CYD18S72V-133BBI [CYPRESS]

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM; FLEx72⑩ 3.3V 64K / 128K / 256K X 72同步双端口RAM
CYD18S72V-133BBI
型号: CYD18S72V-133BBI
厂家: CYPRESS    CYPRESS
描述:

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
FLEx72⑩ 3.3V 64K / 128K / 256K X 72同步双端口RAM

存储 内存集成电路 静态存储器 时钟
文件: 总25页 (文件大小:696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYD04S72V  
CYD09S72V  
CYD18S72V  
FLEx72™ 3.3V 64K/128K/256K x 72  
Synchronous Dual-Port RAM  
Features  
Functional Description  
• True dual-ported memory cells that allow simultaneous  
The FLEx72 family includes 4-Mbit, 9-Mbit and 18-Mbit  
pipelined, synchronous, true dual-port static RAMs that are  
high-speed, low-power 3.3V CMOS. Two ports are provided,  
permitting independent, simultaneous access to any location  
in memory. The result of writing to the same location by more  
than one port at the same time is undefined. Registers on  
control, address, and data lines allow for minimal set-up and  
hold time.  
During a Read operation, data is registered for decreased  
cycle time. Each port contains a burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally (more details to follow). The internal write pulse width is  
independent of the duration of the R/W input signal. The  
internal write pulse is self-timed to allow the shortest possible  
cycle times.  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle with chip enables asserted is required  
to reactivate the outputs.  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap-around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
access of the same memory location  
• Synchronous pipelined operation  
• Family of 4-Mbit, 9-Mbit, and 18-Mbit devices  
• Pipelined output mode allows fast operation  
• 0.18-micron CMOS for optimum speed and power  
• High-speed clock to data access  
• 3.3V low power  
— Active as low as 225 mA (typ)  
— Standby as low as 55 mA (typ)  
• Mailbox function for message passing  
• Global master reset  
• Separate byte enables on both ports  
• Commercial and industrial temperature ranges  
• IEEE 1149.1-compatible JTAG boundary scan  
• 484-ball FBGA (1-mm pitch)  
• Pb-Free packaging available  
• Counter wrap around control  
— Internal mask register controls counter wrap-around  
— Counter-interrupt flags to indicate wrap-around  
— Memory block retransmit operation  
• Counter readback on address lines  
• Mask register readback on address lines  
The CYD18S72V device have limited features. Please see  
“Address Counter and Mask Register Operations[17]” on  
page 6“ for details.  
• Dual Chip Enables on both ports for easy depth  
Seamless Migration to Next-Generation Dual-Port Family  
expansion  
Cypress offers a migration path for all devices to the  
next-generation devices in the Dual-Port family with a  
compatible footprint. Please contact Cypress Sales for more  
details.  
• Seamless Migration to Next Generation Dual-Port  
Family  
Table 1. Product Selection Guide  
4-Mbit  
9-Mbit  
18-Mbit  
Density  
(64K x 72)  
CYD04S72V  
167  
(128K x 72)  
(256K x 72)  
Part Number  
Max. Speed (MHz)  
CYD09S72V  
CYD18S72V  
167  
4.0  
270  
133  
5.0  
410  
Max. Access Time—Clock to Data (ns)  
Typical operating current (mA)  
Package  
4.0  
225  
484-ball FBGA  
484-ball FBGA  
484-ball FBGA  
23 mm x 23 mm  
23 mm x 23 mm  
23 mm x 23 mm  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document #: 38-06069 Rev. *I  
Revised May 2, 2006  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Logic Block Diagram[1]  
FTSEL  
L
FTSEL  
R
CONFIG Block  
CONFIG Block  
PORTST[1:0]  
L
PORTST[1:0]  
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
R
BE [7:0]  
L
CE0  
CE0  
R
L
L
IO  
Control  
IO  
Control  
CE1  
CE1  
R
OE  
R
OE  
L
R/W  
R/W  
R
L
Dual-Ported Array  
Arbitration Logic  
BUSY  
BUSY  
L
R
A [17:0]  
A [17:0]  
L
L
R
R
CNT/MSK  
CNT/MSK  
ADS  
ADS  
R
L
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
L
RET  
R
CNTINT  
L
CNTINT  
R
C
L
C
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
MRST  
READY  
RESET  
LOGIC  
READY  
L
R
LowSPD  
R
LowSPD  
L
Note:  
1. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
Document #: 38-06069 Rev. *I  
Page 2 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Pin Configuration  
484-ball BGA  
Top View  
CYD04S72V/CYD09S72V/CYD18S72V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC DQ61L DQ59L DQ57L DQ54L DQ51L DQ48L DQ45L DQ42L DQ39L DQ36L DQ36R DQ39R DQ42R DQ45R DQ48R DQ51R DQ54R DQ57R DQ59R DQ61R NC  
A
DQ63L DQ62L DQ60L DQ58L DQ55L DQ52L DQ49L DQ46L DQ43L DQ40L DQ37L DQ37R DQ40R DQ43R DQ46R DQ49R DQ52R DQ55R DQ58R DQ60R DQ62R DQ63R  
B
C
DQ65L DQ64L VSS  
DQ67L DQ66L VSS  
VSS DQ56L DQ53L DQ50L DQ47L DQ44L DQ41L DQ38L DQ38R DQ41R DQ44R DQ47R DQ50R DQ53R DQ56R VSS  
VSS DQ64R DQ65R  
VSS DQ66R DQ67R  
[2, 5]  
[2, 5]  
[2, 5]  
[2, 5]  
[2, 5]  
VSS  
VSS NC  
NC  
VSS LOWSP PORTS NC  
BUSYL CNTINT PORTS NC NC  
NC  
VSS  
VSS  
[2,4]  
[2, 5]  
DL  
TD0L  
L
TD1L  
[2, 4]  
[2,4]  
[10]  
D
DQ69L DQ68L VDDIO VSS  
L
VSS VDDIO VDDIO VDDIO VDDIOLVDDIOL VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO NC  
VSS VDDIO DQ68R DQ69R  
R
L
L
L
R
R
R
R
E
F
[8]  
[9]  
[8]  
DQ71L DQ70L CE1L CE0L VDDIO VDDIO VDDIO VDDIO VDDIOL VCORE VCOREVCORE VCORE VDDIO VDDIO VDDIO VDDIO VDDIO CE0R CE1R DQ70R DQ71R  
[9]  
L
L
L
L
R
R
R
R
R
[2,  
[2,  
A0L  
A2L  
A4L  
A6L  
A8L  
A1L RETL  
BE4L VDDIO VDDIO VREFL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VREFR VDDIO VDDIO BE4R RETR  
A1R  
A0R  
A2R  
A4R  
A6R  
A8R  
3]  
[2, 4]  
[2, 4]  
3]  
L
L
R
R
G
H
J
[2  
[
A3L WRPL BE5L VDDIO VDDIO VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIO VDDIO BE5R WRPR A3R  
,3]  
2,3]  
L
L
R
R
A5L READY BE6L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE6R READY A5R  
[2, 5]  
[2, 5]  
L
L
L
R
R
R
[2,5]  
[2,5]  
A7L NC  
BE7L VTTL VCORE VSS  
OEL VTTL VCORE VSS  
VSS VCORE VDDIO BE7R NC  
R
A7R  
A9R  
K
L
A9L  
CL  
VSS VCORE VTTL OER  
CR  
A10L A11L  
VSS BE3L VTTL VCORE VSS  
[9]  
VSS VCORE VTTL BE3R VSS A11R A10R  
M
N
P
A12L A13L ADSL  
BE2L VDDIO VCORE VSS  
L
VSS VCORE VTTL BE2R ADSR A13R A12R  
[9]  
A14L A15L CNT/M BE1L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE1R CNT/M A15R A14R  
[8]  
[8]  
SKL  
L
L
R
R
SKR  
A16L A17L CNTEN BE0L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE0R CNTEN A17R A16R  
[6]  
[7]  
[7]  
[6]  
L
L
L
R
R
R
[9]  
[9]  
R
T
A18L  
[2,5]  
NC CNTRS INTL VDDIO VDDIO VREFL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VREFR VDDIO VDDIO INTR CNTRS NC  
A18R  
[2,5]  
[8]  
[2, 4]  
[2, 4]  
[8]  
TL  
L
L
R
R
TR  
[2,  
DQ35L DQ34L R/WL REVL VDDIO VDDIO VDDIO VDDIO VDDIOL VCORE VCOREVCORE VCORE VDDIO VDDIO VDDIO VDDIO VDDIO REVR R/WR DQ34R DQ35R  
[2,4]  
4]  
L
L
L
L
R
R
R
R
R
U
V
[2,  
DQ33L DQ32L FTSELL VDDIO NC VDDIO VDDIO VDDIO VDDIOL VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO VDDIO TRST VDDIO FTSEL DQ32R DQ33R  
[2,3]  
5]  
[2,3]  
L
L
L
R
R
R
R
R
R
R
[2, 5]  
[2, 5]  
[2,  
[2, 5]  
[2, 5]  
[2, 5]  
DQ31L DQ30L VSS MRST VSS NC  
NC  
REVL PORTS CNTINT BUSYR NC  
PORTS LOWSP VSS NC  
[2,4]  
NC  
VSS  
TDI  
TDO DQ30R DQ31R  
TCK DQ28R DQ29R  
4]  
[2, 5]  
[2,4]  
TD1R  
R
TD0R DR  
[2, 4]  
[10]  
W
Y
DQ29L DQ28L VSS  
VSS DQ20L DQ17L DQ14L DQ11L DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11R DQ14R DQ17R DQ20R TMS  
DQ27L DQ26L DQ24L DQ22L DQ19L DQ16L DQ13L DQ10L DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10R DQ13R DQ16R DQ19R DQ22R DQ24R DQ26R DQ27R  
NC DQ25L DQ23L DQ21L DQ18L DQ15L DQ12L DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12R DQ15R DQ18R DQ21R DQ23R DQ25R NC  
AA  
AB  
Notes:  
2. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales.  
3. Connect this ball to VDDIO. For more information about this next generation Dual-Port feature contact Cypress Sales.  
4. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales.  
5. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
6. Leave this ball unconnected for a 64K x 72 configuration.  
7. Leave this ball unconnected for 128K x 72 and 64K x72 configurations.  
8. These balls are not applicable for CYD18S72V device. They need to be tied to VDDIO.  
9. These balls are not applicable for CYD18S72V device. They need to be tied to VSS.  
10. These balls are not applicable for CYD18S72V device. They need to be no connected.  
Document #: 38-06069 Rev. *I  
Page 3 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Pin Definitions  
Left Port  
Right Port  
Description  
A0L–A17L  
A0R–A17R  
Address Inputs.  
BE0L–BE7L  
BE0R–BE7R  
Byte Enable Inputs. Asserting these signals enables Read and Write operations  
to the corresponding bytes of the memory array.  
[2,5]  
[2,5]  
BUSYL  
BUSYR  
Port Busy Output. When the collision is detected, a BUSY is asserted.  
CL  
CR  
Input Clock Signal.  
[9]  
[9]  
CE0L  
CE0R  
Active Low Chip Enable Input.  
[8]  
[8]  
CE1L  
CE1R  
Active High Chip Enable Input.  
DQ0L–DQ71L  
OEL  
DQ0R–DQ71R  
OER  
Data Bus Input/Output.  
Output Enable Input. This asynchronous signal must be asserted LOW to enable  
the DQ data pins during Read operations.  
INTL  
INTR  
Mailbox Interrupt Flag Output. The mailbox permits communications between  
ports. The upper two memory locations can be used for message passing. INTL is  
asserted LOW when the right port writes to the mailbox location of the left port, and  
vice versa. An interrupt to a port is deasserted HIGH when it reads the contents of  
its mailbox.  
[2,4]  
[2,4]  
LowSPDL  
LowSPDR  
Port Low Speed Select Input. When operating at less than 100 MHz, the LowSPD  
disables the port DLL.  
[2,4]  
[2,4]  
PORTSTD[1:0]L  
R/WL  
PORTSTD[1:0]R  
R/WR  
Port Address/Control/Data I/O Standard Select Input.  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from  
the dual-port memory array.  
[2,5]  
[2,5]  
READYL  
READYR  
Port Ready Output. This signal will be asserted when a port is ready for normal  
operation.  
[8]  
[8]  
CNT/MSKL  
CNT/MSKR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
[9]  
[9]  
ADSL  
ADSR  
[9]  
[9]  
CNTENL  
CNTENR  
[8]  
[8]  
CNTRSTL  
CNTRSTR  
[10]  
[10]  
CNTINTL  
CNTINTR  
Port Counter Interrupt Output. This pin is asserted LOW when the unmasked  
portion of the counter is incremented to all “1s”.  
[2,3]  
[2,3]  
WRPL  
WRPR  
Port Counter Wrap Input. After the burst counter reaches the maximum count, if  
WRP is low, the unmasked counter bits will be set to 0. If high, the counter will be  
loaded with the value stored in the mirror register.  
Port Counter Retransmit Input. Counter control input.  
[2,3]  
[2,3]  
RETL  
RETR  
[2,3]  
[2,3]  
FTSELL  
FTSELR  
Flow-Through Select. Use this pin to select Flow-Through mode. When is  
de-asserted, the device is in pipelined mode.  
[2,4]  
[2,4]  
VREFL  
VREFR  
Port External High-Speed IO Reference Input.  
VDDIOL  
VDDIOR  
Port IO Power Supply.  
REV[2,4]  
REV[2,4]  
Reserved pins for future features.  
L
R
MRST  
TRST[2,5]  
Master Reset Input. MRST is an asynchronous input signal and affects both ports.  
A master reset operation is required at power-up.  
JTAG Reset Input.  
Document #: 38-06069 Rev. *I  
Page 4 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
TMS  
TDI  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state  
machine. State machine transitions occur on the rising edge of TCK.  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected  
registers.  
TCK  
TDO  
JTAG Test Clock Input.  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO  
is normally three-stated except when captured data is shifted out of the JTAG TAP.  
VSS  
Ground Inputs.  
[11]  
VCORE  
VTTL  
Core Power Supply.  
LVTTL Power Supply.  
Master Reset  
write operation by the left port to address 3FFFF will assert  
INTR LOW. At least one byte has to be active for a write to  
The FLEx72 family devices undergo a complete reset by  
taking the MRST input LOW. MRST input can switch  
asynchronously to the clocks. MRST initializes the internal  
burst counters to zero, and the counter mask registers to all  
ones (completely unmasked). MRST also forces the mailbox  
interrupt (INT) flags and the Counter Interrupt (CNTINT) flags  
HIGH. MRST must be performed on the FLEx72 family  
devices after power-up.  
generate an interrupt. A valid Read of the 3FFFF location by  
the right port will reset INTR HIGH. At least one byte has to be  
active in order for a read to reset the interrupt. When one port  
writes to the other port’s mailbox, the INT of the port that the  
mailbox belongs to is asserted LOW.  
The INT is reset when the owner (port) of the mailbox reads  
the contents of the mailbox. The interrupt flag is set in  
a flow-thru mode (i.e., it follows the clock edge of the writing  
port). Also, the flag is reset in a flow-thru mode (i.e., it follows  
the clock edge of the reading port)  
Each port can read the other port’s mailbox without resetting  
the interrupt. And each port can write to its own mailbox  
without setting the interrupt. If an application does not require  
message passing, INT pins should be left open.  
Mailbox Interrupts  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table 2  
shows the interrupt operation for both ports using 18 Mbit  
device as an example. The highest memory location, 3FFFF  
is the mailbox for the right port and 3FFFE is the mailbox for  
the left port. Table 2.shows that in order to set the INTR flag, a  
Table 2. Interrupt Operation Example [1, 12, 13, 14]  
Left Port  
Right Port  
Function  
R/WL  
CEL  
A0L–17L  
INTL  
R/WR  
CER  
A0R–17R  
INTR  
Set Right INTR Flag  
L
L
3FFFF  
X
X
X
X
L
Reset Right INTR Flag  
Set Left INTL Flag  
X
X
H
X
X
L
X
X
X
L
H
L
L
L
3FFFF  
3FFFE  
X
H
X
X
Reset Left INTL Flag  
3FFFE  
H
X
X
Notes:  
11. This family of Dual-Ports does not use V  
, and these pins are internally NC. The next generation Dual-Port family, the FLEx72-E™, will use V  
of 1.5V  
CORE  
CORE  
or 1.8V. Please contact local Cypress FAE for more information.  
12. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK  
0
1
and can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
13. OE is “Don’t Care” for mailbox operation.  
14. At least one of BE0 or BE7 must be LOW.  
Document #: 38-06069 Rev. *I  
Page 5 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Table 3. Address Counter and Counter Mask Register Control Operation (Any Port) [15,16]  
CLK MRST CNT/MSK CNTRST ADS CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask register  
to all 1s  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s  
H
Load counter with external address value presented  
on address lines  
H
H
H
H
H
H
H
H
H
L
H
H
H
L
Counter Readback Read out counter internal value on address lines  
Counter Increment Internally increment address counter value  
H
Counter Hold  
Constantly hold the address value for multiple clock  
cycles  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s  
H
Load mask register with value presented on the  
address lines  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Read out mask register value on address lines  
H
Operation undefined  
Address Counter and Mask Register Operations[17]  
asynchronous. All the other control signals in Table 3  
(CNT/MSK, CNTRST, ADS, CNTEN) are synchronized to the  
port’s CLK. All these counter and mask operations are  
independent of the port’s chip enable inputs (CE0 and CE1).  
This section describes the features only apply to 4 Mbit and 9  
Mbit devices, not to 18 Mbit device. Each port have a program-  
mable burst address counter. The burst counter contains three  
registers: a counter register, a mask register, and a mirror  
register.  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is changed only  
by the Mask Load and Mask Reset operations, and by the  
MRST. The mask register defines the counting range of the  
counter register. It divides the counter register into two  
regions: zero or more “0s” in the most significant bits define  
the masked region, one or more “1s” in the least significant bits  
define the unmasked region. Bit 0 may also be “0,” masking  
the least significant counter bit and causing the counter to  
increment by two instead of one.  
The mirror register is used to reload the counter register on  
increment operations (see “retransmit,” below). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and Counter Reset opera-  
tions, and by the MRST.  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter will increment on each LOW to HIGH  
transition of that port’s clock signal. This will Read/Write one  
word from/into each successive address location until CNTEN  
is deasserted. The counter can address the entire memory  
array, and will loop back to the start. Counter reset (CNTRST)  
is used to reset the unmasked portion of the burst counter to  
0s. A counter-mask register is used to control the counter  
wrap.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset  
to “0.” All masked bits remain unchanged. A Mask Reset  
followed by a Counter Reset will reset the counter and mirror  
registers to 00000, as will master reset (MRST).  
Counter Load Operation  
The address counter and mirror registers are both loaded with  
Table 3 summarizes the operation of these registers and the  
the address value presented at the address lines.  
required input control signals. The MRST control signal is  
Notes:  
15. X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
16. Counter operation and mask register operation is independent of chip enables.  
17. The CYD04S72V has 16 address bits and a maximum address value of FFFF. The CYD09S72V has 17 address bits and a maximum address value of 1FFFF.  
The CYD18S72V has 18 address bits and a maximum address value of 3FFFF.  
Document #: 38-06069 Rev. *I  
Page 6 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Counter Increment Operation  
valid tCA2 after the next rising edge of the port’s clock. If  
address readback occurs while the port is enabled (CE0 LOW  
and CE1 HIGH), the data lines (DQs) will be three-stated.  
Figure 1 shows a block diagram of the operation.  
Once the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incre-  
mented. The corresponding bit in the mask register must be  
a “1” for a counter bit to change. The counter register is incre-  
mented by 1 if the least significant bit is unmasked, and by 2  
if it is masked. If all unmasked bits are “1,” the next increment  
will wrap the counter back to the initially loaded value. If an  
Increment results in all the unmasked bits of the counter being  
“1s,” a counter interrupt flag (CNTINT) is asserted. The next  
Increment will return the counter register to its initial value,  
which was stored in the mirror register. The counter address  
can instead be forced to loop to 00000 by externally  
connecting CNTINT to CNTRST.[18] An increment that results  
in one or more of the unmasked bits of the counter being “0”  
will de-assert the counter interrupt flag. The example in  
Figure 2 shows the counter mask register loaded with a mask  
value of 0003Fh unmasking the first 6 bits with bit “0” as the  
LSB and bit “16” as the MSB. The maximum value the mask  
register can be loaded with is 1FFFFh. Setting the mask  
register to this value allows the counter to access the entire  
memory space. The address counter is then loaded with an  
initial value of 8h. The base address bits (in this case, the 6th  
address through the 16th address) are loaded with an address  
value but do not increment once the counter is configured for  
increment operation. The counter address will start at address  
8h. The counter will increment its internal address value till it  
reaches the mask register value of 3Fh. The counter wraps  
around the memory block to location 8h at the next count.  
CNTINT is issued when the counter reaches its maximum  
value.  
Retransmit  
Retransmit is a feature that allows the Read of a block of  
memory more than once without the need to reload the initial  
address. This eliminates the need for external logic to store  
and route data. It also reduces the complexity of the system  
design and saves board space. An internal “mirror register” is  
used to store the initially loaded address counter value. When  
the counter unmasked portion reaches its maximum value set  
by the mask register, it wraps back to the initial value stored in  
this “mirror register.” If the counter is continuously configured  
in increment mode, it increments again to its maximum value  
and wraps back to the value initially stored into the “mirror  
register.” Thus, the repeated access of the same data is  
allowed without the need for any external logic.  
Mask Reset Operation  
The mask register is reset to all “1s,” which unmasks every bit  
of the counter. Master reset (MRST) also resets the mask  
register to all “1s.”  
Mask Load Operation  
The mask register is loaded with the address value presented  
at the address lines. Not all values permit correct increment  
operations. Permitted values are of the form 2n–1 or 2n–2.  
From the most significant bit to the least significant bit,  
permitted values have zero or more “0s,” one or more “1s,” or  
one “0.” Thus 1FFFF, 003FE, and 00001 are permitted values,  
but 1F0FF, 003FC, and 00000 are not.  
Counter Hold Operation  
Mask Readback Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCM2 after the next rising edge of the port’s clock. If mask  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1  
shows a block diagram of the operation.  
Counter Interrupt  
Counting by Two  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all “1s.” It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
de-asserted by Counter Reset, Counter Load, Mask Reset  
and Mask Load operations, and by MRST.  
When the least significant bit of the mask register is “0,” the  
counter increments by two. This may be used to connect the  
x72 devices as a 144-bit single port SRAM in which the  
counter of one port counts even addresses and the counter of  
the other port counts odd addresses. This even-odd address  
scheme stores one half of the 144-bit data in even memory  
locations, and the other half in odd memory locations.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. Readback is pipelined; the address will be  
Note:  
18. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document #: 38-06069 Rev. *I  
Page 7 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
17  
Wrap  
Register  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Wrap  
To  
1
0
Detect  
17  
1
0
Counter  
Figure 1. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06069 Rev. *I  
Page 8 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1 1  
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[1, 19]  
IEEE 1149.1 Serial Boundary Scan (JTAG)[20]  
Boundary Scan Hierarchy for FLEx72 Family  
Internally, the CYD04S72V and CYD09S72V have two DIEs  
while CYD18S72V have four DIEs. Each DIE contains all the  
circuitry required to support boundary scan testing. The  
circuitry includes the TAP, TAP controller, instruction register,  
and data registers. The circuity and operation of the DIE  
boundary scan are described in detail below. The scan chain  
of each DIE is connected serially to form the scan chain of the  
FLEx72 family as shown in Figure 3. TMS and TCK are  
connected in parallel to each DIE to drive all 4 TAP controllers  
in unison. In many cases, each DIE will be supplied with the  
same instruction. In other cases, it might be useful to supply  
different instructions to each DIE. One example would be  
testing the device ID of one DIE while bypassing the others.  
Each pin of FLEx72 family is typically connected to multiple  
DIEs. For connectivity testing with the EXTEST instruction, it  
is desirable to check the internal connections between DIEs  
as well as the external connections to the package. This can  
be accomplished by merging the netlist of the devices with the  
netlist of the user’s circuit board. To facilitate boundary scan  
testing of the devices, Cypress provides the BSDL file for each  
DIE, the internal netlist of the device, and a description of the  
device scan chain. The user can use these materials to easily  
integrate the devices into the board’s boundary scan  
environment. Further information can be found in the Cypress  
application note Using JTAG Boundary Scan For System In a  
Package (SIP) Dual-Port SRAMs.  
The FLEx72 incorporates an IEEE 1149.1 serial boundary  
scan test access port (TAP). The TAP controller functions in a  
manner that does not conflict with the operation of other  
devices using 1149.1-compliant TAPs. The TAP operates  
using JEDEC-standard 3.3V I/O logic levels. It is composed of  
three input connections and one output connection required by  
the test logic defined by the standard.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
FLEx72 family and may be performed while the device is  
operating. An MRST must be performed on the FLEx72 after  
power-up.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the  
scan chain will output the next bit in the chain twice. For  
example, if the value expected from the chain is 1010101, the  
device will output a 11010101. This extra bit will cause some  
testers to report an erroneous failure for the FLEx72 in a scan  
test. Therefore the tester should be configured to never enter  
the PAUSE-DR state.  
Notes:  
19. The “X” in this diagram represents the counter upper bits.  
20. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance.  
Document #: 38-06069 Rev. *I  
Page 9 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
18 Mbit  
4 Mbit/9 Mbit  
TDO  
TDO  
TDO  
D4  
TDO  
TDO  
D2  
D2  
TDI  
TDI  
TDI  
TDO  
D3  
TDO  
D1  
TDO  
D1  
TDI  
TDI  
TDI  
TDI  
TDI  
Figure 3. Scan Chain  
Table 4. Identification Register Definitions  
Instruction Field  
Revision Number(31:28)  
Cypress Device(27:12)  
Value  
0h  
C002h  
Description  
Reserved for version number  
Defines Cypress DIE number for CYD18S72V and  
CYD09S72V  
C001h  
034h  
1
Defines Cypress DIE number for CYD04S72V  
Allows unique identification of FLEx72 family device vendor  
Indicates the presence of an ID register  
Cypress JDEC ID(11:1)  
ID Register Presence (0)  
Table 5. Scan Registers Sizes  
Register Name  
Instruction  
Bit Size  
4
Bypass  
1
Identification  
Boundary Scan  
32  
n[21]  
Table 6. Instruction Identification Codes  
Instruction  
EXTEST  
BYPASS  
IDCODE  
HIGHZ  
Code  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO  
Places the BYR between TDI and TDO  
Loads the IDR with the vendor ID code and places the register between TDI and TDO  
Places BYR between TDI and TDO. Forces all FLEx72 output drivers to a High-Z state  
Controls boundary to 1/0. Places BYR between TDI and TDO  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO  
Resets the non-boundary scan logic. Places BYR between TDI and TDO  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above  
Note:  
21. See details in the device BSDL files.  
Document #: 38-06069 Rev. *I  
Page 10 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Maximum Ratings[22]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage...........................................> 2000V  
(JEDEC JESD22-A114-2000B)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.....................................................> 200 mA  
Storage Temperature ................................ –65°C to + 150°C  
Ambient Temperature with  
Operating Range  
Power Applied............................................55°C to + 125°C  
Ambient  
Supply Voltage to Ground Potential.............. –0.5V to + 4.6V  
[11]  
Range  
Temperature  
VDD  
VCORE  
DC Voltage Applied to  
Commercial 0°C to +70°C 3.3V ± 165 mV 1.8V ± 100 mV  
Industrial –40°C to +85°C 3.3V ± 165 mV 1.8V ± 100mV  
Outputs in High-Z State..........................–0.5V to VDD + 0.5V  
DC Input Voltage...............................–0.5V to VDD + 0.5V[23]  
Electrical Characteristics Over the Operating Range  
–167  
–133  
–100  
Typ  
Parameter  
Description  
Part No.  
Min. Typ Max Min. Typ Max Min.  
Max Unit  
VOH  
Output HIGH Voltage (VDD = Min., IOH  
=
2.4  
2.4  
2.0  
2.4  
2.0  
V
–4.0 mA)  
VOL  
Output LOW Voltage (VDD = Min., IOL= +4.0  
mA)  
Input HIGH Voltage  
Input LOW Voltage  
Output Leakage Current  
Input Leakage Current Except TDI, TMS,  
MRST  
0.4  
0.4  
0.4  
V
VIH  
VIL  
IOZ  
IIX1  
2.0  
V
V
µA  
µA  
0.8  
10  
10  
0.8  
10  
10  
0.8  
10  
10  
–10  
–10  
–10  
–10  
–10  
–10  
IIX2  
ICC  
Input Leakage Current TDI, TMS, MRST  
–0.1  
1.0 –0.1  
225 300  
406 580  
1.0  
225 300  
350 500  
410 580  
–0.1  
1.0  
mA  
mA  
Operating Current  
CYD04S72V  
CYD09S72V  
CYD18S72V  
CYD04S72V  
CYD09S72V  
(VDD = Max.,IOUT = 0 mA),  
Outputs Disabled  
315  
450 mA  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
ISB5  
Standby Current  
90  
115  
90  
115  
(Both Ports TTL Level)  
CEL and CER VIH, f = fMAX  
105 150  
105 150  
Standby Current  
CYD04S72V  
CYD09S72V  
160 210  
266 380  
160 210  
266 380  
mA  
mA  
mA  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
Standby Current (Both  
Ports CMOS Level) CEL  
and CER VDD – 0.2V, f = 0  
CYD04S72V  
CYD09S72V  
55  
75  
55  
75  
Standby Current  
CYD04S72V  
CYD09S72V  
160 210  
224 320  
160 210  
224 320  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
Operating Current (VDDIO CYD18S72V  
= Max, Iout = 0 mA, f = 0)  
Outputs Disabled  
Core Operating Current for (VDD = Max.,  
IOUT = 0 mA), Outputs Disabled  
75  
75  
0
mA  
mA  
[11]  
ICORE  
0
0
0
0
0
Notes:  
22. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
23. Pulse width < 20 ns.  
Document #: 38-06069 Rev. *I  
Page 11 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Capacitance[24]  
Part#  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V  
Max  
20  
Unit  
pF  
pF  
pF  
pF  
CYD04S72V CIN  
CYD09S72V  
COUT  
CYD18S72V CIN  
COUT  
10[25]  
40  
20  
AC Test Load and Waveforms  
3.3V  
Z0 = 50  
R = 50Ω  
OUTPUT  
R1 = 590Ω  
OUTPUT  
C = 10 pF  
C = 5 pF  
R2 = 435Ω  
VTH = 1.5V  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics Over the Operating Range  
–167  
–133  
–100  
CYD04S72V  
CYD04S72V  
CYD09S72V  
CYD09S72V  
CYD18S72V  
CYD18S72V  
Parameter  
fMAX2  
tCYC2  
Description  
Maximum Operating Frequency  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Min.  
Max  
167  
Min.  
Max  
133  
Min.  
Max  
133  
Min.  
Max  
100  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.4  
3.4  
10  
4.5  
4.5  
tCH2  
tCL2  
[26]  
tR  
tF  
Clock Rise Time  
Clock Fall Time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[26]  
tSA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
tHW  
tSD  
tHD  
Address Set-up Time  
Address Hold Time  
Byte Select Set-up Time  
Byte Select Hold Time  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
2.2  
1.0  
2.2  
1.0  
NA  
NA  
2.2  
1.0  
2.2  
1.0  
NA  
2.7  
1.0  
2.7  
1.0  
NA  
NA  
2.7  
1.0  
2.7  
1.0  
NA  
R/W Hold Time  
Input Data Set-up Time  
Input Data Hold Time  
ADS Set-up Time  
tSAD  
Notes:  
24. C  
also references C  
I/O.  
OUT  
25. Except INT and CNTINT which are 20 pF.  
26. Except JTAG signal (t and t < 10 ns max).  
R
F
Document #: 38-06069 Rev. *I  
Page 12 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Characteristics Over the Operating Range (continued)  
–167  
–133  
CYD04S72V  
–100  
CYD04S72V  
CYD09S72V  
CYD09S72V  
CYD18S72V  
CYD18S72V  
Parameter  
tHAD  
tSCN  
Description  
ADS Hold Time  
CNTEN Set-up Time  
CNTEN Hold Time  
CNTRST Set-up Time  
CNTRST Hold Time  
CNT/MSK Set-up Time  
CNT/MSK Hold Time  
Output Enable to Data Valid  
OE to Low Z  
Min.  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
Max  
Min.  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
Max  
Min.  
Max  
Min.  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
tHCN  
tSRST  
tHRST  
tSCM  
tHCM  
tOE  
4.0  
4.4  
5.5  
5.5  
[27, 28]  
tOLZ  
tOHZ  
0
0
0
0
0
0
0
0
[27, 28]  
OE to High Z  
Clock to Data Valid  
Clock to Counter Address Valid  
4.0  
4.0  
4.0  
4.0  
4.4  
4.4  
4.4  
4.4  
5.5  
5.0  
NA  
NA  
5.5  
5.2  
NA  
NA  
tCD2  
tCA2  
tCM2  
Clock to Mask Register  
Readback Valid  
tDC  
Data Output Hold After Clock  
HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
Clock to INT Set Time  
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset time  
1.0  
1.0  
1.0  
1.0  
ns  
[27, 28]  
tCKHZ  
tCKLZ  
tSINT  
tRINT  
tSCINT  
tRCINT  
0
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
0
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
0
4.7  
4.7  
7.5  
7.5  
NA  
NA  
0
5.0  
5.0  
10  
10  
NA  
NA  
ns  
ns  
ns  
ns  
ns  
ns  
[27, 28]  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
Port to Port Delays  
tCCS  
Clock to Clock Skew  
5.2  
6.0  
5.7  
8.0  
ns  
Master Reset Timing  
tRS  
tRSS  
tRSR  
tRSF  
Master Reset Pulse Width  
Master Reset Set-up Time  
Master Reset Recovery Time  
Master Reset to Outputs Inactive  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
8.5  
5.0  
cycles  
ns  
cycles  
ns  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
tRSCNTINT  
Master Reset to Counter  
ns  
Interrupt Flag Reset Time  
Notes:  
27. This parameter is guaranteed by design, but is not production tested.  
28. Test conditions used are Load 2.  
Document #: 38-06069 Rev. *I  
Page 13 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
JTAG Timing Characteristics  
CYD04S72V  
CYD09S72V  
CYD18S72V  
–167/–133/–100  
Parameter  
Description  
Maximum JTAG TAP Controller Frequency  
Min.  
Max  
10  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fJTAG  
tTCYC  
tTH  
TCK Clock Cycle Time  
TCK Clock HIGH Time  
TCK Clock LOW Time  
100  
40  
40  
10  
10  
10  
10  
tTL  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS Set-up to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
TDI Hold After TCK Clock Rise  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
30  
ns  
ns  
0
Switching Waveforms  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Document #: 38-06069 Rev. *I  
Page 14 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Master Reset  
MRST  
tRS  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
CNTINT  
INT  
TDO  
Read Cycle[12, 29, 30, 31, 32]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE7  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
DATAOUT  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes:  
29. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
30. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
31. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
32. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document #: 38-06069 Rev. *I  
Page 15 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Bank Select Read[33, 34]  
tCYC2  
tCH2  
tCL2  
CLK  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Read-to-Write-to-Read (OE = LOW)[32, 35, 36, 37, 38]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+2  
tSD tHD  
Dn+2  
An+3  
ADDRESS  
DATAIN  
tSA  
tHA  
tCD2  
tDC  
tCKHZ  
Qn  
DATAOUT  
WRITE  
NO OPERATION  
READ  
Notes:  
33. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx72 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
34. ADS = CNTEN = BE0 – BE7 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
35. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
36. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
37. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
0
1
1
38. CE = BE0 – BE7 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document #: 38-06069 Rev. *I  
Page 16 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[32, 35, 37, 38]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Read with Address Counter Advance[37]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Document #: 38-06069 Rev. *I  
Page 17 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Write with Address Counter Advance [38]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
ADDRESS  
Document #: 38-06069 Rev. *I  
Page 18 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Counter Reset [39, 40]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
ADDRESS  
INTERNAL  
Ax  
Ap  
An  
1
0
Am  
ADDRESS  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
D0  
tSD  
DATAIN  
tCD2  
tCD2  
[52]  
DATAOUT  
Q0  
Qn  
Q1  
tCKLZ  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS Am  
ADDRESS An  
Notes:  
39. CE = BE0 – BE7 = LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
40. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
Document #: 38-06069 Rev. *I  
Page 19 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Readback State of Address Counter or Mask Register[41, 42, 43, 44]  
tCYC2  
tCH2 tCL2  
CLK  
tCA2 or tCM2  
tSA  
tHA  
EXTERNAL  
An*  
An  
ADDRESS  
A0–A17  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
tSAD  
tHAD  
ADS  
CNTEN  
tSCN  
tHCN  
tCD2  
tCKHZ  
Qn  
tCKLZ  
DATAOUT  
Qn+1  
Qx-1  
Qn+2  
Qx-2  
Q
n+3  
LOAD  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
EXTERNAL  
ADDRESS  
Notes:  
41. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
42. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
43. Address in input mode. Host can drive address bus after t  
.
CKHZ  
44. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document #: 38-06069 Rev. *I  
Page 20 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Left_Port (L_Port) Write to Right_Port (R_Port) Read[45, 46, 47]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
L_PORT  
An  
ADDRESS  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
An  
ADDRESS  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes:  
45. CE = OE = ADS = CNTEN = BE0 – BE7 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
46. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data will be Read out.  
CCS  
CYC2  
47. If t  
< minimum specified value, then R_Port will Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock. If  
CCS  
CD2  
t
> minimum specified value, then R_Port will Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CCS  
CYC2  
CD2  
Document #: 38-06069 Rev. *I  
Page 21 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Counter Interrupt and Retransmit[48, 49, 50, 51, 52]  
tCYC2  
tCH2  
tCL2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
1FFFE  
tSCINT  
1FFFC  
Last_Loaded  
1FFFD  
1FFFF  
tRCINT  
Last_Loaded +1  
CNTINT  
Mailbox Interrupt Timing[53, 54, 55, 56, 57]  
tCYC2  
tCH2  
tCL2  
CLKL  
tSA tHA  
3FFFF  
L_PORT  
An+1  
An  
An+2  
An+3  
ADDRESS  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
Am+1  
3FFFF  
Am+3  
Am+4  
ADDRESS  
Notes:  
48. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
49. CNTINT is always driven.  
50. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
51. The mask register assumed to have the value of 1FFFFh.  
52. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
53. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
54. Address “1FFFF” is the mailbox location for R_Port.  
55. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
56. At least one byte enable (B0 – B3) is required to be active during interrupt operations.  
57. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
Document #: 38-06069 Rev. *I  
Page 22 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Table 7. Read/Write and Enable Operation (Any Port) [1, 15, 58, 59, 60]  
Inputs  
Outputs  
DQ0 DQ71  
High-Z  
OE  
CLK  
CE0  
CE1  
R/W  
X
Operation  
Deselected  
X
H
X
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
Deselected  
Write  
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Ordering Information  
256K  
× 72 (18-Mbit) 3.3V Synchronous CYD18S72V Dual-Port SRAM  
Speed  
(MHz)  
Ordering Code  
Package Name  
Package Type  
Operating Range  
133  
100  
CYD18S72V-133BBC  
BB484  
484-ball Grid Array  
Commercial  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
CYD18S72V-133BBXC  
CYD18S72V-133BBI  
CYD18S72V-100BBC  
CYD18S72V-100BBXC  
CYD18S72V-100BBI  
CYD18S72V-100BBXI  
BB484  
BB484  
BB484  
BB484  
BB484  
BB484  
484-ball Pb-Free Ball Grid Array  
Commercial  
Industrial  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Grid Array  
Commercial  
Commercial  
Industrial  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Pb-Free Ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Pb-Free Ball Grid Array  
Industrial  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
128K  
× 72 (9-Mbit) 3.3V Synchronous CYD09S72V Dual-Port SRAM  
167  
CYD09S72V-167BBC  
CYD09S72V-133BBC  
CYD09S72V-133BBI  
BB484  
BB484  
BB484  
484-ball Grid Array  
Commercial  
Commercial  
Industrial  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
133  
484-ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
64K x 72 (4-Mbit) 3.3 Synchronous CYD04S72V Dual-Port SRAM  
167  
CYD04S72V-167BBC  
CYD04S72V-133BBC  
CYD04S72V-133BBI  
BB484  
BB484  
BB484  
484-ball Grid Array  
Commercial  
Commercial  
Industrial  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
133  
484-ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
484-ball Grid Array  
23 mm x 23 mm with 1.0-mm pitch (FBGA)  
Notes:  
58. OE is an asynchronous input signal.  
59. When CE changes state, deselection and Read happen after one cycle of latency.  
60. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document #: 38-06069 Rev. *I  
Page 23 of 25  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Package Diagram  
484-ball FBGA (23 mm x 23 mm x 1.6 mm) BB484  
"/44/- 6)%7  
4/0 6)%7  
Œꢁꢂꢁꢉ - #  
!ꢃ #/2.%2  
Œꢁꢂꢀꢉ - # ! "  
!ꢃ #/2.%2  
Œꢁꢂꢇꢁ¼ꢁꢂꢃꢁꢄꢅꢈꢅ8ꢆ  
ꢀꢃ ꢃꢊ ꢃꢋ ꢃꢉ ꢃꢌ  
ꢃꢃ  
ꢃꢃ ꢃꢌ ꢃꢉ ꢃꢋ ꢃꢊ  
ꢊ ꢃꢁ ꢃꢀ ꢃꢅ ꢃꢇ ꢃꢈ  
ꢀꢃ  
ꢀꢁ ꢀꢀ  
ꢀꢀ ꢀꢁ ꢃꢈ ꢃꢇ ꢃꢅ ꢃꢀ ꢃꢁ  
!
"
!
"
#
#
$
%
$
%
&
&
'
(
*
'
(
*
+
+
,
,
-
.
0
-
.
0
2
2
4
4
5
6
5
6
7
9
7
9
!!  
!"  
!!  
!"  
ꢃꢂꢁꢁ  
!
ꢃꢁꢂꢉꢁ  
ꢀꢃꢂꢁꢁ  
"
ꢀꢌꢂꢁꢁ¼ꢁꢂꢃꢁ  
ꢁꢂꢃꢁꢄꢅ8ꢆ  
3%!4).' 0,!.%  
#
51-85124-*E  
2%&%2%.#% *%$%# -/ꢍꢃꢊꢀ  
0ACKAGE 7EIGHT ꢍ ꢃꢂꢌ GRAMS  
FLEx72 and FLEx72-E are trademarks of Cypress Semiconductor Corporation. All product and company names mentioned in  
this document are the trademarks of their respective holders.  
Document #: 38-06069 Rev. *I  
Page 24 of 25  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Document History Page  
Document Title: FLEx72™ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM  
Document Number: 38-06069  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change Description of Change  
125859  
06/17/03  
SPN  
New Data Sheet  
*A  
128707  
08/01/03  
SPN  
Added -133 speed bin  
Updated spec values for ICC, tHA, HB, HW, HD  
t
t
t
Added new parameter ICC1  
Added bank select read and read to write to read (OE=low) timing diagrams  
*B  
128997  
09/18/03  
SPN  
Updated spec values for tOE, OHZ, CH2, CL2, HA, HB, HW, HD, CC, SB5, SA,  
tSB, SW, SD, CD2  
Updated read to write (OE=low) timing diagram  
t
t
t
t
t
t
t
I
I
t
t
t
t
Updated Master Reset values for tRS, tRSR, RSF  
t
Updated pinout  
Updated VCORE voltage range  
*C  
*D  
129936  
233830  
09/30/03  
See ECN  
SPN  
Updated package diagram  
Updated tCD2 value on first page  
Removed Preliminary status  
WWZ  
Added 4 Mbit and 9 Mbit x72 devices into the data sheet with updated pinout,  
pin description table, power table, and timing table  
Changed title  
Added Preliminary status to reflect the addition of 4 Mbit and 9 Mbit devices  
Removed FLEx72-E from the document  
Added counter related functions for 4 Mbit and 9 Mbit  
Removed standard JTAG description  
Updated block diagram  
Updated pinout with FTSEL and one more PORTSTD pins per port  
Updated tRSF of CYD18S72V value  
*E  
*F  
288892  
327355  
See ECN  
See ECN  
WWZ  
AEQ  
Change pinout D15 from REV[2,4] to VSS to reflect SC pin removal  
Changed pinout K3 from NC to NC[2,5]  
Changed pinout K20 from NC to NC[2,5]  
Changed pinout D15 from VSS to NC  
Changed pinout D8 and M3 from REVL[2,4] to VSS  
Changed pinout M20 and W15 from REVR[2,4] to VSS  
*G  
*H  
345735  
360316  
See ECN  
See ECN  
PCX  
YDT  
VREF Pin Definition Updated  
Added Pb-Free Part Ordering Informations  
Added note for VCORE  
Changed notes for PORTSTD to VSS  
Changed ICC, ISB1, ISB2 and ISB4 number for CYD09S72V per PE request  
*I  
460454  
See ECN  
YDT  
Changed CYDxxS72AV to CYDxxS72V (rev. A not implemented)  
Document #: 38-06069 Rev. *I  
Page 25 of 25  
[+] Feedback  

相关型号:

CYD18S72V-133BBXC

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
CYPRESS

CYD18S72V18

FullFlex Synchronous SDR Dual Port SRAM
CYPRESS

CYD18S72V18-167BBC

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-167BBXC

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-167BBXI

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-167BBXI

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGC

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGI

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGI

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGXC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGXI

Dual-Port SRAM, 256KX72, 11ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS