S6BT112A02SSB1002 [CYPRESS]

Interface Circuit;
S6BT112A02SSB1002
型号: S6BT112A02SSB1002
厂家: CYPRESS    CYPRESS
描述:

Interface Circuit

接口集成电路
文件: 总40页 (文件大小:1252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
S6BT112A01/S6BT112A02  
ASSP  
CXPI Transceiver IC for Automotive Network  
The S6BT112A01 and S66BT112A02 are integrated transceiver IC for Automotive communication network with Clock extension  
Peripheral Interface (CXPI). It is flexible bit rate from 2.4 k bit per second to 20 k bit per second with JASO CXPI compliant. This  
CXPI transceiver IC connect between CXPI data link controller and CXPI Bus line, and enables to connect to vehicle battery directly,  
with high surge protection. Additionally products have optional function for Spread Spectrum Clock Generator (SSCG).  
In the standby operation, S6BT112A01 and S6BT112A02 success ultra low power consumption as sleep mode. The Cypress CXPI  
transceiver IC supports master node and slave node as selected SELMS pin.  
Features  
Compliant with the JASO CXPI (JASO D 015-3-15) standard  
Compliant with the SAE CXPI ( J3076_201510) standard  
Supported bitrate 2.4kbps to 20kbps  
Easy selected master node or slave node.  
Over temperature protection  
Low voltage detection.  
Waveshaping for low Electromagnetic Interference (EMI)  
Operating Voltage Range 5.3V to 18V  
Supported Sleep and Wakeup  
Sleep mode current :6uA(Typical @Slave)  
Halogen free package 8pin SOIC  
ESD protection HBM (1.5kΩ 100pF) ±8kV (BUS pin, BAT pin)  
Voltage tolerance ±40V (BUS pin)  
Direct battery operation with protection against load dump,  
jump start and transients  
BUS short to VBAT over current protection.  
Loss of ground protection. BUS pin leakage is lower than  
±1mA.  
S6BT112A01: With spread spectrum clock generator.  
S6BT112A02: Without spread spectrum clock generator.  
Block Diagram  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document Number: 002-10203 Rev.*A  
Revised April 6, 2016  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Table of Contents  
Features  
............................................................................................................................................................. 1  
............................................................................................................................................................. 1  
............................................................................................................................................................. 3  
............................................................................................................................................................. 4  
Block Diagram  
1. Applications  
2. Pin Assignment  
3. Pin Descriptions ............................................................................................................................................................. 5  
4. Block Diagram ............................................................................................................................................................. 6  
5. Function Description.......................................................................................................................................................... 7  
5.1  
5.2  
Operation Modes........................................................................................................................................................... 7  
Master node .................................................................................................................................................................. 8  
5.2.1 Normal mode.................................................................................................................................................................. 8  
5.2.2 Sleep mode.................................................................................................................................................................... 9  
5.2.3 Standby mode.............................................................................................................................................................. 10  
5.2.4 Power-on Sequence..................................................................................................................................................... 10  
5.3  
Slave node .................................................................................................................................................................. 12  
5.3.1 Normal mode................................................................................................................................................................ 12  
5.3.2 Sleep mode.................................................................................................................................................................. 13  
5.3.3 Standby........................................................................................................................................................................ 15  
5.3.4 Power-on Sequence..................................................................................................................................................... 15  
5.4  
Common function ........................................................................................................................................................ 16  
5.4.1 Over temperature protection ........................................................................................................................................ 16  
5.4.2 Low voltage reset......................................................................................................................................................... 18  
5.4.3 Over current protection ................................................................................................................................................ 19  
5.4.4 Secondary Clock Master.............................................................................................................................................. 19  
5.4.5 Arbitration..................................................................................................................................................................... 21  
5.4.6 TXD Toggle.................................................................................................................................................................. 22  
6. Absolute Maximum Ratings............................................................................................................................................. 24  
7. Recommended Operating Conditions ............................................................................................................................ 25  
8. Electrical Characteristics................................................................................................................................................. 26  
9. Ordering Information........................................................................................................................................................ 37  
10. Package Dimensions...................................................................................................................................................... 38  
Document Number: 002-10203 Rev.*A  
Page 2 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
1. Applications  
Typical applications of S6BT112A01 or S6BT112A02  
Document Number: 002-10203 Rev.*A  
Page 3 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
2. Pin Assignment  
Figure 2-1 Pin Assignment  
(TOP VIEW)  
RXD  
SELMS  
1
2
3
4
8
7
6
5
BAT  
BUS  
GND  
NSLP  
CLK  
TXD  
Document Number: 002-10203 Rev.*A  
Page 4 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
3. Pin Descriptions  
Table 3-1 Pin Descriptions  
Pin  
Symbol  
Number  
Direction  
Descriptions  
Receive data output (open-drain).  
1
RXD  
Output  
External pull-up resistor is required. (refer to Table 7-1 )  
Sleep control input.  
Low: Sleep mode or Standby mode  
High: Normal mode.  
2
NSLP  
Input  
Detail refer to section 5.2.2 or section 5.3.2  
When the SELMS pin was Low, the CLK pin is Baud late clock input.  
Input clock signal with baud rate frequency.  
(When input clock frequency was 20kHz , bit rate is 20kbps)  
When the SELMS pin was High, the CLK pin is Baud late clock output.  
Outputs clock signal with baud rate frequency.  
(When input clock frequency was 20kHz , bitrate is 20kbps)  
Open drain output.  
3
CLK  
I/O  
External pull-up resistor is required. (refer to Table 7-1)  
4
5
6
7
TXD  
GND  
BUS  
BAT  
Input  
Transmit data input  
-
I/O  
-
Ground  
CXPI BUS line Input/Output  
Battery (voltage source) supply.  
Master / slave node select input.  
Low : Master  
8
SELMS  
Input  
High : Slave  
Document Number: 002-10203 Rev.*A  
Page 5 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
4. Block Diagram  
Figure 4-1 Block Diagram  
Document Number: 002-10203 Rev.*A  
Page 6 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
5. Function Description  
5.1 Operation Modes  
Figure 5-1 State Transition Diagram  
Notes  
[0] : “Hi-z” means High impedance.  
[1] : Switching of the master / slave during operation is prohibited. Please refer to “5.4.4 Secondary Clock master”.  
[2] : Don't power on with the Normal mode. Transceiver must power on with sleep mode  
[3] : If TXD is Low when releasing Thermal shutdown, TXD have to toggle "High" before valid.  
TXD is Low signal inputs. For detail, please refer to “5.4.6 TXD Toggle”  
Document Number: 002-10203 Rev.*A  
Page 7 of 40  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.2 Master node  
Only one node in a system having function of schedule management and a primary clock master.  
Transceiver works as Master mode when Low level is applied on SELMS.  
Baud rate clock is applied on CLK pin in Master state.  
Usually transceiver is used to the "Master" or "Slave". However, except for the “Secondary Clock master function”.  
SELMS input should not be changed in normal mode.  
SELMS input should not be changed during wakeup pulse transmission in sleep mode.  
The CLK pin inputs for baud rate clock in Master state.  
Table 5-1 SELMS Pin State for master  
Pin  
Input Signal  
Master/Slave  
SELMS  
Low  
Master  
Figure 5-2 CLK Input -> BUS signal (Master)  
5.2.1  
Normal mode  
The Normal mode denotes the state to which the communication is possible.  
The master node transmits clock to CXPI BUS. It’s means the clock master.  
During the Normal mode the transmitted signal is encoded and the received signal is decoded.  
When the transmitting node transmits data to the CXPI BUS, it transmits to the TXD pin after converting the data to UART format by  
1 byte.  
The data is transmitted to the CXPI BUS as LSB first.  
When the receiving node receive data from the CXPI BUS , it revise from the RXD pin as UART format by 1byte.  
The UART format is refer to Table 5-2 UART Format  
Refer to the JASO CXPI (JASO D 015-3:2015) standard details of the operation.  
Table 5-2 UART Format  
Start bit bit 0 (LSB) bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7(MSB) Stop bit  
Document Number: 002-10203 Rev.*A  
Page 8 of 40  
 
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.2.2  
Sleep mode  
The Sleep mode denotes the state of the power saving to which each node stopped transmitting and receiving of data. All nodes  
transition to Sleep mode after power-on. Other than immediately after power-on, they also transition to Sleep mode after the Sleep  
processing was executed from the Normal mode and transition from Standby mode or Normal mode due to the CXPI BUS error.  
During the Sleep mode, when each node receives the Wakeup factor, it transitions to the Standby mode.  
The Wakeup factor is described per the system and is composed of the internal factor (e.g. detecting that the ignition has been  
turned on) and the external factor that receives the Wakeup pulse from the CXPI BUS.  
During the Sleep mode, the reception signal is received without decoding. MCU can detect a wake-up pulse width monitor the RXD  
signal.  
The sleep mode is initiated by a falling edge on the NSLP pin while TXD is already set High. The CXPI BUS transmit path is  
immediately disabled when the NSLP pin goes Low.  
All wake-up events must be maintained for a specific period (TMODE_CHG, Table 8-7).  
Table 5-3 Transition from Normal to Sleep mode  
Pin  
TXD  
Pin State  
High  
Descriptions  
No data transmitting  
CLK  
High  
No clock receiving  
NSLP  
RXD  
High to Low  
High impedance  
High impedance  
Low  
-
High level with external pullup resistor.  
BUS  
High level with external pullup resistor.  
SELMS  
-
Notes : The “Pin State” indicates before the falling edge in the NSLP pin  
Table 5-4 Transition from Sleep to Normal mode  
Pin  
TXD  
Pin State  
High  
Descriptions  
No data transmitting  
CLK  
High  
No clock receiving  
NSLP  
RXD  
Low to High  
High impedance  
High impedance  
Low  
-
High level with external pullup resistor.  
BUS  
High level with external pullup resistor.  
SELMS  
-
Notes : Table 5-4The “Pin State” indicates before the rising edge in the NSLP pin  
Document Number: 002-10203 Rev.*A  
Page 9 of 40  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 5-3 Transition Sequence Between Sleep and Normal mode  
Notes:  
[0] “Hi-Z” means High impedance.  
Table 5-5 Bitrate of 20Kbps (50us/Bit)  
UART Receive Data Number of Bits of L Level Wakeup Pulse Width  
FCH  
F8H  
F0H  
E0H  
C0H  
80H  
00H  
3bit  
4bit  
5bit  
6bit  
7bit  
8bit  
9bit  
150us  
200us  
250us  
300us  
350us  
400us  
450us  
5.2.3  
Standby mode  
The Standby mode denotes prepared state to the Normal mode after releasing the Sleep mode. During the state CLK (in slave  
node), the RXD pin and the BUS pin become High impedance state. After "TMODE_CHG," state is changed to the Normal mode.  
5.2.4  
Power-on Sequence  
At power-up, setting up Sleep mode. When VBAT is above 5.3V, the NSLP pin should be High state.  
After transition to the normal mode, To activate the BUS pin after the clock input of the 33 periods.  
Document Number: 002-10203 Rev.*A  
Page 10 of 40  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 5-4 Power-on Sequence of Master node  
Document Number: 002-10203 Rev.*A  
Page 11 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.3 Slave node  
Each node other than master node connected with system  
Transceiver works as Slave when High level is applied on SELMS.  
The CLK pin outputs baud rate clock in Slave state.  
Usually transceiver is used to the "Master" or "Slave". However, except for the “Secondary Clock master function”.  
Table 5-6 SELMS Pin State for salve  
Pin  
Input Signal  
Master/Slave  
SELMS  
High  
Slave  
SELMS input should not be changed in the Normal mode.  
SELMS input should not be changed during wakeup pulse transmission in the Sleep mode.  
The CLK pin outputs baud rate clock in Slave node.  
Figure 5-5 CLK Pin Clock Output (Slave)  
5.3.1  
Normal mode  
The Normal mode that can perform data transmitting and receiving.  
During the Normal mode the signal that is transmitted is encoded and the signal that is received is decoded.  
When the transmitting node transmits data to the CXPI BUS, it transmits to the TXD pin after converting the data to UART format by  
1 byte.  
The data is transmitted to the CXPI BUS by LSB first.  
When the receiving node receive data from the CXPI BUS , it revise from the RXD pin as UART format by 1byte.  
The UART format is shown in Table 5-7 UART Format  
Refer to the JASO CXPI (JASO D 015-3:2015) standard details of the operation.  
Table 5-7 UART Format  
Start bit bit 0 (LSB) bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7(MSB) Stop bit  
Document Number: 002-10203 Rev.*A  
Page 12 of 40  
 
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.3.2  
Sleep mode  
The Sleep mode denotes the state of the power saving to which each node stopped transmitting and receiving of data. All nodes  
transition to the Sleep mode after power-on. Other than immediately after power-on, they also transition to the Sleep mode after the  
sleep processing was executed from the Normal mode and transition from the Standby mode or the Normal mode due to the CXPI  
BUS error.  
During the Sleep mode, when each node receives the Wakeup factor, it transitions to the Standby mode.  
The Wakeup factor is described per the system and is composed of the internal factor (e.g. detecting that the ignition has been  
turned on) and the external factor that receives the Wakeup pulse from the CXPI BUS.  
During the Sleep mode, the reception signal is received without decoding.  
The sleep mode is initiated by a falling edge on the NSLP pin while the TXD pin is already set High. The CXPI BUS transmit path is  
immediately disabled when the NSLP pin goes Low.  
All wake-up events must be maintained for a specific period (TMODE_CHG, Table 8-7).  
Figure 5-6 Transition Sequence Between Sleep and Normal mode  
Table 5-8 Transition from Normal to Sleep mode  
Pin  
TXD  
Pin State  
High  
Descriptions  
No data transmitting  
CLK  
High impedance  
High to Low  
High impedance  
High impedance  
High  
High level with external pullup resistor.  
NSLP  
RXD  
-
High level with external pullup resistor.  
BUS  
High level with external pullup resistor.  
SELMS  
-
Notes: The “Pin State” indicates before the falling edge in the NSLP pin.  
Table 5-9 Transition from Sleep to Normal mode  
Pin  
TXD  
Pin State  
High  
Descriptions  
No data transmitting  
CLK  
High impedance  
Low to High  
High impedance  
High impedance  
High  
High level with external pullup resistor.  
NSLP  
RXD  
-
High level with external pullup resistor.  
BUS  
High level with external pullup resistor.  
SELMS  
-
Notes: The “Pin State” indicates before the rising edge in the NSLP pin.  
Document Number: 002-10203 Rev.*A  
Page 13 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Receiver function in Sleep mode  
During the Sleep mode, it will be output from CLK pin without decoding a received signal. The RXD pin outputs High level.  
When Master node transmits encoded PWM clock signal to CXPI BUS in wake-up sequence, Slave MCUs receive shorter Low level  
width signal than UART communication period and possibly get errors. Because Slave-node received without decoding. To avoid  
these errors, S6BT112A01 or S6BT112A02 CXPI transceiver IC outputs received signal on CLK pin in the Sleep mode.  
MCU can detect a wake-up pulse width monitor the CLK signal. (Figure 5-7)  
Figure 5-7 CLK Output of Receive SignalRXD stays High (for Slave node)  
Wakeup function  
The WakeupPulseOutput state that transmits out wakeup pulse in the Slave node.  
The slave device returns from the Sleep mode must transmit a wake-up pulse.  
At the NSLP pin is Low state, the TXD pin transmitted Low state. The TXD signal is transmitted to the BUS pin without encode.  
The TXD pin outputs signal width which is a value obtained by subtracting the TTXD_BT  
Figure 5-8 Wake-Up Pulse Transmission  
Document Number: 002-10203 Rev.*A  
Page 14 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.3.3  
Standby mode  
The standby state to the Normal mode after releasing the Sleep mode. During the state CLK (in slave node), the RXD pin and the  
BUS pin become High impedance state. After "TMODE_CHG," state is changed to the Normal mode.  
5.3.4  
Power-on Sequence  
At power-up, setting up the Sleep mode. When VBAT is above 5.3V, the NSLP pin should be High state.  
Figure 5-9 Power-on Sequence of Slave node  
Document Number: 002-10203 Rev.*A  
Page 15 of 40  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.4 Common function  
5.4.1 Over temperature protection  
The over temperature protection monitors the die temperature. If the junction temperature exceeds the shutdown junction  
temperature, TSD_H, the thermal protection circuit disables the output driver.  
The driver is enabled again when the junction temperature falls below TSD_L and theTXD pin is toggled. (Table 5-10)  
WP_ThermalShutdown  
The WP_ThermalShutdown state that detecting "Shutdown temperature" in WakeupPulseOutput mode.  
The over temperature protection is inactive in the Sleep mode.  
Table 5-10 Input Signal Change after Recovery from thermal shutdown  
Master/Slave  
Pin  
Toggle of Input Signal  
Master  
TXD  
required  
Slave  
TXD  
required  
Table 5-11 State Under thermal shutdown  
Master/Slave Pin  
Descriptions  
TXD  
Normal function  
NSLP  
CLK(input)  
RXD  
High: Normal mode / Low: Sleep mode(Thermal protection inactive)  
Master  
Normal function  
Normal function  
BUS  
High impedance  
TXD  
Normal function  
NSLP  
CLK  
High: Normal mode / Low: Sleep mode (Thermal protection inactive)  
Slave  
Normal function  
Normal function  
High impedance  
RXD  
BUS  
Document Number: 002-10203 Rev.*A  
Page 16 of 40  
 
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 5-10 Sequence of thermal shutdown  
Document Number: 002-10203 Rev.*A  
Page 17 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
5.4.2  
Low voltage reset  
The LowVoltageReset state by detecting low voltage of the BAT pin.  
This device has an integrated Power - On reset at the supply BAT and Low Voltage detection at the supply BAT.  
In case the supply voltage VBAT is dropping below the Power-On reset level VBAT<VPOR_L,change the LowPowerReset mode.  
In LowPowerReset mode the output stage is disabled and no communication to the CXPI BUS is possible.  
If the power supply VBAT reaches a higher level as the Low Voltage reset level VBAT> VPOR_H, change the Standby-mode(the NSLP  
pin is High) or Sleep-mode(the NSLP pin is Low).  
After releasing LowPowerRest mode, do the Power-up sequence.  
Table 5-12 Input Signal Change after Recovery from Low Voltage Reset  
Master/Slave  
Pin  
Toggle of Input Signal  
Master  
TXD  
required  
Slave  
TXD  
required  
Table 5-13 State Under Low voltage Reset  
Master/Slave  
Pin  
Descriptions  
SELMS  
Reset  
Reset  
Reset  
TXD  
NSLP  
CLK  
Master  
Reset(High impedance)  
High impedance  
High impedance  
Reset  
RXD  
BUS  
SELMS  
TXD  
Reset  
Reset  
NSLP  
CLK  
Slave  
Reset(High impedance)  
High impedance  
High impedance  
RXD  
BUS  
Document Number: 002-10203 Rev.*A  
Page 18 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 5-11 Low Voltage Detection  
After releasing Low voltage reset mode, logical value high is output to the BUS pin after the clock input of 33 periods.  
TXD data is valid from falling edge on the TXD pin.  
5.4.3  
Over current protection  
The current in the transmitter output stage is limited in order to protect the transmitter against short-circuit to BAT or GND pins.  
Table 5-14 Over Current Protection  
Master/Slave  
Pin  
TXD  
Descriptions  
Normal function  
NSLP  
CLK  
Normal function  
Master  
Normal function  
RXD  
BUS  
TXD  
NSLP  
CLK  
Normal function  
Output current limited by IBUS_LIM  
Normal function  
Normal function  
Slave  
Normal function  
RXD  
BUS  
Normal function  
Output current limited by IBUS_LIM  
5.4.4  
Secondary Clock Master  
The node that detects the wakeup event transmits the wakeup pulse onto the CXPI BUS. If the primary clock master cannot transmit  
the clock onto the CXPI BUS due to failure, the wakeup pulse is retransmitted. If the clock is not transmitted onto the CXPI BUS,  
each node detects the CXPI BUS error.  
The secondary clock master may transmit the clock onto the CXPI BUS instead of the primary clock master if it detects that the  
clock does not exist and confirms that the clock does not exist on the CXPI BUS for the period during which it transitions from sleep  
mode  
Document Number: 002-10203 Rev.*A  
Page 19 of 40  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Operation sequence from master to slave  
The TXD input pin is set High and The CLK pin is High impedance. Set Low on the NSLP pin initiates a transition to Sleep mode.  
After the RXD pin was confirmed to High, and the SELMS pin goes to High.  
Table 5-15 shows the pin states just before the SELMS pin input signal change.  
Table 5-15 Pin State Table (from Master to Slave)  
Pin  
TXD  
Pin State  
High  
Descriptions  
No data transmitting  
CLK  
High impedance  
Low  
High level with external pullup resistor.  
NSLP  
SELMS  
RXD  
Sleep mode  
Low to High  
High  
-
No data receiving  
BUS  
High  
No wakeup signal receiving preferred  
Figure 5-12 Application example Secondary clock master  
Document Number: 002-10203 Rev.*A  
Page 20 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 5-13 Transition Sequence from Master to Slave  
Operation sequence from slave to master  
The TXD pin was inputting high, and the slave node to transition sleep mode.  
After the CLK pin was confirmed to High, and the SELMS pin goes to Low.  
Table 5-16 Pin State Table (from Slave to Master)  
Pin  
TXD  
Pin State  
High  
Descriptions  
No data transmitting  
CLK  
High impedance  
Low  
No wakeup signal receiving  
NSLP  
SELMS  
RXD  
Sleep mode  
High to Low  
High  
-
-
BUS  
High  
No wakeup signal receiving preferred  
Notes: The pin states just before SELMS input signal change.  
Figure 5-14 Transition Sequence from Slave to Master  
5.4.5  
Arbitration  
Transceivers will arbitration a bit-by-bit. It does not arbitrate in bytes.  
Arbitration in bytes is done in the MCU.  
Document Number: 002-10203 Rev.*A  
Page 21 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
In the state of the Normal mode state, each node always compares received bit from the CXPI BUS with transmitted bit to the CXPI  
BUS. When the value of the bit is corresponding, the node may continuously transmit to the CXPI BUS. When the value of the bit  
is not corresponding, the loss of the arbitration is detected, and the transmission of the bit after that shall discontinue. If the  
transmitting node detects the losing of arbitration, it behaves as the receiving node. The data of each bit transmitted on the CXPI  
BUS performs arbitration from the start by the bit. Moreover, arbitration is performed targeted at entire field of the frame. When two  
or more nodes begin transmitting at the same time, by arbitration only the node that transmits the highest priority frame can  
complete the transmission.  
MCU to make compares between transmitted data (TXD) and received data (RXD). If the data difference is detected, MCU has to  
stop data transmission until finding IFS.  
5.4.6  
TXD Toggle  
If the TXD pin short to ground or open, the BUS pin output is not a logic value Low fixed. Therefore it does not interfere with  
communication of the other device.  
An initial TXD dominant check prevents the bus line being driven to a permanent dominant state (blocking all network  
communications) if the TXD pin is forced permanently Low by a hardware and/or software application failure. The TXD input level is  
checked after a transition to the Normal mode.  
If the TXD pin is Low, the transmit path remains disabled and is only enabled when the TXD pin goes High.  
TXD toggle required in the following cases.  
Data transmission after recovery from low voltage reset.  
Data transmission after recovery from thermal shutdown.  
First TXD data transmission in the Normal mode.  
First wake-up pulse transmission in sleep mode.  
Short-circuit from the TXD pin to ground.(failure detect)  
In the event of a short-circuit to ground or an open-wire on the TXD pin, the BUS pin output remains High(logical value ‘1) by this  
toggle function. In this case, comparing sent data to the TXD pin and received data from the RXD pin of the transceiver IC, MCU  
can detect the permanent Low on the TXD pin by the data difference.  
Even in this case receiver is active.  
Figure 5-15 Normal Transmission Sequence of Master  
Document Number: 002-10203 Rev.*A  
Page 22 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 5-16 TXD Toggle of Master after Transition to Normal mode  
Figure 5-17 Slave TXD Toggle after Recovery from Low voltage State  
Document Number: 002-10203 Rev.*A  
Page 23 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
6. Absolute Maximum Ratings  
Rating  
Parameters  
Symbol  
VBAT  
Conditions  
Min  
Unit  
Max  
Power supply voltage  
BAT pin  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
40  
V
V
V
V
V
V
V
V
VNSLP  
VSELMS  
VCLK  
NSLP pin  
SELMS pin  
CLK pin  
TXD pin  
RXD pin  
CLK pin  
BUS pin  
6.9  
18  
Input voltage  
6.9  
6.9  
6.9  
6.9  
40  
VTXD  
VRXD  
VCLK  
Output voltage  
BUS pin voltage  
BUS pin ESD  
(1.5kΩ, 100pF)  
BAT pin ESD  
VBUS  
VESDBUS  
BUS pin  
BAT pin  
-8  
-8  
8
8
kV  
kV  
VESDBAT  
(1.5kΩ, 100pF)  
NSLP pin  
SELMS pin  
CLK pin  
TXD pin  
RXD pin  
-
ESD  
VESD  
-2  
2
kV  
(1.5kΩ, 100pF)  
Storage temperature  
Maximum  
TSTG  
-55  
-40  
150  
150  
°C  
°C  
TJMAX  
-
junction temperature  
WARNING:  
1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or  
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Document Number: 002-10203 Rev.*A  
Page 24 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
7. Recommended Operating Conditions  
Table 7-1 Recommended condition  
Value  
Unit  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Power supply voltage  
Operating ambient temperature  
BUS pin pull-up resistance  
RXD pin pull-up resistance  
CLK pin pull-up resistance  
Notes  
VBAT  
Ta  
BAT pin [1]  
5.3  
-
18  
V
-
40  
+25  
1000  
10  
+125  
°C  
Ω
RMASTER  
RRXD  
RCLK  
BUS pin (Master nodeSELMS=0V)  
RXD pin  
900  
2.4  
2.4  
1100  
-
-
kΩ  
kΩ  
CLK pin (SELMS=5V)  
10  
[1]: (18V < VBAT ≤ 27V) less than 2 minutes.  
WARNING:  
1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of  
the device's electrical characteristics are warranted when the device is operated under these conditions.  
2. Any use of semiconductor devices will be under their recommended operating condition.  
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device  
failure.  
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you  
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.  
Document Number: 002-10203 Rev.*A  
Page 25 of 40  
 
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
8. Electrical Characteristics  
Table 8-1 DC Characteristics  
VBAT = 5.3V~27V[1], Ta = -40~125°C; All voltages are referenced to Pin 8 (GND); Positive currents Flow into the IC; unless  
Otherwise Specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Normal mode  
Min  
Typ  
Max  
Unit  
TXD=5V  
-
1.4  
2.9  
mA  
CLK=20kHz, Duty 50%  
Normal mode  
TXD=0V  
-
-
2.0  
4.0  
mA  
uA  
CLK=20kHz, Duty 50%  
Sleep mode  
VBAT =12V  
TXD=5V  
6
-
SELMS=5V  
BUS= VBAT  
Ta=25°C  
Sleep mode  
V
BAT =12V  
Power supply current  
IBAT  
BAT  
TXD=5V  
-
16  
-
uA  
SELMS=0V  
BUS= VBAT  
Ta=25°C  
Sleep mode  
VBAT =12V  
TXD=5V  
-
-
-
-
50  
60  
uA  
uA  
SELMS=5V  
BUS= VBAT  
Sleep mode  
VBAT =12V  
TXD=5V  
SELMS=0V  
BUS= VBAT  
BUS pin pull-up  
resistance  
RBUSpu  
BUS  
BUS  
-
20  
40  
30  
47  
kΩ  
BUS short circuit  
current  
IBUS_LIM  
VBUS=18V  
-
200  
mA  
Document Number: 002-10203 Rev.*A  
Page 26 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Pin  
Parameters  
Symbol  
Conditions  
BUS=18V  
BAT =5.3V  
Min  
Typ  
Max  
Unit  
Name  
V
BUS input leak current  
(HIGH)  
IBUS_PAS_rec  
BUS  
-
-
20  
uA  
TXD=5V  
Ta=25°C  
BUS=0V  
VBAT =12V  
TXD=5V  
BUS input leak current  
(LOW)  
IBUS_PAS_dom  
BUS  
-1  
-
-
mA  
loss of ground BUS  
leak current  
VBAT =GND=18V  
BUS=0V  
IBUS_NO_GND  
IBUS_NO_BAT  
VBUSDR  
BUS  
BUS  
BUS  
-1  
-
-
-
-
1
mA  
uA  
V
VBAT =0V  
BUS=18V  
Ta=25°C  
loss of battery BUS  
leak current  
30  
5.7  
VBAT =13.5V  
BUS drop voltage  
2.4  
IBUSsource=-100uA  
TXD=0V  
VBAT =7V  
BUS pull-up resistance=  
500Ω  
VO_dom  
BUS  
BUS  
-
-
-
1.4  
V
V
BUS low level output  
voltage  
TXD=0V  
VBAT =18V  
BUS pull-up resistance=  
500Ω  
VO_dom  
-
-
2
Receiver low level  
threshold voltage  
0.423  
VBAT  
VBUSdom  
VBUSrec  
VBUS_CNT  
VHYS  
BUS  
BUS  
BUS  
BUS  
BAT  
-
-
-
-
-
-
-
V
V
V
V
V
Receiver high level  
threshold voltage  
0.556  
VBAT  
-
Receiver center level  
voltage  
0.475  
VBAT  
0.5  
VBAT  
0.525  
VBAT  
Receiver hysteresis  
voltage  
0.133  
VBAT  
-
-
Low level power-on  
reset threshold voltage  
VPOR_L  
3.1  
3.8  
4.7  
High level power-on  
reset threshold  
voltage  
VPOR_H  
BAT  
-
3.3  
4.1  
4.9  
V
power-on reset  
hysteresis voltage  
VPOR_HYS  
TSD_H  
BAT  
-
0.2  
156  
151  
0.3  
165  
159  
0.5  
174  
168  
V
Temperature shutdown  
threshold  
-
-
[2]  
[2]  
°C  
°C  
Temperature shutdown  
release threshold  
TSD_L  
Notes  
[1]: (18V < VBAT ≤ 27V) less than 2 minutes.  
[2]: Guaranteed by design  
Document Number: 002-10203 Rev.*A  
Page 27 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Table 8-2 DC Characteristics CLK Pin (In Case of SELMS=5V, This Pin operates as Open Drain Output Pin.  
In Case of SELMS=0V, This Pin operates as Input Pin)  
VBAT = 5.3V27V[1], Ta = -40125°C; All voltages are referenced to Pin 8 (GND); Positive current Flow into the IC; unless  
Otherwise Specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
High level input voltage  
VIH_CLK  
CLK  
SELMS=0V  
2
-
-
-
6
V
Low level input voltage  
VIL_CLK  
CLK  
CLK  
SELMS=0V  
SELMS=0V  
ICLK=2.2mA  
SELMS=5V  
SELMS=5V  
SELMS=5V  
SELMS=5V  
-0.3  
0.8  
0.5  
V
V
Hysteresis range of input voltage  
VHYS_CLK  
0.03  
Low level output voltage  
VOL_CLK  
CLK  
-
-
0.6  
V
Low level current  
High level leak current  
Low level leak current  
Notes  
IOL_CLK  
IILH_CLK  
IILL_CLK  
CLK  
CLK  
CLK  
1.3  
-3  
3
-
-
mA  
uA  
uA  
3
3
-3  
-
[1]: (18V < VBAT ≤ 27V) less than 2 minutes.  
Table 8-3 DC Characteristics NSLP Pin  
VBAT = 5.3V~27V[1], Ta = -40~125°C; All voltages are referenced to Pin 8 (GND); Positive current Flow into the IC; unless  
Otherwise Specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
High level input voltage  
-
-
-
VIH_NSLP  
NSLP  
2
-
6
V
NSLP  
NSLP  
NSLP  
NSLP  
Low level input voltage  
Hysteresis range of input voltage  
Internal pull-down resistance  
Low level leak current  
Notes  
VIL_NSLP  
VHYS_NSLP  
RPD_NSLP  
IILL_NSLP  
-0.3  
0.03  
100  
-3  
-
0.8  
0.5  
650  
3
V
V
-
250  
-
NSLP=5V  
NSLP=0V  
kΩ  
uA  
[1]: (18V < VBAT ≤ 27V) less than 2 minutes  
Document Number: 002-10203 Rev.*A  
Page 28 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Table 8-4 TXD Pin  
VBAT = 5.3V~27V[1], Ta = -40~125°C; All voltages are referenced to Pin 8 (GND); Positive current Flow into the IC; unless  
Otherwise Specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
High level input voltage  
VIH_TXD  
TXD  
-
2
-
6
V
Low level input voltage  
Hysteresis range of input voltage  
Internal pull-up resistance  
High level leak current  
Notes  
VIL_TXD  
VHYS_TXD  
RPU_TXD  
IILH_TXD  
TXD  
TXD  
TXD  
TXD  
-
-0.3  
0.03  
50  
-
0.8  
0.5  
325  
3
V
V
-
-
125  
-
TXD=0V  
TXD=5V  
kΩ  
uA  
-3  
[1]: (18V < VBAT ≤ 27V) less than 2 minutes  
Table 8-5 SELMS Pin  
VBAT = 5.3V~27V[1], Ta = -40~125°C; All voltages are referenced to Pin 8 (GND); Positive current Flow into the IC; unless  
Otherwise Specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
High level input voltage  
VIH_SELMS  
SELMS  
-
2
-
6
V
SELMS  
SELMS  
SELMS  
SELMS  
Low level input voltage  
Hysteresis range of input voltage  
Internal pull-up resistance  
High level leak current  
Notes  
VIL_SELMS  
VHYS_SELMS  
RPU_SELMS  
IILH_SELMS  
-
-0.3  
0.03  
200  
-3  
-
0.8  
0.5  
1300  
3
V
V
-
-
500  
-
SELMS=0V  
SELMS=5V  
kΩ  
uA  
[1]: (18V < VBAT ≤ 27V) less than 2 minutes  
Table 8-6 RXD Pin (Open Drain Output)  
VBAT = 5.3V~27V[1], Ta = -40~125°C; All voltages are referenced to Pin 8 (GND); Positive current Flow into the IC; unless  
Otherwise Specified.  
Parameters  
Symbol  
Pin Name  
Conditions  
Min  
Typ  
Max  
Unit  
RXD  
Low level output voltage  
VOL_RXD  
IRXD=2.2mA  
-
-
0.6  
V
RXD  
RXD  
RXD  
Low level current  
High level leak current  
Low level leak current  
Notes  
IOL_RXD  
IOLH_RXD  
IOLL_RXD  
RXD=0.4V  
RXD=5V  
RXD=0V  
1.3  
-3  
3
-
-
mA  
uA  
uA  
3
3
-3  
-
[1]: (18V < VBAT27V) less than 2 minutes  
Document Number: 002-10203 Rev.*A  
Page 29 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Table 8-7 AC Characteristics  
VBAT = 5.3V~27V[1], Ta = -40~125°C BUS Load 1kΩ /1nF; unless Otherwise Specified.  
Pin  
Parameters  
Bitrate  
Symbol  
Nam  
e
Conditions  
Min  
Typ  
Max  
Unit  
TBUAD  
BUS  
VTH(bus) [3]=0.5VBAT  
2.4  
-
20  
kbps  
Mode transition time  
(Sleep to Normal or  
Normal to Sleep.)  
TMODE_CHG  
NSLP VTH(5v)[4]=50%  
-
-
1
ms  
CLK  
NSLP wait time  
TSLP_WT  
TSLP_MN  
VTH(5v) [4]=50%  
NSLP  
100  
1
-
-
-
-
us  
Minimum sleep time  
NSLP  
-
ms  
NLSP = 0V  
SELMS = 5V  
Driver boot time under  
sleep mode. [2]  
TTXD_BT  
TXD  
-
-
195  
us  
V
V
TH(5v)[4]=50%  
TH(bus)[3]=0.3VBAT  
NLSP = 5V  
SELMS = 0V  
CLK=input clock  
TXD=5V  
CLK transmission delay  
time  
TCLK_PD  
CLK  
-
-
0.9  
Tbit[5]  
V
V
TH(5v)[4]=50%  
TH(bus)[3]=0.3VBAT  
NLSP = 5V  
SELMS = 0V  
CLK=input clock  
TXD=5V  
Time of Low level of  
logic value '1'  
0.39Tbit  
+6τ  
Ttx_1_lo_rec  
BUS  
BUS  
-
-
-
-
V
TH(bus)[3]=0.7VBAT  
NLSP = 5V  
SELMS = 0V  
CLK=input clock  
TXD=5V  
Time of Low level of  
logic value '1'  
Ttx_1_lo_dom  
0.11  
-
Tbit  
V
TH(bus)[3]=0.3 VBAT  
NLSP = 5V  
TXD=0V  
Ttx_1_lo_rec  
Time of Low level of  
logic value '0'  
Ttx_0_lo_rec  
BUS  
BUS  
-
-
-
-
-
-
+0.06Tbit  
V
TH(bus) [3]=0.7 VBAT  
NLSP = 5V  
TXD=0V  
Ttx_1_lo_dom  
Time of Low level of  
logic value '0'  
Ttx_0_lo_dom  
+0.06Tbit  
V
TH(bus) [3]=0.3 VBAT  
Document Number: 002-10203 Rev.*A  
Page 30 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Pin  
Nam  
e
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NLSP = 5V  
TXD=0V  
TH(bus) [3]=0.556 VBAT  
High level time at  
receiving node.  
Ttx_0_hi  
BUS  
0.06  
-
-
Tbit  
V
NSLP=5V  
VTH(bus) [3]=VBUSdom  
Receiver delay time  
TRXD_PD  
TTXD_PD  
TICLK_DY  
TOCLK_DY  
RXD  
TXD  
CLK  
CLK  
-
-
-
-
-
2.4  
3.3  
70  
Tbit  
Tbit  
%
Delay time of  
transmission if logic  
value '0'.  
NSLP=5V  
VTH(bus) [3]=0.3 VBAT  
-
SELMS=0V  
Input clock duty  
30  
14  
V
TH(5v)[4]=50%  
SELMS=5V  
VTH(5v)[4]=50%  
Output clock duty[6]  
50  
%
NSLP=0V  
Wakeup pulse filter  
constant(Master)  
SELMS=0V  
Trx_wakeup_master  
BUS  
BUS  
30  
-
-
150  
5
us  
us  
VTH(bus) [3]=42.3%  
NSLP=0V  
Wakeup pulse filter  
constant(Slave)  
Trx_wakeup_slave  
SELMS=5V  
0.5  
V
TH(bus) [3]=42.3%  
NSLP=5V  
Time of bus slope from  
minimum  
Ttx_1_dom_m  
BUS  
BUS  
SELMS=0V  
-
-
-
0.16  
Tbit  
V
TH(bus) [3]=0.3 VBAT  
Recessive level of  
logical value ‘0.  
V_rec_0  
NSLP=5V  
0.93  
-
V_rec_1  
Notes  
[1]: (18V < VBAT ≤ 27V) less than 2 minutes  
RXD pin load: 20pF  
[2]: CXPI BUS load (Figure 8-12) : 10nF/500Ω  
[3]: VTH(bus)threshold of BUS pin  
[4]: VTH(5v) threshold of NSLP,CLK,TXD,SELMS,RXD pins.  
[5]: Tbit stands for 1bit time.(Figure 8-1)  
[6]: logic '0/1' threshold clock  
Document Number: 002-10203 Rev.*A  
Page 31 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 8-1 Definition of Tbit  
Figure 8-2 Mode Transition Time  
Figure 8-3 NSLP Wait Time  
Figure 8-4 Minimum Sleep Time  
Document Number: 002-10203 Rev.*A  
Page 32 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 8-5 Driver boot Time Under Sleep Mode  
Figure 8-6 CLK Transmission Delay Time  
Document Number: 002-10203 Rev.*A  
Page 33 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 8-7 Logic low and high CXPI BUS Waveform  
Figure 8-8 Receiver Delay Time  
Document Number: 002-10203 Rev.*A  
Page 34 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 8-9 Logic low Transmission Delay Time  
Figure 8-10 Wakeup pulse waveform  
Document Number: 002-10203 Rev.*A  
Page 35 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Figure 8-11 CXPI BUS Load Connection  
Document Number: 002-10203 Rev.*A  
Page 36 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
9. Ordering Information  
Part Number  
Package  
S6BT112A01SSB1002  
8Pin 150-mil SOIC  
S6BT112A01SSBB002  
S6BT112A02SSB1002  
S6BT112A02SSBB002  
8Pin 150-mil SOIC Tape and Real  
8Pin 150-mil SOIC  
8Pin 150-mil SOIC Tape and Real  
Document Number: 002-10203 Rev.*A  
Page 37 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
10.Package Dimensions  
D
A
C
Document Number: 002-10203 Rev.*A  
Page 38 of 40  
 
PRELIMINARY  
S6BT112A01/S6BT112A02  
Document History  
Document Title: S6BT112A01/S6BT112A02 ASSP CXPI Transceiver IC for Automotive Network  
Document Number: 002-10203  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
Initial release  
New Spec.  
**  
5046456  
AKFU  
12/11/2015  
04/06/2016  
Revised the sentence style of the cover page  
Changed all section 5 for easy to understand.  
Changed figure of application.  
*A  
5208207  
AKFU  
Changed Figure 4-1 and Figure 5-1.  
Removed Driver recovery time when over-temperature detection is released.”  
Document Number: 002-10203 Rev.*A  
Page 39 of 40  
PRELIMINARY  
S6BT112A01/S6BT112A02  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the  
office closest to you, visit us at Cypress Locations.  
Products  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
PSoC® Solutions  
cypress.com/psoc  
Automotive  
Clocks & Buffers  
Interface  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
Community | Forums | Blogs | Video | Training  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
© Cypress Semiconductor Corporation 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then  
Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form,  
to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end  
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license  
(without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software  
solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or  
compilation of the Software is prohibited.  
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or  
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application  
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of  
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or  
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any  
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in  
whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall  
indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of  
Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the  
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-10203 Rev.*A  
April 6, 2016  
Page 40 of 40  

相关型号:

S6BT112A02SSBB002

Interface Circuit,
CYPRESS

S6BT112A02SSBB002

S6BT112A CXPI Transceiver
INFINEON

S6BT112A02SSBB202

S6BT112A CXPI Transceiver
INFINEON

S6C0641

6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0647

256 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0649

256 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0655

120 / 128 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0657

263 / 256 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0666

6 BIT 384 CHANNEL RSDS TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0668

6 BIT 384 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0670

8 BIT 384 / 402 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0671

8 BIT 384 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG