W216 [CYPRESS]

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133; 扩频FTG的440BX和威盛Apollo Pro的-133
W216
型号: W216
厂家: CYPRESS    CYPRESS
描述:

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
扩频FTG的440BX和威盛Apollo Pro的-133

文件: 总14页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W216  
Spread Spectrum FTG for 440BX and VIA Apollo Pro-133  
Features  
Table 1. Mode Input Table  
Mode  
Pin 3  
PCI_STOP#  
REF0  
• Maximized EMI Suppression using Cypress’s Spread  
Spectrum Technology  
• Single chip system FTG for Intel 440BX AGPset and  
VIA Apollo Pro-133  
0
1
®
Table 2. Pin Selectable Frequency  
Input Address  
• Three copies of CPU output  
• Seven copies of PCI output  
• One 48-MHz output for USB / One 24-MHz for SIO  
• Two buffered reference outputs  
• Two IOAPIC outputs  
CPU_F, 1:2  
PCI_F, 0:5  
FS3 FS2 FS1 FS0  
(MHz)  
133.3  
124  
(MHz)  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
33.3 (CPU/4)  
31 (CPU/4)  
37.5 (CPU/4)  
35 (CPU/4)  
35 (CPU/3)  
36.7 (CPU/3)  
38.3 (CPU/3)  
40 (CPU/3)  
33.3 (CPU/3)  
• Seventeen SDRAM outputs provide support for 4  
DIMMs  
150  
140  
• Supports frequencies up to 150 MHz  
105  
2
• I C™ interface for programming  
110  
• Power management control inputs  
115  
Key Specifications  
120  
100  
CPU Cycle-to-Cycle Jitter:.......................................... 250 ps  
CPU to CPU Output Skew: ......................................... 175 ps  
PCI to PCI Output Skew: ............................................ 500 ps  
SDRAMIN to SDRAM0:15 Delay: ..........................3.7 ns typ.  
Reserved  
112  
103  
66.8  
83.3  
75  
37.3 (CPU/3)  
34.3 (CPU/3)  
33.4 (CPU/2)  
41.7 (CPU/2)  
37.5 (CPU/2)  
V
V
: .................................................................... 3.3V±5%  
: .................................................................... 2.5V±5%  
DDQ3  
DDQ2  
SDRAM0:15 (leads) to SDRAM_F Skew: ..............0.4 ns typ.  
Reserved  
Pin Configuration[1]  
Block Diagram  
VDDQ3  
REF0/(PCI_STOP#)  
VDDQ3  
REF1/FS2  
REF0/(PCI_STOP#)  
GND  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDDQ2  
REF1/FS2  
IOAPIC0  
IOAPIC_F  
GND  
2
X1  
X2  
XTAL  
OSC  
3
4
PLL Ref Freq  
X1  
X2  
5
CPU_F  
CPU1  
VDDQ2  
CPU2  
GND  
VDDQ2  
6
7
8
9
Stop  
Clock  
Control  
IOAPIC_F  
I/O Pin  
Control  
VDDQ3  
PCI_F/MODE  
PCI0/FS3  
GND  
IOAPIC0  
CLK_STOP#  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CLK_STOP#  
SDRAM_F  
VDDQ3  
SDRAM0  
SDRAM1  
GND  
SDRAM2  
SDRAM3  
SDRAM4  
SDRAM5  
VDDQ3  
SDRAM6  
SDRAM7  
GND  
VDDQ2  
CPU_F  
PCI1  
PCI2  
PCI3  
PCI4  
VDDQ3  
PCI5  
SDRAMIN  
SDRAM11  
SDRAM10  
VDDQ3  
SDRAM9  
SDRAM8  
GND  
Stop  
Clock  
CPU1  
CPU2  
Control  
PLL 1  
÷2,3,4  
VDDQ3  
PCI_F/MODE  
PCI0/FS3  
PCI1  
Stop  
Clock  
Control  
PCI2  
PCI3  
SDRAM15  
SDRAM14  
GND  
SDRAM12  
SDRAM13  
VDDQ3  
24MHz/FS0  
48MHz/FS1  
25  
26  
27  
28  
2
SDATA  
SCLK  
I C  
PCI4  
SDATA  
SCLK  
Logic  
PCI5  
VDDQ3  
Note:  
48MHz/FS1  
PLL2  
1. Internal pull-up resistors should not be relied upon for setting I/O  
pins HIGH. Pin function with parentheses determined by MODE pin  
resistor strapping. Unlike other I/O pins, input FS3 has an internal  
pull-down resistor.  
24MHz/FS0  
VDDQ3  
SDRAM0:15  
Stop  
Clock  
SDRAMIN  
Control  
16  
SDRAM_F  
Intel is a registered trademark of Intel Corporation. I2C is a trademark of Philips Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 27, 1999, rev. **  
PRELIMINARY  
W216  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
CPU1:2  
51, 49  
O
O
O
CPU Outputs 1 and 2: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Tables 2 and 6. These outputs are affected by the CLK_STOP# input.  
CPU_F  
52  
Free-Running CPU Output: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Tables 2 and 6. This output is not affected by the CLK_STOP# input.  
PCI1:5  
11,12, 13, 14,  
16  
PCI Outputs 1 through 5: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Tables 2 and 6. These outputs are affected by the PCI_STOP# input.  
PCI0/FS3  
9
I/O PCI Output/Frequency Select Input: As an output, frequency is set by the FS0:3 inputs  
or through serial input interface, see Tables 2 and 6. This output is affected by the  
PCI_STOP# input. When an input, latches data selecting the frequency of the CPU and  
PCI outputs.  
PCI_F/MODE  
CLK_STOP#  
IOAPIC_F  
8
I/O Free Running PCI Output: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Tables 2 and 6. This output is not affected by the PCI_STOP# input. When  
an input, selects function of pin 3 as described in Table 1.  
47  
54  
I
CLK_STOP# Input: When brought LOW, affected outputs are stopped LOW after com-  
pleting a full clock cycle (23 CPU clock latency). When brought HIGH, affected outputs  
start beginning with a full clock cycle (23 CPU clock latency).  
O
Free-running IOAPIC Output: This output is a buffered version of the reference input  
which is not affected by the CPU_STOP# logic input. Its swing is set by voltage applied  
to VDDQ2.  
IOAPIC0  
55  
29  
I/O IOAPIC Output: Provides 14.318-MHz fixed frequency. The output voltage swing is set  
by voltage applied to VDDQ2. This output is disabled when CLK_STOP# is set LOW.  
48MHz/FS1  
I/O 48-MHz Output: 48 MHz is provided in normal operation. In standard systems, this  
output can be used as the reference for the Universal Serial Bus. Upon power up, FS1  
input will be latched, setting output frequencies as described in Table 2.  
24MHz/FS0  
REF1/FS2  
30  
I/O 24-MHz Output: 24 MHz is provided in normal operation. In standard systems, this  
output can be used as the clock input for a Super I/O chip. Upon power up, FS0 input  
will be latched, setting output frequencies as described in Table 2.  
2
3
I/O Reference Output: 14.318 MHz is provided in normal operation. Upon power-up, FS2  
input will be latched, setting output frequencies as described in Table 2.  
REF0  
(PCI_STOP#)  
I/O Fixed 14.318-MHz Output 0 or PCI_STOP# Pin: Function determined by MODE pin.  
The PCI_STOP# input enables the PCI 0:5 outputs when HIGH and causes them to  
remain at logic 0 when LOW. The PCI_STOP signal is latched on the rising edge of  
PCI_F. Its effects take place on the next PCI_F clock cycle. As an output, this pin provides  
a fixed clock signal equal in frequency to the reference signal provided at the X1/X2 pins  
(14.318 MHz).  
SDRAMIN  
17  
I
Buffered Input Pin: The signal provided to this input pin is buffered to 17 outputs  
(SDRAM0:15, SDRAM_F).  
SDRAM0:15  
44,43, 41, 40,  
39,38, 36, 35,  
22,21, 19, 18,  
33, 32, 25, 24  
Buffered Outputs: These sixteen dedicated outputs provide copies of the signal pro-  
vided at the SDRAMIN input. The swing is set by VDDQ3, and they are deactivated when  
CLK_STOP# input is set LOW.  
O
SDRAM_F  
46  
O
I
Free-Running Buffered Output: This output provides a single copy of the SDRAMIN  
input. The swing is set by VDDQ3; this signal is unaffected by the CLK_STOP# input.  
2
SCLK  
SDATA  
X1  
28  
27  
5
Clock pin for I C circuitry.  
2
I/O Data pin for I C circuitry.  
I
Crystal Connection or External Reference Frequency Input: This pin has dual func-  
tions. It can be used as an external 14.318-MHz crystal connection or as an external  
reference frequency input.  
X2  
6
I
Crystal Connection: An input connection for an external 14.318-MHz crystal. If using  
an external reference, this pin must be left unconnected.  
VDDQ3  
1, 7, 15, 20,  
31, 37, 45  
P
Power Connection: Power supply for core logic, PLL circuitry, SDRAM outputs buffers,  
PCI output buffers, reference output buffers and 48-MHz/24-MHz output buffers. Con-  
nect to 3.3V.  
VDDQ2  
50, 56  
P
Power Connection: Power supply for IOAPIC and CPU output buffers. Connect to 2.5V  
or 3.3V.  
2
PRELIMINARY  
W216  
Pin Definitions (continued)  
Pin  
Pin Name  
GND  
Pin No.  
Type  
Pin Description  
4, 10, 23, 26,  
34, 42, 48, 53  
G
Ground Connections: Connect all ground pins to the common system ground plane.  
tor on the l/O pins to pull the pins and their associated capac-  
itive clock load to either a logic HIGH or LOW state. At the end  
of the 2-ms period, the established logic 0or 1condition of  
the l/O pin is latched. Next the output buffer is enabled, con-  
verting the l/O pins into operating clock outputs. The 2-ms tim-  
Overview  
The W216 was designed as a single-chip alternative to the  
standard two-chip Intel 440BX AGPset clock solution. It pro-  
vides sufficient outputs to support most single-processor, four  
SDRAM DIMM designs.  
er starts when V reaches 2.0V. The input bits can only be  
DD  
reset by turning V off and then back on again.  
DD  
Functional Description  
It should be noted that the strapping resistors have no signifi-  
cant effect on clock output signal integrity. The drive imped-  
ance of clock output (<40, nominal), which is minimally af-  
I/O Pin Operation  
Pins 2, 8, 9, 29, and 30 are dual-purpose l/O pins. Upon power-  
up these pins act as logic inputs, allowing the determination of  
assigned device functions. A short time after power-up, the  
logic state of each pin is latched and the pins become clock  
outputs. This feature reduces device pin count by combining  
clock outputs with input select pins.  
fected by the 10-kstrap to ground or V . As with the series  
DD  
termination resistor, the output strapping resistor should be  
placed as close to the l/O pin as possible in order to keep the  
interconnecting trace short. The trace from the resistor to  
ground or V should be kept less than two inches in length  
DD  
to prevent system noise coupling during input logic sampling.  
An external 10-kstrappingresistor is connected between  
When the clock outputs are enabled following the 2-ms input  
period, the specified output frequency is delivered on the pin,  
assuming that V has stabilized. If V has not yet reached  
the l/O pin and ground or V . Connection to ground sets a  
DD  
latch to 0,connection to V sets a latch to 1.Figure 1 and  
DD  
DD  
DD  
Figure 2 show two suggested methods for strapping resistor  
connections.  
full value, output frequency initially may be below target but will  
increase to target once V voltage has stabilized. In either  
DD  
case, a short output clock cycle may be produced from the  
CPU clock outputs when the outputs are enabled.  
Upon W216 power-up, the first 2 ms of operation is used for  
input logic selection. During this period, the five I/O pins (2, 8,  
9, 29, 30) are three-stated, allowing the output strapping resis-  
VDD  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
W216  
Output  
Buffer  
R
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
Jumper Options  
Output Strapping Resistor  
Series Termination Resistor  
VDD  
10 k  
Clock Load  
W216  
R
Output  
Buffer  
Resistor Value R  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
3
PRELIMINARY  
W216  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Frequency Timing Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 3.  
The output clock is modulated with a waveform depicted in  
Figure 4. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is specified in Table 6. Figure 4  
details the Cypress spreading pattern. Cypress does offer op-  
tions with more spread and greater EMI reduction. Contact  
your local Sales representative for details on these devices.  
As shown in Figure 3, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is  
Spread Spectrum clocking is activated or deactivated by se-  
dB = 6.5 + 9*log (P) + 9*log (F)  
lecting the appropriate values for bits 10 in data byte 0 of the  
I C data stream. Refer to Table 7 for more details.  
10  
10  
2
EMI Reduction  
Spread  
Non-  
Spread  
Spectrum  
Spectrum  
Enabled  
Figure 3. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX  
MIN  
Figure 4. Typical Modulation Profile  
4
PRELIMINARY  
W216  
chipset. Clock device register changes are normally made  
upon system initialization, if any are required. The interface  
can also be used during system operation for power manage-  
ment functions. Table 3 summarizes the control functions of  
the serial data interface.  
Serial Data Interface  
The W216 features a two-pin, serial data interface that can be  
used to configure internal register settings that control partic-  
ular device functions. Upon power-up, the W216 initializes with  
default register settings, therefore the use of this serial data  
interface is optional. The serial interface is write-only (to the  
clock chip) and is the dedicated function of device pins SDATA  
and SCLOCK. In motherboard applications, SDATA and  
SCLOCK are typically driven by two logic outputs of the  
Operation  
Data is written to the W216 in eleven bytes of eight bits each.  
Bytes are written in the order shown in Table 4.  
Table 3. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Output Disable  
Any individual clock output(s) can be disabled. Dis- Unused outputs are disabled to reduce EMI  
abled outputs are actively held low.  
and system power. Examples are clock out-  
puts to unused PCI slots.  
CPU Clock Frequency  
Selection  
Provides CPU/PCI frequency selections alternate For alternate microprocessors and power  
to the selections that are provided by the FS0:3 management options. Smooth frequency tran-  
pins. Frequency is changed in a smooth and con- sition allows CPU frequency change under  
trolled fashion.  
normal system operation.  
Spread Spectrum  
Enabling  
Enables or disables spread spectrum clocking.  
For EMI reduction.  
Output Three-state  
Test Mode  
Puts all clock outputs into a high-impedance state. Production PCB testing.  
All clock outputs toggle in relation to X1 input, inter- Production PCB testing.  
nal PLL is bypassed. Refer to Table 5.  
(Reserved)  
Reserved function for future device revision or pro- No user application. Register bit must be writ-  
duction device testing.  
ten as 0.  
Table 4. Byte Writing Sequence  
Byte Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address 11010010  
Commands the W216 to accept the bits in Data Bytes 07 for internal  
register configuration. Since other devices may exist on the same com-  
mon serial data bus, it is necessary to have a specific slave address for  
each potential receiver. The slave receiver address for the W216 is  
11010010. Register setting will not be made if the Slave Address is not  
correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Dont Care  
Dont Care  
Unused by the W216, therefore bit values are ignored (dont care). This  
byte must be included in the data write sequence to maintain proper byte  
allocation. The Command Code Byte is part of the standard serial com-  
munication protocol and may be used when writing to another ad-  
dressed slave receiver on the serial data bus.  
Byte Count  
Unused by the W216, therefore bit values are ignored (dont care). This  
byte must be included in the data write sequence to maintain proper byte  
allocation. The Byte Count Byte is part of the standard serial communi-  
cation protocol and may be used when writing to another addressed  
slave receiver on the serial data bus.  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Data Byte 7  
Refer to Table 5 The data bits in Data Bytes 07 set internal W216 registers that control  
device operation. The data bits are only accepted when the Address  
Byte bit sequence is 11010010, as noted above. For description of bit  
control functions, refer to Table 5, Data Byte Serial Configuration Map.  
6
7
8
9
10  
11  
Dont Care  
Unused by the W216, therefore bit values are ignored (dont care).  
5
PRELIMINARY  
W216  
Writing Data Bytes  
Table 6 details additional frequency selections that are avail-  
able through the serial data interface.  
Each bit in Data Bytes 07 controls a particular device function  
except for the reservedbits which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
7. Table 5 gives the bit formats for registers located in Data  
Bytes 07.  
Table 7 details the select functions for Byte 0, bits 1 and 0.  
Table 5. Data Bytes 07 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s) Pin No.  
Data Byte 0  
Pin Name  
Control Function  
0
1
Default  
7
6
5
4
3
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
--  
--  
0
0
0
0
0
SEL2  
Refer to Table 6  
Refer to Table 6  
Refer to Table 6  
SEL1  
SEL0  
Frequency Table Selection  
Frequency Con-  
trolled by FS (3:0)  
Table 2  
Frequency Con-  
trolled by SEL (3:0)  
Table 6  
2
--  
--  
--  
--  
SEL3  
Refer to Table 6  
0
0
0
1
Spread Spectrum --  
OFF  
ON  
0
Test Mode  
--  
Normal  
Three-stated  
Data Byte 1  
7
6
5
4
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
1
1
1
1
--  
--  
--  
--  
--  
--  
--  
--  
--  
3
2
1
0
46  
49  
51  
52  
SDRAM_F  
CPU2  
CPU1  
CPU_F  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Data Byte 2  
7
6
--  
8
--  
(Reserved)  
--  
--  
0
1
1
1
1
1
1
1
PCI_F  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
5
4
3
2
1
0
16  
14  
13  
12  
11  
9
Data Byte 3  
7
6
--  
--  
--  
--  
(Reserved)  
--  
--  
0
0
1
1
1
(Reserved)  
--  
--  
5
4
3
29  
30  
48MHz  
24MHz  
SDRAM12:15  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Active  
Active  
Active  
33, 32,  
25, 24  
6
PRELIMINARY  
W216  
Table 5. Data Bytes 07 Serial Configuration Map (continued)  
Affected Pin  
Bit Control  
Bit(s) Pin No.  
Pin Name  
Control Function  
0
1
Default  
2
1
0
22, 21,  
19, 18  
SDRAM8:11  
Clock Output Disable  
Low  
Active  
1
39, 38,  
36, 35  
SDRAM4:7  
SDRAM0:3  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
1
1
44, 43,  
41, 40  
Data Byte 4  
7
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
0
0
0
6
5
4
3
2
1
0
Data Byte 5  
7
6
--  
--  
--  
--  
(Reserved)  
--  
--  
--  
--  
0
0
1
1
0
0
1
1
(Reserved)  
5
4
3
2
1
0
54  
55  
--  
IOAPIC_F  
IOAPICO  
--  
Disabled  
Low  
Low  
--  
Active  
Active  
--  
Disabled  
(Reserved)  
--  
--  
(Reserved)  
--  
--  
2
REF1  
REF0  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
3
7
PRELIMINARY  
W216  
Table 6. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Output Frequency  
Spread On  
Data Byte 0, Bit 3 = 1  
Bit 2  
Bit 6  
Bit 5  
Bit 4  
CPU, SDRAM  
PCI Clocks  
(MHz)  
SEL_3  
SEL_2  
SEL_1  
SEL_0  
Clocks (MHz)  
133.3  
124  
Spread Percentage  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
0.5% Down  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
33.3 (CPU/4)  
31 (CPU/4)  
37.5 (CPU/4)  
35 (CPU/4)  
35 (CPU/3)  
36.7 (CPU/3)  
38.3 (CPU/3)  
40 (CPU/3)  
33.3 (CPU/3)  
150  
140  
105  
110  
115  
120  
100  
Reserved  
112  
103  
66.8  
83.3  
75  
37.3 (CPU/3)  
34.3 (CPU/3)  
33.4 (CPU/2)  
41.7 (CPU/2)  
37.5 (CPU/2)  
Reserved  
Table 7. Select Function for Data Byte 0, Bits 0:1  
Input Conditions  
Output Conditions  
Data Byte 0  
PCI_F,  
PCI0:5  
REF0:1,  
Function  
Normal Operation  
Spread Spectrum  
Bit 1  
Bit 0  
CPU_F, 1:2  
Note 2  
IOAPIC0,_F  
48MHZ  
24MHZ  
24 MHz  
24 MHz  
Hi-Z  
0
1
0
0
1
Note 2  
Note 2  
Hi-Z  
14.318 MHz  
14.318 MHz  
Hi-Z  
48 MHz  
48 MHz  
Hi-Z  
Note 2  
Three-state  
X
Hi-Z  
Note:  
2. CPU and PCI frequency selections are listed in Table 2 and Table 6.  
8
PRELIMINARY  
W216  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
55 to +125  
0 to +70  
Unit  
V
V
, V  
DD IN  
T
T
°C  
°C  
°C  
kV  
STG  
B
Ambient Temperature under Bias  
Operating Temperature  
T
A
ESD  
Input ESD Protection  
2 (min.)  
PROT  
DC Electrical Characteristics: T = 0°C to +70°C, V  
= 3.3V±5%, V = 2.5V±5%  
DDQ2  
A
DDQ3  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
3.3V Supply Current  
CPU_F, 1:2 = 100 MHz  
Outputs Loaded  
320  
40  
mA  
mA  
DD  
[3]  
I
2.5V Supply Current  
CPU_F, 1:2 = 100 MHz  
DD  
[3]  
Outputs Loaded  
Logic Inputs  
V
V
Input Low Voltage  
Input High Voltage  
GND 0.3  
0.8  
V
IL  
2.0  
V
+ 0.3  
DD  
V
IH  
[4]  
I
I
I
I
Input Low Current  
25  
10  
µA  
µA  
µA  
µA  
IL  
[4]  
Input High Current  
IH  
IL  
Input Low Current (SEL100/66#)  
Input High Current (SEL100/66#)  
5  
+5  
IH  
Clock Outputs  
V
Output Low Voltage  
Output High Voltage  
Output High Voltage CPU_F, 1:2 IOAPIC  
Output Low Current CPU_F, 1:2  
PCI_F, PCI0:5  
I
I
I
= 1 mA  
50  
mV  
V
OL  
OL  
OH  
OH  
V
= 1 mA  
= 1 mA  
3.1  
2.2  
60  
96  
72  
61  
60  
60  
95  
43  
76  
60  
50  
50  
50  
75  
OH  
V
V
OH  
I
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 1.25V  
= 1.5V  
= 1.25V  
= 1.5V  
= 1.5V  
= 1.5V  
= 1.5V  
= 1.25V  
= 1.5V  
= 1.25V  
= 1.5V  
= 1.5V  
= 1.5V  
= 1.5V  
73  
110  
92  
71  
70  
70  
110  
60  
96  
90  
60  
60  
60  
95  
85  
130  
110  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
IOAPIC0, IOAPIC_F  
REF0:1  
48-MHz  
80  
24-MHz  
80  
SDRAM0:15,_F  
130  
80  
I
Output High Current CPU_F, 1:2  
PCI_F, PCI0:5  
OH  
120  
130  
72  
IOAPIC0, IOAPIC_F  
REF0:1  
48-MHz  
72  
24-MHz  
72  
SDRAM0:15,_F  
120  
Notes:  
3. All clock outputs loaded with 6" 60transmission lines with 22-pF capacitors.  
4. W216 logic inputs (except FS3) have internal pull-up devices (pull-ups not full CMOS level). Logic input FS3 has an internal pull-down device.  
9
PRELIMINARY  
W216  
DC Electrical Characteristics: T = 0°C to +70°C, V  
= 3.3V±5%, V  
= 2.5V±5% (continued)  
DDQ2  
A
DDQ3  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Crystal Oscillator  
[5]  
V
X1 Input Threshold Voltage  
V
= 3.3V  
DDQ3  
1.65  
14  
V
TH  
C
Load Capacitance, Imposed on  
pF  
LOAD  
[6]  
External Crystal  
[7]  
C
X1 Input Capacitance  
Pin X2 unconnected  
Except X1 and X2  
28  
pF  
IN,X1  
Pin Capacitance/Inductance  
C
C
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
5
6
7
pF  
pF  
nH  
IN  
OUT  
IN  
L
AC Electrical Characteristics  
T = 0°C to +70°C, V  
= 3.3V±5%,V  
= 2.5V± 5% f = 14.31818 MHz  
XTL  
A
DDQ3  
DDQ2  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output; Spread Spectrum is disabled.  
CPU Clock Outputs, CPU_F, 1:2 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 100 MHz  
CPU = 133 MHz  
Test Condition/  
Comments  
Parameter  
Description  
Period  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
t
t
t
t
t
t
t
Measured on rising edge  
at 1.25  
15  
5.2  
5.0  
1
15.5 10  
3.0  
10.5 7.5  
1.87  
8.0  
ns  
ns  
P
High Time  
Low Time  
Duration of clock cycle  
above 2.0V  
H
L
Duration of clock cycle  
below 0.4V  
2.8  
1.67  
ns  
Output Rise  
Edge Rate  
Measured from 0.4V to  
2.0V  
4
4
1
1
4
4
1
1
4
4
V/ns  
V/ns  
%
R
F
OutputFallEdge Measured from 2.0V to  
Rate  
1
0.4V  
Duty Cycle  
Measured on rising and  
falling edge at 1.25V  
45  
55  
250  
45  
55  
250  
45  
55  
250  
D
JC  
Jitter,  
Cycle-to-Cycle  
Measured on rising edge  
at 1.25V. Maximum differ-  
ence of cycle time be-  
ps  
tween two adjacent cycles.  
t
f
Output Skew  
Measured on rising edge  
at 1.25V  
175  
3
175  
3
175  
3
ps  
SK  
Frequency  
Assumes full supply volt-  
age reached within 1 ms  
from power-up. Short cy-  
cles exist prior to frequen-  
cy stabilization.  
ms  
ST  
Stabilization  
from Power-up  
(cold start)  
Z
AC Output  
Impedance  
Average value during  
switching transition. Used  
for determining series ter-  
mination value.  
20  
20  
20  
o
Notes:  
5. X1 input threshold voltage (typical) is VDDQ3/2.  
6. The W216 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 14 pF;  
this includes typical stray capacitance of short PCB traces to crystal.  
7. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
10  
PRELIMINARY  
W216  
PCI Clock Outputs, PCI0:5 (Lump Capacitance Test Load = 30 pF  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Min.  
30  
12  
12  
1
Typ.  
Max.  
Unit  
ns  
t
t
t
t
t
t
t
P
High Time  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
ns  
H
L
Low Time  
ns  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
V/ns  
V/ns  
%
R
F
Measured from 2.4V to 0.4V  
1
Measured on rising and falling edge at 1.5V  
45  
55  
250  
D
JC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum  
ps  
difference of cycle time between two adjacent cycles.  
t
t
Output Skew  
Measured on rising edge at 1.5V  
500  
4
ps  
ns  
SK  
CPU to PCI Clock Skew Covers all CPU/PCI outputs. Measured on rising  
edge at 1.5V. CPU leads PCI output.  
1.5  
O
f
Frequency Stabilization  
from Power-up (cold  
start)  
Assumes full supply voltage reached within 1 ms  
from power-up. Short cycles exist prior to frequency  
stabilization.  
3
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition. Used for  
determining series termination value.  
15  
o
IOAPIC0 and IOAPIC_F Clock Outputs (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.0V  
Min.  
Typ.  
Max. Unit  
f
14.318  
MHz  
t
t
t
f
1
1
4
4
V/ns  
V/ns  
%
R
Measured from 2.0V to 0.4V  
F
Measured on rising and falling edge at 1.25V  
45  
55  
1.5  
D
FrequencyStabilizationfrom Assumes full supply voltage reached within  
ms  
ST  
Power-up (cold start)  
AC Output Impedance  
1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
Average value during switching transition. Used  
for determining series termination value.  
15  
o
REF0:1 Clock Outputs (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max. Unit  
f
14.318  
MHz  
t
t
t
f
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
55  
3
D
FrequencyStabilizationfrom Assumes full supply voltage reached within  
ms  
ST  
Power-up (cold start)  
1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
25  
o
11  
PRELIMINARY  
W216  
SDRAM 0:15,_F Clock Outputs (Lump Capacitance Test Load = 22 pF)  
SDRAMIN =  
SDRAMIN =  
100 MHz  
SDRAMIN =  
133 MHz  
66.8 MHz  
Test Condition/  
Parameter  
Description  
Period  
Comments  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
t
t
t
t
t
t
t
t
Measured on rising edge  
at 1.5V  
15  
5.2  
5.0  
1
15.5 10  
10.5 7.5  
8.0  
ns  
P
High Time  
Low Time  
Duration of clock cycle  
above 2.4V  
3.0  
1.87  
ns  
H
Duration of clock cycle  
below 0.4V  
2.0  
1.67  
ns  
L
Output Rise  
Edge Rate  
Measured from 0.4V to  
2.4V  
4
4
1
1
4
4
1
1
4
4
V/ns  
V/ns  
%
R
OutputFallEdge Measured from 2.4V to  
1
F
Rate  
0.4V  
Duty Cycle  
Measured on rising and  
falling edge at 1.5V  
45  
55  
250  
45  
55  
250  
45  
55  
250  
D
Output Skew  
Measured on rising and  
falling edge at 1.5V  
ps  
SK  
PD  
ns  
Propagation  
Delay  
Measured from SDRAMIN  
3.7  
15  
3.7  
15  
3.7  
15  
Z
AC Output  
Impedance  
Average value during  
switching transition. Used  
for determining series ter-  
mination value.  
o
48-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Deviation from 48 MHz  
PLL Ratio  
Test Condition/Comments  
Min.  
Typ.  
Max. Unit  
MHz  
f
Determined by PLL divider ratio (see m/n below)  
(48.008 48)/48  
48.008  
+167  
f
ppm  
D
m/n  
(14.31818 MHz x 57/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
57/17  
t
t
t
f
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
55  
3
D
Frequency Stabilization  
Assumes full supply voltage reached within 1 ms  
ms  
ST  
from Power-up (cold start) from power-up. Short cycles exist prior to fre-  
quency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
25  
o
12  
PRELIMINARY  
W216  
24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Deviation from 24 MHz  
PLL Ratio  
Test Condition/Comments  
Determined by PLL divider ratio (see m/n below)  
(24.004 24)/24  
Min.  
Typ.  
24.004  
+167  
Max. Unit  
MHz  
f
f
ppm  
D
m/n  
(14.31818 MHz x 57/34 = 24.004 MHz)  
Measured from 0.4V to 2.4V  
57/34  
t
t
t
f
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
Assumes full supply voltage reached within 1 ms  
55  
3
D
Frequency Stabilization  
ms  
ST  
from Power-up (cold start) from power-up. Short cycles exist prior to fre-  
quency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
25  
o
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
W216  
H
56-pin SSOP (300 mils)  
Document #: 38-00850  
13  
PRELIMINARY  
W216  
Package Diagram  
56-Pin Small Shrink Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W218

Clocks and Buffers
ETC

W218H

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 0.300 INCH, SSOP-56
CYPRESS

W219

Clocks and Buffers
ETC

W219B

Frequency Generator for Integrated Core Logic with 133MHz FSB
SPECTRALINEAR

W219B

Frequency Generator for Integrated Core Logic with 133-MHz FSB
CYPRESS

W219BH

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W219BHT

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W219BHT

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
SILICON

W219K1FA

Vitreous Enamelled Wirewound Resistors
TTELEC

W219K1GA

Vitreous Enamelled Wirewound Resistors
TTELEC

W219K1JA

Vitreous Enamelled Wirewound Resistors
TTELEC

W22

Vitreous Enamelled Wirewound Resistors
TTELEC