CY2XP21ZXCT [CYPRESS]

125 MHz LVPECL Clock Generator; 125MHz的LVPECL时钟发生器
CY2XP21ZXCT
型号: CY2XP21ZXCT
厂家: CYPRESS    CYPRESS
描述:

125 MHz LVPECL Clock Generator
125MHz的LVPECL时钟发生器

时钟发生器
文件: 总7页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
CY2XP21  
125 MHz LVPECL Clock Generator  
Features  
Functional Description  
One LVPECL Output Pair  
The CY2XP21 is a PLL (Phase Locked Loop) based high  
performance clock generator. It is optimized to generate a  
125 MHz clock, which is ideal for 10 Gb Ethernet applications. It  
also produces an output frequency that is five times the crystal  
frequency. It uses Cypress’s low noise VCO technology to  
achieve less than 1 ps typical RMS phase jitter. The CY2XP21  
has a crystal oscillator interface input and one LVPECL output  
pair.  
Output Frequency: 112 MHz to 140 MHz  
External Crystal Frequency: 22.4 MHz to 28 MHz  
Low RMS Phase Jitter at 125 MHz, using 25 MHz Crystal  
(1.875 MHz to 20 MHz): 0.4 ps (Typical)  
Pb-free 8-Pin TSSOP Package  
Supply Voltage: 3.3V or 2.5V  
Commercial and Industrial Temperature Ranges  
Logic Block Diagram  
XIN  
External  
Crystal  
CLK  
CRYSTAL  
OSCILLATOR  
LOW -N OISE  
PLL  
OUTPUT  
DIVIDER  
CLK#  
XOUT  
Pinouts  
Figure 1. Pin Diagram - 8-Pin TSSOP  
VDD  
VSS  
XOUT  
XIN  
1
2
3
4
8
7
6
5
VDD  
CLK  
CLK#  
NC  
Table 1. Pin Definition - 8-Pin TSSOP  
Pin Number  
Pin Name  
VDD  
I/O Type  
Description  
1, 8  
2
Power  
Power  
3.3V or 2.5V power supply  
Ground  
VSS  
3, 4  
5
XOUT, XIN  
NC  
XTAL output and input  
Parallel resonant crystal interface  
No Connect  
6,7  
CLK#, CLK  
LVPECL output  
Differential Clock Output  
Cypress Semiconductor Corporation  
Document #: 001-52849 Rev. *A  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised June 15, 2009  
[+] Feedback  
PRELIMINARY  
CY2XP21  
Frequency Table  
Inputs  
Output Frequency (MHz)  
Crystal Frequency (MHz)  
PLL Multiplier Value  
25  
5
5
125  
133  
26.6  
Absolute Maximum Conditions  
Parameter  
Description  
Conditions  
Min  
–0.5  
–0.5  
–65  
Max  
Unit  
V
VDD  
Supply Voltage  
4.4  
[1]  
VIN  
Input Voltage, DC  
Relative to VSS  
Non operating  
VDD + 0.5  
150  
V
TS  
Temperature, Storage  
Temperature, Junction  
ESD Protection, Human Body Model  
Flammability Rating  
°C  
°C  
V
TJ  
135  
ESDHBM  
JEDEC STD 22-A114-B  
At 1/8 in.  
2000  
UL–94  
V–0  
[2]  
ΘJA  
Thermal Resistance, Junction to Ambient 0 m/s airflow  
100  
91  
°C/W  
1 m/s airflow  
2.5 m/s airflow  
87  
Operating Conditions  
Parameter  
Description  
Min  
3.135  
2.375  
0
Max  
3.465  
2.625  
70  
Unit  
V
VDD  
TA  
3.3V Supply Voltage  
2.5V Supply Voltage  
V
Ambient Temperature, Commercial  
Ambient Temperature, Industrial  
°C  
°C  
ms  
–40  
85  
TPU  
Power up time for all VDD to reach minimum specified voltage (ensure power ramps  
is monotonic)  
0.05  
500  
DC Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min  
Typ  
Max  
150  
145  
Unit  
mA  
mA  
V
[4]  
IDD  
Operating Supply Current with  
output terminated  
VDD = 3.465V, Output terminated  
V
DD = 2.625V, Output terminated  
VOH  
LVPECL Output High Voltage  
LVPECL Output Low Voltage  
VDD = 3.3V or 2.5V, RTERM = 50Ω to VDD –1.15  
DD – 2.0V  
VDD –0.75  
VDD –1.625  
1000  
V
VOL  
VDD = 3.3V or 2.5V, RTERM = 50Ω to VDD –2.0  
DD – 2.0V  
V
mV  
mV  
V
V
VOD1  
VOD2  
VOCM  
LVPECL Peak-to-Peak Output  
Voltage Swing  
VDD = 3.3V or 2.5V, RTERM = 50Ω to  
DD – 2.0V  
600  
500  
1.2  
V
LVPECL Output Voltage Swing VDD = 2.5V, RTERM = 50Ω to VDD  
(VOH - VOL 1.5V  
1000  
)
LVPECL Output Common Mode VDD = 2.5V, RTERM = 50Ω to VDD  
Voltage (VOH + VOL)/2  
1.5V  
CINX  
Pin Capacitance, XIN & XOUT  
4.5  
pF  
Notes  
1. The voltage on any input or IO pin cannot exceed the power pin during power up.  
2. Simulated using Apache Sentinel TI software. The board is derived from the JEDEC multilayer standard. It measures 76 x 114 x 1.6 mm and has 4-layers of  
copper (2/1/1/2 oz.). The internal layers are 100% copper planes, while the top and bottom layers have 50% metalization. No vias are included in the model.  
3.  
I
includes approximately 24 mA of current that is dissipated externally in the output termination resistors.  
DD  
Document #: 001-52849 Rev. *A  
Page 2 of 7  
[+] Feedback  
PRELIMINARY  
CY2XP21  
AC Electrical Characteristics[4]  
Parameter  
FOUT  
Description  
Output Frequency  
Conditions  
Min  
112  
Typ  
Max  
Unit  
MHz  
ps  
140  
TR, TF  
TJitter(φ)  
TDC  
Output Rise or Fall Time  
RMS Phase Jitter (Random)  
Output Duty Cycle  
20% to 80% of full output swing  
125 MHz, (1.875–20 MHz)  
500  
0.4  
ps  
Measured at zero crossing point  
48  
52  
10  
%
TLOCK  
Startup Time  
Time for CLK to reach valid  
frequency measured from the time  
VDD = VDD(min.)  
ms  
Recommended Crystal Specifications[5]  
Parameter  
Description  
Min  
Max  
Unit  
Mode  
F
Mode of Oscillation  
Frequency  
Fundamental  
22.4  
28  
50  
7
MHz  
Ω
ESR  
C0  
Equivalent Series Resistance  
Shunt Capacitance  
pF  
Parameter Measurements  
Figure 2. 3.3V Output Load AC Test Circuit  
2V  
SCOPE  
Z = 50Ω  
Z = 50Ω  
VDD  
CLK  
50Ω  
LVPECL  
CLK#  
VSS  
50Ω  
-1.3V +/- 0.165V  
Figure 3. 2.5V Output Load AC Test Circuit  
2V  
SCOPE  
Z = 50Ω  
Z = 50Ω  
VDD  
LVPECL  
CLK  
50Ω  
50Ω  
CLK#  
VSS  
-0.5V +/- 0.125V  
Notes  
4. INot 100% tested, guaranteed by design and characterization.  
5. Characterized using an 18 pF parallel resonant crystal.  
Document #: 001-52849 Rev. *A  
Page 3 of 7  
[+] Feedback  
PRELIMINARY  
CY2XP21  
Figure 4. Output DC Parameters  
VA  
CLK  
VOD  
VOCM = (VA + VB)/2  
CLK#  
VB  
Figure 5. Output Rise and Fall Time  
CLK#  
80% 80%  
20%  
20%  
CLK  
TR  
TF  
Figure 6. RMS Phase Jitter  
Phase noise  
Noise  
Power  
Phase noise mask  
Offset Frequency  
f2  
f1  
Area Under the Masked Phase Noise Plot  
RMS Jitter =  
Figure 7. Output Duty Cycle  
CLK  
TPW  
TDC  
=
TPERIOD  
CLK#  
TPW  
TPERIOD  
Document #: 001-52849 Rev. *A  
Page 4 of 7  
[+] Feedback  
PRELIMINARY  
CY2XP21  
Application Information  
Figure 9. LVPECL Output Termination  
Power Supply Filtering Techniques  
As in any high speed analog circuitry, noise at the power supply  
pins can degrade performance. To achieve optimum jitter perfor-  
mance, use good power supply isolation practices. Figure 8 illus-  
trates a typical filtering scheme. Since all the current flows  
through pin 1, the resistance and inductance between this pin  
and the supply is minimized. A 0.01 or 0.1 µF ceramic chip  
capacitor is also located close to this pin to provide a short and  
low impedance AC path to ground. A 1 to 10 µF ceramic or  
tantalum capacitor is located in the general vicinity of this device  
and may be shared with other devices.  
3.3V  
125Ω  
125Ω  
Z0 = 50Ω  
Z0 = 50Ω  
CLK  
IN  
CLK#  
84Ω  
84Ω  
Figure 8. Power Supply Filtering  
Crystal Interface  
V
DD  
(Pin 8)  
The CY2XP21 is characterized with 18 pF parallel resonant  
crystals. The capacitor values shown in Figure 10 are deter-  
mined using a 25 MHz 18 pF parallel resonant crystal and are  
chosen to minimize the ppm error. Note that the optimal values  
for C1 and C2 depend on the parasitic trace capacitance and are  
thus layout dependent.  
3.3V  
10µ  
V
DD  
(Pin 1)  
0.1μ
0.01 µF  
F
Figure 10. Crystal Input Interface  
XIN  
Termination for LVPECL Output  
C1  
30 pF  
X1  
Device  
The CY2XP21 implements its LVPECL driver with a current  
steering design. For proper operation, it requires a 50 ohm dc  
termination on each of the two output signals. For 3.3V  
operation, this data sheet specifies output levels for termination  
to VDD–2.0V. This same termination voltage can also be used for  
VDD = 2.5V operation, or it can be terminated to VDD-1.5V. Note  
that it is also possible to terminate with 50 ohms to ground (VSS),  
but the high and low signal levels differ from the data sheet  
values. Termination resistors are best located close to the desti-  
nation device. To avoid reflections, trace characteristic  
impedance (Z0) should match the termination impedance.  
Figure 9 shows a standard termination scheme.  
18 pF Parallel  
Crystal  
XOUT  
C2  
27 pF  
Board Layout and NC Pin  
Pin 5 (NC) does not perform any function on the CY2XP21.  
Although not used electrically, it is very useful for heat dissi-  
pation. For this reason, users are advised to connect pin 5 to  
either a VDD or VSS plane. This helps to lower the thermal resis-  
tance of the board / package combination, thus reducing the die  
temperature.  
Document #: 001-52849 Rev. *A  
Page 5 of 7  
[+] Feedback  
PRELIMINARY  
CY2XP21  
Ordering Information  
Part Number  
CY2XP21ZXC  
Package Type  
Product Flow  
Commercial, 0°C to 70°C  
8-pin TSSOP  
CY2XP21ZXCT  
CY2XP21ZXI  
8-pin TSSOP - Tape and Reel  
8-pin TSSOP  
Commercial, 0°C to 70°C  
Industrial, -40°C to 85°C  
Industrial, -40°C to 85°C  
CY2XP21ZXIT  
8-pin TSSOP - Tape and Reel  
Package Drawing and Dimensions  
Figure 11. 8-Pin Thin Shrunk Small Outline Package (4.40 MM Body) Z8  
PIN 1 ID  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
6.25[0.246]  
6.50[0.256]  
4.30[0.169]  
4.50[0.177]  
8
0.65[0.025]  
BSC.  
0.25[0.010]  
BSC  
0.19[0.007]  
0.30[0.012]  
1.10[0.043] MAX.  
GAUGE  
PLANE  
0°-8°  
0.076[0.003]  
0.85[0.033]  
0.95[0.037]  
0.50[0.020]  
0.70[0.027]  
0.05[0.002]  
0.15[0.006]  
0.09[[0.003]  
0.20[0.008]  
SEATING  
PLANE  
2.90[0.114]  
3.10[0.122]  
51-85093-*A  
Document #: 001-52849 Rev. *A  
Page 6 of 7  
[+] Feedback  
PRELIMINARY  
CY2XP21  
Document History Page  
Document Title: CY2XP21 125 MHz LVPECL Clock Generator  
Document Number: 001-52849  
Submission  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
2700242  
2718898  
04/30/2009 KVM/PYRS New data sheet  
06/15/09 WWZ Minor ECN to post data sheet to external web  
*A  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-52849 Rev. *A  
Revised June 15, 2009  
Page 7 of 7  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY2XP21ZXI

125 MHz LVPECL Clock Generator
CYPRESS

CY2XP21ZXIT

125 MHz LVPECL Clock Generator
CYPRESS

CY2XP22

Crystal to LVPECL Clock Generator One LVPECL output pair
CYPRESS

CY2XP22ZXC

Crystal to LVPECL Clock Generator
CYPRESS

CY2XP22ZXCT

Crystal to LVPECL Clock Generator
CYPRESS

CY2XP22ZXI

Crystal to LVPECL Clock Generator
CYPRESS

CY2XP22ZXIT

Crystal to LVPECL Clock Generator
CYPRESS

CY2XP22_11

Crystal to LVPECL Clock Generator One LVPECL output pair
CYPRESS

CY2XP24

Crystal to LVPECL Clock Generator One LVPECL Output Pair
CYPRESS

CY2XP24ZXC

Crystal to LVPECL Clock Generator
CYPRESS

CY2XP24ZXCT

Crystal to LVPECL Clock Generator
CYPRESS

CY2XP24ZXI

Crystal to LVPECL Clock Generator
CYPRESS