CY8C21323-24LFXIT [CYPRESS]

PSoC Programmable System-on-Chip; 的PSoC可编程系统级芯片
CY8C21323-24LFXIT
型号: CY8C21323-24LFXIT
厂家: CYPRESS    CYPRESS
描述:

PSoC Programmable System-on-Chip
的PSoC可编程系统级芯片

文件: 总36页 (文件大小:943K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21123, CY8C21223, CY8C21323  
PSoC® Programmable System-on-Chip™  
Additional System Resources:  
Features  
I2C™ Master, Slave and MultiMaster to 400 kHz  
Watchdog and Sleep Timers  
Powerful Harvard Architecture Processor:  
M8C Processor Speeds to 24 MHz  
Low Power at High Speed  
2.4V to 5.25V Operating Voltage  
Operating Voltages down to 1.0V using On-Chip Switch  
Mode Pump (SMP)  
User Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
On-Chip Precision Voltage Reference  
Industrial Temperature Range: -40°C to +85°C  
Logic Block Diagram  
Advanced Peripherals (PSoC® Blocks):  
Port 1 Port 0  
Four Analog Type “E” PSoC Blocks Provide:  
• Two Comparators with DAC Refs  
• Single or Dual 8-Bit 8:1 ADC  
PSoC  
CORE  
Four Digital PSoC Blocks Provide:  
• 8 to 32-Bit Timers, Counters, and PWMs  
• CRC and PRS Modules  
Full Duplex UART, SPIMaster or Slave: Connectable to All  
GPIO Pins  
SystemBus  
Global Digital Interconnect  
Global Analog Interconnect  
Flash  
SROM  
SRAM  
Complex Peripherals by Combining Blocks  
CPUCore  
(M8C)  
Sleep and  
Watchdog  
Flexible On-Chip Memory:  
Interrupt  
Controller  
4K Flash Program Storage 50,000 Erase/Write Cycles  
256 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Clock Sources  
(Includes IMO and ILO)  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref .  
Complete Development Tools:  
Digital  
PSoC Block  
Array  
Analog  
PSoC Block  
Array  
Free Development Software (PSoC Designer)  
Full Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128 Bytes Trace Memory  
Precision, Programmable Clocking:  
Internal ±2.5% 24/48 MHz Oscillator  
Sw itch  
Mode  
Pump  
POR and LVD  
System Resets  
Internal  
Voltage  
Ref.  
Digital  
Clocks  
Internal Oscillator for Watchdog and Sleep  
I2C  
Programmable Pin Configurations:  
SYSTEM RESOURCES  
25 mA Sink, 10 mA Drive on All GPIO  
Pull Up, Pull Down, High Z, Strong, or Open Drain Drive  
Modes on All GPIO  
Up to Eight Analog Inputs on GPIO  
Configurable Interrupt on all GPIO  
Cypress Semiconductor Corporation  
Document Number: 38-12022 Rev. *K  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised April 29, 2009  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Digital System  
PSoC Functional Overview  
The Digital System consists of four digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references. Digital peripheral  
configurations include:  
The PSoC family consists of many programmable  
system-on-chip controller devices. These devices are designed  
to replace multiple traditional MCU-based system components  
with a low cost single-chip programmable component. A PSoC  
device includes configurable blocks of analog and digital logic,  
and programmable interconnect. This architecture allows the  
user to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast CPU, Flash program memory, SRAM data memory, and  
configurable IO are included in a range of convenient pinouts.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Timers (8 to 32 bit)  
The PSoC architecture, as shown in Figure 1, consists of four  
main areas: the Core, the System Resources, the Digital  
System, and the Analog System. Configurable global bus  
resources allow the combining of all device resources into a  
complete custom system. Each PSoC device includes four digital  
blocks. Depending on the PSoC package, up to two analog  
comparators and up to 16 General Purpose IO (GPIO) are also  
included. The GPIO provide access to the global digital and  
analog interconnects.  
UART 8 bit with selectable parity (up to four)  
SPI master and slave  
I2C slave, master, MultiMaster (one available as a System  
Resource)  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA (up to four)  
PSoC Core  
Pseudo Random Sequence Generators (8 to 32 bit)  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a four MIPS 8-bit Harvard  
architecture microprocessor.  
The digital blocks can be connected to any GPIO through a  
series of global bus that can route any signal to any pin. The  
busses also allow for signal multiplexing and performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This provides an optimum  
choice of system resources for your application. Family  
resources are shown in Table 1 on page 3.  
System Resources provide additional capability, such as digital  
clocks to increase the flexibility of the PSoC Programmable  
System-on-Chips, I2C functionality for implementing an I2C  
master, slave, MultiMaster, an internal voltage reference that  
provides an absolute value of 1.3V to a number of PSoC  
subsystems, a switch mode pump (SMP) that generates normal  
operating voltages off a single battery cell, and various system  
resets supported by the M8C.  
Figure 1. Digital System Block Diagram  
Port1  
Port0  
ToSystemBus  
DigitalClocks  
FromCore  
ToAnalog  
System  
The Digital System consists of an array of digital PSoC blocks,  
which can be configured into any number of digital peripherals.  
The digital blocks can be connected to the GPIO through a series  
of global bus that can route any signal to any pin. This frees  
designs from the constraints of a fixed peripheral controller.  
DIGITAL SYSTEM  
DigitalPSoCBlockArray  
The Analog System consists of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to 8  
bits in precision.  
Row 0  
4
DBB00  
DBB01  
DCB02 DCB03  
4
8
8
8
8
GlobalDigital  
Interconnect  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Document Number: 38-12022 Rev. *K  
Page 2 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Analog System  
Additional System Resources  
The Analog System consists of four configurable blocks to allow  
creation of complex analog signal flows. Analog peripherals are  
very flexible and may be customized to support specific  
application requirements. Some of the more common PSoC  
analog functions (most available as user modules) are:  
System Resources, some of which listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include a switch mode pump, low  
voltage detection, and power on reset. The merits of each  
system resource are.  
Analog-to-digital converters (single or dual, with 8-bit or 10-bit  
resolution)  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
Pin-to-pin comparators (one)  
Single-ended comparators (up to 2) with absolute (1.3V)  
reference or 8-bit DAC reference  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, and multi-master modes are all  
supported.  
1.3V reference (as a System Resource)  
In most PSoC devices, analog blocks are provided in columns of  
three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x23 devices provide  
limited functionality Type “E” analog blocks. Each column  
contains one CT block and one SC block.  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
An internal 1.3 voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
The number of blocks on the device family is listed in Table 1.  
Figure 2. CY8C21x23 Analog System Block Diagram  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
PSoC Device Characteristics  
Array Input  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or  
4 analog blocks. Table 1 lists the resources available for specific  
PSoC device groups. The PSoC device covered by this data  
sheet is highlighted.  
Configuration  
Table 1. PSoC Device Characteristics  
ACI0[1:0]  
ACI1[1:0]  
PSoC Part  
Number  
ACOL1MUX  
CY8C29x66  
CY8C27x43  
CY8C24x94  
up to 4  
64  
16 12  
4
4
2
2
0
0
0
4
4
2
2
2
2
0
12 2K  
32  
K
Array  
up to 2  
44  
8
4
4
4
4
0
12  
48  
12  
28  
8
12 256  
16  
K
Bytes  
56  
1
6
6
4
4
3
1K  
16  
K
ACE00  
ASE10  
ACE01  
ASE11  
CY8C24x23A up to 1  
24  
256  
Bytes  
4K  
8K  
4K  
8K  
[1]  
[1]  
[2]  
CY8C21x34  
CY8C21x23  
CY8C20x34  
up to 1  
28  
512  
Bytes  
16  
1
256  
Bytes  
up to 0  
28  
28  
512  
Bytes  
.
Notes  
1. Limited analog functionality  
2. Two analog blocks and one CapSense™  
Document Number: 38-12022 Rev. *K  
Page 3 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Getting Started  
Development Tools  
The quickest way to understand PSoC silicon is to read this data  
sheet and then use the PSoC Designer Integrated Development  
Environment (IDE). This data sheet is an overview of the PSoC  
integrated circuit and presents specific pin, register, and  
electrical specifications.  
PSoC Designer is a Microsoft® Windows-based, integrated  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE runs  
on Windows XP or Windows Vista.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built in support for third party  
assemblers and C compilers.  
For in depth information, along with detailed programming  
details, see the PSoC® Programmable System-on-Chip™  
Technical Reference Manual for CY8C28xxx PSoC devices.  
For up to date ordering, packaging, and electrical specification  
information, see the latest PSoC device data sheets on the web  
at www.cypress.com/psoc.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
PSoC Designer Software Subsystems  
Application Notes  
System-Level View  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They are located here:  
www.cypress.com/psoc. Select Application Notes under the  
Documentation tab.  
A drag-and-drop visual embedded system design environment  
based on PSoC Express. In the system level view you create a  
model of your system inputs, outputs, and communication  
interfaces. You define when and how an output device changes  
state based upon any or all other system devices. Based upon  
the design, PSoC Designer automatically selects one or more  
PSoC Programmable System-on-Chip Controllers that match  
your system requirements.  
Development Kits  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet,  
Digi-Key, Farnell, Future Electronics, and Newark.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
Training  
Chip-Level View  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at www.cypress.com/training. The  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.4. Choose a base  
device to work with and then select different onboard analog and  
digital components called user modules that use the PSoC  
blocks. Examples of user modules are ADCs, DACs, Amplifiers,  
and Filters. Configure the user modules for your chosen  
application and connect them to each other and to the proper  
pins. Then generate your project. This prepopulates your project  
with APIs and libraries that you can use to program your  
application.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
Solutions Library  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
configuration allows for changing configurations at run time.  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various  
application designs that include firmware and hardware design  
files that enable you to complete your designs quickly.  
Hybrid Designs  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over  
on-chip resources. All views of the project share a common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Technical Support  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, call technical support at  
1-800-541-4736.  
Document Number: 38-12022 Rev. *K  
Page 4 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Code Generation Tools  
Designing with PSoC Designer  
PSoC Designer supports multiple third party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user selectable functions.  
Assemblers. The assemblers allow assembly code to merge  
seamlessly with C code. Link libraries automatically use absolute  
addressing or are compiled in relative mode, and linked with  
other software modules to get absolute addressing.  
The PSoC development process can be summarized in the  
following four steps:  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
1. Select Components  
2. Configure Components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Select Components  
Both the system-level and chip-level views provide a library of  
prebuilt, pretested hardware peripheral components. In the  
system-level view, these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces  
(I2C-bus, for example), and the logic to control how they interact  
with one another (called valuators).  
Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing you to test the program in a physical  
system while providing an internal view of the PSoC device.  
Debugger commands allow the designer to read and program  
and read and write data memory, read and write IO registers,  
read and write CPU registers, set and clear breakpoints, and  
provide program run, halt, and step control. The debugger also  
allows the designer to create a trace buffer of registers and  
memory locations of interest.  
In the chip-level view, the components are called “user modules”.  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and programmable  
system-on-chip varieties.  
Online Help System  
Configure Components  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus.  
In-Circuit Emulator  
A low cost, high functionality In-Circuit Emulator (ICE) is  
available for development support. This hardware has the  
capability to program single devices.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed (24  
MHz) operation.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in the PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
property, and other information you may need to successfully  
implement your design.  
Document Number: 38-12022 Rev. *K  
Page 5 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Organize and Connect  
Document Conventions  
You can build signal chains at the chip level by interconnecting  
user modules to each other and the IO pins, or connect system  
level inputs, outputs, and communication interfaces to each  
other with valuator functions.  
Acronyms Used  
This table lists the acronyms used in this data sheet.  
Table 2. Acronyms  
In the system-level view, selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog to  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
Acronym  
AC  
Description  
alternating current  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
In the chip-level view, perform the selection, configuration, and  
routing so that you have complete control over the use of all  
on-chip resources.  
DAC  
DC  
digital-to-analog converter  
direct current  
Generate, Verify, and Debug  
EEPROM  
electrically erasable programmable read-only  
memory  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Application” step. This causes PSoC Designer to generate  
source code that automatically configures the device to your  
specification and provides the software for the system.  
FSR  
GPIO  
ICE  
full scale range  
general purpose IO  
in-circuit emulator  
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high level functions to  
control and respond to hardware events at run time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
IDE  
integrated development environment  
input/output  
IO  
ISSP  
IPOR  
LSb  
in-system serial programming  
imprecise power on reset  
least-significant bit  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
program counter  
PGA  
POR  
PPOR  
PSoC®  
PWM  
ROM  
SC  
programmable gain amplifier  
power on reset  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the HEX image to the ICE where it runs at full speed.  
Debugger capabilities rival those of systems costing many times  
more. In addition to traditional single-step, run-to-breakpoint and  
watch-variable features, the Debugger provides a large trace  
buffer and allows you define complex breakpoint events that  
include monitoring address and data bus values, memory  
locations and external signals.  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
read only memory  
switched capacitor  
SMP  
SRAM  
switch mode pump  
static random access memory  
Units of Measure  
A units of measure table is located in the section  
Electrical Specifications on page 15. Table 11 on page 15 lists all  
the abbreviations used to measure the PSoC devices.  
Numeric Naming  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
Document Number: 38-12022 Rev. *K  
Page 6 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Pin Information  
This section describes, lists, and illustrates the CY8C21x23 PSoC device pins and pinout configurations. Every port pin (labeled with  
a “P”) is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.  
8-Pin Part Pinout  
Table 3. Pin Definitions - CY8C21123 8-Pin SOIC  
Type  
Figure 3. CY8C21123 8-Pin SOIC  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
IO  
IO  
IO  
I
I
P0[5] Analog Column Mux Input  
A, I, P0[5]  
A, I, P0[3]  
I2C SCL, P1[1]  
1
2
3
8
7
6
Vdd  
P0[4], A, I  
P0[2], A, I  
2
3
4
5
6
7
8
P0[3] Analog Column Mux Input  
P1[1] I2C Serial Clock (SCL), ISSP-SCLK[3]  
SOIC  
Vss  
5
P1[0], I2CSDA  
4
Power  
Power  
Vss  
Ground Connection  
IO  
IO  
IO  
P1[0] I2C Serial Data (SDA), ISSP-SDATA[3]  
I
I
P0[2] Analog Column Mux Input  
P0[4] Analog Column Mux Input  
Vdd  
Supply Voltage  
LEGEND: A = Analog, I = Input, and O = Output.  
16-Pin Part Pinout  
Table 4. Pin Definitions - CY8C21223 16-Pin SOIC  
Type  
Figure 4. CY8C21223 16-Pin SOIC  
Pin  
No.  
Pin  
Description  
Name  
Digital Analog  
A,I,P0[7]  
A, I,P0[5]  
A, I,P0[3]  
A, I,P0[1]  
SMP  
Vdd  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
IO  
IO  
IO  
IO  
I
I
I
I
P0[7] Analog Column Mux Input  
P0[5] Analog Column Mux Input  
P0[3] Analog Column Mux Input  
P0[1] Analog Column Mux Input  
P0[6],A,I  
P0[4],A,I  
P0[2],A,I  
P0[0],A,I  
P1[4],EXTCLK  
P1[2]  
2
3
4
5
SOIC  
Vss  
I2CSCL,P1[1]  
Vss  
Power  
Power  
SMP Switch Mode Pump (SMP) Connection to  
required External Components  
P1[0],I2CSDA  
6
Vss  
P1[1] I2C Serial Clock (SCL), ISSP-SCLK[3]  
Vss Ground Connection  
Ground Connection  
7
IO  
8
Power  
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[0] I2C Serial Data (SDA), ISSP-SDATA[3]  
10  
11  
12  
13  
14  
15  
16  
P1[2]  
P1[4] Optional External Clock Input (EXTCLK)  
P0[0] Analog Column Mux Input  
P0[2] Analog Column Mux Input  
P0[4] Analog Column Mux Input  
P0[6] Analog Column Mux Input  
I
I
I
I
Power  
Vdd  
Supply Voltage  
LEGEND A = Analog, I = Input, and O = Output.  
Document Number: 38-12022 Rev. *K  
Page 7 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 5. Pin Definitions - CY8C21223 16-Pin COL [3]  
Type  
Figure 5. CY8C21223 16-Pin COL  
Pin  
No.  
Pin  
Description  
Name  
Digital Analog  
1
2
3
4
5
6
7
8
9
IO  
IO  
IO  
IO  
IO  
IO  
I
I
P0[3]  
P0[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
Analog Column Mux Input  
Analog Column Mux Input  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
AI, P0[3]  
AI, P0[1]  
P0[4], VREF  
XRES  
P1[4]  
1
2
3
4
12  
11  
) 10  
9
COL  
Top View  
(
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[6]  
I2C Serial Clock (SCL), ISSP-SCLK[3]  
Ground Connection  
I2C Serial Data (SDA), ISSP-SDATA[3]  
Power  
IO  
IO  
IO  
P1[0]  
P1[6]  
P1[4]  
XRES  
10  
11  
EXTCLK  
Input  
Active High External Reset with Internal  
Pull Down  
12  
13  
14  
15  
16  
IO  
I
P0[4]  
Vdd  
VREF  
Power  
Supply Voltage  
IO  
IO  
I
I
P0[7]  
P0[5]  
NC  
Analog Column Mux Input  
Analog Column Mux Input  
No Connect  
LEGEND A = Analog, I = Input, and O = Output.  
Notes  
3. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.  
4. The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
must be electrically floated and not connected to any other signal.  
Document Number: 38-12022 Rev. *K  
Page 8 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
20-Pin Part Pinout  
Table 6. Pin Definitions - CY8C21323 20-Pin SSOP  
Type  
Figure 6. CY8C21323 20-Pin SSOP  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
A,I,P0[7]  
A, I,P0[5]  
A, I,P0[3]  
A, I,P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
IO  
IO  
IO  
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Ground Connection  
P0[6],A,I  
P0[4],A,I  
P0[2],A,I  
P0[0],A,I  
XRES  
P1[6]  
P1[4],EXTCLK  
P1[2]  
SSOP  
I2C SCL,P1[7]  
I2C SDA,P1[5]  
P1[3]  
I2C SCL,P1[1]  
Vss  
Power  
Power  
Input  
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
P1[0],I2C SDA  
10  
I2C Serial Clock (SCL), ISSP-SCLK[3]  
Ground connection  
I2C Serial Data (SDA), ISSP-SDATA[3]  
10  
11  
12  
13  
14  
15  
IO  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
Optional External Clock Input (EXTCLK)  
Active High External Reset with Internal  
Pull Down  
16  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Supply Voltage  
Power  
LEGEND A = Analog, I = Input, and O = Output.  
Document Number: 38-12022 Rev. *K  
Page 9 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
24-Pin Part Pinout  
Table 7. Pin Definitions - CY8C21323 24-Pin QFN[5]  
Type  
Figure 7. CY8C21323 24-Pin QFN  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
IO  
I
P0[1]  
SMP  
Analog Column Mux Input  
Power  
Power  
Switch Mode Pump (SMP) Connection to  
required External Components  
3
4
5
6
7
8
9
Vss  
Ground connection  
A, I, P0[1]  
SMP  
18  
17  
16  
15  
14  
13  
P0[4], A, I  
P0[2], A, I  
1
2
3
4
5
6
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
NC  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
Vss  
QFN  
(Top View)  
P0[0], A, I  
NC  
XRES  
P1[6]  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
I2C Serial Clock (SCL), ISSP-SCLK[3]  
No Connection  
Power  
Input  
Vss  
Ground Connection  
I2C Serial Data (SDA), ISSP-SDATA[3]  
10  
11  
12  
13  
14  
IO  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
Optional External Clock Input (EXTCLK)  
Active High External Reset with Internal  
Pull Down  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
No Connection  
IO  
IO  
IO  
IO  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Supply Voltage  
Power  
Power  
Vss  
Ground Connection  
IO  
IO  
IO  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
LEGEND A = Analog, I = Input, and O = Output.  
Note  
5. The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
must be electrically floated and not connected to any other signal.  
Document Number: 38-12022 Rev. *K  
Page 10 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Register Mapping Tables  
Register Reference  
The PSoC device has a total register address space of  
512 bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI bit  
is set the user is in Bank 1.  
This section lists the registers of the CY8C21x23 PSoC device.  
For detailed register information, refer the PSoC Programmable  
System-on-Chip Technical Reference Manual.  
Register Conventions  
Note In the following register mapping tables, blank fields are  
Reserved and must not be accessed.  
The register conventions specific to this section are listed in the  
following table.  
Table 8. Register Conventions  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 38-12022 Rev. *K  
Page 11 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 9. Register Map Bank 0 Table: User Space  
Addr  
Addr  
Addr  
Addr  
Name  
PRT0DR  
Access  
Name  
Access  
Name  
ASE10CR0  
Access  
Name  
Access  
(0,Hex)  
(0,Hex)  
(0,Hex)  
(0,Hex)  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
80  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
PRT0IE  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
ASE11CR0  
RW  
PRT1GS  
PRT1DM2  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
I2C_CFG  
RW  
#
I2C_SCR  
I2C_DR  
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
RW  
RW  
#
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
PWM_CR  
CMP_CR0  
CMP_CR1  
RES_WDT  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
ADC0_CR  
ADC1_CR  
#
#
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. *K  
Page 12 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 9. Register Map Bank 0 Table: User Space (continued)  
Addr  
Addr  
Addr  
Addr  
Name  
Access  
Name  
Access  
Name  
RDI0RI  
Access  
Name  
Access  
(0,Hex)  
(0,Hex)  
(0,Hex)  
(0,Hex)  
30  
70  
B0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
F0  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RDI0SYN  
RDI0IS  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Table 10. Register Map Bank 1 Table: Configuration Space  
Addr  
Addr  
Addr  
(1,Hex)  
Addr  
Name  
PRT0DM0  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
(1,Hex)  
(1,Hex)  
(1,Hex)  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
ASE10CR0  
80  
RW  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
ASE11CR0  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. *K  
Page 13 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 10. Register Map Bank 1 Table: Configuration Space (continued)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Name  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
1C  
5C  
9C  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
DBB00FN  
RW  
RW  
RW  
CLK_CR0  
RW  
RW  
RW  
RW  
RW  
DBB00IN  
CLK_CR1  
DBB00OU  
ABF_CR0  
AMD_CR0  
CMP_GO_EN  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
ADC0_TR  
ADC1_TR  
RW  
RW  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. *K  
Page 14 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For up to date electrical specifications,  
check if you have the latest data sheet by visiting the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC, except where noted.  
A
J
Refer to Table 25 on page 25 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
Figure 11. Voltage versus IMO Frequency  
Figure 10. Voltage versus CPU Frequency  
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
O
V
p
a
e
l
R
i
r
d
a
e
t
g
i
n
i
o
g
n
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO SLIMO  
Mode=1 Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
93kHz  
12MHz  
CPUFrequency  
24MHz  
93kHz  
6MHz  
IMOFrequency  
3MHz  
12MHz  
24MHz  
The following table lists the units of measure that are used in this section.  
Table 11. Units of Measure  
Symbol  
Unit of Measure  
Symbol  
Unit of Measure  
oC  
dB  
fF  
degree Celsius  
decibels  
μW  
mA  
ms  
mV  
nA  
ns  
microwatts  
milli-ampere  
milli-second  
milli-volts  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
kilohertz  
nV  
W
kilohm  
ohm  
MHz  
MΩ  
μA  
μF  
μH  
μs  
μV  
μVrms  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
pF  
pp  
picoampere  
picofarad  
peak-to-peak  
parts per million  
picosecond  
ppm  
ps  
sps  
s
samples per second  
sigma: one standard deviation  
volts  
microvolts root-mean-square  
V
Document Number: 38-12022 Rev. *K  
Page 15 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 12. Absolute Maximum Ratings  
Symbol  
Description  
Storage Temperature  
Min  
Typ  
Max  
Units  
Notes  
TSTG  
-55  
+100  
°C  
Higher storage temperatures  
reduce data retention time.  
Recommended storage temper-  
ature is +25°C ± 25°C. Extended  
duration storage temperatures  
above 65°C degrade reliability.  
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
-0.5  
+85  
+6.0  
°C  
V
Vdd  
VIO  
VIOZ  
IMIO  
ESD  
LU  
Vss - 0.5  
Vss - 0.5  
-25  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
DC Voltage Applied to Tristate  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch up Current  
V
mA  
V
2000  
Human Body Model ESD  
200  
mA  
Operating Temperature  
Table 13. Operating Temperature  
Symbol  
Description  
Min  
-40  
-40  
Typ  
Max  
+85  
Units  
°C  
Notes  
TA  
TJ  
Ambient Temperature  
Junction Temperature  
+100  
°C  
The temperature rise from  
ambient to junction is package  
specific. SeeTable 37 on page  
34. The user must limit the power  
consumption to comply with this  
requirement.  
Document Number: 38-12022 Rev. *K  
Page 16 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Electrical Characteristics  
DC Chip-Level Specifications  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 14. DC Chip-Level Specifications  
Symbol  
Description  
Supply Voltage  
Min  
Typ  
Max  
Units  
Notes  
Vdd  
2.40  
5.25  
V
See DC POR and LVD specifica-  
tions, Table 21 on page 21.  
IDD  
Supply Current, IMO = 24 MHz  
Supply Current, IMO = 6 MHz  
Supply Current, IMO = 6 MHz  
3
4
mA Conditions are Vdd = 5.0V, 25oC,  
CPU = 3 MHz, SYSCLK doubler  
disabled. VC1 = 1.5 MHz  
VC2 = 93.75 kHz  
VC3 = 0.366 kHz.  
IDD3  
1.2  
1.1  
2
mA Conditions are Vdd = 3.3V, 25oC,  
CPU = 3 MHz, clock doubler  
disabled. VC1 = 375 kHz  
VC2 = 23.4 kHz  
VC3 = 0.091 kHz  
IDD27  
1.5  
mA Conditions are Vdd = 2.55V,  
25oC, CPU = 3 MHz, clock  
doubler disabled. VC1 = 375 kHz  
VC2 = 23.4 kHz  
VC3 = 0.091 kHz  
ISB27  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, WDT, and internal slow  
oscillator active. Mid temperature range.  
2.6  
2.8  
4
5
μA Vdd = 2.55V, 0°C to 40°C  
ISB  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, WDT, and internal slow  
oscillator active.  
μA Vdd = 3.3V, -40°C TA 85°C  
VREF  
Reference Voltage (Bandgap)  
1.28  
1.16  
1.30  
1.30  
1.32  
V
V
V
Trimmed for appropriate Vdd.  
Vdd = 3.0V to 5.25V  
VREF27 Reference Voltage (Bandgap)  
AGND Analog Ground  
1.330  
Trimmed for appropriate Vdd.  
Vdd = 2.4V to 3.0V  
VREF - 0.003 VREF VREF+ 0.003  
Document Number: 38-12022 Rev. *K  
Page 17 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC General Purpose IO Specifications  
Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for  
design guidance only.  
Table 15. 5V and 3.3V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
Notes  
Pull up Resistor  
8
8
RPD  
Pull down Resistor  
High Output Level  
4
kΩ  
VOH  
Vdd -  
1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])).  
80 mA maximum combined IOH budget.  
VOL  
Low Output Level  
0.75  
0.8  
V
IOL=25mA, Vdd=4.75to5.25V (8total  
loads, 4 on even port pins (for example,  
P0[2], P1[4]), 4 on odd port pins (for  
example, P0[3], P1[5])).  
150 mA maximum combined IOL  
budget.  
VIL  
VIH  
VH  
IIL  
Input Low Level  
2.1  
V
V
Vdd = 3.0 to 5.25  
Vdd = 3.0 to 5.25  
Input High Level  
Input Hysteresis  
60  
1
mV  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
nA Gross tested to 1 μA  
CIN  
3.5  
10  
pF Package and pin dependent.  
Temp = 25°C  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF Package and pin dependent.  
Temp = 25°C  
Table 16 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4V to 3.0V and -40°C  
TA 85°C. Typical parameters apply to 2.7V at 25°C and are for design guidance only.  
Table 16. 2.7V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
kΩ  
Notes  
Pull up Resistor  
8
8
RPD  
Pull down Resistor  
High Output Level  
4
VOH  
Vdd -  
0.4  
V
IOH = 2.5 mA (6.25 Typ), Vdd = 2.4 to  
3.0V (16 mA maximum, 50 mA Typ  
combined IOH budget).  
VOL  
Low Output Level  
0.75  
V
IOL = 10 mA, Vdd = 2.4 to 3.0V (90 mA  
maximum combined IOL budget).  
VIL  
VIH  
VH  
IIL  
Input Low Level  
2.0  
0.75  
V
V
Vdd = 2.4 to 3.0  
Vdd = 2.4 to 3.0  
Input High Level  
Input Hysteresis  
60  
1
mV  
nA  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Gross tested to 1 μA  
Package and pin dependent.  
Temp = 25°C  
CIN  
3.5  
10  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25°C  
Document Number: 38-12022 Rev. *K  
Page 18 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 17. 5V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
μV/oC  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA  
9.5  
pF  
Package and pin dependent.  
Temp = 25°C  
VCMOA  
Common Mode Voltage Range  
0.0  
Vdd - 1  
V
GOLOA  
ISOA  
Open Loop Gain  
80  
dB  
Amplifier Supply Current  
10  
30  
μA  
Table 18. 3.3V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
μV/oC  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA  
9.5  
pF  
Package and pin dependent.  
Temp = 25°C  
VCMOA  
GOLOA  
ISOA  
Common Mode Voltage Range  
Open Loop Gain  
0
80  
Vdd - 1  
V
dB  
μA  
Amplifier Supply Current  
10  
30  
Table 19. 2.7V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
μV/oC  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA  
9.5  
pF  
Package and pin dependent.  
Temp = 25°C  
VCMOA  
GOLOA  
ISOA  
Common Mode Voltage Range  
Open Loop Gain  
0
80  
Vdd - 1  
V
dB  
μA  
Amplifier Supply Current  
10  
30  
Document Number: 38-12022 Rev. *K  
Page 19 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Switch Mode Pump Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 20. DC Switch Mode Pump (SMP) Specifications  
Symbol  
VPUMP5V  
Description  
Min  
Typ  
Max Units  
Notes  
5V Output Voltage from Pump  
4.75  
5.0  
5.25  
3.60  
2.80  
V
V
V
Configuration of footnote.[6] Average,  
neglecting ripple. SMP trip voltage is set  
to 5.0V.  
Configuration of footnote.[6] Average,  
neglecting ripple. SMP trip voltage is set  
to 3.25V.  
Configuration of footnote.[6] Average,  
neglecting ripple. SMP trip voltage is set  
to 2.55V.  
Configuration of footnote.[6]  
VPUMP3V  
VPUMP2V  
IPUMP  
3.3V Output Voltage from Pump  
2.6V Output Voltage from Pump  
3.00  
2.45  
3.25  
2.55  
Available Output Current  
VBAT = 1.8V, VPUMP = 5.0V  
5
8
8
mA SMP trip voltage is set to 5.0V.  
mA SMP trip voltage is set to 3.25V.  
mA SMP trip voltage is set to 2.55V.  
V
V
BAT = 1.5V, VPUMP = 3.25V  
BAT = 1.3V, VPUMP = 2.55V  
VBAT5V  
Input Voltage Range from Battery  
Input Voltage Range from Battery  
Input Voltage Range from Battery  
1.8  
1.0  
1.0  
1.2  
5
5.0  
3.3  
2.8  
V
V
V
V
Configuration of footnote.[6] SMP trip  
voltage is set to 5.0V.  
Configuration of footnote.[6] SMP trip  
voltage is set to 3.25V.  
Configuration of footnote.[6] SMP trip  
voltage is set to 2.55V.  
VBAT3V  
VBAT2V  
VBATSTART  
ΔVPUMP_Line  
Minimum Input Voltage from Battery to  
Start Pump  
Configuration of footnote.[6] 0°C TA ≤  
100. 1.25V at TA = -40oC.  
Line Regulation (over Vi range)  
%VO Configuration of footnote.[6] VO is the  
“Vdd Value for PUMP Trip” specified by  
the VM[2:0] setting in the DC POR and  
LVD Specification, Table 21 on page 21.  
ΔVPUMP_Load Load Regulation  
5
%VO Configuration of footnote.[6] VO is the  
“Vdd Value for PUMP Trip” specified by  
the VM[2:0] setting in the DC POR and  
LVD Specification, Table 21 on page 21.  
ΔVPUMP_Ripple Output Voltage Ripple (depends on  
100  
50  
mVpp Configuration of footnote.[6] Load is  
5 mA.  
cap/load)  
E3  
E2  
Efficiency  
Efficiency  
35  
35  
%
Configuration of footnote.[6] Load is  
5 mA. SMP trip voltage is set to 3.25V.  
80  
%
For I load = 1mA, VPUMP = 2.55V,  
V
BAT = 1.3V, 10 uH inductor, 1 uF  
capacitor, and Schottky diode.  
FPUMP  
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
DCPUMP  
Note  
6.  
L = 2 mH inductor, C = 10 mF capacitor, D = Schottky diode. See Figure 12 on page 21.  
1 1 1  
Document Number: 38-12022 Rev. *K  
Page 20 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Figure 12. Basic Switch Mode Pump Circuit  
D1  
Vdd  
VPUMP  
L1  
C1  
SMP  
V ss  
+
VBAT  
PSoC
Battery  
DC POR and LVD Specifications  
Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 21. DC POR and LVD Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Vdd Value for PPOR Trip  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
Vdd must be greater than or equal to  
2.5V during startup, reset from the  
XRES pin, or reset from Watchdog.  
VPPOR0  
VPPOR1  
VPPOR2  
2.36  
2.82  
4.55  
2.40  
2.95  
4.70  
V
V
V
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51[7]  
2.99[8]  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
V
V
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VPUMP0  
VPUMP1  
VPUMP2  
VPUMP3  
VPUMP4  
VPUMP5  
VPUMP6  
VPUMP7  
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
2.62[9]  
3.09  
V
V
V
V
V
V
V
V
3.16  
3.32[10]  
4.74  
4.83  
4.92  
5.12  
Notes  
7. Always greater than 50 mV above VPPOR (PORLEV = 00) for falling supply.  
8. Always greater than 50 mV above VPPOR (PORLEV = 01) for falling supply.  
9. Always greater than 50 mV above VLVD0.  
10. Always greater than 50 mV above VLVD3.  
Document Number: 38-12022 Rev. *K  
Page 21 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Programming Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 22. DC Programming Specifications  
Symbol  
Description  
Min  
2.70  
Typ  
Max  
Units  
V
Notes  
VddIWRITE Supply Voltage for Flash Write Operations  
IDDP  
VILP  
Supply Current During Programming or Verify  
5
25  
mA  
V
Input Low Voltage During Programming or  
Verify  
0.8  
VIHP  
IILP  
Input High Voltage During Programming or  
Verify  
2.2  
0.2  
V
mA  
mA  
V
Input Current when Applying Vilp to P1[0] or  
P1[1] During Programming or Verify  
Driving internal pull down  
resistor  
IIHP  
Input Current when Applying Vihp to P1[0] or  
P1[1] During Programming or Verify  
1.5  
Driving internal pull down  
resistor  
VOLV  
VOHV  
Output Low Voltage During Programming or  
Verify  
Vss + 0.75  
Vdd  
Output High Voltage During Programming or  
Verify  
Vdd - 1.0  
50,000  
V
FlashENPB Flash Endurance (per block)  
Erase/write cycles per  
block  
0
0
0
FlashENT  
FlashDR  
Flash Endurance (total)[11]  
Flash Data Retention  
1,800,000  
Erase/write cycles  
0
10  
Years  
Note  
11. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2  
blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36x50,000 and that no  
single block ever sees more than 50,000 cycles).For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the  
result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more  
information.  
Document Number: 38-12022 Rev. *K  
Page 22 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC Electrical Characteristics  
AC Chip-Level Specifications  
Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 23. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
24.6[12,13,14]  
FIMO24  
Internal Main Oscillator Frequency for 24 MHz  
23.4  
24  
MHz Trimmed for 5V or 3.3V  
operation using factory trim  
values. See Figure 11 on  
page 15.  
SLIMO mode = 0.  
6.35[12,13,14]  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
CPU Frequency (5V Nominal)  
5.75  
0.93  
6
MHz Trimmed for 3.3V operation  
using factory trim values. See  
Figure 11 on page 15. SLIMO  
mode = 1.  
24.6[12,13]  
FCPU1  
24  
MHz 24 MHz only for  
SLIMO mode = 0.  
,
14]  
12.3[13  
FCPU2  
FBLK5  
CPU Frequency (3.3V Nominal)  
0.93  
0
12  
48  
MHz  
Digital PSoC Block Frequency0(5V Nominal)  
MHz Refer to the AC Digital Block  
Specifications.  
49.2[12,13,15]  
24.6[13,15]  
FBLK33  
Digital PSoC Block Frequency (3.3V Nominal)  
0
24  
MHz  
F32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
15  
32  
100  
1400  
64  
200  
kHz  
ns  
Jitter32k  
Jitter32k  
TXRST  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
24 MHz Duty Cycle  
ns  
10  
40  
μs  
DC24M  
Step24M  
Fout48M  
50  
60  
%
24 MHz Trim Step Size  
50  
kHz  
49.2[12,14]  
48 MHz Output Frequency  
46.8  
48.0  
MHz Trimmed. Using factory trim  
values.  
Jitter24M1 24 MHz Peak-to-Peak Period Jitter (IMO)  
300  
ps  
FMAX  
Maximum frequency of signal on row input or  
row output.  
12.3  
MHz  
TRAMP  
Supply Ramp Time  
0
μs  
Notes  
12. 4.75V < Vdd < 5.25V.  
13. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
14. 3.0V < Vdd < 3.6V. See application note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation  
at 3.3V.  
15. See the individual user module data sheets for information on maximum frequencies for user modules.  
Document Number: 38-12022 Rev. *K  
Page 23 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 24. 2.7V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
12.7[16,17,18]  
FIMO12  
Internal Main Oscillator Frequency for 12 MHz 11.5  
120  
MHz Trimmed for 2.7V operation using  
factory trim values. See Figure 11  
on page 15. SLIMO mode = 1.  
6.35[16,17,18]  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.5  
6
MHz Trimmed for 2.7V operation using  
factory trim values. See Figure 11  
on page 15. SLIMO mode = 1.  
3.15[16,17]  
FCPU1  
FBLK27  
CPU Frequency (2.7V Nominal)  
0.093  
0
3
MHz 24 MHz only for SLIMO mode = 0.  
12.5[16,17,18]  
Digital PSoC Block Frequency (2.7V Nominal)  
12  
MHz Refer to the AC Digital Block  
Specifications.  
F32K1  
Internal Low Speed Oscillator Frequency  
8
32  
150  
1400  
96  
200  
kHz  
ns  
Jitter32k 32 kHz RMS Period Jitter  
Jitter32k 32 kHz Peak-to-Peak Period Jitter  
ns  
TXRST  
FMAX  
External Reset Pulse Width  
10  
μs  
Maximum frequency of signal on row input or  
row output  
12.3  
MHz  
TRAMP  
Supply Ramp Time  
0
μs  
Figure 13. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1  
F24M  
Figure 14. 32 kHz Period Jitter (ILO) Timing Diagram  
Jitter32k  
F32K1  
Notes  
16. 2.4V < Vdd < 3.0V.  
17. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
18. See application note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on maximum frequency for user modules.  
Document Number: 38-12022 Rev. *K  
Page 24 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC General Purpose IO Specifications  
Table 25 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 25. 5V and 3.3V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Min  
0
Typ  
Max  
12  
18  
18  
Units  
Notes  
GPIO Operating Frequency  
MHz Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
2
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
TRiseS  
TFallS  
10  
10  
27  
22  
Table 26. 2.7V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Min  
0
Typ  
Max  
3
Units  
Notes  
GPIO Operating Frequency  
MHz Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
6
50  
ns  
ns  
ns  
ns  
Vdd = 2.4 to 3.0V, 10% - 90%  
6
50  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
TRiseS  
TFallS  
18  
18  
40  
40  
120  
120  
Figure 15. GPIO Timing Diagram  
90%  
GPIO  
Pin  
10%  
TRiseF  
TRi seS  
TFallF  
TFallS  
AC Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Table 27. 5V and 3.3V AC Amplifier Specifications  
Symbol  
TCOMP1  
TCOMP2  
Description  
Min  
Typ  
Typ  
Max  
100  
300  
Units  
ns  
Comparator Mode Response Time, 50 mVpp Signal Centered on Ref  
Comparator Mode Response Time, 2.5V Input, 0.5V Overdrive  
ns  
Table 28. 2.7V AC Amplifier Specifications  
Symbol  
TCOMP1  
TCOMP2  
Description  
Min  
Max  
600  
300  
Units  
ns  
Comparator Mode Response Time, 50 mVpp Signal Centered on Ref  
Comparator Mode Response Time, 1.5V Input, 0.5V Overdrive  
ns  
Document Number: 38-12022 Rev. *K  
Page 25 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC Digital Block Specifications  
Table 29 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 29. 5V and 3.3V AC Digital Block Specifications  
Function  
All  
Functions  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max Units  
Notes  
49.2  
24.6  
MHz 4.75V < Vdd < 5.25V  
MHz 3.0V < Vdd < 4.75V  
Timer  
50[19]  
ns  
Maximum Frequency, No Capture  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
49.2  
24.6  
MHz 4.75V < Vdd < 5.25V  
MHz  
Counter  
50  
ns  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
Kill Pulse Width:  
49.2  
24.6  
MHz 4.75V < Vdd < 5.25V  
MHz  
Dead Band  
Asynchronous Restart Mode  
Synchronous Restart Mode  
20  
50  
50  
ns  
ns  
Disable Mode  
ns  
Maximum Frequency  
49.2  
49.2  
MHz 4.75V < Vdd < 5.25V  
MHz 4.75V < Vdd < 5.25V  
CRCPRS  
(PRS Mode)  
Maximum Input Clock Frequency  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
24.6  
8.2  
MHz  
SPIM  
SPIS  
MHz Maximum data rate at 4.1 MHz due  
to 2 x over clocking  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions 50  
Transmitter  
Receiver  
Maximum Input Clock Frequency  
24.6  
MHz Maximum data rate at 3.08 MHz due  
to 8 x over clocking  
Maximum Input Clock Frequency  
24.6  
MHz Maximum data rate at 3.08 MHz due  
to 8 x over clocking  
Note  
19. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 38-12022 Rev. *K  
Page 26 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 30. 2.7V AC Digital Block Specifications  
Function  
All  
Description  
Min  
Typ  
Max Units  
Notes  
Maximum Block Clocking Frequency  
12.7  
MHz 2.4V < Vdd < 3.0V  
Functions  
Timer  
Capture Pulse Width  
100[20]  
ns  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
100  
12.7  
MHz  
ns  
Counter  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
Kill Pulse Width:  
12.7  
12.7  
MHz  
MHz  
Dead Band  
Asynchronous Restart Mode  
Synchronous Restart Mode  
Disable Mode  
20  
100  
100  
ns  
ns  
ns  
Maximum Frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
(PRS Mode)  
Maximum Input Clock Frequency  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
12.7  
6.35  
MHz  
SPIM  
SPIS  
MHz Maximum data rate at 3.17 MHz  
due to 2 x over clocking  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmis-  
sions  
100  
Transmitter  
Receiver  
Maximum Input Clock Frequency  
12.7  
12.7  
MHz Maximum data rate at 1.59 MHz  
due to 8 x over clocking  
Maximum Input Clock Frequency  
MHz Maximum data rate at 1.59 MHz  
due to 8 x over clocking  
Note  
20. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 38-12022 Rev. *K  
Page 27 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 31. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
20.6  
20.6  
150  
Typ  
Max  
24.6  
5300  
Units  
MHz  
ns  
Notes  
FOSCEXT Frequency  
High Period  
Low Period  
ns  
Power Up IMO to Switch  
μs  
Table 32. 3.3V AC External Clock Specifications  
Symbol Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT Frequency with CPU Clock divide by 1  
0.093  
12.3  
MHz Maximum CPU frequency is 12 MHz  
at 3.3V. With the CPU clock divider  
set to 1, the external clock must  
adhere to the maximum frequency  
and duty cycle requirements.  
FOSCEXT Frequency with CPU Clock divide by 2 or  
greater  
0.186  
24.6  
MHz If the frequency of the external clock  
isgreaterthan12MHz, theCPUclock  
divider must be set to 2 or greater. In  
this case, the CPU clock divider  
ensures that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
μs  
Table 33. 2.7V AC External Clock Specifications  
Symbol Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT Frequency with CPU Clock divide by 1  
0.093  
6.060  
MHz Maximum CPU frequency is 3 MHz at  
2.7V. With the CPU clock divider set  
to 1, the external clock must adhere to  
the maximum frequency and duty  
cycle requirements.  
FOSCEXT Frequency with CPU Clock divide by 2 or  
greater  
0.186  
12.12  
MHz If the frequency of the external clock  
is greater than 3 MHz, the CPU clock  
divider must be set to 2 or greater. In  
this case, the CPU clock divider  
ensures that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
83.4  
83.4  
150  
5300  
ns  
ns  
μs  
Document Number: 38-12022 Rev. *K  
Page 28 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC Programming Specifications  
Table 34 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for  
design guidance only.  
Table 34. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
Rise Time of SCLK  
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB  
TWRITE  
TDSCLK3  
TDSCLK2  
Flash Erase Time (Block)  
15  
30  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
50  
70  
3.0 Vdd 3.6  
2.4 Vdd 3.0  
ns  
AC I2C Specifications  
Table 35 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 35. AC Characteristics of the I2C SDA and SCL Pins for Vcc 3.0V  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
FSCLI2C  
SCL Clock Frequency  
0
100  
0
400  
kHz  
THDSTAI2C Hold Time (repeated) START Condition. After this period, the  
first clock pulse is generated.  
4.0  
0.6  
μs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
2500  
4.0  
4.7  
1.3  
0.6  
0.6  
0
100[20]  
0.6  
μs  
μs  
μs  
μs  
ns0  
μs  
μs  
ns  
TSUSTAI2C Setup Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
TSUDATI2C Data Setup Time0  
0
0
TSUSTOI2C Setup Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
1.3  
0
50  
Note  
20. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
250 ns must then be met. This automatically becomes  
SU;DAT  
the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next  
data bit to the SDA line t + t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
Document Number: 38-12022 Rev. *K  
Page 29 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 36. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode Not Supported)  
Standard Mode  
Fast Mode  
Min Max  
Symbol  
Description  
Units  
Min  
Max  
FSCLI2C  
SCL Clock Frequency  
0
100  
kHz  
THDSTAI2C Hold Time (repeated) START Condition. After this period, the first  
clock pulse is generated.  
4.0  
μs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
TSUSTAI2C Setup Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
TSUDATI2C Data Setup Time  
250  
4.0  
4.7  
TSUSTOI2C Setup Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
Figure 16. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Document Number: 38-12022 Rev. *K  
Page 30 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Packaging Information  
This section illustrates the packaging specifications for the CY8C21x23 PSoC device, along with the thermal impedances for each  
package and minimum solder reflow peak temperature.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Packaging Dimensions  
Figure 17. 8-Pin (150-Mil) SOIC  
PIN 1 ID  
4
1
1. DIMENSIONS IN INCHES[MM] MIN.  
MAX.  
2. PIN 1 ID IS OPTIONAL,  
ROUND ON SINGLE LEADFRAME  
RECTANGULAR ON MATRIX LEADFRAME  
0.150[3.810]  
0.157[3.987]  
3. REFERENCE JEDEC MS-012  
4. PACKAGE WEIGHT 0.07gms  
0.230[5.842]  
0.244[6.197]  
PART #  
S08.15 STANDARD PKG.  
SZ08.15 LEAD FREE PKG.  
5
8
0.189[4.800]  
0.196[4.978]  
0.010[0.254]  
0.016[0.406]  
X 45°  
SEATING PLANE  
0.061[1.549]  
0.068[1.727]  
0.004[0.102]  
0.050[1.270]  
BSC  
0.0075[0.190]  
0.0098[0.249]  
0.004[0.102]  
0.0098[0.249]  
0°~8°  
0.016[0.406]  
0.035[0.889]  
0.0138[0.350]  
0.0192[0.487]  
51-85066 *C  
Document Number: 38-12022 Rev. *K  
Page 31 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Figure 18. 16-Pin (150-Mil) SOIC  
51-85022 *B  
Figure 19. 16-Pin COL  
001-09116 *D  
Document Number: 38-12022 Rev. *K  
Page 32 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Figure 20. 20-Pin (210-MIL) SSOP  
51-85077 *C  
Figure 21. 24-Pin (4x4) QFN  
SIDE VIEW  
TOP VIEW  
BOTTOM VIEW  
0.05  
C
3.90  
4.10  
1.00 MAX.  
0.80 MAX.  
0.23±0.05  
0.05 MAX.  
0.20 REF.  
3.70  
3.80  
2.49  
PIN1 ID  
0.20 R.  
Ø0.50  
N
N
1
2
1
2
0.45  
SOLDERABLE  
EXPOSED  
PAD  
2.45  
2.55  
2.49  
0.30-0.50  
0.42±0.18  
(4X)  
0°-12°  
0.50  
C
2.45  
2.55  
SEATING  
PLANE  
NOTES:  
1.  
HATCH IS SOLDERABLE EXPOSED METAL.  
2. REFERENCE JEDEC#: MO-220  
3. PACKAGE WEIGHT: 0.042g  
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]  
5. PACKAGE CODE  
PART #  
DESCRIPTION  
LF24A  
LY24A  
STANDARD  
LEAD FREE  
51-85203 *A  
Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.  
Document Number: 38-12022 Rev. *K  
Page 33 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Thermal Impedances  
Table 37. Thermal Impedances per Package  
[21]  
Package  
Typical θJA  
8 SOIC  
186°C/W  
125°C/W  
46°C/W  
117°C/W  
40°C/W  
16 SOIC  
16 COL  
20 SSOP  
24 QFN[22]  
Solder Reflow Peak Temperature  
Table 38 lists the minimum solder reflow peak temperature to achieve good solderability.  
Table 38. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature[23]  
Maximum Peak Temperature  
260°C  
8 SOIC  
240°C  
240°C  
240°C  
240°C  
240°C  
16 SOIC  
16 COL  
20 SSOP  
24 QFN  
260°C  
260°C  
260°C  
260°C  
Notes  
21. T = T + POWER x θJA  
J
A
22. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
23. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5°C with Sn-Pb or 245+/-5°C with Sn-Ag-Cu  
paste. Refer to the solder manufacturer specifications.  
Document Number: 38-12022 Rev. *K  
Page 34 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Ordering Information  
The following table lists the CY8C21x23 PSoC device’s key package features and ordering codes.  
Table 39. CY8C21x23 PSoC Device Key Features and Ordering Information  
8-Pin (150-Mil) SOIC  
CY8C21123-24SXI  
CY8C21123-24SXIT  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
256  
256  
256  
256  
256  
256  
256  
256  
256  
No  
No  
-40°C to  
+85°C  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
4
4
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
0
No  
No  
8-Pin (150-Mil) SOIC  
(Tape and Reel)  
-40°C to  
+85°C  
6
16-Pin (150-Mil) SOIC CY8C21223-24SXI  
Yes  
Yes  
Yes  
No  
-40°C to  
+85°C  
12  
12  
12  
16  
16  
16  
16  
No  
16-Pin (150-Mil) SOIC CY8C21223-24SXIT  
(Tape and Reel)  
-40°C to  
+85°C  
No  
16-Pin (3x3) COL  
CY8C21223-24LGXI  
-40°C to  
+85°C  
No  
20-Pin (210-Mil) SSOP CY8C21323-24PVXI  
-40°C to  
+85°C  
Yes  
Yes  
Yes  
Yes  
20-Pin (210-Mil) SSOP CY8C21323-24PVXIT  
(Tape and Reel)  
No  
-40°C to  
+85°C  
24-Pin (4x4) QFN  
CY8C21323-24LFXI  
Yes  
Yes  
-40°C to  
+85°C  
24-Pin (4x4) QFN  
(Tape and Reel)  
CY8C21323-24LFXIT  
-40°C to  
+85°C  
Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
Document Number: 38-12022 Rev. *K  
Page 35 of 36  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Document History Page  
Document Title: CY8C21123, CY8C21223, CY8C21323 PSoC® Programmable System-on-Chip™  
Document Number:38-12022  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
133248  
208900  
212081  
227321  
235973  
NWJ  
NWJ  
NWJ  
CMS Team  
SFV  
See ECN  
See ECN  
See ECN  
See ECN  
See ECN  
New silicon and document (Revision **).  
Add new part, new package and update all ordering codes to Pb-free.  
Expand and prepare Preliminary version.  
Update specs., data, format.  
Updated Overview and Electrical Spec. chapters, along with 24-pin pinout.  
Added CMP_GO_EN register (1,64h) to mapping table.  
*A  
*B  
*C  
*D  
*E  
290991  
HMT  
See ECN  
Update data sheet standards per SFV memo. Fix device table. Add part numbers  
to pinouts and fine tune. Change 20-pin SSOP to CY8C21323. Add Reflow Temp.  
table. Update diagrams and specs.  
*F  
*G  
301636  
324073  
HMT  
HMT  
See ECN  
See ECN  
DC Chip-Level Specification changes. Update links to new CY.com Portal.  
Obtained clearer 16 SOIC package. Update Thermal Impedances and Solder  
Reflow tables. Re-add pinout ISSP notation. Fix ADC type-o. Fix TMP register  
names. Update Electrical Specifications. Add CY logo. Update CY copyright.  
Make data sheet Final.  
*H  
*I  
2588457 KET/HMI/  
AESA  
2618175 OGNE/PYRS 12/09/08  
10/22/2008 New package information on page 9. Converted data sheet to new template.  
Added 16-Pin OFN package diagram.  
Added Note in Ordering Information Section. Changed title from PSoC  
Mixed-Signal Array to PSoC Programmable System-on-Chip. Updated ‘Devel-  
opment Tools’ and ‘Designing with PSoC Designer’ sections on pages 5 and 6  
*J  
*K  
2682782 MAXK/AESA 04/03/2009 Corrected 16 COL pinout.  
2699713 MAXK 04/29/09 Minor ECN to correct paragraph style of 16 COL Pinout. No change in content.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2004-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-12022 Rev. *K  
Revised April 29, 2009  
Page 36 of 36  
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced  
2
2
herein are property of the respective corporations. Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights  
2
2
to use these components in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips.  
[+] Feedback  

相关型号:

CY8C21323-24LQXI

Multifunction Peripheral, CMOS, QFN-24
CYPRESS

CY8C21323-24PVXI

PSoC® Mixed Signal Array
CYPRESS

CY8C21323-24PVXIT

PSoC Programmable System-on-Chip
CYPRESS

CY8C21323_06

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21323_08

PSoC® Mixed Signal Array
CYPRESS

CY8C21334

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-12PVXE

Multifunction Peripheral, CMOS, PDSO20, SSOP-20
CYPRESS

CY8C21334-24AX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24C

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24E

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24I

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24LFX

PSoC Mixed-Signal Array
CYPRESS