MB3771PF-ER [CYPRESS]

Power Supply Support Circuit, Adjustable, 1 Channel, BIPolar, PDSO8, PLASTIC, SOP-8;
MB3771PF-ER
型号: MB3771PF-ER
厂家: CYPRESS    CYPRESS
描述:

Power Supply Support Circuit, Adjustable, 1 Channel, BIPolar, PDSO8, PLASTIC, SOP-8

光电二极管
文件: 总21页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27400-9E  
ASSP For power supply applications  
BIPOLAR  
Power Supply Monitor  
MB3771  
DESCRIPTION  
The Fujitsu MB3771 is designed to monitor the voltage level of one or two power supplies (+5 V and an arbitrary  
voltage) in a microprocessor circuit, memory board in large-size computer, for example.  
If the circuit’s power supply deviates more than a specified amount, then the MB3771 generates a reset signal to  
the microprocessor. Thus, the computer data is protected from accidental erasure.  
Using the MB3771 requires few external components. To monitor only a +5 V supply, the MB3771 requires the  
connection of one external capacitor. The level of an arbitrary detection voltage is determined by two external  
resistors. The MB3771 is available in an 8-pin Dual In-Line, Single In-Line Package or space saving Flat Package.  
FEATURES  
• Precision voltage detection (VSA = 4.2 V ± 2.5 %)  
• User selectable threshold level with hysterisis (VSB = 1.23 V ± 1.5 %)  
• Monitors the voltage of one or two power supplies (5 V and an arbitrary voltage, >1.23 V)  
• Usable as over voltage detector  
• Low voltage output for reset signal (VCC = 0.8 V Typ)  
• Minimal number of external components (one capacitor Min)  
• Low power dissipation (ICC = 0.35 mA Typ, VCC = 5 V)  
• Detection threshold voltage has hysteresis function  
• Reference voltage is connectable.  
PACKAGES  
8-pin plastic DIP  
8-pin plastic SIP  
8-pin plastic SOP  
(DIP-8P-M01)  
(SIP-8P-M03)  
(FPT-8P-M01)  
MB3771  
PIN ASSIGNMENT  
(FRONT VIEW)  
8
7
6
5
4
RESET  
VSA  
(TOP VIEW)  
CT  
VSC  
1
2
3
4
8
7
6
5
VSB / RESIN  
VCC  
RESET  
VSA  
GND  
OUTC  
GND  
VSB /RESIN  
VCC  
OUTC  
VSC  
3
2
(DIP-8P-M01)  
(FPT-8P-M01)  
CT  
1
(SIP-8P-M03)  
BLOCK DIAGRAM  
VCC  
5
1.24 V  
1.24 V  
REFERENCE VOLTAGE  
100 kΩ  
+
+
12 µA  
10 µA  
VSA  
7
6
2
VSC  
Comp. A  
+
+
40 kΩ  
Comp. C  
+
R
S
Q
VSB / RESIN  
Comp. B  
4
GND  
1
8
3
OUTC  
CT  
RESET  
2
MB3771  
FUNCTIONAL DESCRIPTIONS  
Comparators Comp.A and Comp.B apply a hysteresis to the detected voltage, so that when the voltage at either  
the VSA or VSB pin falls below 1.23 V the RESET output signal goes to “low” level.  
Comp. B may be used to detect any given voltage(Sample Application 3), and can also be used as a forced  
reset pin (with reset hold time) with TTL input (Sample Application 6).  
Note that if Comp.B is not used, the VSB pin should be connected to the VCC pin (Sample Application 1).  
Instantaneous breaks or drops in the power supply can be detected as abnormal conditions by the MB3771  
within a 2 µs interval. However because momentary breaks or drops of this duration do not cause problems in  
actual systems in some cases, a delayed trigger function can be created by connecting capacitors to the VSA or  
VSB pin (Sample Application 8).  
Because the RESET output has built-in pull-up resistance, there is no need to connect to external pull-up  
resistance when connected to a high impedance load such as a CMOS logic IC.  
Comparator Comp. C is an open-collector output comparator without hysteresis, in which the polarity of input/  
output characteristics is reversed. Thus Comp. C is useful for over-voltage detection (Sample Application 11)  
and positive logic RESET signal output (Sample Application 7), as well as for creating a reference voltage  
(Sample Application 10).  
Note that if Comp. C is not used, the VSC pin should be connected to the GND pin (Sample Application 1).  
FUNCTION EXPLANATION  
VHYS  
VS  
VCC  
0.8 V  
t
t
VCC  
CT  
1
2
3
4
8
7
6
5
RESET  
TPO  
TPO  
RESET  
(1)  
(2) (3)  
(4) (5) (6)  
(7)  
(8)  
(1) When VCC rises to about 0.8V, RESET goes low.  
(2) When VCC reaches VS +VHYS, CT then begins charging. RESET remains low during this time  
(3) RESET goes high when CT begins charging.  
TPO =: CT × 10 5 (Refer to CT pin capacitance vs. hold time )  
(4) When VCC level dropps lower then VS, then RESET goes low and CT starts discharging.  
(5) When VCC level reaches VS + VHYS, then CT starts charging.  
In the case of voltage sagging, if the period from the time VCC goes lower than or equal to VS to the time VCC  
reaches VS +VHYS again, is longer than tPI, (as specified in the AC Characteristics), CT is discharged and charged  
successively.  
(6) After TPO passes, and VCC level exceeds VS + VHYS, then RESET goes high.  
(7) Same as Point 4.  
(8) RESET remains low until VCC drops below 0.8V.  
3
MB3771  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min  
0.3  
0.3  
0.3  
0.3  
Max  
Power supply voltage  
VCC  
VSA  
VSB  
VSC  
PD  
+20  
VCC + 0.3 ( < +20)  
+20  
V
V
Input voltage  
V
+20  
V
Power dissipation  
200 (Ta 85 °C)  
+125  
mW  
°C  
Storage temperature  
Tstg  
55  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Min  
3.5  
0
Max  
18  
Power supply voltage  
VCC  
IRESET  
IOUTC  
Top  
V
20  
mA  
mA  
°C  
Output current  
0
6
Operating ambient temperature  
40  
+85  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
4
MB3771  
ELECTRICAL CHARACTERISTICS  
1. DC Characteristics  
(VCC = 5 V, Ta = + 25 °C)  
Value  
Unit  
Parameter  
Symbol  
Conditions  
Min  
Typ  
350  
400  
4.20  
4.20  
4.30  
4.30  
100  
1.230  
1.230  
3
Max  
500  
600  
4.30  
4.35  
4.40  
4.45  
150  
1.248  
1.260  
10  
ICC1  
ICC2  
VSB = 5 V, VSC = 0 V  
VSB = 0 V, VSC = 0 V  
VCC  
µA  
µA  
V
Power supply current  
4.10  
4.05  
4.20  
4.15  
50  
VSAL  
(DOWN)  
Ta = 40 °C to +85 °C  
VCC  
V
Detection voltage  
V
VSAH (UP)  
VHYSA  
Ta = 40 °C to +85 °C  
V
Hysterisis width  
mV  
V
VSB  
1.212  
1.200  
Detection voltage  
VSB  
Ta = 40 °C to +85 °C  
VCC = 3.5 V to 18 V  
V
Deviation of detection voltage  
Hysterisis width  
VSB  
VHYSB  
IIHB  
mV  
mV  
nA  
nA  
V
14  
28  
42  
VSB = 5 V  
0
250  
250  
Input current  
IILB  
VSB = 0 V  
20  
VOHR  
IRESET = 5 µA, VSB = 5 V  
IRESET = 3mA, VSB = 0 V  
IRESET = 10mA, VSB = 0 V  
VOLR = 1.0 V, VSB = 0 V  
VSB = 5 V, VCT = 0.5 V  
VSC = 5 V  
4.5  
4.9  
Output voltage  
0.28  
0.38  
40  
0.4  
0.5  
V
VOLR  
V
Output sink current  
CT charge current  
IRESET  
20  
9
mA  
µA  
nA  
nA  
V
ICT  
12  
16  
500  
500  
1.265  
1.285  
10  
IIHC  
0
Input current  
IILC  
VSC = 0 V  
50  
1.225  
1.205  
1.245  
1.245  
3
Detection voltage  
VSC  
Ta = 40 °C to +85 °C  
VCC = 3.5 V to 18 V  
VOHC = 18 V  
V
Deviation of detection voltage  
Output leakage current  
Output voltage  
VSC  
IOHC  
mV  
µA  
V
0
1
VOLC  
IOUTC  
IOUTC = 4 mA, VSC = 5 V  
VOLC = 1.0 V, VSC = 5 V  
0.15  
15  
0.4  
Output sink current  
6
mA  
Reset operation minimum  
supply voltage  
VCCL  
VOLR = 0.4 V, IRESET = 200 µA  
0.8  
1.2  
V
5
MB3771  
2. AC Characteristics  
(VCC = 5 V, Ta = + 25 °C, CT = 0.01 µF)  
Value  
Unit  
Parameter  
Symbol  
Conditions  
Min  
5.0  
0.5  
Typ  
Max  
VSA, VSB input pulse width  
Reset hold time  
tPI  
tPO  
µs  
ms  
µs  
µs  
µs  
µs  
µs  
1.0  
1.0  
0.1  
2
1.5  
1.5  
0.5  
10  
RESET rise time  
tr  
RL = 2.2 k,  
CL = 100 pF  
RESET fall time  
tf  
tPD*1  
tPHL*2  
tPLH*2  
Propagation delay time  
0.5  
1.0  
RL = 2.2 k,  
CL = 100 pF  
*1: In case of VSB termination.  
*2: In case of VSC termination.  
6
MB3771  
APPLICATION CIRCUIT  
1. 5V Power Supply Monitor  
Monitored by VSA. Detection threshold voltage is VSAL and VSAH  
VCC  
MB3771  
1
2
3
4
8
7
6
5
RESET  
Logic  
circuit  
CT  
2. 5V Power Supply Voltage Monitor (Externally Fine-Tuned Type)  
The VSA detection voltage can be adjusted externally.  
Resistance R1 and R2 are set sufficiently lower than the IC internal partial voltage resistance, so that the detection  
voltage can be set using the ratio between resistance R1 and R2. (See the table below).  
• R1, R2 calculation formula (when R1 << 100 k, R2 <<40 k)  
VSAL =: (R1 + R2 ) × VSB /R2 [V], VSAH =: (R1 + R2 ) × (VSB + VHYSB)/ R2 [V]  
R1 (k)  
10  
R2 (k)  
3.9  
Detection voltage : VSAL (V) Detection voltage : VSAH (V)  
4.37  
4.11  
4.47  
4.20  
9.1  
3.9  
V
CC  
MB3771  
1
2
8
7
RESET  
R
1
2
Logic  
Circuit  
CT  
3
4
6
5
R
7
MB3771  
3. Arbitrary Voltage Supply Monitor  
(1) Case: VCC 18 V  
• Detection Voltage can be set by R1 and R2.  
Detection Voltage = (R1 + R2) × VSB/R2  
• Connect Pin 7 to VCC when VCC less than 4.45 V.  
• Pin 7 can be opened when VCC greater than 4.45 V  
Power Dissipation can be reduced.  
Note : Hysteresis of 28 mV at VSB at termination is available.  
Hysteresis width dose not depend on (R1 + R2).  
VCC  
MB3771  
1
2
8
7
RESET  
R1  
R2  
CT  
3
4
6
5
(2) Monitoring VCC > 18 V  
• Detection Voltage can be set by R1 and R2  
Detection Voltage = (R1 + R2) × VSB/R2  
• The RESET signal output is =: 0V (low level) and =: 5 V (high level). VCC voltage cannot be output.  
Do not pull up RESET to VCC.  
• Changing the resistance ratio between R4 and R5 changes the constant voltage output, thereby changing the  
voltage of the high level RESET output. Note that the constant voltage output should not exceed 18 V.  
• The 5 V output can be used as a power supply for control circuits with low current consumption.  
• In setting the R3 resistance level, caution should be given to the power consumption in the resistor. The table  
below lists sample resistance values for reference (using 1/4 resistance).  
Detection  
voltage (V)  
Output Current  
(mA)  
RESET Output min.  
power supply voltage (V)  
VCC (V)  
R1 (M)  
R2 (k)  
R3 (k)  
140  
100  
40  
100  
81  
6.7  
3.8  
1.4  
1.6  
1.3  
20  
20  
20  
110  
56  
< 0.2  
< 0.5  
< 1.6  
33  
0.51  
11  
• Values are actual measured values (using IOUTC = 100 µA, VOLC = 0.4 V). Lowering the resistance value of R3  
reduces the minimum supply voltage of the RESET output, but requires resistance with higher allowable loss.  
VCC  
R3  
5 V output(Stablized)  
1
2
R4:  
8
7
RESET  
100 kΩ  
CT  
R1  
R2  
3
4
6
5
0.47 µF  
R5:  
33 kΩ  
8
MB3771  
4. 5 V and 12 V Power Supply Monitor (2 types of power supply monitor VCC1 = 5 V, VCC2 =12 V)  
• 5 V is monitored by VSA. Detection voltage is about 4.2 V  
• 12 V is monitored by VSB. When R1 = 390 kand R2 = 62 k, Detection voltage is about 9.0 V.Generally the  
detection voltage is determined by the following equation.  
Detection Voltage = (R1 + R2) × VSB/R2  
VCC2  
VCC1  
MB3771  
1
2
3
4
8
7
6
5
RESET  
R1: 390 kΩ  
R2: 62 kΩ  
Logic  
circuit  
CT  
5. 5 V and 12 V Power Supply Monitor (RESET signal is generated by 5 V, VCC1 = 5 V, VCC2 = 12 V)  
• 5 V is monitored by VSA, and generates RESET signal when VSA detects voltage sagging.  
• 12 V is monitored by VSC, and generates its detection signal at OUTC.  
• The detection voltage of 12 V monitoring and its hysterisis is determined by the following equations.  
R1 + R2 + R3  
Detection voltage =  
Hysterisis width =  
× VSC  
(8.95 V in the circuit above)  
(200 mV in the circuit above)  
R2 + R3  
R1 (R3 R3 // R4)  
× VSC  
(R2 + R3) (R2 + R3 // R4)  
VCC2  
VCC1  
R L: 10 kΩ  
MB3771  
R5: 100 kΩ  
R1: 390 kΩ  
1
2
3
4
RESET  
IRQ  
8
7
6
5
or  
Port Logic Circuit  
R2: 33 kΩ  
R4: 510 kΩ  
CT  
R3: 30 kΩ  
9
MB3771  
6. 5 V Power Supply Monitor with forced RESET input (VCC = 5 V)  
RESIN is an TTL compatible input.  
RESIN  
VCC  
MB3771  
1
8
RESET  
2
3
4
7
6
5
CT  
Logic Circuit  
7. 5 V Power Supply Monitor with Non-inverted RESET  
In this case, Comparator C is used to invert RESET signal. OUTC is an open-collector output.  
RL is used an a pull-up resistor.  
VCC  
MB3771  
RL: 10 kΩ  
1
2
3
4
8
7
6
5
CT  
RESET  
8. Supply Voltage Monitoring with Delayed Trigger  
When the voltage shown in the diagram below is applied at VCC, the minimum value of the input pulse width is  
increased to 40 µs (when C1 = 1000 pF).  
The formula for calculating the minimum value of the input pulse width [TPI] is:  
TPI [µs]=: 4 × 10-2 × C1 [pF]  
TP  
VCC 5 V  
4 V  
MB3771  
1
2
3
4
8
RESET  
7
6
5
CT  
C1  
10  
MB3771  
9. Dual (Positive/Negative) Power Supply Voltage Monitoring (VCC = 5 V, VEE = Negative Power  
Supply)  
Monitors a 5 V and a negative (any given level) power supply. R1, R2, and R3 should be the same value.  
Detection Voltage = VSB VSB × R4/R3  
Example if VEE = 5 V, R4 = 91 kΩ  
Then the detected voltage = 4.37 V  
In cases where VEE may be output when VCC is not output, it is necessary to use a Schottky barrier diode (SBD).  
VCC  
R5 : 5.1 kΩ  
MB3771  
8
1
2
RESET  
R1 : 20 kΩ  
R4  
7
VEE  
R3 :  
20 kΩ  
6
5
3
4
0.22 µF  
CT  
R2 : 20 kΩ  
SBD  
10. Reference Voltage Generation and Voltage Sagging Detection  
(1) 9V Reference Voltage Generation and 5V/9V Monitoring  
Detection Voltage = 7.2 V  
In the above examples, the output voltage and the detection voltage are determined by the following equations:  
Detection Voltage = (R1 + R2) × VSB/R2  
15 V  
R
5
: 3 kΩ  
V
CC : 5 V  
MB3771  
8
1
2
3
4
RESET  
7
6
5
CT  
9 V ( 50 mA)  
R3 :  
7.5 kΩ  
R
R
1
: 300 kΩ  
: 62 kΩ  
0.47 µF  
2
R4 :  
1.2 kΩ  
11  
MB3771  
(2) 5 V Reference Voltage Generation and 5V Monitoring (No.1)  
Detection Voltage = 4.2 V  
In the above examples, the output voltage and the detection voltage are determined by the following equations:  
Output Voltage = (R3 + R4) × VSC/R4  
15 V  
R5 : 3 kΩ  
MB3771  
8
7
6
5
1
2
3
4
RESET  
CT  
5 V( 50 mA)  
0.47 µF  
R3 : 3.6 kΩ  
R4 : 1.2 kΩ  
(3) 5 V Reference Voltage Generation and 5 V Monitoring (No. 2)  
The value of R1 should be calculated from the current consumption of the MB3771, the current flowing at R2 and  
R3, and the 5 V output current. The table below provides sample resistance values for reference.  
VCC (V)  
40  
R1 (k)  
11  
Output Current (mA)  
< 1.6  
< 1.4  
< 0.6  
24  
6.2  
15  
4.7  
VCC  
R1  
1
2
8
7
RESET  
5 V  
3
4
6
5
CT  
R2 :  
100 kΩ  
0.47 µF  
R3 : 33 kΩ  
GND  
(4) 1.245 V Reference Voltage Generation and 5 V Monitoring  
Resistor R1 determines Reference current. Using 1.2 kas R1, reference current is about 2 mA.  
VCC  
(5 V)  
R1 : 10 kΩ  
1
2
8
7
RESET  
3
4
6
5
CT  
Reference Voltage  
1.245 V Typ  
0.47 µF  
GND  
12  
MB3771  
11. Low Voltage and Over Voltage Detection (VCC = 5 V)  
VSH has no hysteresis. When over voltage is detected, RESET is held in the constant time as well as when  
low voltage is detected.  
VSL = (R1 + R2) × VSB/R2  
VSH = (R3 + R4) × VSC/R4  
VCC  
R3  
R4  
R1  
R2  
MB3771  
RESET  
1
2
3
4
8
7
6
5
RESET  
CT  
VCC  
VSL  
VSH  
12. Detection of Abnormal State of Power Supply System (VCC = 5 V)  
• This Example circuit detects abnormal low/over voltage of power supply voltage and is indicated by LED  
indicator. LED is reset by the CLEAR key.  
• The detection levels of low/over voltages are determined by VSA, and R1 and R2 respectively.  
VCC  
LED  
R1  
MB3771  
R3: 620 Ω  
CLEAR  
1
2
3
4
8
7
6
5
R4:  
1 kto 100 kΩ  
R2  
13  
MB3771  
13. Back-up Power Supply System (VCC = 5 V)  
• Use CMOS Logic and connect VDD of CMOS logic with VCCO.  
• The back-up battery works after CS goes high as V2 < V1.  
• During tPO, memory access is prohibited.  
• CS‘s threshold voltage V1 is determined by the following equation:  
V1 = VF + (R1 + R2 + R3) × VSB/R3  
When V1 is 4.45 V or less, connect 7 pin with VCC.  
When V1 is 4.45 V or more, 7 pin can be used to open.  
• The voltage to change V2 is provided as the following equation:  
V2 = VF + (R1 + R2 + R3) × VSC/ (R2 + R3)  
However, please set V2 to 3.5 V or more.  
VCC  
V1  
V2  
t
CS  
TPO  
t
VCCO  
t
VCC  
D1  
R4 >1 kΩ  
V F 0.6 V  
R 1: 100 kΩ  
R 2: 6.2 kΩ  
R 5: 100 kΩ  
MB3771  
R 6: 100 kΩ  
1
2
3
8
7
6
VCCO  
CT  
4
5
CS  
R3: 56 kΩ  
*: Diode has been added to prevent Comp.C from malfunctionig when VCC voltage is low.  
Set V1 and V2 with care given to VF temperature characteristics (typically negative temperature  
characteristics).  
14  
MB3771  
TYPICAL CHARACTERISTICS  
Detection voltage (VSC) vs. anbient temperature  
Power supply current vs. power supply voltage  
700  
600  
1.30  
500  
Ta =  
400  
25°C  
40°C  
1.25  
1.20  
300  
85°C  
40°C  
200  
25°C  
100  
85°C  
0
0
5
10  
15  
20  
50  
25  
0
25  
50  
75  
100  
Power supply voltage VCC (V)  
Anbient temperature Ta (°C)  
Detection voltage (VSB) vs. anbient temperature  
Power supply current vs. power supply voltage  
700  
600  
1.30  
500  
25°C  
Ta =  
85°C  
VSBH  
400  
300  
40°C  
1.25  
40°C  
25°C  
VSBL  
200  
100  
0
85°C  
1.20  
0
5
10  
15  
20  
50  
25  
0
25  
50  
75  
100  
Power supply voltage VCC (V)  
Anbient temperature Ta (°C)  
Output (RESET) voltage vs. power supply voltage  
Detection voltage (VSA) vs. anbient temperature  
4.5  
5
4
3
2
4.4  
VSAH  
4.3  
VSAL  
4.2  
Ta =  
1
4.1  
4.0  
25°C  
40°C  
85°C  
0
50  
25  
0
25  
50  
75  
100  
0
1
2
3
4
5
Anbient temperature Ta (°C)  
Power supply voltage VCC (V)  
(Continued)  
15  
MB3771  
(Continued)  
Reset voltage (RESET) vs. output current  
Detection voltage (VSB, VSC) vs. Power supply voltage  
1.27  
5.0  
4.5  
4.0  
VSBH  
1.26  
VSC  
1.25  
1.24  
85°C  
VSBL  
40°C  
Ta =  
1.23  
25°C  
1.22  
1.21  
1.20  
0
5
10  
15  
20  
0
5  
10  
15  
Power supply voltage VCC (V)  
Output current IRESET (µA)  
Reset hold time vs. power supply voltage (CT = 0.01µF)  
Output (RESET) voltage vs. output current  
1.5  
2.0  
Ta = 40°C  
85°C  
Ta =  
40°C  
25°C  
1.0  
85°C  
1.0  
25°C  
0.5  
0
0
0
5
10  
15  
20  
0
10  
20  
30  
40  
50  
Output sink current IRESET (mA)  
Power supply voltage VCC (V)  
CT pin capacitance vs. reset hold time  
Output voltage (OUTC) vs. output current  
10  
1
1.0  
40°C  
Ta =  
25°C  
85°C  
100 m  
Ta =  
25°C  
85°C  
10 m  
1 m  
0.5  
40°C  
100 µ  
10 µ  
1 µ  
0
1 p 10 p 100 p 1000 p 0.01µ 0.1 µ 1 µ 10 µ 100 µ  
0
5
10  
15  
20  
Output sink current IOUTC (mA)  
CT pin capacitance CT (F)  
16  
MB3771  
NOTES ON USE  
Take account of common impedance when designing the earth line on a printed wiring board.  
Take measures against static electricity.  
- For semiconductors, use antistatic or conductive containers.  
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.  
- The work table, tools and measuring instruments must be grounded.  
- The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
• Do not apply a negative voltage  
- Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in  
malfunction.  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
8-pin Plastic DIP  
(DIP-8P-M01)  
MB3771P  
MB3771PS  
MB3771PF  
8-pin Plastic SIP  
(SIP-8P-M03)  
8-pin Plastic SOP  
(FPT-8P-M01)  
17  
MB3771  
PACKAGE DIMENSIONS  
8-pin Plastic DIP  
(DIP-8P-M01)  
+0.40  
–0.30  
9.40  
.370 +..001126  
1 PIN INDEX  
6.20±0.25  
(.244±.010)  
0.51(.020)MIN  
4.36(.172)MAX  
3.00(.118)MIN  
+0.30  
0.25±0.05  
(.010±.002)  
0.46±0.08  
(.018±.003)  
+0.30  
15°MAX  
0.99  
1.52  
–0  
–0  
7.62(.300)  
TYP  
.039 +0.012  
.060 +0.012  
+0.35  
–0.30  
0.89  
2.54(.100)  
TYP  
.035 +..001124  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
C
1994 FUJITSU LIMITED D08006S-2C-3  
(Continued)  
18  
MB3771  
(Continued)  
8-pin Plastic SIP  
(SIP-8P-M03)  
3.26±0.25  
(.128±.010)  
+0.15  
–0.35  
19.65  
.774 +..001046  
INDEX-1  
6.20±0.25  
(.244±.010)  
8.20±0.30  
(.323±.012)  
INDEX-2  
+0.30  
–0  
0.99  
4.00±0.30  
(.157±.012)  
.039 +0.012  
+0.30  
–0  
1.52  
2.54(.100)  
TYP  
0.50±0.08  
(.020±.003)  
0.25±0.05  
(.010±.002)  
.060 +0.012  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
C
1994 FUJITSU LIMITED S08010S-3C-2  
(Continued)  
19  
MB3771  
(Continued)  
Note 1) *1 : These dimensions include resin protrusion.  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
8-pin Plastic SOP  
(FPT-8P-M01)  
*
1 6.35 +00..2205 .250 +..000180  
0.17 +00..0043  
.007 +..000021  
8
5
*
2 5.30±0.30 7.80±0.40  
(.209±.012) (.307±.016)  
INDEX  
Details of "A" part  
2.00 +00..1255  
(Mounting height)  
.079 +..000160  
0.25(.010)  
"A"  
1
4
1.27(.050)  
0~8˚  
0.47±0.08  
(.019±.003)  
M
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10 +00..0150  
.004 +..000024  
0.60±0.15  
(Stand off)  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
C
2002 FUJITSU LIMITED F08002S-c-6-7  
20  
MB3771  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0308  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB3771PF-G-BND-JN-ERE1

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 5.30 X 6.35 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
CYPRESS

MB3771PF-G-BND-JNE1

ASSP For power supply applications BIPOLAR Power Supply Monitor
FUJITSU

MB3771PS

Power Supply Monitor
FUJITSU

MB3771_06

Power Supply Monitor
FUJITSU

MB3773

Power Supply Monitor with Watch-Dog Timer
FUJITSU

MB3773-PF

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOP-8
CYPRESS

MB3773P

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
CYPRESS

MB3773P

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SPANSION

MB3773P-E1

暂无描述
SPANSION

MB3773PF-G-BND-JN-ERE1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
CYPRESS

MB3773PF-G-BND-JN-ERE1

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
SPANSION

MB3773PF-G-BND-JN-ERE1

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
FUJITSU