
–18.1  
–17.4  
–19.4  
–18.8  
–19.7  
–19.6  
–20.4  
–20.4  
–30.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–849 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD–SCDMA  
WCDMA  
Band 7  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
2500–2570 MHz e  
2300-2400 MHz f  
2570–2620 MHz c  
2545–2575 MHz d  
Band 40  
Band 38  
XGP Band  
–34.0  
–30.8  
–29.5  
dBm  
dBm  
dBm  
DPSK (2 Mbps)b  
π/4  
698–716 MHz  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–9.8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–9.7  
–10.7  
–11.4  
–10.4  
–10.2  
–15.8  
–15.4  
–16.6  
–16.4  
–17.9  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 128  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Table 34: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
WCDMA  
TD-SCDMA  
WCDMA  
Band 7  
–16.8  
–18.6  
–20.4  
–31.9  
dBm  
dBm  
dBm  
dBm  
2500–2570 MHz e  
2300–2400 MHz f  
2570-2620 MHz c  
2545-2575 MHz d  
Band 40  
Band 38  
XGP Band  
–35.3  
–31.8  
–31.1  
dBm  
dBm  
dBm  
8DPSK (3 Mbps)b  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–12.6  
–12.6  
–12.7  
–13.7  
–12.8  
–12.6  
–18.1  
–17.4  
–19.1  
–18.6  
–19.3  
–18.9  
–20.4  
–21.4  
–31.0  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
Band 7  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
2500–2570 MHz e  
2300–2400 MHz f  
2570–2620 MHz c  
2545–2575 MHz d  
Band 40  
Band 38  
XGP Band  
–34.5  
–31.2  
–30.0  
dBm  
dBm  
dBm  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 129  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Table 34: Bluetooth Receiver RF Specifications (Cont.)  
Conditions Minimum Typical  
Parameter  
Maximum Unit  
Spurious Emissions  
30 MHz–1 GHz  
1–12.75 GHz  
–95  
–62  
–47  
dBm  
–70  
dBm  
851–894 MHz  
925–960 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
–147  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
a. The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined  
in the version 4.1 specification.  
b. Bluetooth reference level is taken at the 3 dB RX desense on each of the modulation schemes.  
c. Interferer: 2380 MHz, BW=10 MHz; measured at 2480 MHz.  
d. Interferer: 2355 MHz, BW=10 MHz; measured at 2480 MHz.  
e. Interferer: 2560 MHz, BW=10 MHz; measured at 2480 MHz.  
f. Interferer: 2360 MHz, BW=10 MHz; measured at 2402 MHz.  
Table 35: Bluetooth Transmitter RF Specifications  
Parameter  
Conditions  
Minimum Typical Maximum Unit  
Note: The specifications in this table are measured at the chip port output unless otherwise specified.  
General  
Frequency range  
2402  
11.0  
8.0  
8.0  
2
2480  
MHz  
dBm  
dBm  
dBm  
dB  
Basic rate (GFSK) TX power at Bluetooth  
QPSK TX Power at Bluetooth  
8PSK TX Power at Bluetooth  
Power control step  
13.0  
10.0  
10.0  
4
8
Note: Output power is with TCA and TSSI enabled.  
GFSK In-Band Spurious Emissions  
–20 dBc BW  
0.93  
1
MHz  
EDR In-Band Spurious Emissions  
1.0 MHz < |M – N| < 1.5 MHz  
M – N = the frequency range for –  
–38  
–31  
–43  
–26.0  
–20.0  
–40.0  
dBc  
which the spurious emission is  
1.5 MHz < |M – N| < 2.5 MHz  
dBm  
dBm  
measured relative to the  
transmit center frequency.  
|M – N| 2.5 MHza  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 130  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Table 35: Bluetooth Transmitter RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical Maximum Unit  
Out-of-Band Spurious Emissions  
–36.0 b, c  
30 MHz to 1 GHz  
dBm  
dBm  
–30.0 b, d, e  
–47.0  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
dBm  
dBm  
–47.0  
GPS Band Spurious Emissions  
Spurious emissions  
–103  
dBm  
Out-of-Band Noise Floorf  
65–108 MHz  
FM RX  
–147  
–147  
–147  
–147  
–146  
–145  
–144  
–141  
–140  
–140  
–140  
–140  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
776–794 MHz  
CDMA2000  
cdmaOne, GSM850  
E-GSM  
869–960 MHz  
925–960 MHz  
1570–1580 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
GPS  
GSM1800  
GSM1900, cdmaOne, WCDMA –  
WCDMA  
Band 7  
Band 40  
Band 38  
XGP Band  
a. The typical number is measured at ±3 MHz offset.  
b. The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.  
c. The spurious emissions during Idle mode are the same as specified in Table 35 on page 130.  
d. Specified at the Bluetooth Antenna port.  
e. Meets this specification using a front-end band-pass filter.  
f. Transmitted power in cellular and FM bands at the Bluetooth Antenna port. See Figure 41 on page 126 for  
location of the port.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 131  
BCM4339 Preliminary Data Sheet  
Bluetooth RF Specifications  
Table 36: Local Oscillator Performance  
Minimum Typical  
Parameter  
Maximum Unit  
LO Performance  
Lock time  
72  
s  
Initial carrier frequency tolerance  
±25  
±75  
kHz  
Frequency Drift  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±8  
±8  
±8  
5
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
00001111 sequence in payloada  
140  
115  
155  
140  
1
175  
kHz  
kHz  
MHz  
10101010 sequence in payloadb  
Channel spacing  
a. This pattern represents an average deviation in payload.  
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.  
Table 37: BLE RF Specifications  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
Frequency range  
RX sensea  
2402  
2480  
MHz  
dBm  
GFSK, 0.1% BER, 1 Mbps  
–95.5  
8.5  
TX powerb  
dBm  
Mod Char: delta F1 average –  
225  
255  
275  
kHz  
%
Mod Char: delta F2 maxc  
99.9  
Mod Char: ratio  
0.8  
0.95  
%
a. Dirty TX is On.  
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The  
output is capped at 12 dBm out. The BLE TX power at the antenna port cannot exceed the 10 dBm specification  
limit.  
c. At least 99.9% of all delta F2 max frequency values recorded over 10 packets must be greater than 185 kHz  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 132  
BCM4339 Preliminary Data Sheet  
FM Receiver Specifications  
Section 16: FM Receiver Specifications  
Unless otherwise stated, limit values apply for the conditions specified inTable 31: “Environmental Ratings,” on  
page 123 and Table 33: “Recommended Operating Conditions and DC Characteristics,” on page 124. Typical  
values apply for the following conditions:  
VBAT = 3.6V  
Ambient temperature +25°C  
Table 38: FM Receiver Specifications  
Conditionsa  
Typica  
Minimum l  
Parameter  
Maximum Units  
RF Parameters  
Operating frequencyb  
Sensitivityc  
Frequencies inclusive  
65  
0
108  
MHz  
FM only  
SNR > 26 dB  
dBµV  
EMF  
1
µV EMF  
dBuV  
–6  
Receiver adjacent  
channel selectivityc, d  
Measured for 30 dB SNR at the audio output with best tune.  
Signal of interest: 23 dBµV EMF (14.1 µV EMF),  
At ± 200 kHz.  
At ± 400 kHz  
51  
62  
53  
dB  
dB  
dB  
Intermediate signal plus Vin = 20 dBµV EMF (10 µV EMF)  
noise-to-noise ratio (S+N)/  
45  
Nc  
Intermodulation  
performancec, d  
Blocker level increased until desired at  
30 dB SNR  
Wanted Signal: 33 dBµV EMF (45 µV  
EMF)  
55  
dBc  
Modulated Interferer: At fWanted  
+ 400 kHz and +4 MHz  
CW Interferer: At fWanted + 800 kHz and  
+ 8 MHz  
AM suppression, monoc  
Vin = 23 dBµV EMF (14.1 µV EMF)  
AM at 400 Hz with m = 0.3  
No A-weighted or any other filtering  
applied.  
40  
dB  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 133  
BCM4339 Preliminary Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
Minimum l  
Typica  
Parameter  
RDS  
Conditionsa  
Maximum Units  
RDS Sensitivitye, f  
RDS deviation = 1.2 kHz  
RDS deviation = 2 kHz  
16  
dBµV  
EMF  
6.3  
10  
12  
µV EMF  
dBuV  
dBµV  
EMF  
4
6
µV EMF  
dBuV  
RDS selectivityf  
Wanted Signal: 33 dBµV EMF (45 µV EMF), 2 kHz RDS deviation with best tune  
Interferer: f = 40 kHz, fmod = 1 kHz  
± 200 kHz  
± 300 kHz  
± 400 kHz  
49  
52  
52  
dB  
dB  
dB  
kꢀ  
pF  
RF input impedance  
1.5  
2.5  
Antenna tuning capacitor  
Maximum input levelc  
30  
113  
SNR > 26 dB  
dBµV  
EMF  
446  
107  
–55  
mV EMF  
dBuV  
RF conducted emissions Local oscillator breakthrough measured –  
dBm  
(measured into a 50ꢀ  
on the reference port  
load)  
869–894 MHz, 925–960 MHz,  
1805–1880 MHz, 1930–1990 MHz.  
GPS  
7
–90  
dBm  
dBm  
RF blocking levels at the GSM850, E-GSM (std), BW = 0.2 MHz, –  
FM antenna input 40 dB 824–849 MHz  
SNR (assumes a 50at 880–915 MHz  
the radio input and  
excludes spurs)  
GSM850, E-GSM (edge),  
BW = 0.2 MHz,  
824–849 MHz  
–1  
12  
12  
dBm  
dBm  
dBm  
880–915 MHz  
GSM DCS 1800, PCS 1900 (std/edge), –  
BW = 0.2 MHz,  
1710–1785 MHz  
1850–1910 MHz  
WCDMA: II(I), III(IV, X),  
BW = 5 MHz,  
1850–1980 MHz (1920–1980 MHz),  
1710–1785 MHz (1710–1755 MHz,  
1710–1770 MHz)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 134  
BCM4339 Preliminary Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
Minimum l  
Typica  
Parameter  
Conditionsa  
Maximum Units  
WCDMA: V(VI), VIII, XII, XIII, XIV,  
BW = 5 MHz,  
5
dBm  
824–849 MHz (830–840 MHz),  
880–915 MHz  
CDMA2000, cdma One,  
BW = 1.25 MHz,  
824–849 MHz,  
0
dBm  
887–925 MHz,  
776–794 MHz  
CDMA2000, cdma One,  
BW = 1.25 MHz,  
12  
dBm  
1850–1910 MHz,  
1750–1780 MHz,  
1920–1980 MHz  
Bluetooth, BW = 1 MHz,  
2402–2480 MHz  
11  
11  
6
dBm  
dBm  
dBm  
IEEE 802.11g/b, BW = 20 MHz,  
2400–2483.5 MHz  
IEEE 802.11a, BW = 20 MHz,  
4915–5825 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
11  
11  
11  
11  
dBm  
dBm  
dBm  
dBm  
Band 40  
Band 38  
XGP band  
Tuning  
Frequency step  
Settling time  
10  
kHz  
µs  
Single-frequency switch in any direction –  
to a frequency within the bands 88–  
108 MHz or 76–90 MHz. Time measured  
to within 5 kHz of the final frequency.  
150  
Search time  
Total time for an automatic search to  
sweep from 88–108 MHz or 76–90 MHz  
(and reverse direction) assuming no  
channels are found.  
8
sec  
General Audio  
I2S audio output levelg  
–14.5  
–12.5  
0
dBFS  
dBFS  
Maximum audio output  
levelh  
Audio DAC output levelg  
Maximum DAC audio  
output levelh  
72  
88  
mV rms  
mV rms  
333  
Audio DAC output level  
differencei  
–1  
1
dB  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 135  
BCM4339 Preliminary Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
Minimum l  
Typica  
Parameter  
Conditionsa  
Maximum Units  
Left and right AC mute  
FM input signal fully muted with DAC  
enabled  
60  
80  
dB  
dB  
Left and right hard mute FM input signal fully muted with DAC  
disabled  
Soft mute attenuation and Muting is performed dynamically  
start level  
proportional to the FM wanted input  
signal C/N. The muting characteristic is  
fully programmable. Refer to “Audio  
Features” on page 66 for further details.  
Maximum signal plus  
noise-to-noise ratio  
69  
64  
dB  
dB  
%
(S + N)/N, mono i  
Maximum signal plus  
noise-to-noise ratio  
(S + N)/N, stereog  
Total harmonic distortion, Vin = 66 dBµV EMF (2 mV EMF),  
0.8  
mono  
f = 75 kHz, fmod = 400 Hz  
f = 75 kHz, fmod = 1 kHz  
f = 75 kHz, fmod = 3 kHz  
f = 100 kHz, fmod = 1 kHz  
0.8  
0.8  
1.0  
1.5  
%
%
%
%
Total harmonic distortion, Vin = 66 dBµV EMF (2 mV EMF)  
stereo  
f = 67.5 kHz, fmod = 1 kHz, f  
Pilot = 7.5 kHz, L = R  
Audio spurious productsi  
Range from 300 Hz to 15 kHz, with  
respect to 1 kHz tone  
–60  
dBc  
kHz  
Hz  
Audio bandwidth, upper (– Vin = 66 dBµV EMF (2 mV EMF)  
15  
3 dB point)  
f = 8 kHz, for 50 µs  
Audio bandwidth, lower (–  
3 dB point)  
20  
0.5  
Audio in-band ripple  
100 Hz to 13 kHz,  
–0.5  
dB  
Vin = 66 dBµV EMF (2 mV EMF)  
f = 8 kHz, for 50 µs  
Deemphasis time  
constant tolerance  
With respect to 50 and 75 µs  
3
±5  
83  
%
RSSI range  
With 1 dB resolution and ± 5 dB  
accuracy at room temp  
dBµV  
EMF  
1.41  
–3  
14100  
77  
µV EMF  
dBuV  
Stereo Decoder  
Stereo channel separation Forced Stereo mode  
Vin = 66 dBµV EMF (2 mV EMF),  
48  
dB  
f = 67.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz  
R = 0, L = 1  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 136  
BCM4339 Preliminary Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
Minimum l  
Typica  
Parameter  
Conditionsa  
Maximum Units  
Mono stereo blend and  
switching  
Blending and switching is dynamically  
proportional to the FM wanted input  
signal C/N. The blending and switching  
characteristics are fully programmable.  
Refer to “Audio Features” on page 66 for  
further details.  
Pilot suppression  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 75 kHz, fmod = 1 kHz  
46  
dB  
Pause detection  
Audio level at which a  
pause is detected  
Relative to 1 kHz tone, f = 22.5 kHz  
Four values in 3 dB steps  
Four values  
–21  
20  
–12  
40  
dB  
ms  
Audio pause duration  
a. Following conditions are applied to all relevant tests unless otherwise indicated: Pre-emphasis and de-emphasis  
of 50 us, R = L for mono, DAC Load > 20 k, BAF = 300 Hz to 15 kHz, and A-weighted filtering applied.  
b. Contact Broadcom regarding applications that operate between 65 and 76 MHz.  
c. Wanted Signal: f = 22.5 kHz, and fmod = 1 kHz.  
d. Interferer: f = 22.5 kHz, and fmod = 1 kHz.  
e. RDS sensitivity numbers are for 87.5–108 MHz only.  
f. Vin = f = 32 kHz, fmod = 1 kHz, f Pilot = 7.5 kHz, and 95% of blocks decoded with no errors after correction  
g. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz, and f Pilot = 6.75 kHz.  
h. Vin = 66 dBµV EMF (2 mV EMF), f = 100 kHz, fmod = 1 kHz, and f Pilot = 6.75 kHz.  
i. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, and fmod = 1 kHz.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 137  
BCM4339 Preliminary Data Sheet  
WLAN RF Specifications  
Section 17: WLAN RF Specifications  
Introduction  
The BCM4339 includes an integrated dual-band direct conversion radio that supports the 2.4 GHz and the  
5 GHz bands. This section describes the RF characteristics of the 2.4 GHz and 5 GHz radio.  
Unless otherwise stated, limit values apply for the conditions specified inTable 31: “Environmental Ratings,” on  
page 123 and Table 33: “Recommended Operating Conditions and DC Characteristics,” on page 124. Typical  
values apply for the following conditions:  
VBAT = 3.6V  
Ambient temperature +25°C  
Figure 42: Port Locations Showing Optional ePA and eLNA (Applies to 2.4 GHz and 5 GHz)  
BCM4339  
RF Switch  
(0.5 dB typical insertion loss)  
WLAN Tx  
BT Tx  
Filter  
WLAN/BT Rx  
Antenna  
Port  
RF Port  
Chip  
Port  
2.4 GHz Band General RF Specifications  
Table 39: 2.4 GHz Band General RF Specifications  
Item  
Condition  
Including TX ramp down –  
Including TX ramp up  
DSSS/CCK modulations –  
Minimum Typical  
Maximum Unit  
TX/RX switch time  
RX/TX switch time  
5
µs  
µs  
µs  
2
Power-up and power-down ramp  
time  
< 2  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 138  
BCM4339 Preliminary Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
WLAN 2.4 GHz Receiver Performance Specifications  
Note: The specifications in Table 40 are specified at the RF port and include the use of an external  
FEM with LNA from Broadcom’s approved-vendor list (AVL), unless otherwise specified. Results with  
FEMs that are not on Broadcom’s AVL are not guaranteed.  
Table 40: WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Frequency range  
2400  
2500  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RX sensitivity IEEE 802.11b 1 Mbps DSSS  
–98.4  
–96.5  
–93.7  
–91.4  
–95.5  
–94.1  
–93.2  
–90.6  
–87.3  
–84.0  
–79.3  
–77.8  
(8% PER for 1024 octet  
PSDU)a  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
RX sensitivity IEEE 802.11g 6 Mbps OFDM  
(10% PER for 1024 octet  
PSDU)a  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
RX sensitivity IEEE 802.11n 20 MHz channel spacing for all MCS rates  
(10% PER for 4096 octet  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–95.0  
–92.7  
–90.2  
–87.1  
–83.5  
–78.9  
–77.3  
–75.7  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
PSDU)a,b. Defined for  
default parameters: 800 ns  
GI and non-STBC.  
RX sensitivity IEEE 802.11n 40 MHz channel spacing for all MCS rates  
(10% PER for 4096 octet  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–92.8  
–89.9  
–87.5  
–84.0  
–80.9  
–76.2  
–74.7  
–73.3  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
PSDU)a,c. Defined for  
default parameters: 800 ns  
GI and non-STBC.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 139  
BCM4339 Preliminary Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 40: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
RX sensitivity  
20 MHz channel spacing for all MCS rates  
IEEE 802.11ac  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
–94.3  
–91.9  
–90.1  
–86.9  
–83.4  
–78.9  
–77.3  
–75.6  
–71.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,d. Defined for  
default parameters: 800 ns  
GI and non-STBC  
RX sensitivity  
40 MHz channel spacing for all MCS rates  
IEEE 802.11ac  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
MCS7  
MCS8  
MCS7  
MCS8  
MCS9  
MCS7  
MCS8  
MCS9  
–91.5  
–89.0  
–87.2  
–84.0  
–80.8  
–76.3  
–74.7  
–73.3  
–68.9  
–67.6  
–77.4  
–74.7  
–74.6  
–71.6  
–70.1  
–71.5  
–68.1  
–66.0  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,e. Defined for  
default parameters: 800 ns  
GI and non-STBC.  
RX sensitivity IEEE  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
80 MHz  
80 MHz  
80 MHz  
802.11ac 20/40/80 MHz  
channel spacing with LDPC  
(10% PER for 4096 octet  
PSDU) at WLAN RF port.  
Defined for default  
parameters: 800 ns GI,  
LDPC coding, and non-  
STBC.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 140  
BCM4339 Preliminary Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 40: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Blocking level for 3 dB RX 776–794 MHz  
CDMA2000  
cdmaOne  
–24  
–25  
dBm  
dBm  
sensitivity degradation  
824–849 MHzg  
(without external filtering)f  
824–849 MHz  
GSM850  
E-GSM  
–15  
–16  
–18  
–19  
–26  
–26  
–28.5  
–45  
–50  
–45  
–45  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
880–915 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1920–1980 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
GSM1800  
GSM1800  
cdmaOne  
WCDMA  
WCDMA  
Band 7  
Band 40  
Band 38  
XGP Band  
In-band static CW jammer RX PER < 1%, 54 Mbps OFDM,  
–80  
immunity  
1000 octet PSDU for:  
(RxSens + 23 dB < Rxlevel < max input  
level)  
(fc – 8 MHz < fcw < + 8 MHz)  
Input in-band IP3a  
Maximum LNA gain  
–15.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Minimum LNA gain  
–1.5  
Maximum receive level  
@ 2.4 GHz  
@ 1, 2 Mbps (8% PER, 1024 octets)  
–3.5  
@ 5.5, 11 Mbps (8% PER, 1024 octets) –9.5  
@ 6–54 Mbps (10% PER, 1024 octets) –9.5  
@ MCS0–7 rates (10% PER, 4095  
octets)  
–9.5  
–11.5  
9
@ MCS8–9 rates (10% PER, 4095  
octets)  
dBm  
MHz  
LPF 3 dB bandwidth  
36  
Adjacent channel  
rejection—DSSS  
Desired and interfering signal 30 MHz apart  
1 Mbps DSSS  
2 Mbps DSSS  
–74 dBm  
–74 dBm  
35  
35  
dB  
dB  
(Difference between  
interfering and desired  
signal at 8% PER for 1024  
octet PSDU with desired  
signal level as specified in  
Condition/Notes)  
Desired and interfering signal 25 MHz apart  
5.5 Mbps DSSS  
11 Mbps DSSS  
–70 dBm  
–70 dBm  
35  
35  
dB  
dB  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 141  
BCM4339 Preliminary Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 40: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Adjacent channel  
rejection—OFDM  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–79 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
–59 dBm  
–57 dBm  
16  
15  
13  
11  
8
95  
3
5
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(Difference between  
interfering and desired  
signal (25 MHz apart) at  
10% PER for 1024 octet  
PSDU with desired signal  
level as specified in  
4
0
Condition/Notes)  
–1  
16  
13  
11  
8
Adjacent channel rejection MCS0  
MCS0–9 (Difference  
between interfering and  
desired signal (25 MHz  
apart) at 10% PER for 4096  
octet PSDU with desired  
signal level as specified in  
Condition/Notes)  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
4
0
–1  
–2  
–4  
–6  
Maximum receiver gain  
Gain control step  
RSSI accuracyh  
Range –95 dBmi to –30 dBm  
Range above –30 dBm  
–5  
–8  
10  
8
dB  
dB  
Return loss  
Zo = 50, across the dynamic range  
11.5  
13  
Receiver cascaded noise  
figure  
At maximum gain  
4
dB  
a. Derate by 1.5 dB for –30°C to –10°C and 55°C to 85°C.  
b. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
c. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
d. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
e. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
f. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal  
in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any  
specific country.  
g. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to  
third harmonic signals (3 × 824 MHz) falling within band.)  
h. The minimum and maximum values shown have a 95% confidence level.  
i. –95 dBm with calibration at the time of manufacture, –92 dBm without calibration.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 142  
BCM4339 Preliminary Data Sheet  
WLAN 2.4 GHz Transmitter Performance Specifications  
WLAN 2.4 GHz Transmitter Performance Specifications  
Note: The specifications in Table 41 include the use of the BCM4339's internal PAs and are specified  
at the chip port.  
Table 41: WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Frequency range  
2400  
2500  
MHz  
Transmitted power in  
cellular and FM bands  
(at 18.5 dBm, 100% duty  
cycle, 1 Mbps CCK)a  
76–108 MHz  
776–794 MHz  
869–960 MHz  
FM RX  
–148.5  
–126.5  
–162.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
cdmaOne,  
GSM850  
925–960 MHz  
E-GSM  
–162.5  
–149.5  
–140.5  
–137.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1570–1580 MHz GPS  
1805–1880 MHz GSM1800  
1930–1990 MHz GSM1900,  
cdmaOne,  
WCDMA  
2110–2170 MHz WCDMA  
2500–2570 MHz Band 7  
2300–2400 MHz Band 40  
2570–2620 MHz Band 38  
2545–2575 MHz XGP Band  
–128.5  
–104.5  
–94.5  
–119.5  
–109.5  
–7.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Harmonic level (at 18 dBm 4.8–5.0 GHz  
2nd harmonic –  
3rd harmonic  
EVM Does Not Exceed  
dBm/1 MHz  
dBm/1 MHz  
with 100% duty cycle)  
7.2–7.5 GHz  
–17.5  
TX power at the chip port 802.11b  
–9 dB  
21.5  
dBm  
for highest power level  
setting at 25°C and  
VBAT = 3.6V with spectral  
mask and EVM  
(DSSS/CCK)  
OFDM, BPSK  
OFDM, QPSK  
–8 dB  
20  
20  
19  
19  
dBm  
dBm  
dBm  
dBm  
–13 dB  
complianceb, c  
OFDM, 16-QAM –19 dB  
OFDM, 64-QAM –25 dB  
(R = 3/4)  
OFDM, 64-QAM –27 dB  
(MCS7, HT20)  
19  
dBm  
dBm  
dBm  
OFDM, 256-QAM –30 dB  
(MCS8, VHT20)  
17  
OFDM, 256-QAM –32 dB  
(MCS8, VHT40)  
17  
Phase noise  
37.4 MHz Crystal, Integrated from –  
10 kHz to 10 MHz  
0.45  
Degrees  
RMS  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 143  
BCM4339 Preliminary Data Sheet  
WLAN 2.4 GHz Transmitter Performance Specifications  
Table 41: WLAN 2.4 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
TX power control dynamic –  
range  
10  
dB  
Closed-loop TX power  
variation at highest  
power level setting  
Across full temperature and  
voltage range. Applies across  
10 dBm to 20 dBm output power  
range.  
±1.5  
dB  
Carrier suppression  
Gain control step  
15  
dBc  
dB  
0.25  
6
Return loss at  
Chip port TX  
Zo = 50ꢀ  
dB  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may  
also be used within those bands.  
b. Derate by 1.5 dB for temperatures less than –10°C or more than 55°C, or voltages less than 3.0V. Derate by  
3.0 dB for voltages of less than 2.7V, or voltages of less than 3.0V at temperatures less than –10°C or greater  
than 55°C. Derate by 4.5 dB for –40°C to –30°C.  
c. TX power for Channel 1 and Channel 11 is specified by nonvolatile memory parameters.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 144  
BCM4339 Preliminary Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
WLAN 5 GHz Receiver Performance Specifications  
Note: The specifications in Table 42 are specified at the RF port and include the use of an external  
FEM with LNA from Broadcom’s approved-vendor list (AVL), unless otherwise specified. Results with  
FEMs that are not on Broadcom’s AVL are not guaranteed.  
Table 42: WLAN 5 GHz Receiver Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Frequency range  
4900  
5845  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RX sensitivity  
IEEE 802.11a  
(10% PER for 1000 octet  
PSDU)a  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–94.5  
–93.1  
–92.2  
–89.6  
–86.3  
–83  
–78.3  
–76.8  
RX sensitivity  
20 MHz channel spacing for all MCS rates  
IEEE 802.11n  
(10% PER for 4096 octet  
PSDU)a  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–94  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–91.7  
–89.2  
–86.1  
–82.5  
–77.9  
–76.3  
–74.7  
Defined for default  
parameters: 800 ns GI and  
non-STBC.  
RX sensitivity  
40 MHz channel spacing for all MCS rates  
IEEE 802.11n  
(10% PER for 4096 octet  
PSDU)a  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–91.8  
–88.9  
–86.5  
–83.0  
–79.9  
–75.2  
–73.7  
–72.3  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Defined for default  
parameters: 800 ns GI and  
non-STBC.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 145  
BCM4339 Preliminary Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 42: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
RX sensitivity  
20 MHz channel spacing for all MCS rates  
IEEE 802.11ac  
(10% PER for 4096 octet  
PSDU)a  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
–93.3  
–90.3  
–87.9  
–84.9  
–81.4  
–76.7  
–75.1  
–74.6  
–70.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Defined for default  
parameters: 800 ns GI and  
non-STBC.  
RX sensitivity  
40 MHz channel spacing for all MCS rates  
IEEE 802.11ac  
(10% PER for 4096 octet  
PSDU)a  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
–90.5  
–87.4  
–85.3  
–82.1  
–79  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Defined for default  
parameters: 800 ns GI and  
non-STBC.  
–73.9  
–72.4  
–72.3  
–67.9  
–66.6  
RX sensitivity  
80 MHz channel spacing for all MCS rates  
IEEE 802.11ac  
(10% PER for 4096 octet  
PSDU)a  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
–87  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–83.9  
–81.9  
–78.1  
–75  
Defined for default  
parameters: 800 ns GI and  
non-STBC.  
–73  
–68.5  
–68.5  
–64.3  
–62.7  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 146  
BCM4339 Preliminary Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 42: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
RX sensitivity IEEE  
MCS7  
MCS8  
MCS7  
MCS8  
MCS9  
MCS7  
MCS8  
MCS9  
20 MHz  
–76.4  
36  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MHz  
dB  
802.11ac 20/40/80 MHz  
channel spacing with  
LDPC (10% PER for 4096  
octet PSDU) at WLAN RF  
port. Defined for default  
parameters: 800 ns GI,  
LDPC coding and non-  
STBC.  
20 MHz  
–73.7  
40 MHz  
–73.6  
40 MHz  
–70.6  
40 MHz  
–69.1  
80 MHz  
–70.5  
80 MHz  
–67.1  
80 MHz  
–65.0  
Blocking level for 1 dB RX 776–794 MHz  
CDMA2000  
cdmaOne  
GSM850  
E-GSM  
–21  
–20  
–12  
–12  
–15  
–15  
–20  
–21  
–21  
–21  
–21  
–21  
–21  
sensitivity degradation  
(without external filtering)b  
824–849 MHz  
824–849 MHz  
880–915 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1920–1980 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
GSM1800  
GSM1800  
cdmaOne  
WCDMA  
WCDMA  
Band 7  
Band 40  
Band 38  
XGP Band  
Input in-band IP3a  
Maximum LNA gain  
–15.5  
Minimum LNA gain  
–1.5  
Maximum receive level  
@ 5.24 GHz  
@ 6, 9, 12 Mbps  
–9.5  
–14.5  
9
@ 18, 24, 36, 48, 54 Mbps  
LPF 3 dB bandwidth  
Adjacent channel rejection 6 Mbps OFDM  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
16  
15  
13  
11  
(Difference between  
interfering and desired  
signal (20 MHz apart) at  
10% PER for 1000 octet  
PSDU with desired signal  
level as specified in  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
dB  
dB  
dB  
8
dB  
4
dB  
Condition/Notes)  
0
dB  
–1  
–2  
dB  
dB  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 147  
BCM4339 Preliminary Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 42: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Alternate adjacent channel 6 Mbps OFDM  
–78.5 dBm  
–77.5 dBm  
–75.5 dBm  
–73.5 dBm  
–70.5 dBm  
–66.5 dBm  
–62.5 dBm  
–61.5 dBm  
–60.5 dBm  
32  
31  
29  
27  
24  
20  
16  
15  
14  
95  
3
5
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
rejection  
9 Mbps OFDM  
(Difference between  
interfering and desired  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
signal (40 MHz apart) at  
10% PER for 1000c octet  
PSDU with desired signal  
level as specified in  
Condition/Notes)  
Maximum receiver gain  
Gain control step  
RSSI accuracyd  
Range –95 dBme to –30 dBm  
Range above –30 dBm  
–5  
–8  
10  
8
dB  
dB  
Return loss  
Zo = 50, across the dynamic range  
13  
Receiver cascaded noise At maximum gain  
figure  
4
6
dB  
a. Derate by 1.5 dB for –30°C to –10°C and 55°C to 85°C.  
b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal  
in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any  
specific country.  
c. For 65 Mbps, the size is 4096.  
d. The minimum and maximum values shown have a 95% confidence level.  
e. –95 dBm with calibration at the time of manufacture, –92 dBm without calibration.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 148  
BCM4339 Preliminary Data Sheet  
WLAN 5 GHz Transmitter Performance Specifications  
WLAN 5 GHz Transmitter Performance Specifications  
Note: The specifications in Table 42 include the use of the BCM4339's internal PAs and are specified  
at the chip port.  
Table 43: WLAN 5 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Frequency range  
4900  
5845  
MHz  
Transmitted power in  
cellular and FM bands (at  
18.5 dBm)a  
76–108 MHz  
776–794 MHz  
869–960 MHz  
FM RX  
–161.5  
–161.5  
–161.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
cdmaOne,  
GSM850  
925–960 MHz  
E-GSM  
–161.5  
–161.5  
–159.5  
–161.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1570–1580 MHz GPS  
1805–1880 MHz GSM1800  
1930–1990 MHz GSM1900,  
cdmaOne,  
WCDMA  
2110–2170 MHz WCDMA  
2400–2483 MHz BT/WLAN  
2500–2570 MHz Band 7  
2300–2400 MHz Band 40  
2570–2620 MHz Band 38  
2545–2575 MHz XGP band  
9.8–11.570 GHz 2nd harmonic  
–158.5  
–156.5  
–156.5  
–156.5  
–156.5  
–156.5  
–30.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/MHz  
Harmonic level  
(at 17 dBm)  
TX power at the chip port OFDM, QPSK  
for highest power level  
–13 dB  
21.5  
19  
dBm  
dBm  
dBm  
OFDM, 16-QAM –19 dB  
setting at 25°C and  
VBAT = 3.6V with spectral  
mask and EVM  
complianceb, c  
OFDM, 64-QAM –25 dB  
(R = 3/4)  
19  
OFDM, 64-QAM –27 dB  
(MCS7, HT20)  
19  
17  
17  
dBm  
dBm  
dBm  
OFDM, 256-QAM –30 dB  
(MCS8, VHT80)  
OFDM, 256-QAM –32 dB  
(MCS9, VHT40  
and VHT80)  
Phase noise  
37.4 MHz crystal, integrated from  
10 kHz to 10 MHz  
0.45  
Degrees  
RMS  
TX power control dynamic –  
range  
10  
dB  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 149  
BCM4339 Preliminary Data Sheet  
General Spurious Emissions Specifications  
Table 43: WLAN 5 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Closed loop TX power  
Across full-temperature and voltage  
±2.0  
dB  
variation at highest power range. Applies across 10 to 20 dBm  
level setting  
output power range.  
Carrier suppression  
Gain control step  
Return loss  
15  
dBc  
dB  
0.25  
6
Zo = 50ꢀ  
dB  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may  
also be used within those bands.  
b. Derate by 1.5 dB for temperatures less than –10°C or more than 55°C, or voltages less than 3.0V. Derate by 3.0  
dB for voltages of less than 2.7V, or voltages of less than 3.0V at temperatures less than –10°C or greater than  
55°C. Derate by 4.5 dB for –40°C to –30°C.  
c. TX power for Channel 1 and Channel 11 is specified by non-volatile memory parameters.  
General Spurious Emissions Specifications  
Table 44: General Spurious Emissions Specifications  
Parameter  
Condition/Notes  
Min. Typ.  
Max.  
Unit  
Frequency range  
2400  
2500  
MHz  
General Spurious Emissions  
TX emissions  
30 MHz < f < 1 GHz  
RBW = 100 kHz  
1 GHz < f < 12.75 GHz RBW = 1 MHz  
1.8 GHz < f < 1.9 GHz RBW = 1 MHz  
5.15 GHz < f < 5.3 GHz RBW = 1 MHz  
–93  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–45.5  
–72  
–87  
RX/standby emissions 30 MHz < f < 1 GHz  
RBW = 100 kHz  
–107  
–65a  
–87  
1 GHz < f < 12.75 GHz RBW = 1 MHz  
1.8 GHz < f < 1.9 GHz RBW = 1 MHz  
5.15 GHz < f < 5.3 GHz RBW = 1 MHz  
dBm  
dBm  
–100  
a. The value presented in this table is the result of LO leakage at 3/2 * fc for 2.4 GHz or 2/3 * fc for 5 GHz (where  
fc is the carrier frequency). For all other emissions in this range, the value is –96 dBm.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 150  
BCM4339 Preliminary Data Sheet  
Internal Regulator Electrical Specifications  
Section 18: Internal Regulator Electrical  
Specifications  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
Core Buck Switching Regulator  
Table 45: Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
V
Input supply voltage  
(DC)  
DC voltage range inclusive of  
disturbances.  
3.0  
3.6  
PWM mode switching  
frequency  
CCM, Load > 100 mA VBAT = 3.6V  
2.8  
4
5.2  
MHz  
PWM output current  
Output current limit  
Output voltage range  
600  
mA  
mA  
V
1400  
1.35  
Programmable, 30 mV steps  
Default = 1.35V  
1.2  
1.5  
4
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode  
–4  
7
%
PWM ripple voltage, static  
Measure with 20 MHz bandwidth limit.  
20  
mVpp  
Static Load. Max. Ripple based on  
VBAT = 3.6V, Vout = 1.35V,  
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH,  
Cap + Board total-ESR < 20 m,  
C
out > 1.9 μF, ESL<200pH  
PWM mode peak efficiency Peak Efficiency at 200 mA load  
78  
70  
86  
81  
%
%
µs  
PFM mode efficiency  
10 mA load current  
Start-up time from  
power down  
VIO already ON and steady.  
Time from REG_ON rising edge to CLDO  
reaching 1.2V  
850  
External inductor  
0806 size, ± 30%, 0.11 ± 25% Ohms  
2.2  
4.7  
µH  
µF  
2.0b  
10c  
External output capacitor  
Ceramic, X5R, 0402,  
ESR <30 mat 4 MHz, ± 20%, 6.3V  
0.67b  
External input capacitor  
For SR_VDDBATP5V pin,  
ceramic, X5R, 0603,  
4.7  
µF  
ESR < 30 mat 4 MHz, ± 20%, 6.3V,  
4.7 µF  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 151  
BCM4339 Preliminary Data Sheet  
3.3V LDO (LDO3P3)  
Table 45: Core Buck Switching Regulator (CBUCK) Specifications (Cont.)  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
µs  
Input supply voltage  
ramp-up time  
0 to 4.3V  
40  
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V (for up to 10 seconds), cumulative  
duration over the lifetime of the device, are allowed. Voltage transients as high as 5.5V (for up to 250 seconds),  
cumulative duration over the lifetime of the device, are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance,  
DC-bias, temperature, and aging.  
c. Total capacitance includes those connected at the far end of the active load.  
3.3V LDO (LDO3P3)  
Table 46: LDO3P3 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
V
Input supply voltage, Vin  
Min. = Vo + 0.2V = 3.5V dropout voltage  
3.0  
3.6  
requirement must be met under  
maximum load for performance  
specifications.  
Output current  
0.001  
450  
mA  
V
Nominal output voltage, Vo  
Default = 3.3V  
3.3  
Dropout voltage  
At max load.  
200  
+5  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Line regulation  
Includes line/load regulation.  
No load  
–5  
100  
3.5  
µA  
Vin from (Vo + 0.2V) to 4.8V, max load –  
mV/V  
Load regulation  
PSRR  
load from 1 mA to 450 mA  
in Vo + 0.2V,  
0.3  
mV/mA  
dB  
V
20  
Vo = 3.3V, Co = 4.7 µF,  
Max. load, 100 Hz to 100 kHz  
LDO turn-on time  
Chip already powered up.  
160  
4.7  
250  
10  
µs  
1.0b  
External output capacitor, Co  
Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
µF  
External input capacitor  
For SR_VDDBATA5V pin (shared with –  
Bandgap) Ceramic, X5R, 0402,  
4.7  
µF  
(ESR: 30m-200 m), ± 10%, 10V.  
Not needed if sharing VBAT capacitor  
4.7 µF with SR_VDDBATP5V.  
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V (for up to 10 seconds), cumulative  
duration over the lifetime of the device, are allowed. Voltage transients as high as 5.5V (for up to 250 seconds),  
cumulative duration over the lifetime of the device, are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 152  
BCM4339 Preliminary Data Sheet  
2.5V LDO (BTLDO2P5)  
2.5V LDO (BTLDO2P5)  
Table 47: BTLDO2P5 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
V
Input supply voltage  
Min. = 2.5V + 0.2V = 2.7V.  
3.0  
3.6  
Dropout voltage requirement must be  
met under maximum load for  
performance specifications.  
Nominal output voltage  
Default = 2.5V.  
Range  
2.5  
2.5  
V
Output voltage programmability  
2.2  
–5  
2.8  
5
V
Accuracy at any step (including line/  
load regulation), load > 0.1 mA.  
%
Dropout voltage  
Output current  
At maximum load.  
200  
70  
mV  
mA  
µA  
0.1  
Quiescent current  
No load.  
8
16  
Maximum load at 70 mA.  
Power-down mode.  
660  
1.5  
700  
5
µA  
Leakage current  
Line regulation  
µA  
Vin from (Vo + 0.2V) to 4.8V,  
maximum load.  
3.5  
mV/V  
Load regulation  
PSRR  
Load from 1 mA to 70 mA,  
Vin = 3.6V.  
0.3  
mV/mA  
dB  
Vin Vo + 0.2V, Vo = 2.5V, Co = 2.2 µF, 20  
maximum load, 100 Hz to 100 kHz.  
LDO turn-on time  
In-rush current  
Chip already powered up.  
150  
250  
µs  
Vin = Vo + 0.15V to 4.8V, Co = 2.2 µF,  
No load.  
mA  
0.7b  
2.2  
4.7  
µF  
µF  
External output capacitor, Co  
External input capacitor  
Ceramic, X5R, 0402,  
(ESR: 5–240 m), ±10%, 10V  
2.64  
For SR_VDDBATA5V pin (shared with –  
Bandgap) ceramic, X5R, 0402,  
(ESR: 30–200 m), ±10%, 10V.  
Not needed if sharing VBAT 4.7 µF  
capacitor with SR_VDDBATP5V.  
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V (for up to 10 seconds), cumulative  
duration over the lifetime of the device, are allowed. Voltage transients as high as 5.5V (for up to 250 seconds),  
cumulative duration over the lifetime of the device, are allowed.  
b. The minimum value refers to the residual capacitor value after taking into account part-to-part tolerance, DC-  
bias, temperature, and aging.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 153  
BCM4339 Preliminary Data Sheet  
CLDO  
CLDO  
Table 48: CLDO Specifications  
Notes  
Specification  
Min. Typ. Max. Units  
1.35 1.5  
Input supply voltage, Vin  
Min. = 1.2 + 0.15V = 1.35V dropout voltage 1.3  
requirement must be met under maximum  
load.  
V
Output current  
0.2  
1.1  
300 mA  
1.275 V  
Output voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2.V  
1.2  
Dropout voltage  
At max. load  
150 mV  
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation  
No load  
–4  
+4  
%
24  
2.1  
µA  
mA  
300 mA load  
Line regulation  
Vin from (Vo + 0.15V) to 1.5V, maximum load –  
5
mV/V  
Load regulation  
Leakage current  
Load from 1 mA to 300 mA  
Power down  
0.02 0.05 mV/mA  
1
20  
3
µA  
µA  
dB  
Bypass mode  
PSRR  
@1 kHz, Vin 1.35V, Co = 4.7 µF  
20  
Start-up time of PMU  
VIO up and steady. Time from the REG_ON –  
rising edge to the CLDO reaching 1.2V.  
700 µs  
LDO turn-on time  
LDO turn-on time when rest of the chip is up –  
140 180 µs  
1.32a  
External output capacitor, Co  
Total ESR: 5 m–240 mꢀ  
4.7  
1
µF  
µF  
External input capacitor  
Only use an external input capacitor at the  
VDD_LDO pin if it is not supplied from  
CBUCK output.  
2.2  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 154  
BCM4339 Preliminary Data Sheet  
LNLDO  
LNLDO  
Table 49: LNLDO Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
Input supply voltage, Vin  
Min. = 1.2Vo + 0.15V = 1.35V dropout  
1.3  
1.35  
1.5  
V
voltage requirement must be met under  
maximum load.  
Output current  
0.1  
1.1  
150  
mA  
V
Output voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2V  
1.2  
1.275  
Dropout voltage  
At maximum load  
150  
+4  
mV  
%
Output voltage DC accuracy Includes line/load regulation  
–4  
Quiescent current  
No load  
44  
970  
µA  
µA  
Max. load  
990  
5
Line regulation  
Vin from (Vo + 0.1V) to 1.5V, max load  
mV/V  
Load regulation  
Leakage current  
Output noise  
Load from 1 mA to 150 mA  
Power-down  
0.02  
0.05  
10  
mV/mA  
µA  
@30 kHz, 60–150 mA load Co = 2.2 µF  
@100 kHz, 60–150 mA load Co = 2.2 µF  
60  
35  
nV/rt Hz  
nV/rt Hz  
PSRR  
@ 1kHz, Input > 1.35V, Co= 2.2 µF, Vo =  
1.2V  
20  
dB  
LDO turn-on time  
LDO turn-on time when rest of chip is up  
140  
2.2  
180  
4.7  
µs  
0.5a  
External output capacitor, Co Total ESR (trace/capacitor):  
µF  
5 m–240 mꢀ  
External input capacitor  
Only use an external input capacitor at the –  
VDD_LDO pin if it is not supplied from  
CBUCK output.  
1
2.2  
µF  
Total ESR (trace/capacitor): 30 m–200 mꢀ  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 155  
BCM4339 Preliminary Data Sheet  
System Power Consumption  
Section 19: System Power Consumption  
Note: Unless otherwise stated, these values apply for the conditions specified in  
Table 33: “Recommended Operating Conditions and DC Characteristics,” on page 124.  
WLAN Current Consumption  
Table 50 shows the typical, total current consumed by the BCM4339. To calculate total-solution current  
consumption for designs using external PAs, LNAs, and/or FEMs, add the current consumption of the external  
devices to the numbers in Table 50.  
All values in Table 50 are with the Bluetooth core in reset (that is, with Bluetooth and FM off).  
Table 50: Typical WLAN Current Consumption (BCM4339 Current Only)  
VBAT = 3.6V, VDDIO = 1.8V, TA 25°C  
Bandwidth  
(MHz)  
Band  
(GHz)  
Mode  
Vbat, mA  
Vioa, µA  
Sleep Modes  
OFFb  
SLEEPc  
0.005  
0.005  
0.850  
0.350  
0.550  
0.300  
5
150  
150  
150  
150  
150  
IEEE Power Save, DTIM 1d  
IEEE Power Save, DTIM 3d  
IEEE Power Save, DTIM 1d  
IEEE Power Save, DTIM 3d  
Active Modes  
2.4  
2.4  
5
5
Receivee,f MCS8 (SGI)  
CRSg  
Receivee,f MCS7 (SGI)  
CRSg  
Receivee,f MCS7 (SGI)  
CRSg  
Receivee,f MCS9 (SGI)  
CRSg  
20  
20  
20  
20  
40  
40  
80  
80  
2.4  
2.4  
5
50  
5
5
5
5
5
5
5
5
46  
66  
5
56  
5
79.5  
67  
5
5
110  
103  
5
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 156  
BCM4339 Preliminary Data Sheet  
WLAN Current Consumption  
Table 50: Typical WLAN Current Consumption (BCM4339 Current Only) (Cont.)  
VBAT = 3.6V, VDDIO = 1.8V, TA 25°C  
Bandwidth  
(MHz)  
Band  
(GHz)  
Mode  
Vbat, mA  
Vioa, µA  
Active Modes with External PAs (TX Output Power is –5 dBm at the Chip Port)  
Transmit, CCK  
20  
20  
2.4  
2.4  
88  
76  
5
5
Transmit, MCS8, HT20, SGIe, h  
Transmit, MCS7, SGIe, h  
Transmit, MCS7e, h  
Transmit, MCS9, SGIe, h  
Transmit, MCS9, SGIe, h  
20  
40  
40  
80  
5
5
5
5
111  
125  
125  
147  
5
5
5
5
Active Modes with Internal PAs (TX Output Power Measured at the Chip Port)  
TX CCK 11 Mbps at 21.7 dBm  
20  
2.4  
2.4  
5
325  
240  
280  
340  
270  
270  
5
5
5
5
5
5
TX OFDM MCS8 (SGI) at 17.2 dBm 20  
TX OFDM MCS7 (SGI) at 18.5 dBm 20  
TX OFDM MCS7 at 18.7 dBm  
40  
5
TX OFDM MCS9 (SGI) at 16.2 dBm 40  
TX OFDM MCS9 (SGI) at 15.7 dBm 80  
5
5
a. VIO is specified with all pins idle (not switching) and not driving any loads.  
b. WL_REG_ON, BT_REG_ON low.  
c. Idle, not associated, or inter-beacon.  
d. Beacon Interval = 102.4 ms. Beacon duration = 1 ms @1 Mbps. Average current over the specified DTIM  
intervals.  
e. Measured using packet engine test mode.  
f. Duty cycle is 100%. Carrier sense (CS) detect/packet receive.  
g. Carrier sense (CCA) when no carrier present.  
h. Duty cycle is 100%. Excludes external PA contribution.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 157  
BCM4339 Preliminary Data Sheet  
Bluetooth and FM Current Consumption  
Bluetooth and FM Current Consumption  
The Bluetooth, BLE, and FM Bluetooth BLE current consumption measurements are shown in Table 51.  
Note:  
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 51.  
For FM measurements, the Bluetooth core is in Sleep mode.  
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.  
Table 51: Bluetooth BLE and FM Current Consumption  
Operating Mode  
VBAT (VBAT = 3.6V) Typical VDDIO (VDDIO = 1.8V) Typical Units  
Sleep  
10  
225  
235  
235  
µA  
µA  
µA  
Standard 1.28s Inquiry Scan  
180  
320  
P and I Scanb  
500 ms Sniff Master  
500 ms Sniff Slave  
DM1/DH1 Master  
DM3/DH3 Master  
DM5/DH5 Master  
3DH5 Master  
170  
250  
µA  
120  
250  
µA  
22.81  
28.06  
29.01  
27.09  
7.9  
0.034  
0.044  
0.047  
0.100  
0.123  
0.180  
mA  
mA  
mA  
mA  
mA  
mA  
SCO HV3 Master  
HV3 + Sniff + Scana  
11.38  
FMRX I2S Audio  
8.64  
0.022  
mA  
FMRX Analog Audio only  
9.15  
8.65  
0.022  
0.022  
mA  
mA  
FMRX I2S Audio + RDS  
FMRX Analog Audio + RDS  
9.20  
175  
0.022  
235  
mA  
µA  
BLE Scanb  
BLE Scan 10 ms  
14.09  
0.022  
245  
mA  
µA  
µA  
µA  
mA  
µA  
µA  
BLE Adv – Unconnectable 1.00 sec 69  
BLE Adv – Unconnectable 1.28 sec 67  
BLE Adv – Unconnectable 2.00 sec 42  
235  
240  
BLE Connected 7.5 ms  
BLE Connected 1 sec  
BLE Connected 1.28 sec  
4.30  
0.020  
240  
53  
48  
240  
a. At maximum class 1 TX power, 500 ms sniff, four attempts (slave), P = 1.28s, and I = 2.56s.  
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 158  
BCM4339 Preliminary Data Sheet  
Interface Timing and AC Characteristics  
Section 20: Interface Timing and AC  
Characteristics  
SDIO/gSPI Timing  
SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 43 and Table 52.  
Figure 43: SDIO Bus Timing (Default Mode)  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(min)  
Table 52: SDIO Bus Timinga Parameters (Default Mode)  
Parameter  
Symbol  
Minimum Typical  
Maximum Unit  
SDIO CLK (All values are referred to minimum VIH and maximum VILb)  
Frequency – Data Transfer mode  
Frequency – Identification mode  
Clock low time  
fPP  
0
25  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock fall time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 159  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
Table 52: SDIO Bus Timinga Parameters (Default Mode) (Cont.)  
Parameter  
Symbol  
Minimum Typical  
Maximum Unit  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer mode  
Output delay time – Identification mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Min. (Vih) = 0.7 × VDDIO and max (Vil) = 0.2 × VDDIO.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 160  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
SDIO High-Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 44 and Table 53.  
Figure 44: SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
Table 53: SDIO Bus Timinga Parameters (High-Speed Mode)  
Parameter  
Symbol  
Minimum Typical  
Maximum Unit  
SDIO CLK (all values are referred to minimum VIH and maximum VILb)  
Frequency – Data Transfer Mode  
Frequency – Identification Mode  
Clock low time  
fPP  
0
0
7
7
50  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock high time  
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
6
2
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer Mode  
Output hold time  
tODLY  
tOH  
14  
ns  
ns  
pF  
2.5  
Total system capacitance (each line)  
CL  
40  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Min. (Vih) = 0.7 × VDDIO and max (Vil) = 0.2 × VDDIO.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 161  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
SDIO Bus Timing Specifications in SDR Modes  
Clock Timing  
Figure 45: SDIO Clock Timing (SDR Modes)  
tCLK  
SDIO_CLK  
tCR  
tCF  
tCR  
Table 54: SDIO Bus Clock Timing Parameters (SDR Modes)  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
tCLK  
40  
20  
10  
4.8  
ns  
ns  
ns  
ns  
ns  
SDR12 mode  
SDR25 mode  
SDR50 mode  
SDR104 mode  
tCR, tCF  
0.2 × tCLK  
tCR, tCF < 2.00 ns (max.) @100 MHz,  
CCARD = 10 pF  
t
C
CR, tCF < 0.96 ns (max.) @208 MHz,  
CARD = 10 pF  
Clock duty  
cycle  
30  
70  
%
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 162  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
Device Input Timing  
Figure 46: SDIO Bus Input Timing (SDR Modes)  
SDIO_CLK  
tIS  
tIH  
CMD input  
DAT[3:0] input  
Table 55: SDIO Bus Input Timing Parameters (SDR Modes)  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
SDR104 Mode  
tIS  
tIH  
1.4  
0.8  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
SDR50 Mode  
tIS  
tIH  
3.0  
0.8  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
SDR25 Mode  
tIS  
tIH  
3.0  
0.8  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
SDR12 Mode  
tIS  
tIH  
3.0  
0.8  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 163  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
Device Output Timing  
Figure 47: SDIO Bus Output Timing (SDR Modes up to 100 MHz)  
tCLK  
SDIO_CLK  
tODLY  
tOH  
CMD output  
DAT[3:0] output  
Table 56: SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
tODLY  
tODLY  
tOH  
7.5  
14.0  
ns  
ns  
ns  
tCLK 10 ns CL= 30 pF using driver type B for SDR50  
tCLK 20 ns CL= 40 pF using for SDR12, SDR25  
Hold time at the tODLY (min) CL= 15 pF  
1.5  
Figure 48: SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)  
tCLK  
SDIO_CLK  
tOP  
tODW  
CMD output  
DAT[3:0] output  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 164  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
Table 57: SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz)  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
tOP  
0
2
UI  
ps  
UI  
Card output phase  
tOP  
tODW  
–350  
0.60  
+1550  
Delay variation due to temp change after tuning  
tODW=2.88 ns @208 MHz  
tOP = +1550 ps for junction temperature of tOP = 90 degrees during operation  
tOP = –350 ps for junction temperature of tOP = –20 degrees during operation  
tOP = +2600 ps for junction temperature of tOP = –20 to +125 degrees during operation  
Figure 49: tOP Consideration for Variable Data Window (SDR 104 Mode)  
Data valid window  
Sampling point after tuning  
ȴtOP  
=
Data valid window  
1550 ps  
ȴtOP  
=
Sampling point after card junction heating  
by +90°C from tuning temperature  
–350 ps  
Data valid window  
Sampling point after card junction cooling  
by –20°C from tuning temperature  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 165  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
SDIO Bus Timing Specifications in DDR50 Mode  
Figure 50: SDIO Clock Timing (DDR50 Mode)  
tCLK  
SDIO_CLK  
tCR  
tCF  
tCR  
Table 58: SDIO Bus Clock Timing Parameters (DDR50 Mode)  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
tCLK  
20  
ns  
ns  
DDR50 mode  
tCR,tCF  
0.2 × tCLK  
tCR, tCF < 4.00 ns (max) @50 MHz,  
CCARD = 10 pF  
Clock duty  
cycle  
45  
55  
%
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 166  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
Data Timing, DDR50 Mode  
Figure 51: SDIO Data Timing (DDR50 Mode)  
FPP  
SDIO_CLK  
tISU2x  
tIH2x  
tISU2x  
tIH2x  
DAT[3:0]  
input  
Invalid  
Data  
Invalid  
Data  
Invalid  
Data  
Invalid  
tODLY2x (max)  
tODLY2x (max)  
tODLY2x  
(min)  
tODLY2x  
(min)  
Available timing  
window for card  
output transition  
DAT[3:0]  
output  
Data  
Data  
Data  
In DDR50 mode, DAT[3:0] lines are sampled on both edges of  
the clock (not applicable for CMD line)  
Available timing  
window for host to  
sample data from card  
Table 59: SDIO Bus Timing Parameters (DDR50 Mode)  
Parameter  
Input CMD  
Symbol  
Minimum  
Maximum  
Unit Comments  
Input setup time  
Input hold time  
tISU  
tIH  
6
ns  
ns  
CCARD < 10pF (1 Card)  
CCARD < 10pF (1 Card)  
0.8  
Output CMD  
Output delay time  
Output hold time  
tODLY  
tOH  
13.7  
ns  
ns  
CCARD < 30pF (1 Card)  
CCARD < 15pF (1 Card)  
1.5  
Input DAT  
Input setup time  
Input hold time  
tISU2x  
tIH2x  
3
ns  
ns  
CCARD < 10pF (1 Card)  
CCARD < 10pF (1 Card)  
0.8  
Output DAT  
Output delay time  
Output hold time  
tODLY2x  
tODLY2x  
7.0  
ns  
ns  
CCARD < 25pF (1 Card)  
CCARD < 15pF (1 Card)  
1.5  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 167  
BCM4339 Preliminary Data Sheet  
SDIO/gSPI Timing  
gSPI Signal Timing  
The gSPI host and device always use the rising edge of clock to sample data.  
Figure 52: gSPI Timing  
Table 60: gSPI Timing Parameters  
Parameter  
Symbol Minimum  
Maximum  
Units Note  
ns Fmax = 48 MHz  
Clock period  
T1  
20.8  
Clock high/low  
Clock rise/fall timea  
T2/T3  
T4/T5  
(0.45 × T1) – T4 (0.55 × T1) – T4 ns  
2.5  
ns  
ns  
ns  
ns  
ns  
Measured from 10% to 90% of  
VDDIO  
Input setup time  
Input hold time  
T6  
T7  
5.0  
5.0  
5.0  
5.0  
Setup time, SIMO valid to  
SPI_CLK active edge  
Hold time, SPI_CLK active edge  
to SIMO invalid  
Output setup time T8  
Setup time, SOMI valid before  
SPI_CLK rising  
Output hold time  
T9  
Hold time, SPI_CLK active edge  
to SOMI invalid  
CSX to clockb  
Clock to CSXa  
7.86  
ns  
ns  
CSX fall to 1st rising edge  
Last falling edge to CSX high  
a. Limit applies when SPI_CLK = Fmax. For slower clock speeds, longer rise/fall times are acceptable provided that  
the transitions are monotonic and the setup and hold time limits are complied with.  
b. SPI_CSx remains active for entire duration of gSPI read/write/write-read transaction (overall words for multiple-  
word transaction).  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 168  
BCM4339 Preliminary Data Sheet  
PCI Express Interface Parameters  
PCI Express Interface Parameters  
Table 61: PCI Express Interface Parameters  
Parameter  
Symbol  
Comments  
Minimum Typical Maximum Unit  
General  
Baud rate  
BPS  
Vref  
1
5
Gbaud  
V
Reference clock  
amplitude  
LVPECL, AC coupled  
Receiver  
Differential termination ZRX-DIFF-DC  
Differential termination 80  
100  
50  
120  
60  
DC impedance  
ZRX-DC  
DC common-mode  
impedance  
40  
Powered down  
termination (POS)  
ZRX-HIGH-IMP-DC- Power-down or RESET 100k  
POS high impedance  
Powered down  
termination (NEG)  
ZRX-HIGH-IMP-DC- Power-down or RESET 1k  
NEG  
high impedance  
Input voltage  
VRX-DIFFp-p  
AC coupled, differential 175  
p-p  
mV  
UI  
Jitter tolerance  
TRX-EYE  
Minimum receiver eye 0.4  
width  
Differential return loss RLRX-DIFF  
Differential return loss 10  
dB  
dB  
Common-mode return RLRX-CM  
loss  
Common-mode return  
loss  
6
Unexpected electrical TRX-IDEL-DET-  
An unexpected  
10  
ms  
idle enter detect  
threshold integration  
time  
DIFF-ENTERTIME electrical idle must be  
recognized no longer  
than this time to signal  
an unexpected idle  
condition.  
Signal detect threshold VRX-IDLE-DET-  
DIFFp-p  
Electrical idle detect  
threshold  
65  
175  
mV  
Transmitter  
Output voltage  
VTX-DIFFp-p  
VTX-RISE  
Differential p-p,  
programmable in 16  
steps  
0.8  
1200  
mV  
UI  
Output voltage rise  
time  
20% to 80%  
0.125  
(2.5 GT/s)  
0.15  
(5 GT/s)  
Output voltage fall time VTX-FALL  
80% to 20%  
0.125  
(2.5 GT/s)  
UI  
0.15  
(5 GT/s)  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 169  
BCM4339 Preliminary Data Sheet  
PCI Express Interface Parameters  
Table 61: PCI Express Interface Parameters (Cont.)  
Parameter  
Symbol  
Comments  
Minimum Typical Maximum Unit  
RX detection voltage VTX-RCV-DETECT The amount of voltage –  
600  
100  
20  
mV  
mV  
mV  
mV  
swing  
change allowed during  
receiver detection.  
TX AC peak common- VTX-CM-AC-PP  
mode voltage  
(5 GT/s)  
TX AC common mode  
voltage (5 GT/s)  
0
TX AC peak common- VTX-CM-AC-P  
mode voltage  
(2.5 GT/s)  
TX AC common mode  
voltage (2.5 GT/s)  
Absolute delta of DC VTX-CM-DC-  
Absolute delta of DC  
common-model voltage  
during L0 and electrical  
idle.  
100  
common-model  
ACTIVE-IDLE-  
voltage during L0 and DELTA  
electrical idle  
Absolute delta of DC VTX-CM-DC-LINE- DC offset between D+  
0
25  
mV  
common-model  
voltage between D+  
and D–  
DELTA  
and D–  
Electrical idle  
differential peak output p  
voltage  
VTX-IDLE-DIFF-AC- Peak-to-peak voltage  
0
20  
mV  
mA  
TX short circuit  
current  
ITX-SHORT  
Current limit when TX  
output is shorted to  
ground.  
90  
DC differential TX  
termination  
ZTX-DIFF-DC  
RLTX-DIFF  
Low impedance defined 80  
during signaling  
(parameter is captured  
for 5.0 GHz by RLTX-  
DIFF)  
120  
Differential  
return loss  
Differential  
return loss  
10 (min) for –  
0.05:  
dB  
1.25 GHz  
8 (min) for  
1.25:  
2.5 GHz  
Common-mode  
return loss  
RLTX-CM  
TTX-EYE  
Common-mode return  
loss  
6
dB  
UI  
TX eye width  
Minimum TX  
eye width  
0.75  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 170  
BCM4339 Preliminary Data Sheet  
JTAG Timing  
JTAG Timing  
Table 62: JTAG Timing Characteristics  
Output  
Maximum  
Output  
Minimum  
Signal Name  
Period  
Setup  
Hold  
TCK  
125 ns  
TDI  
20 ns  
20 ns  
0 ns  
0 ns  
TMS  
TDO  
100 ns  
0 ns  
JTAG_TRST  
250 ns  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 171  
BCM4339 Preliminary Data Sheet  
Power-Up Sequence and Timing  
Section 21: Power-Up Sequence and  
Timing  
Sequencing of Reset and Regulator Control Signals  
The BCM4339 has two signals that allow the host to control power consumption by enabling or disabling the  
Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are  
provided to indicate proper sequencing of the signals for various operational states (see Figure 53, Figure 54  
on page 173, and Figure 55 and Figure 56 on page 174). The timing values indicated are minimum required  
values; longer delays are also acceptable.  
Description of Control Signals  
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON  
input to control the internal BCM4339 regulators. When this pin is high, the regulators are enabled and the  
WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the BT_REG_ON  
and WL_REG_ON pins are low, the regulators are disabled.  
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal BCM4339  
regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this  
pin is low and WL_REG_ON is high, the BT section is in reset.  
Note:  
For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay  
between consecutive toggles (where both signals have been driven low). This is to allow time for  
the CBUCK regulator to discharge. If this delay is not followed, then there may be a VDDIO in-rush  
current on the order of 36 mA during the next PMU cold start.  
The reset requirements for the Bluetooth core are also applicable for the FM core. In other words,  
if FM is to be used, then the Bluetooth core must be enabled.  
The BCM4339 has an internal power-on reset (POR) circuit. The device will be held in reset for a  
maximum of 110 ms after VDDC and VDDIO have both passed the POR threshold. Wait at least  
150 ms after VDDC and VDDIO are available before initiating SDIO accesses.  
VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the  
same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 172  
BCM4339 Preliminary Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Control Signal Timing Diagrams  
Figure 53: WLAN = ON, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds or slower than 10 milliseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high  
before VBAT is high.  
Figure 54: WLAN = OFF, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT*  
VDDIO  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds or slower than 10 milliseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 173  
BCM4339 Preliminary Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Figure 55: WLAN = ON, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds or slower than 10 milliseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Figure 56: WLAN = OFF, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds or slower than 10 milliseconds.  
2. VBAT should be up before or at the same time as VDDIO . VDDIO should NOT be present first or be held high before VBAT is high .  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 174  
BCM4339 Preliminary Data Sheet  
Package Information  
Section 22: Package Information  
Package Thermal Characteristics  
Table 63: Package Thermal Characteristicsa  
Characteristic  
FCFBGA  
48.03  
17.01  
24.52  
10.78  
18.02  
125  
WLBGA  
32.9  
WLCSP  
33.45  
3.45  
JA (°C/W) (value in still air)  
2.56  
JB (°C/W)  
0.98  
1.00  
JC (°C/W)  
JT (°C/W)  
JB (°C/W)  
3.30  
3.45  
9.85  
10.64  
125  
Maximum Junction Temperature Tj (°C)  
Maximum Power Dissipation (W)  
125  
1.41  
1.119  
1.119  
a. No heat sink, TA = 70°C. This is an estimate, based on a 4-layer PCB that conforms to EIA/JESD51–7  
(101.6 mm × 101.6 mm × 1.6 mm) and P = specified power maximum continuous power dissipation.  
Junction Temperature Estimation and PSIJT Versus THETAJC  
Package thermal characterization parameter PSI–JT (JT) yields a better estimation of actual junction  
temperature (TJ) versus using the junction-to-case thermal resistance parameter Theta–JC (JC). The reason  
for this is that JC assumes that all the power is dissipated through the top surface of the package case. In actual  
applications, some of the power is dissipated through the bottom and sides of the package. JT takes into  
account power dissipated through the top, bottom, and sides of the package. The equation for calculating the  
device junction temperature is:  
TJ = TT + P x JT  
Where:  
TJ = Junction temperature at steady-state condition (°C)  
TT = Package case top center temperature at steady-state condition (°C)  
P = Device power dissipation (Watts)  
JT = Package thermal characteristics; no airflow (°C/W)  
Environmental Characteristics  
For environmental characteristics data, see Table 31: “Environmental Ratings,” on page 123.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 175  
BCM4339 Preliminary Data Sheet  
Mechanical Information  
Section 23: Mechanical Information  
Figure 57: 160-Ball FCFBGA Package Mechanical Information  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 176  
BCM4339 Preliminary Data Sheet  
Mechanical Information  
Figure 58: 145-Ball WLBGA Package Mechanical Information  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 177  
BCM4339 Preliminary Data Sheet  
Mechanical Information  
Figure 59: WLBGA Keep-out Areas for PCB Layout—Bottom View with Balls Facing Up  
Note: No top-layer metal is allowed in keep-out areas.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 178  
BCM4339 Preliminary Data Sheet  
Mechanical Information  
Figure 60: 286-Bump WLCSP Package Mechanical Information  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 179  
BCM4339 Preliminary Data Sheet  
Mechanical Information  
Figure 61: WLCSP Keep-out Areas for PCB Layout—Bottom View with Bumps Facing Up  
Note: No top-layer metal is allowed in keep-out areas.  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 180  
BCM4339 Preliminary Data Sheet  
Ordering Information  
Section 24: Ordering Information  
Operating  
Ambient  
Temperature  
Part Number  
Package  
Description  
BCM4339NKFFBG 160-ball FCFBGA  
(8 mm × 8 mm,  
Dual-band 2.4 GHz and 5 GHz  
WLAN + BT 4.1  
–30°C to +85°C  
–30°C to +85°C  
–30°C to +85°C  
0.4 mm pitch)  
BCM4339XKWBG 286-bump WLCSP  
(4.87 mm × 5.413 mm,  
Dual-band 2.4 GHz and 5 GHz  
WLAN + BT 4.1 for FMRX  
0.2 mm pitch)  
BCM4339XKUBG 145-ball WLBGA  
(4.87 mm × 5.413 mm,  
0.4 mm pitch)  
Dual-band 2.4 GHz and 5 GHz  
WLAN + BT 4.1 + FMRX  
Broadcom®  
November 17, 2014 • 4339-DS106-R  
Page 181  
BCM4339 Preliminary Data Sheet  
Broadcom® Corporation reserves the right to make changes without further notice to any products or  
data herein to improve reliability, function, or design.  
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However,  
Broadcom Corporation does not assume any liability arising out of the application or use of this  
information, nor the application or use of any product or circuit described herein, neither does it  
convey any license under its patent rights nor the rights of others.  
®
Broadcom Corporation  
Phone: 949-926-5000  
Fax: 949-926-5203  
5300 California Avenue  
E-mail: info@broadcom.com  
Web: www.broadcom.com  
Irvine, CA 92617  
© 2014 by BROADCOM CORPORATION. All rights reserved.  
4339-DS106-R  
November 17, 2014  

相关型号:

BCM43438

Single-Chip IEEE 802.11ac b/g/n MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

BCM43438KUBG

Single-Chip IEEE 802.11ac b/g/n MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

BCM4343SKUBG

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging
CYPRESS

BCM4343W1KUBG

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging
CYPRESS

BCM4343WKUBG

Telecom Circuit, 1-Func, PBGA74, WLBGA-74
CYPRESS

BCM4343WKUBGT

Telecom Circuit, 1-Func, PBGA74, WLBGA-74
CYPRESS

BCM4343WKWBG

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging
CYPRESS

BCM43455

Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/ Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

BCM43455XKUBGT

Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/ Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

BCM4354

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

BCM4354KKWBGT

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/ Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

BCM4354XKUBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS