DA16200 [DIALOG]

Ultra Low Power Wi-Fi SoC;
DA16200
型号: DA16200
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Ultra Low Power Wi-Fi SoC

文件: 总94页 (文件大小:3130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA16200  
Ultra Low Power Wi-Fi SoC  
General Description  
The DA16200 is a highly integrated ultra-low power Wi-Fi system on a chip (SoC), which contains an  
802.11b/g/n radio (PHY), a baseband processor, a media access controller (MAC), on-chip memory,  
and a host networking application processor, all on a single silicon die.  
The SoC enables full offload capabilities, running the entire networking stack on chip so that no  
external network processor, CPU, or microcontroller is required, while many other SoCs optionally  
use a microcontroller.  
DA16200 is a synthesis of breakthrough ultra-low power technologies that enables extremely low  
power operation in the SoC. DA16200 shuts down every micro element of the chip that is not in use,  
which allows a near zero level of power consumption when not actively transmitting or receiving data.  
Such low power operation can extend the battery life as long as a year or more depending on the  
application. DA16200 also enables ultra-low power transmitting and receiving modes when the SoC  
needs to be awake to exchange information with other devices. Advanced algorithms enable staying  
asleep until the exact moment required to wake up to transmit or receive.  
The SoC is built from the ground up for the Internet of Things (IoT) and is ideal for door locks,  
thermostats, sensors, pet trackers, asset trackers, sprinkler systems, connected lighting, video  
cameras, video doorbells, wearables, and other IoT devices.  
Key Features  
Highly integrated ultra-low power Wi-Fi®  
system on chip  
Provides dynamic auto switching function  
Supports various interfaces  
Full offload: SoC runs full networking OS and  
TCP/IP stack  
eMMC/SD expanded memory  
SDIO Host/Slave function  
QSPI for external flash control  
Three UARTs  
Wi-Fi processor  
IEEE 802.11b/g/n, 1×1, 20 MHz channel  
bandwidth, 2.4 GHz  
SPI Master/Slave interface  
I2C Master/Slave interface  
I2S for digital audio streaming  
4-channel PWM  
IEEE 802.11s Wi-Fi mesh  
On-chip PA, LNA, and RF switch  
Wi-Fi security: WPA/WPA2-  
Enterprise/Personal, WPA2 SI, WPA3  
SAE, and OWE  
Individually programmable, multiplexed  
GPIO pins  
Vendor EAP types: EAP-  
TTLS/MSCHAPv2, PEAPv0/EAP-  
MSCHAPv2, PEAPv1, EAP-FAST, and  
EAP-TLS  
JTAG and SWD  
Wi-Fi Alliance certifications:  
Wi-Fi CERTIFIED™ b, g, n  
WPA- Enterprise, Personal  
WPA2- Enterprise, Personal  
WPA3- Enterprise, Personal  
Wi-Fi Direct  
Operating modes: Station, SoftAP, and  
Wi-Fi Direct® Modes (GO, GC, GO fixed)  
WPS-PIN/PBC for easy Wi-Fi provisioning  
Connection manager for autonomous and  
fast Wi-Fi connections  
Bluetooth coexistence  
Wi-Fi Enhanced Open™  
WMM  
Antenna switching diversity  
Built-in 4-channel auxiliary ADC for sensor  
interfaces  
WMM - Power Save  
Wi-Fi Protected Setup™  
12-bit SAR ADC: single-ended four  
channels  
CPU core subsystem  
Arm® Cortex®-M4F core w/ clock  
frequency of 30~160 MHz  
Direct code execution from the external serial  
flash memory (XIP)  
ROM: 256 kB  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
1 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Hardware accelerators  
SRAM: 512 kB  
General HW CRC engine  
OTP: 8 kB  
HW zeroing function for fast booting  
Retention Memory: 48 kB  
Pseudo random number generator  
(PRNG)  
Power management unit  
On-Chip RTC  
Complete software stack  
Wake-up control of fast booting or full  
booting with minimal initialization time  
Comprehensive networking software stack  
Provides TCP/IP stack: in the form of  
network socket APIs  
Integrated DC-DC and LDOs  
Supports three ultra-low power Sleep  
modes  
Advanced security  
Secure booting  
Clock source  
Secure debugging using JTAG/SWD and  
UART ports  
40 MHz crystal (± 20 ppm) for master  
clock (initial + temp + aging)  
Secure asset storage  
32.768 kHz crystal (± 250 ppm) for RTC  
clock  
Built-in hardware crypto engines for advanced  
security  
Integrated 32 kHz RC oscillator  
TLS/DTLS security protocol functions  
Supply  
Crypto engine for key deliberate generic  
security functions: AES (128,192,256),  
DES/3DES, SHA1/224/256, RSA, DH,  
ECC, CHACHA, and TRNG  
Single operating voltage: 2.1 V to 3.6 V  
(typical: 3.3 V)  
Digital I/O Supply Voltage: 1.8 V / 3.3 V  
Black-out and brown-out detector  
Package type  
6 mm × 6 mm, 0.4 mm pitch, 48-Pin, QFN  
3.8 mm × 3.8 mm, 0.4 mm pitch, 72-Pin,  
fcCSP  
Operating temperature range  
-40 °C to 85 °C  
Applications  
Security systems  
Door locks  
Thermostats  
Garage door openers  
Blinds  
Lighting control  
Sprinkler systems  
Video camera security systems  
Smart appliances  
Video doorbell  
Asset tracker  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
2 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
System Diagram  
Figure 1: System Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
3 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 2  
System Diagram .................................................................................................................................. 3  
Contents ............................................................................................................................................... 4  
Figures.................................................................................................................................................. 6  
Tables ................................................................................................................................................... 7  
1
2
3
4
Terms and Definitions................................................................................................................. 10  
References ................................................................................................................................... 10  
Block Diagram ............................................................................................................................. 11  
Pinout ........................................................................................................................................... 13  
4.1 48-Pin QFN ......................................................................................................................... 13  
4.2 72-Pin fcCSP....................................................................................................................... 14  
4.3 Pin Multiplexing................................................................................................................... 17  
5
Electrical Specification............................................................................................................... 18  
5.1 Absolute Maximum Ratings ................................................................................................ 18  
5.2 Recommended Operating Conditions................................................................................. 18  
5.3 Electrical Characteristics..................................................................................................... 19  
5.3.1  
5.3.2  
5.3.3  
DC Parameters for Normal GPIOs ...................................................................... 19  
DC Parameters for RTC Block ............................................................................ 20  
DC Parameters for Digital Wake-Up.................................................................... 20  
5.4 Radio Characteristics.......................................................................................................... 21  
5.4.1  
5.4.2  
WLAN Receiver Characteristics .......................................................................... 21  
WLAN Transmitter Characteristics ...................................................................... 22  
5.5 Current Consumption.......................................................................................................... 24  
5.6 ESD Ratings........................................................................................................................ 25  
5.7 Brown-Out and Black-Out................................................................................................... 26  
5.8 Clock Electrical Characteristics........................................................................................... 26  
5.8.1  
5.8.2  
RTC Clock Source............................................................................................... 26  
Main Clock Source............................................................................................... 28  
6
Power Management..................................................................................................................... 29  
6.1 Power On Sequence........................................................................................................... 29  
6.2 Power Management Unit..................................................................................................... 30  
6.3 Low Power Operation Mode ............................................................................................... 31  
6.3.1  
6.3.2  
6.3.3  
Sleep Mode 1....................................................................................................... 31  
Sleep Mode 2....................................................................................................... 31  
Sleep Mode 3....................................................................................................... 31  
7
Core System ................................................................................................................................ 31  
7.1 Arm Cortex-M4F Processor ................................................................................................ 31  
7.2 Wi-Fi Processor................................................................................................................... 32  
7.3 Memory ............................................................................................................................... 32  
7.3.1  
Internal Memory................................................................................................... 32  
7.4 RTC..................................................................................................................................... 36  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
4 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.4.1  
7.4.2  
Wake-up Controller.............................................................................................. 36  
Retention I/O Function......................................................................................... 37  
7.5 Pulse Counter ..................................................................................................................... 38  
7.5.1  
7.5.2  
Introduction .......................................................................................................... 38  
Functional Description ......................................................................................... 38  
7.6 HW Accelerators ................................................................................................................. 39  
7.6.1  
7.6.2  
7.6.3  
Zeroing of SRAM ................................................................................................. 39  
CRC Calculation .................................................................................................. 39  
Pseudo Random Number Generator (PRNG)..................................................... 39  
7.7 DMA Operation ................................................................................................................... 40  
7.7.1  
7.7.2  
DMA1................................................................................................................... 40  
DMA2 (Fast DMA) ............................................................................................... 42  
7.8 Simple Memory Protection.................................................................................................. 43  
7.9 Bus Protection of Serial Slave Interfaces............................................................................ 44  
7.10 Watchdog Timer.................................................................................................................. 44  
7.11 Clock Generator.................................................................................................................. 46  
8
9
Crypto Engine.............................................................................................................................. 47  
Peripherals................................................................................................................................... 48  
9.1 QSPI Master with XIP Feature............................................................................................ 48  
9.2 SPI Master .......................................................................................................................... 50  
9.3 SPI Slave ............................................................................................................................ 51  
9.4 SDIO.................................................................................................................................... 54  
9.5 I2C Interface........................................................................................................................ 55  
9.5.1  
9.5.2  
I2C Master ........................................................................................................... 55  
I2C Slave ............................................................................................................. 57  
9.6 SD/SDeMMC....................................................................................................................... 58  
9.6.1 Block Diagram ..................................................................................................... 58  
9.7 I2S....................................................................................................................................... 59  
9.7.1  
9.7.2  
9.7.3  
Block Diagram ..................................................................................................... 60  
I2S Clock Scheme ............................................................................................... 61  
I2S Transmit and Receive Timing Diagram......................................................... 62  
9.8 ADC (Aux 12-bit)................................................................................................................. 64  
9.8.1  
9.8.2  
9.8.3  
9.8.4  
9.8.5  
Overview.............................................................................................................. 64  
Timing Diagram ................................................................................................... 64  
DMA Transfer ...................................................................................................... 65  
Sensor Wake-up.................................................................................................. 65  
ADC Ports............................................................................................................ 65  
9.9 GPIO ................................................................................................................................... 66  
9.9.1  
Antenna Switching Diversity ................................................................................ 66  
............................................................................................................................. 67  
9.10 UART  
9.10.1 RS-232................................................................................................................. 69  
9.10.2 RS-485................................................................................................................. 69  
9.10.3 Baud Rate............................................................................................................ 70  
9.10.4 Hardware Flow Control........................................................................................ 70  
9.10.5 Interrupts.............................................................................................................. 71  
9.10.6 DMA Interface...................................................................................................... 71  
9.11 PWM  
............................................................................................................................. 72  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
5 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
9.11.1 Timing Diagram ................................................................................................... 73  
9.12 Debug Interface................................................................................................................... 73  
9.13 Bluetooth Coexistence ........................................................................................................ 75  
9.13.1 Interface Configuration ........................................................................................ 75  
9.13.2 Operation Scenario.............................................................................................. 75  
10 Applications Schematic.............................................................................................................. 76  
10.1 Typical Application: QFN, 3.3 V Flash ................................................................................ 76  
10.2 Typical Application: QFN, 1.8 V Flash ................................................................................ 78  
10.3 Typical Application: fcCSP,1.8 V Flash Normal Power Mode............................................. 80  
10.4 Typical Application: fcCSP,1.8 V Flash Low Power Mode.................................................. 82  
11 Package Information................................................................................................................... 84  
11.1 Moisture Sensitivity Level (MSL)......................................................................................... 84  
11.2 Top View: QFN and fcCSP ................................................................................................. 84  
11.3 Dimension: 48-Pin QFN ...................................................................................................... 85  
11.4 Dimension: 72-Pin fcCSP.................................................................................................... 86  
11.5 Land Pattern: 48-Pin QFN .................................................................................................. 87  
11.6 Land Pattern: 72-Pin fcCSP................................................................................................ 88  
11.7 Soldering Information.......................................................................................................... 89  
11.7.1 Recommended Condition for Reflow Soldering .................................................. 89  
12 Ordering Information .................................................................................................................. 91  
Revision History ................................................................................................................................ 92  
Figures  
Figure 1: System Diagram..................................................................................................................... 3  
Figure 2: Hardware Block Diagram ..................................................................................................... 11  
Figure 3: Software Block Diagram....................................................................................................... 11  
Figure 4: DA16200 QFN48 Pinout Diagram (Top View) ..................................................................... 13  
Figure 5: DA16200 fcCSP72 Pinout Diagram (Top View)................................................................... 14  
Figure 6: Brown-Out and Black-Out Levels......................................................................................... 26  
Figure 7: RTC Crystal Connections - QFN.......................................................................................... 27  
Figure 8: RTC Crystal Connections fcCSP ...................................................................................... 27  
Figure 9: Crystal Clock Connections - QFN ........................................................................................ 28  
Figure 10: Crystal Clock Connections - fcCSP.................................................................................... 28  
Figure 11: Power On Sequence .......................................................................................................... 29  
Figure 12: Power Management Block Diagram................................................................................... 30  
Figure 13: OTP Block Diagram ........................................................................................................... 33  
Figure 14: Memory Map ...................................................................................................................... 35  
Figure 15: Memory Map: Peripherals.................................................................................................. 35  
Figure 16: Pulse Counter Block Diagram............................................................................................ 38  
Figure 17: DMA1 Controller Block Diagram ........................................................................................ 40  
Figure 18: DMA1 State Machine ......................................................................................................... 41  
Figure 19: DMA2 Block Diagram......................................................................................................... 43  
Figure 20: Watchdog Timer Block Diagram ........................................................................................ 44  
Figure 21: Watchdog Operation Flow Diagram................................................................................... 45  
Figure 22: Clock Tree Diagram ........................................................................................................... 46  
Figure 23: QSPI Master Block Diagram .............................................................................................. 49  
Figure 24: QSPI Master Timing Diagram (Mode 0)............................................................................. 49  
Figure 25: SPI Master Timing Diagram (Mode 0)................................................................................ 50  
Figure 26: SPI Slave Block Diagram ................................................................................................... 51  
Figure 27: 8-byte Control Type............................................................................................................ 51  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
6 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 28: 4-byte Control Type............................................................................................................ 51  
Figure 29: SPI Slave Timing Diagram ................................................................................................. 53  
Figure 30: SDIO Slave Block Diagram................................................................................................ 54  
Figure 31: SDIO Slave Timing Diagram.............................................................................................. 55  
Figure 32: I2C Master Timing Diagram ............................................................................................... 56  
Figure 33: I2C Slave Timing Diagram ................................................................................................. 57  
Figure 34: SD/eMMC Block Diagram .................................................................................................. 59  
Figure 35: SD/eMMC Master Timing Diagram .................................................................................... 59  
Figure 36: I2S Block Diagram.............................................................................................................. 60  
Figure 37: I2S Clock Scheme.............................................................................................................. 61  
Figure 38: I2S Timing Diagram ........................................................................................................... 62  
Figure 39: Left Justified Mode Timing Diagram................................................................................... 62  
Figure 40: Right Justified Mode Timing Diagram ................................................................................ 62  
Figure 41: I2S Transmit Timing Diagram ............................................................................................ 62  
Figure 42: I2S Receive Timing Diagram ............................................................................................. 62  
Figure 43: ADC Control Block Diagram............................................................................................... 64  
Figure 44: 12-bit ADC Timing Diagram ............................................................................................... 64  
Figure 45: Antenna Switching Internal Block Diagram........................................................................ 66  
Figure 46: Antenna Switching Timing Diagram................................................................................... 67  
Figure 47: DA16200 UART Block Diagram......................................................................................... 68  
Figure 48: Serial Data Format............................................................................................................. 69  
Figure 49: Receiver Serial Data Sampling Points ............................................................................... 69  
Figure 50: UARTTXDOE Output Signal for UART RS-485................................................................. 69  
Figure 51: UART Hardware Flow Control............................................................................................ 70  
Figure 52: PWM Block Diagram .......................................................................................................... 72  
Figure 53: PWM Timing Diagram ........................................................................................................ 73  
Figure 54: JTAG Timing Diagram........................................................................................................ 73  
Figure 55: Bluetooth Coexistence Interface ........................................................................................ 75  
Figure 56: Typical Application QFN, 3.3 V Flash ............................................................................. 76  
Figure 57: Typical Application QFN, 1.8 V Flash ............................................................................. 78  
Figure 58: Typical Application fcCSP, 1.8 V Flash, Normal Power Mode........................................ 80  
Figure 59: Typical Application fcCSP, 1.8 V Flash, Low Power Mode............................................. 82  
Figure 60: DA16200 48-Pin QFN Package ......................................................................................... 84  
Figure 61: DA16200 72-Pin fcCSP Package....................................................................................... 84  
Figure 62: Top View ............................................................................................................................ 85  
Figure 63: Bottom View ....................................................................................................................... 85  
Figure 64: Side View ........................................................................................................................... 85  
Figure 65: DA16200 48-Pin QFN Package Dimensions ..................................................................... 85  
Figure 66: Top View ............................................................................................................................ 86  
Figure 67: Bottom View ....................................................................................................................... 86  
Figure 68: Side View ........................................................................................................................... 86  
Figure 69: DA16200 72-Pin fcCSP Package Dimensions................................................................... 86  
Figure 70: DA16200 48-Pin QFN Land Pattern................................................................................... 87  
Figure 71: DA16200 72-Pin FcCSP Land Pattern............................................................................... 88  
Figure 72: Typical PCB Mounting Process Flow................................................................................. 89  
Figure 73: Reflow Condition ................................................................................................................ 90  
Tables  
Table 1: Pin Description ...................................................................................................................... 15  
Table 2: Pin Type Definition ................................................................................................................ 16  
Table 3: DA16200 Pin Multiplexing ..................................................................................................... 17  
Table 4: Absolute Maximum Ratings................................................................................................... 18  
Table 5: Recommended Operating Conditions ................................................................................... 18  
Table 6: DC Parameters for Normal GPIOs, 1.8 V IO......................................................................... 19  
Table 7: DC Parameters for Normal GPIOs, 3.3 V IO......................................................................... 19  
Table 8: DC Parameters for RTC Block, 3.3 V VBAT ......................................................................... 20  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
7 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 9: DC Parameters for RTC Block, 2.1 V VBAT ......................................................................... 20  
Table 10: DC Parameters for Digital Wake-Up, 3.3 V VBAT and 1.8/3.3 V IO................................... 20  
Table 11: DC Parameters for Digital Wake-Up, 2.1 V VBAT and 1.8 V IO......................................... 20  
Table 12: WLAN Receiver Characteristics QFN .............................................................................. 21  
Table 13: WLAN Receiver Characteristics fcCSP............................................................................ 21  
Table 14: WLAN Transmitter Characteristics QFN .......................................................................... 22  
Table 15: WLAN Transmitter Characteristics fcCSP (Normal Power Mode) ................................... 22  
Table 16: WLAN Transmitter Characteristics fcCSP (Low Power Mode) ........................................ 23  
Table 17: Current Consumption in Active State QFN ...................................................................... 24  
Table 18: Current Consumption in Active State fcCSP (Normal Power Mode) ............................... 24  
Table 19: Current Consumption in Active State fcCSP (Low Power Mode) .................................... 24  
Table 20: Current Consumption in Low Power Operation................................................................... 25  
Table 21: QFN Package...................................................................................................................... 25  
Table 22: fcCSP Package ................................................................................................................... 25  
Table 23: Brown-Out and Black-Out Voltage Levels........................................................................... 26  
Table 24: RTC Crystal Requirements ................................................................................................. 27  
Table 25: WLAN Crystal Clock Requirements .................................................................................... 28  
Table 26: Power On Sequence Timing Requirements........................................................................ 29  
Table 27: OTP Map ............................................................................................................................. 34  
Table 28: RTC Pin Description............................................................................................................ 36  
Table 29: Wake-up Sources................................................................................................................ 36  
Table 30: I/O Power Domain ............................................................................................................... 37  
Table 31: DMA1 Served Peripherals................................................................................................... 41  
Table 32: HW Acceleration Crypto Algorithms in DA16200................................................................ 47  
Table 33: QSPI Master Timing Parameters ........................................................................................ 49  
Table 34: SPI Master Pin Configuration.............................................................................................. 50  
Table 35: SPI Master Timing Parameters ........................................................................................... 50  
Table 36: Control Field of the 8-byte Control Type ............................................................................. 51  
Table 37: Control Field of the 4-byte Control Type ............................................................................. 52  
Table 38: SPI Slave Pin Configuration................................................................................................ 52  
Table 39: SPI Slave Timing Parameters ............................................................................................. 53  
Table 40: SDIO Slave Pin Configuration............................................................................................. 54  
Table 41: SDIO Slave Timing Parameters .......................................................................................... 55  
Table 42: I2C Master Pin Configuration .............................................................................................. 55  
Table 43: I2C Master Timing Parameters ........................................................................................... 56  
Table 44: I2C Slave Pin Configuration ................................................................................................ 57  
Table 45: I2C Slave Timing Parameters ............................................................................................. 57  
Table 46: SD/eMMC Master Pin Configuration ................................................................................... 58  
Table 47: SD/eMMC Master Timing Parameters ................................................................................ 59  
Table 48: I2S Pin Configuration .......................................................................................................... 60  
Table 49: I2S Clock Selection Guide................................................................................................... 61  
Table 50: I2S Transmit Timing Parameters......................................................................................... 63  
Table 51: I2S Receive Timing Parameters.......................................................................................... 63  
Table 52: DC Specification.................................................................................................................. 65  
Table 53: ADC Pin Configuration ........................................................................................................ 65  
Table 54: Control Bits to Enable and Disable Hardware Flow Control ............................................... 70  
Table 55: UART Interrupt Signals ....................................................................................................... 71  
Table 56: UART Pin Configuration...................................................................................................... 71  
Table 57: PWM Pin Configuration....................................................................................................... 72  
Table 58: PWM Timing Diagram Description ...................................................................................... 73  
Table 59: JTAG Timing Parameters.................................................................................................... 74  
Table 60: JTAG Pin Configuration....................................................................................................... 74  
Table 61: Components for DA16200 QFN, 3.3 V Flash Mode............................................................ 77  
Table 62: IO Power Domain ................................................................................................................ 77  
Table 63: Component for DA16200 QFN, 1.8 V Flash Mode.............................................................. 79  
Table 64: IO Power Domain ................................................................................................................ 79  
Table 65: Component for DA16200 fcCSP, 1.8 V Flash, Normal Power Mode.................................. 81  
Table 66: IO Power Domain ................................................................................................................ 81  
Table 67: Component for DA16200 fcCSP, 1.8 V Flash, Low Power Mode....................................... 83  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
8 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 68: IO Power Domain ................................................................................................................ 83  
Table 69: Typical Reflow Profile (Lead Free): J-STD-020C................................................................ 90  
Table 70: Ordering Information (Samples).......................................................................................... 91  
Table 71: Ordering Information (Production)....................................................................................... 91  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
9 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
1
Terms and Definitions  
API  
Application Programming Interface  
CRC  
DMA  
DAC  
GPIO  
HW  
Cyclic Redundancy Check  
Direct Memory Access  
Digital-to-Analog Converter  
General Purpose Input/Output  
Hardware  
I2C  
Inter-Integrated Circuit  
Inter-IC Sound  
I2S  
IoT  
Internet of Things  
JTAG  
LDO  
LLI  
Joint Test Action Group  
Low-Dropout Regulator  
Linked-List Item  
NVIC  
NVRAM  
PLL  
Nested Vectored Interrupt Controller  
Non-Volatile RAM  
Phase-Locked Loop  
PRNG  
PWM  
QSPI  
RTC  
SAR ADC  
SPI  
Pseudo Random Number Generator  
Pulse Width Modulation  
Quad-Lane SPI  
Real-Time Clock  
Successive Approximation Analog-to-Digital Converter  
Serial Peripheral Interface  
Software  
SW  
SWD  
UART  
XIP  
Serial Wire Debug  
Universal Asynchronous Receivers and Transmitter  
eXecute in Place  
TAP  
Test Access Port  
2
References  
[1] ARM Cortex M4 Processor Technical Reference Manual  
[2] DA16200_Example_Application_Guide.pdf  
[3] ITU-T O.150, General Requirements for Instrumentation for Performance Measurements on  
Digital Transmission Equipment, 1996  
[4] Arm TrustZone® CryptoCell-312, Software Integrators Manual, Revision r1p1.  
[5] IEEE Standard 1149.1, Test Access Port and Boundary-Scan Architecture  
[6] DA16200_SDK_Programmer_Guide.pdf  
[7] AMBA AHB bus specification, Revision 3.0 https://developer.arm.com/documentation/ihi0033/bb  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
10 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
3
Block Diagram  
Figure 2 shows the DA16200 hardware (HW) block diagram.  
Figure 2: Hardware Block Diagram  
Figure 3 shows the DA16200 software (SW) block diagram.  
User Application  
Home Appliance/Sensor Network/Door Lock/Light, IoT.  
Provisioning  
Protocol  
mDNS / xmDNS / DNS-SD / CoAP / Jason  
NetX-APP  
DHCP/ DNS/ HTTP1.0 / HTTP1.1  
CLI Handler  
upper Level  
TLS / DTLS  
Wi-Fi  
Supplicant  
TCP/UDP  
NetX-Duo  
80211 Link Layer  
IP  
802.11 Upper MAC  
802.11 Lower MAC  
ThreadX  
RTOS  
Wi-Fi PHY  
Device Driver  
Figure 3: Software Block Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
11 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
The following descriptions are about the SW block diagrams:  
Kernel layer  
Real Time Operating System  
The Wi-Fi layer is divided into four layers:  
Lower MAC  
SW module to control/handle HW Wi-Fi MAC/PHY and interfaces with Upper MAC layer  
Upper MAC  
SW module to control/handle Wi-Fi control/handle to interface with supplicant  
Wi-Fi Link layer: Interface layer between Upper MAC and supplicant  
Supplicant: SW module to control/management to operate Wi-Fi operation  
Network subsystem layer  
Used to control/handle network operation  
Main protocols are IP, TCP, and UDP  
Other necessary protocols are supported  
Security layer  
Crypto operation engine is ported to use crypto HW engine  
TLS/TCP and DTLS/UDP APIs are supported to handle security operation:  
User application layer  
Variable sample codes are supported in SDK sample codes use supported APIs  
TCP Client/Server, UDP Client/Server, TLS Client/Server  
HTTP/HTTPs download, OTA Update usage, and MQTT usage  
Customer applications can be included and implemented easily in the SDK.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
12 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
4
Pinout  
4.1 48-Pin QFN  
Figure 4: DA16200 QFN48 Pinout Diagram (Top View)  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
13 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
4.2 72-Pin fcCSP  
A7  
A5  
RTC_PWR_  
KEY  
A1  
A3  
A9  
A11  
VDD_DA  
/PA  
GND  
GPIOA0  
GND  
ANT  
B8  
B2  
B4  
B6  
B10  
B12  
VDD_DA  
/PA  
GPIOA2  
RTC_XI  
GND  
GND  
GND  
C1  
C3  
C5  
C7  
C9  
C11  
VDD_DI  
O1  
GPIOA1  
RTC_XO  
GND  
GND  
GND  
D6  
D12  
D2  
D4  
D8  
D10  
RTC_WA  
KE_UP  
VDD_AN  
A
GPIOA5  
GPIOA3  
GND  
GND  
E7  
E1  
E3  
E5  
E9  
E11  
RTC_GP  
O
GPIOA7  
GPIOA6  
GND  
GND  
RBIAS  
F2  
F4  
F6  
F8  
F10  
F12  
GPIOA10  
GPIOA4  
GND  
GND  
GND  
GND  
G1  
G3  
G5  
G7  
G9  
G11  
GPIOA11  
GPIOA8  
GND  
GND  
GND  
RF_XI  
H6  
H2  
H8  
H10  
H12  
H4  
RTC_WA  
KE_UP2  
GPIOA9  
GND  
GND  
RF_XO  
GND  
J3  
J5  
J7  
J9  
J11  
J1  
DCDC_FB  
GND  
F_CSN  
F_IO2  
TCLK  
TMS  
K12  
K2  
K6  
K10  
K4  
K8  
GPIOC7  
GND  
F_IO3  
GPIOC8  
F_CLK  
F_IO0  
L3  
L9  
L1  
L5  
L7  
L11  
VDD_DI  
G
UART_T  
XD  
DCDC_LX  
GND  
F_IO1  
GPIOC6  
M10  
M4  
M6  
M12  
M2  
M8  
UART_R  
XD  
VDD_FDI  
O
GND  
GND  
VBAT  
DIO2  
Figure 5: DA16200 fcCSP72 Pinout Diagram (Top View)  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
14 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 1: Pin Description  
QFN  
#Pin  
fcCSP Pin Name  
#Pin  
Type  
Drive  
(mA)  
Initial  
State  
Description  
(Table 2)  
(Note 1)  
1
2
3
4
5
6
7
GND  
GND  
VDD  
AIO  
AI  
Ground  
D12  
E11  
G11  
H12  
J11  
J9  
VDD_ANA  
RBIAS  
RF_XI  
RF_XO  
TMS  
RF VDD  
External reference resistor pin  
40 MHz crystal clock input  
40 MHz crystal clock output  
JTAG I/F, SWDIO  
AO  
DIO  
DIO  
2/4/8/12  
2/4/8/12  
I-PU  
I-PD  
TCLK  
JTAG I/F, SWCLK, General Purpose  
I/O  
8
K10  
K12  
L11  
L9  
GPIOC8  
DIO  
DIO  
DIO  
DO  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
I-PD  
I-PD  
I-PD  
O
General Purpose I/O  
General Purpose I/O  
General Purpose I/O  
UART transmit data  
UART receive data  
9
GPIOC7  
10  
11  
12  
13  
GPIOC6  
UART_TXD  
UART_RXD  
VDD_DIO2  
M10  
M8  
DI  
I
VDD  
Supply power for digital I/O  
GPIOC6~GPIOC8, TMS/TCLK,  
TXD/RXD  
14  
15  
16  
17  
18  
19  
20  
21  
K8  
L7  
J7  
F_IO0  
DIO  
DIO  
DIO  
DIO  
DIO  
DIO  
VDD  
AIO  
External Flash Memory I/F  
External Flash Memory I/F  
External Flash Memory I/F  
External Flash Memory I/F  
External Flash Memory I/F  
External Flash Memory I/F  
Flash IO Power  
F_IO1  
F_IO2  
K6  
J5  
F_IO3  
F_CSN  
F_CLK  
VDD_FDIO  
K4  
M4  
FDIO_LDO_  
OUT  
Flash and IO LDO output and connect  
to external cap. For flash LDO  
22  
23  
24  
25  
26  
L3  
H6  
M2  
L1  
J1  
VDD_DIG  
VDD  
DI  
Digital power and connect to external  
cap. For DIG LDO  
RTC_WAKE  
_UP2  
RTC block wake-up signal  
VBAT  
VDD  
AIO  
AIO  
Supply power for internal DC-DC,  
DIO_LDO, and analog IP  
DCDC_LX  
DCDC_FB  
Connection from power MOSFETs to  
the Inductor in internal DCDC  
Feedback voltage from the output of  
the power supply in internal DCDC  
27  
28  
29  
30  
31  
G1  
F2  
H2  
G3  
E1  
GPIOA11  
GPIOA10  
GPIOA9  
GPIOA8  
GPIOA7  
DIO  
DIO  
DIO  
DIO  
DIO  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
General Purpose I/O  
General Purpose I/O  
General Purpose I/O  
General Purpose I/O  
General Purpose I/O  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
15 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
32  
33  
34  
35  
E3  
D2  
F4  
C1  
GPIOA6  
GPIOA5  
GPIOA4  
VDD_DIO1  
DIO  
DIO  
DIO  
VDD  
2/4/8/12  
2/4/8/12  
2/4/8/12  
I-PD  
I-PD  
I-PD  
General Purpose I/O  
General Purpose I/O  
General Purpose I/O  
Supply power for digital I/O  
GPIOA0~GPIOA11  
36  
37  
38  
39  
40  
41  
42  
D4  
B2  
C3  
A3  
C5  
B4  
A5  
GPIOA3  
GPIOA2  
GPIOA1  
GPIOA0  
RTC_XO  
RTC_XI  
AI/DIO  
AI/DIO  
AI/DIO  
AI/DIO  
AO  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
I-PD  
I-PD  
I-PD  
I-PD  
Aux.ADC input/General Purpose I/O  
Aux.ADC input/General Purpose I/O  
Aux.ADC input/General Purpose I/O  
Aux.ADC input/General Purpose I/O  
32.768 kHz crystal clock output  
32.768 kHz crystal clock input  
AI  
RTC_PWR_  
KEY  
DI  
RTC block enable signal  
43  
D6  
RTC_WAKE  
_UP  
DI  
RTC block wake-up signal  
44  
45  
46  
E7  
RTC_GPO  
VDD_DA  
VDD_PA  
DO  
General Purpose Output  
A7,  
B8  
VDD  
VDD  
Tx DA power and RTC block power  
Supply power for integrated power  
amplifier  
47  
48  
GND  
ANT  
GND  
AI  
Ground  
ANT  
A11  
fcCSP GND Pin A1, A9, B6, B10, B12, C7, C9, C11, D8, D10, E5, E9, F6, F8, F10, F12, G5, G7, G9, H4, H8,  
H10, J3, K2, L5, M6, M12  
Note 1 Status of RTC_PWR_KEY is asserted and digital power (VDD_DIG) is stable.  
Table 2: Pin Type Definition  
Pin Type  
DI  
Description  
Pin Type  
AI  
Description  
Digital input  
Analog input  
DO  
Digital output  
AO  
Analog output  
DIO  
Digital input/output  
Digital input/output open drain  
Pull-up resistor (fixed)  
Pull-down resistor (fixed)  
Power  
AIO  
Analog input/output  
Back drive protection  
Switchable pull-up resistor  
Switchable pull-down resistor  
Ground  
DIOD  
PU  
BP  
SPU  
SPD  
GND  
PD  
PWR  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
16 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
4.3 Pin Multiplexing  
This device provides various interfaces to support many kinds of applications. It is possible to control  
each pin according to the required application in reference to the pin multiplexing illustrated in  
Table 3. Pin control can be realized through register setting. This device can use a maximum of 16  
GPIO pins and each of the GPIO pins multiplexes signals of various functions. In particular, four pins  
from GPIOA0 to GPIOA3 multiplex analog signals, which also can be realized through register  
setting.  
Table 3: DA16200 Pin Multiplexing  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
17 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
5
Electrical Specification  
5.1 Absolute Maximum Ratings  
Table 4: Absolute Maximum Ratings  
Parameter  
QFN Pins  
fcCSP Pins  
Min  
VSS  
Max  
Units  
VBAT, VDD_DA, VDD_PA  
VDD_DIO1  
24, 45, 46  
M2, A7,B8  
3.9  
3.9  
3.9  
3.9  
3.9  
V
V
V
V
V
V
V
°C  
35  
13  
20  
21  
22  
2
C1  
M8  
M4  
-
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
-40  
VDD_DIO2  
VDD_FDIO  
FDIO_LDO_OUT  
VDD_DIG  
L3  
D12  
1.32  
1.65  
+85  
VDD_ANA  
Operating temperature range (TA)  
5.2 Recommended Operating Conditions  
Table 5: Recommended Operating Conditions  
Parameter  
QFN Pins  
fcCSP Pins  
Min  
Typ  
Max  
3.6  
Units  
M2, A7, B8  
(Note 1)  
VBAT, VDD_DA, VDD_PA  
24, 45, 46  
2.1  
V
V
A7, B8  
VDD_DA, VDD_PA  
-
1.45  
(Note 2)  
VDD_DIO1  
VDD_DIO2  
VDD_FDIO  
FDIO_LDO_OUT  
VDD_DIG  
35  
13  
20  
21  
22  
C1  
M8  
M4  
-
1.62  
1.62  
1.62  
1.62  
3.6  
V
V
V
V
V
3.6  
3.6  
1.92  
L3  
1.1  
1.37  
(Note 2)  
VDD_ANA  
2
D12  
V
Operating temperature range (TA)  
-40  
+85  
°C  
Note 1 QFN, fcCSP Normal power mode.  
Note 2 fcCSP Low power mode.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
18 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
5.3 Electrical Characteristics  
5.3.1  
DC Parameters for Normal GPIOs  
Table 6: DC Parameters for Normal GPIOs, 1.8 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
0.3 ×  
DVDD  
Input Low Voltage  
VIL  
VIH  
VSS  
V
Guaranteed logic High  
level  
Input High Voltage  
0.7 × DVDD  
DVDD  
V
0.2 ×  
DVDD  
Output Low Voltage VOL  
Output High Voltage VOH  
DVDD=Min.  
VSS  
V
V
DVDD=Min.  
0.8 × DVDD  
DVDD  
32.4  
Pull-up Resistor  
RPU  
RPD  
VPAD=VIH, DIO=Min.  
VPAD=VIL, DIO=Min.  
kΩ  
Pull-down Resistor  
32.4  
(DVDD = 1.8 V, VDD_DIO1, VDD_DIO2 Logic Level)  
Table 7: DC Parameters for Normal GPIOs, 3.3 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.8  
V
Guaranteed logic High  
level  
Input High Voltage  
2.0  
DVDD  
V
Output Low Voltage VOL  
Output High Voltage VOH  
DVDD=Min.  
VSS  
2.4  
0.4  
DVDD  
19.4  
V
V
DVDD=Min.  
Pull-up Resistor  
RPU  
RPD  
VPAD=VIH, DIO=Min.  
VPAD=VIL, DIO=Min.  
kΩ  
Pull-down Resistor  
16.0  
(DVDD= 3.3 V, VDD_DIO1, VDD_DIO2 Logic Level)  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
19 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
5.3.2  
DC Parameters for RTC Block  
There are several control pins in the RTC block. For details, see Section 7.4.  
Table 8: DC Parameters for RTC Block, 3.3 V VBAT  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.6  
V
Guaranteed logic High  
level  
Input High Voltage  
2.2  
VBAT  
V
(RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2)  
Table 9: DC Parameters for RTC Block, 2.1 V VBAT  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.3  
V
Guaranteed logic High  
level  
Input High Voltage  
1.6  
VBAT  
V
(RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2)  
5.3.3  
DC Parameters for Digital Wake-Up  
Several GPIOs can be used for wake-up. For details, see Section 7.4.1.  
To use Digital Wake-up, the IO voltage should not be higher than the VBAT value.  
Table 10: DC Parameters for Digital Wake-Up, 3.3 V VBAT and 1.8/3.3 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.5  
V
Guaranteed logic High  
level  
Input High Voltage  
1.4  
DVDD  
V
(DVDD= 1.8/3.3 V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be higher than the VBAT value)  
Table 11: DC Parameters for Digital Wake-Up, 2.1 V VBAT and 1.8 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.3  
V
Guaranteed logic High  
level  
Input High Voltage  
1.3  
DVDD  
V
(DVDD= 1.8 V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be higher than the VBAT value)  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
20 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
5.4 Radio Characteristics  
5.4.1  
WLAN Receiver Characteristics  
TA = +25 °C, VBAT = 3.3 V. Parameters are measured at ANT pin on CH1 (2412 MHz).  
Table 12: WLAN Receiver Characteristics QFN  
Parameter  
Condition  
Min  
-100.5  
-96  
-91  
-92  
-92  
-90  
-83  
-77  
-92  
-74  
-4  
Typ  
-99.5  
-95  
-90  
-91  
-91  
-89  
-82  
-76  
-91  
-73  
0
Max  
-97.5  
-93  
-88  
-89  
-89  
-87  
-80  
-74  
-89  
-71  
0
Units  
1 Mbps DSSS  
2 Mbps DSSS  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
18 Mbps OFDM  
36 Mbps OFDM  
54 Mbps OFDM  
MCS0(GF)  
Sensitivity  
(8 % PER for 11b rates,  
10 % PER for 11g/11n rates)  
dBm  
MCS7(GF)  
Maximum input level  
802.11b  
(8 % PER for 11b rates,  
10 % PER for 11g/11n rates)  
802.11g  
-10  
-4  
-3  
Table 13: WLAN Receiver Characteristics fcCSP  
Parameter  
Condition  
Min  
-100.5  
-96  
-91  
-92  
-92  
-90  
-83  
-77  
-92  
-74  
-4  
Typ  
-99.5  
-95  
-90  
-91  
-91  
-89  
-82  
-76  
-91  
-73  
0
Max  
-97.5  
-93  
-88  
-89  
-89  
-87  
-80  
-74  
-89  
-71  
0
Units  
1Mbps DSSS  
2Mbps DSSS  
11Mbps CCK  
6Mbps OFDM  
9Mbps OFDM  
18Mbps OFDM  
36Mbps OFDM  
54Mbps OFDM  
MCS0(GF)  
Sensitivity  
(8 % PER for 11b rates,  
10 % PER for 11g/11n rates)  
dBm  
MCS7(GF)  
Maximum input level  
802.11b  
(8 % PER for 11b rates,  
10 % PER for 11g/11n rates)  
802.11g  
-10  
-4  
-3  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
21 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
5.4.2  
WLAN Transmitter Characteristics  
TA = +25 °C, VBAT = 3.3 V. Parameters are measured at ANT pin on CH1 (2412 MHz).  
Table 14: WLAN Transmitter Characteristics QFN  
Parameter  
Condition  
Min  
17.5  
17.5  
17.5  
17.5  
16.5  
16.5  
16.5  
16.5  
15.5  
15.5  
14.0  
13.0  
16.5  
13.0  
-20  
Typ  
20.0  
20.0  
20.0  
20.0  
19.0  
19.0  
19.0  
19.0  
18.0  
18.0  
16.5  
15.5  
19.0  
15.5  
Max  
21.0  
21.0  
21.0  
21.0  
20.0  
20.0  
20.0  
20.0  
19.0  
19.0  
17.5  
16.5  
20.0  
16.5  
+20  
Units  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps CCK  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
MCS0 OFDM  
MCS7 OFDM  
Maximum Output Power measured  
from IEEE spectral mask and EVM  
dBm  
Transmit center frequency accuracy  
ppm  
Table 15: WLAN Transmitter Characteristics fcCSP (Normal Power Mode)  
Parameter  
Condition  
Min  
16.0  
16.0  
16.0  
16.0  
15.5  
15.5  
15.5  
15.5  
14.5  
14.5  
13.0  
12.0  
15.5  
12.0  
-20  
Typ  
18.5  
18.5  
18.5  
18.5  
18.0  
18.0  
18.0  
18.0  
17.0  
17.0  
15.5  
14.5  
18.0  
14.5  
Max  
19.5  
19.5  
19.5  
19.5  
19.0  
19.0  
19.0  
19.0  
18.0  
18.0  
16.5  
15.5  
19.0  
15.5  
+20  
Units  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps CCK  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
MCS0 OFDM  
MCS7 OFDM  
Maximum Output Power measured  
form IEEE spectral mask and EVM  
dBm  
Transmit center frequency accuracy  
ppm  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
22 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 16: WLAN Transmitter Characteristics fcCSP (Low Power Mode)  
Parameter  
Condition  
Min  
7.5  
7.5  
7.5  
7.5  
6.0  
6.0  
6.0  
6.0  
3.5  
3.5  
0
Typ  
9.5  
9.5  
9.5  
9.5  
8.0  
8.0  
8.0  
8.0  
5.5  
5.5  
2.0  
2.0  
8.0  
2.0  
Max  
10.5  
10.5  
10.5  
10.5  
9.0  
Units  
dBm  
ppm  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps CCK  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
MCS0 OFDM  
MCS7 OFDM  
9.0  
9.0  
Maximum Output Power measured  
form IEEE spectral mask and EVM  
9.0  
6.5  
6.5  
3.0  
0
3.0  
6.0  
0
9.0  
3.0  
Transmit center frequency accuracy  
-20  
+20  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
23 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
5.5 Current Consumption  
TA = +25 °C, VBAT = 3.3 V, w/ CPU clock 80 MHz.  
Table 17: Current Consumption in Active State QFN  
Parameter  
Condition  
1 Mbps DSSS  
Min  
260  
240  
180  
180  
25  
Typ  
280  
260  
200  
200  
29  
Max  
320  
300  
240  
240  
51  
Units  
@ 20.0 dBm  
@ 19.0 dBm  
@ 15.5 dBm  
@ 15.5 dBm  
6 Mbps OFDM  
54 Mbps OFDM  
MCS7  
TX  
RX  
ACTIVE  
No signal (Note 1)  
mA  
1 Mbps DSSS (Note 1)  
1 Mbps DSSS  
54 Mbps OFDM  
MCS7  
26.5  
27  
30.5  
37.5  
38.5  
38.6  
53  
54  
29  
54  
29  
54  
Note 1 Low Current Mode and CPU clock 30 MHz.  
Table 18: Current Consumption in Active State fcCSP (Normal Power Mode)  
Parameter  
Condition  
1 Mbps DSSS  
Min  
250  
230  
190  
190  
25  
Typ  
270  
250  
210  
210  
28.4  
29.7  
36.5  
38  
Max  
310  
290  
250  
250  
51  
Units  
@ 18.5 dBm  
@ 18.0 dBm  
@ 14.0 dBm  
@ 14.0 dBm  
6 Mbps OFDM  
54 Mbps OFDM  
MCS7  
TX  
RX  
ACTIVE  
No signal (Note 1)  
mA  
1 Mbps DSSS (Note 1)  
1 Mbps DSSS  
54 Mbps OFDM  
MCS7  
26.5  
27  
53  
54  
29  
54  
29  
38  
54  
Note 1 Low Current Mode and CPU clock 30 MHz.  
Table 19: Current Consumption in Active State fcCSP (Low Power Mode)  
Parameter  
Condition  
1 Mbps DSSS  
Min  
63  
Typ  
85  
Max  
100  
100  
90  
Units  
@ 9.5 dBm  
@ 8.0 dBm  
@ 2.0 dBm  
@ 2.0 dBm  
6 Mbps OFDM  
54 Mbps OFDM  
MCS7  
63  
85  
TX  
RX  
48  
70  
48  
70  
90  
ACTIVE  
No signal (Note 1)  
25  
28.4  
29.7  
37.5  
39.2  
39.2  
51  
mA  
1 Mbps DSSS (Note 1)  
1 Mbps DSSS  
54 Mbps OFDM  
MCS7  
26.5  
27  
53  
54  
29  
54  
29  
54  
Note 1 Low Current Mode and CPU clock 30 MHz.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
24 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 20: Current Consumption in Low Power Operation  
Parameter  
Condition  
Sleep 1  
Sleep 2  
Sleep 3  
Min  
Typ  
0.2  
1.8  
3.5  
Max  
Units  
Low Power Operation  
µA  
5.6 ESD Ratings  
Table 21: QFN Package  
Reliability Test  
Standards  
Test Conditions  
± 2,000 V  
Result  
Human Body Model (HBM)  
Charge Device Mode (CDM)  
JEDEC EIA/JESD22-A114  
JEDEC EIA/JESD22-C101  
Pass  
Pass  
± 500 V  
Table 22: fcCSP Package  
Reliability Test  
Standards  
Test Conditions  
± 2,000 V  
Result  
Pass  
Human Body Model (HBM)  
Charge Device Mode (CDM)  
JEDEC EIA/JESD22-A114  
JEDEC EIA/JESD22-C101  
± 500 V  
Pass  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
25 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
5.7 Brown-Out and Black-Out  
The device enters a brown-out condition whenever the input voltage dips below VBROWN (see  
Table 23). This condition must be considered during design of the power supply routing, especially if  
the SoC is operated from a battery. High-current operations, like TX operation, cause a dip in the  
supply voltage, potentially triggering a Brown-Out. The resistance includes the internal resistance of  
the battery, contact resistance of the battery holder (for example, four contacts for two AA batteries),  
wiring resistance, and PCB routing resistance.  
Brown-Out  
Operated  
Condition  
Brown-Out  
Operated  
Condition  
Normal operated Condition  
Black-Out Operated Condition  
Normal operated Condition  
VBAT(V)  
Battery Discharge  
Exit Brown-OutCondition  
Exit Black-OutCondition  
Enter Black-OutCondition  
-> Battery Voltage is down  
Enter Brown-OutCondition  
Time(sec)  
Time(sec)  
Time(sec)  
BR_OUT_VBAT(V)  
Brown-Out Detector Hysteresis  
BL_OUT_VBAT(V)  
Black-Out Detector  
Hysteresis  
Figure 6: Brown-Out and Black-Out Levels  
Brown-out and black-out conditions only operate in normal mode. The black-out condition is  
equivalent to a hardware reset event in which all states within the device are lost. Table 23 lists the  
brown-out and black-out voltage levels.  
Table 23: Brown-Out and Black-Out Voltage Levels  
Condition  
Vbrown-out  
Vblack-out  
Voltage  
2.10 V (Note 1)  
1.75 V (Note 1)  
Hysteresis  
Operation  
S/W Control  
Full boot  
90 mV  
90 mV  
Note 1 Recommended voltage level. Adjustable depending on the application condition.  
5.8 Clock Electrical Characteristics  
DA16200 needs two clock sources. One is the 32.768 kHz clock used by the RTC block, and the  
other is the 40 MHz clock for the internal processor and Wi-Fi system. More specifically, the 40 MHz  
clock is used as a source clock for the internal PLL, while the PLL output is used for the internal  
processor and Wi-Fi system block.  
5.8.1  
RTC Clock Source  
The 32.768 kHz RTC clock source is necessary for the free-running counter in the RTC block. The  
RTC block of the SoC contains an internal 32.768 kHz RC oscillator as well, which is used as a clock  
for chip initialization before the external 32.768 kHz crystal reaches the stable time in the initial stage.  
It is necessary to convert it into an external clock for accurate clock counting after the initialization  
stage. This process is executed through the register setting. Table 24 shows the suitable loading  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
26 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
capacitor value and required tolerance. Figure 7 and Figure 8 show connections for the RTC crystal  
clock.  
RTC_XI 41  
32.768kHz  
RTC_XO 40  
Figure 7: RTC Crystal Connections - QFN  
RTC_XI B4  
32.768kHz  
RTC_XO C5  
Figure 8: RTC Crystal Connections fcCSP  
Table 24 lists the RTC crystal requirements.  
Table 24: RTC Crystal Requirements  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
kHz  
ppm  
Frequency  
32.768  
Frequency accuracy  
Crystal ESR  
Initial + temp + aging  
-250  
+250  
90  
32.768 kHz, C1 = C2 = 9 pF  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
27 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
5.8.2  
Main Clock Source  
DA16200 contains a crystal oscillator for the main clock source which supports the external crystal  
clock. Basically, the external clock is 40 MHz. Table 25 shows the load capacitor value and required  
clock tolerance for 40 MHz. Figure 9 and Figure 10 show the crystal clock connections.  
RF_XI 4  
40MHz  
RF_XO 5  
Figure 9: Crystal Clock Connections - QFN  
RF_XI G11  
40MHz  
RF_XO H12  
Figure 10: Crystal Clock Connections - fcCSP  
Table 25 lists the WLAN crystal requirements.  
Table 25: WLAN Crystal Clock Requirements  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MHz  
Frequency  
40  
Frequency accuracy  
Crystal ESR  
Initial + temp + aging  
-20  
+20  
60  
ppm  
40 MHz, C1 = C2 = 6 pF  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
28 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
6
Power Management  
DA16200 has an RTC block which provides power management and function control for low power  
operation. In normal operation, the RTC block is always powered on when RTC_PWR_KEY is  
enabled. The RTC block also has a control function for DA16200’s internal power supplying  
components, like LDOs, DC-DCs, and power switches.  
6.1 Power On Sequence  
The sequence after the initial switching from power-off to power-on is shown in Figure 11.  
The RTC_PWR_KEY of DA16200 is a pin that enables the RTC block. Once RTC_PWR_KEY is  
enabled after VBAT power is supplied, all the internal regulators are turned on automatically in the  
sequence predefined by the RTC block.  
Once RTC_PWR_KEY is turned on, LDOs for both XTAL and digital I/O are turned on shortly and  
then the DC-DC regulator is turned on according to the predefined interval. The enabling intervals  
can also be modified in the register settings after initial power-up.  
VBAT  
50% VBAT  
T0  
IO Voltage  
50% IO  
POWER_KEY  
CLK_32K  
50% VBAT  
T1  
T2  
T3  
Figure 11: Power On Sequence  
Table 26: Power On Sequence Timing Requirements  
Name  
T0  
Description  
Min  
Typ  
Max  
Unit  
ms  
VBAT power-on time from 10 % to 90 % of VBAT  
IO voltage and VCC supply  
T1  
0
ms  
T2  
RTC_PWR_KEY turn-on time from 50 % VBAT to  
50 % POWER_KEY * Note 1  
5*T0  
ms  
T3  
Internal RC oscillator wake-up time  
217  
µs  
Note 1 if the T0 = 10 ms to turn on VBAT, the recommended T2 is 50 ms for the safe booting operation. It  
would be externally controlled by MCU or it would be implemented using RC filter at the input of  
RTC_PWR_KEY. The recommended C is 470 nF or 1uF (not to exceed 1uF) and R value is chosen to  
have T2 delay. For example, R and C values will be 82 kΩ and 1 uF when T0 = 10 ms.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
29 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
6.2 Power Management Unit  
DA16200 has one internal DC-DC converter and several LDOs to supply power to all internal sub-  
blocks. Power management does the on-off control of these regulators and is implemented through  
the register setting inside the RTC block.  
VDD_PA, VDD_RF  
QFN,  
fcCSP low power  
fcCSP normal power  
RF Block  
1.4V  
1.1V  
DCDC  
VBAT  
Digital Core /  
Memory  
DIG_LDO  
RTC Block  
1.8V  
Flash control  
/ External  
Flash Memory  
FDIO_LDO  
VDD_FDIO  
VDD_DIO1  
VDD_DIO2  
Using the same power supply as  
external device ( ex.CPU) ( 1.8V or 3.3V)  
GPIOs  
Figure 12: Power Management Block Diagram  
Details of the internal DC-DC converters and LDOs are explained below:  
DC-DC converter: from the power supply of external VBAT input, it generates 1.4 V power for the  
digital LDO and RF block  
LDO for digital Blocks: from the DC-DC output, it generates 1.1 V power which is used for digital  
blocks  
LDO for I/O and external flash memory:  
This LDO output is used only for 1.8 V digital I/O applications  
From external VBAT power input, it generates 1.8 V output voltage which is used for digital  
I/O power domain in 1.8 V digital I/O applications  
It is also used for external flash memory  
For 3.3 V digital I/O applications, external power (3.3 V) is directly supplied for digital I/O  
power  
FDIO_LDO_OUT supports only 1.8 V  
With the internal DC-DC converters and LDOs, all the power necessary for DA16200’s internal sub-  
blocks are sufficiently generated.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
30 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
6.3 Low Power Operation Mode  
DA16200 provides three Sleep modes as low power operation modes.  
6.3.1  
Sleep Mode 1  
Sleep mode 1 is an operational mode in which the RTC_PWR_KEY is not turned to high yet. The  
RTC_PWR_KEY is in the LOW state and the DA16200MOD is only supplied with VBAT power. With  
all the internal blocks off in Sleep mode 1, only the leakage current from a minimal number of internal  
blocks connected to VBAT remains.  
6.3.2  
Sleep Mode 2  
Sleep mode 2 is an operational mode in which the RTC_PWR_KEY is set to high and the RTC block  
is running. Sleep mode 2 is activated by setting RTC registers to control the power management unit  
via a command from the CPU.  
To turn Sleep mode 2 back to Sleep mode 1, set RTC_PWR_KEY to low.  
Changing the state of the device from Sleep mode 2 to an ACTIVE state happens in one of two  
ways:  
The counter value is reached that is set by the CPU before entering Sleep mode 2  
An external wake-up event occurs via the RTC_WAKE_UP pin  
6.3.3  
Sleep Mode 3  
Sleep mode 3 is a low power but fully connected Wi-Fi mode of operation. Sleep mode 3 checks for  
incoming Wi-Fi network data traffic at regular intervals set by the user. For example, every one  
second, three seconds, five seconds, and so on. The exact time interval is programmable.  
Sleep mode 3 is activated by software commands. For more information, see Ref. [6].  
A device can come out of Sleep mode 3 and into a fully ACTIVE state before the next targeted wake-  
up time interval via a GPIO wake-up.  
7
Core System  
7.1 Arm Cortex-M4F Processor  
The Cortex-M4F processor is a low-power processor that features low gate count, low interrupt  
latency, low-cost debug, and includes floating point arithmetic functionality. The processor is  
intended for deeply embedded applications that require fast interrupt response features.  
The features of the Cortex-M4F processor in DA16200 are summarized below:  
Operation clock frequency is up to 160 MHz  
32-bit Arm Cortex-M4F architecture optimized for embedded applications  
Thumb-2 mixed 16/32-bit instruction set  
Hardware division and fast multiplication  
Includes Nested Vectored Interrupt Controller (NVIC)  
SysTick timer provided by Cortex-M4F processor  
Supports both standard JTAG (5-wire) and the low-pin-count Arm SWD (2-wire, TCLK/TMS)  
debug interfaces  
Cortex-M4F is binary compatible with Cortex-M3  
For more information on the Arm Cortex-M4F, see Ref. [1].  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
31 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.2 Wi-Fi Processor  
DA16200 includes an internal MCU (Arm Cortex-M4F) to completely offload the host MCU along with  
an 802.11 b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast and secure  
WLAN and Internet connections with 256-bit encryption. It supports the station, SoftAP, and Wi-Fi  
Direct modes. It also supports WPA/WPA2 personal and enterprise security, WPA2 SI, WPA3 SAE,  
OWE, and WPS 2.0. It includes an embedded IPv4 and IPv6 TCP/IP stack.  
7.3 Memory  
7.3.1  
Internal Memory  
DA16200 contains four types of internal memories and also supports an external serial flash memory  
interface. The roles and functions of each memory are described in the following subsections.  
7.3.1.1  
ROM  
This memory contains boot loader, system kernel, network stack, and various kinds of drivers for  
interfaces and peripherals.  
7.3.1.2  
SRAM  
This memory is used as data space for all codes running on the internal CPU. All codes run on serial  
flash memory via I-Cache (XIP mode). All the contents in this memory disappear in the low-power  
Sleep mode.  
The address range of the internal SRAM is from 0x0000_8000 to 0x0000_FFFF, and the controller of  
this memory supports the swap operation for the internal CPU. To do a swap operation of the  
controller, add the offset value to the SRAM address for read operation only.  
If the offset value is 0x2080_0000, the controller will do a swap to reverse the byte order for a scalar  
32-bit value. If the offset value is 0x2040_0000, the controller will do a swap to reverse the halfword  
(16-bit) order for a scalar 32-bit value. For example, if the value of address 0x0000_8000 is  
0x12345678, reading address 0x2080_8000 will output value 0x78563412 and reading address  
0x2040_8000 will output value 0x56781234.  
7.3.1.3  
Retention Memory  
This memory is a kind of non-volatile memory and is used to save and manage essential information  
that should be preserved even in the low-power Sleep mode of the DA16200.  
7.3.1.4  
OTP  
DA16200 includes a one-time electrically field programmable non-volatile CMOS memory. The array  
can be programmed by 1 bit and read by 32 bits. Since the OTP controller is designed internally, it is  
possible to execute read/write by commands through register setting.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
32 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
AHB-CPU  
AHB Slave  
OTP IF  
OTP Controller  
OTP Memory  
Figure 13: OTP Block Diagram  
This memory is to protect and manage major information essential for mass production and  
management of products, such as booting information, MAC address, serial number, and others.  
The OTP is also used for storing secret information which is used for the advanced security functions  
like secure booting, secure debugging, and secure asset storage. But this secret information cannot  
be accessed in a normal way of CPU read or write access so that it is protected from the external  
access.  
The OTP controller translates a request into the corresponding control sequence for the OTP cell to  
be in one of the following modes:  
Standby mode: it is used to reduce the power consumption when the OTP is not used  
The OTP cell is powered but is less than the power consumption in Active mode  
Operation mode: for the OTP to operate correctly, OTP must be in Operation mode  
Program, Read, or Test mode can be operated after the Operation mode is set  
Program mode: when OTP is instantiated, the SoC has all bits in 0s and 1s are loaded into the  
SoC through programming  
The program mode provides the functionality for programming a 1-bit into an OTP position  
Immediately after programming the bit at the selected memory cell (program operation), a  
verification operation follows to check for successful programming results with sufficient  
margin  
Read mode: in this mode, the contents of the OTP cell are read at reactive AHB address space  
Test mode: tests can be performed during wafer sort, final test, or in-system/in-field, depending  
on the test plan used by the end users  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
33 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 27: OTP Map  
Offset  
Field  
Size (Bytes)  
0x000  
Dialog Reserved  
1024  
0x100  
MAC Address #0 Low  
MAC Address #0 High  
MAC Address #1 Low  
MAC Address #1 High  
MAC Address #2 Low  
MAC Address #2 High  
MAC Address #3 Low  
MAC Address #3 High  
XTAL Offset #0  
4
0x101  
4
0x102  
4
0x103  
4
0x104  
4
0x105  
4
0x106  
4
4
0x107  
0x10A  
4
0x10B  
XTAL Offset #1  
4
0x10C to 0x7FF  
User Area  
7128  
7.3.1.5  
Serial Flash Interface  
DA16200 supports an external serial memory interface, QSPI, explained in Section 9.1. This memory  
is used for storing DA16200’s software code, including user application code, its predefined data,  
and various configuration data in the form of NVRAM.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
34 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.3.1.6  
Memory Map  
Figure 15 shows the various peripherals that are part of the DA16200 and how they are mapped to  
the processor memory.  
Address Map of Memories for Masters  
0x2000_0000  
Not used  
Address Map of DA16200  
0xFFFF_FFFF  
Not used  
0xF000_0000  
System Control  
Space(for CM4F)  
0xE000_0000  
0x00FC_0000  
0x00F8_0000  
Retention Memory  
0x0020_0000  
Not used  
Not used  
0x7000_0000  
0x6000_0000  
0x5000_0000  
0x4000_0000  
0x3000_0000  
0x2000_0000  
PHY  
System Peripherals  
APB Peripherals  
Not used  
0x0030_0000  
0x0010_0000  
I-Cache  
Int. SRAM  
Reserved  
0x0008_0000  
0x0004_0000  
Not used  
Memories  
Mask ROM  
0x0000_0000  
0x0000_0000  
Figure 14: Memory Map  
0x5010_0000  
0x500F_0000  
Not used  
PSK_SHA1  
I-Cache Ctrl.  
HSU  
0x4001_0000  
0x500E_0000  
Reserved  
0x4002_0000  
DMA1  
0x4000_F000  
0x4000_E000  
0x4020_0000  
0x500D_0000  
0x500C_0000  
0x500B_0000  
0x500A_0000  
0x5009_0000  
0x5008_0000  
0x5007_0000  
0x5006_0000  
0x5005_0000  
0x5004_0000  
0x5003_0000  
0x5002_0000  
0x5001_0000  
Flash Host Ctrl.  
TA2SYNC  
Reserved  
Reserved  
RTC Interface  
Slave Interface  
Reserved  
0x4000_B000  
0x4000_A000  
0x4000_9000  
0x4000_8000  
0x4000_7000  
PWM  
Not used  
0x4001_8000  
UART2  
GPIO2  
0x4001_7000  
WatchDog Timer  
DMA2  
Aux. ADC  
I2C Master  
0x4001_6000  
UART1  
Reserved  
0x4001_5000  
Reserved  
Fast HW  
Reserved  
SD/eMMC  
(SDIO Host)  
0x4011_8000  
0x4011_0000  
0x4000_3000  
0x4000_2000  
0x4000_1000  
0x4000_0000  
0x4001_3000  
CC312_APBC  
CC312_APBS  
Security  
Dual Timer  
0x4001_2000  
Timer1  
UART0  
GPIO1  
GPIO0  
SDIO Device  
0x4001_1000  
System Controller  
Timer0  
0x5000_0000  
0x4001_0000  
0x4010_0000  
APB Peripherals  
System Peripherals  
Figure 15: Memory Map: Peripherals  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
35 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.4 RTC  
Among the pins in DA16200, four special pins are directly connected to the RTC block, which are  
RTC_PWR_KEY, RTC_GPO, RTC_WAKE_UP, and RTC_WAKE_UP2.  
Table 28: RTC Pin Description  
Pin Number  
Pin Name  
Description  
QFN  
fcCSP  
RTC_PWR_KEY represents a power key for the RTC block. When  
this pin is enabled, the RTC starts to work by following a  
predefined power-up sequence and eventually all the necessary  
power is supplied to all the sub-blocks including the main digital  
block in DA16200. When disabled, all blocks are powered off and  
this mode is defined as Sleep mode 1. DA16200 consumes  
minimum leakage current in Sleep mode 1.  
RTC_PWR_KEY  
42  
A5  
This pin is an output and high level is 'VBAT'.  
It has three different functions:  
GPO function: its output value can be set as ‘1’ or ‘0’ via  
register setting. It can keep the value even in Sleep mode  
Flash control function: when in Sleep mode, it becomes ‘0’;  
when in Active mode, it is ‘1’  
RTC_GPO  
44  
E7  
Sensor wake-up function: when the sensor wake-up function  
is used (Section 9.8.4), a programmable periodic signal is  
provided for an external device. Inside the RTC, there are  
registers to set count values  
This pin is an input pin for receiving an external event signal from  
an external device like a sensor. The RTC block detects an  
external event signal via this pin and wakes up DA16200 from  
Sleep mode 2 or Sleep mode 3.  
RTC_WAKE_UP  
RTC_WAKE_UP2  
43  
23  
D6  
H6  
DA16200 contains not only an on-chip oscillator that uses a 32.768 kHz external crystal but also an  
internal 32.768 kHz RC oscillator for faster initialization, which leads to prompt clock generation after  
power-up and is used until the external crystal becomes stable. Afterwards, the input source can be  
switched to the external crystal via a register setting.  
The RTC block has a 36-bit real time counter. Its resolution is equal to one clock period of 32.768  
kHz. The count value can be read via the register read command.  
7.4.1  
Wake-up Controller  
The wake-up controller is designed to wake up DA16200 from a Sleep mode by an external signal. It  
detects an edge trigger of the wake-up signal and selects either the rising edge or the falling edge.  
Also, the wake-up signal must be maintained for at least 200 µs upon occurrence of transition on one  
side.  
When it comes to the source of wake-up, 11 digital I/Os in addition to the two pins directly connected  
to the RTC block can be used. Although up to 11 digital I/Os are available for use, the maximum  
number of digital I/Os that are simultaneously available is eight. Table 29 describes the digital I/Os  
that are available for simultaneous use.  
Table 29: Wake-up Sources  
QFN and fcCSP Package  
Input Selection = 0  
GPIOA4  
Input Selection = 1  
X
X
X
GPIOA5  
GPIOA6  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
36 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
QFN and fcCSP Package  
Input Selection = 0  
GPIOA7  
Input Selection = 1  
X
GPIOA8  
X
GPIOA9  
GPIOC6  
GPIOC7  
GPIOC8  
GPIOA10  
GPIOA11  
For more information on the wake-up source selection, see the input selection register:  
0x50091008[25:16].  
The wake-up controller is in the RTC block. RTC registers can set several parameters and identify  
which pin is used to wake up the SoC by checking the status register after wake-up.  
DA16200 has another wake-up function using analog sources, which is described in Section 9.8.4.  
Using the Aux-ADC, DA16200 detects whether it exceeds the predefined threshold value. If it detects  
the wanted condition, it will wake up from a Sleep mode. Four ports (GPIOA[3:0]) are used for this  
function.  
7.4.2  
Retention I/O Function  
DA16200 I/O has a Retention mode. During this mode, I/O cells retain the previous state values at  
the core side inputs. When it is required to maintain the value of a specific GPIO in Sleep mode, this  
function will be used. For example, to maintain HIGH value on GPIOA4 in Sleep mode, it is required  
to set the value of GPIOA4 to HIGH and set the register bit of RTC block (0x5009_1018:BIT[27:24])  
to enable retention to the proper value described in Table 30 before going to the Sleep mode. For  
GPIOA4, BIT[25] should be set to HIGH, then GPIOA4 can keep the value HIGH during the Sleep  
mode.  
The retention enable register is comprised of three bits in total, and the I/O power domains covered  
by each of the bits are described in Table 30.  
Table 30: I/O Power Domain  
[25] DIO1  
[26] DIO2  
GPIOC[8:6]  
[27] FDIO  
F_CLK  
GPIOA[11:4]  
TCLK/TMS  
F_CSN  
UART0_RXD/UART0_TXD  
F_IO0 to F_IO3  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
37 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.5 Pulse Counter  
7.5.1  
Introduction  
The pulse counter is a module that counts the number of rising or falling edges of input signals. And  
this counter module can run even in Sleep mode. It includes one 32-bit up-counter. The input  
channel can be set with a register setting among the 11 digital I/Os. It also has a glitch filter that is  
designed to remove the unwanted trigger of an input signal.  
7.5.2  
Functional Description  
Pulse  
Count  
CLK_32kHz  
PCLK  
Int  
Counter  
Int  
Pulse  
Edge  
Ext.  
Pad  
Mux.  
Glitch  
Filter  
Edge  
Select  
Gli_En  
Gli_Thresh  
Count_En  
Count_Rst  
Int_Clr  
Int_Thresh  
Edge_Sel  
Mux_SEL  
Figure 16: Pulse Counter Block Diagram  
7.5.2.1  
Input  
Available input channels are described in Table 29. It uses the same input sources with the wake-up  
controller. By register setting, input channels can be selected among 11 digital I/Os.  
7.5.2.2  
Clock  
The operation clock of the pulse counter is 32 kHz.  
7.5.2.3  
Counter  
As described in Figure 16, the pulse counter is activated by several counter control signals. With a  
register setting, input signals can be selected on either the rising edges or falling edges. To enable  
the glitch filter module, the Gli_En and Gli_Thresh register values need to be set. The pulses whose  
cycles are shorter than the Gli_Thresh value are removed. The counter is a 32-bit up-counter and the  
counter value can be reset to zero by Count_Rst.  
7.5.2.4  
Interrupts  
An interrupt occurs when the counter values reaches the Interrupt Threshold value (Int_Thresh). In  
Sleep mode, this interrupt can be used as a wake-up source.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
38 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.6 HW Accelerators  
7.6.1  
Zeroing of SRAM  
DA16200 provides a function to quickly set a constant value for the set SRAM area. This function is  
mainly used to initialize the set SRAM area to zero and can be used even when SRAM is used.  
For example, assuming that the entire 512 KB SRAM is being initialized, the processing time is 8192  
cycles based on the CPU clock, that is, the maximum processing time is 8192 cycles irrespective of  
the SRAM size to be initialized.  
For more information to use this function, see Ref. [2].  
7.6.2  
CRC Calculation  
The CRC algorithm detects the corruption of data during transmission and detects a higher  
percentage of errors than a simple checksum. The CRC calculation consists of an iterative algorithm  
involving XOR and shifts operations that is executed much faster in hardware than in software. The  
CRC calculator is mainly used to check the flash image and the features of CRC calculator in  
DA16200 are summarized below:  
Operation clock frequency is up to 160 MHz, the same as CPU clock  
Supports 8-bit, 16-bit, and 32-bit data paths  
Performs CRC operation simultaneously in real time during data transfer on the selected AHB  
bus  
Operation type of CRC calculation  
CRC-32: generator polynomial is G(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 +  
x^10 +x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1  
CRC-16 CCITT: generator polynomial is G(x) = x^16 + x^12 + x^5 +1  
CRC-16 IBM: generator polynomial is G(x) = x^16 + x^15 + x^2 +1  
For more information to use this function, see Ref. [2].  
7.6.3  
Pseudo Random Number Generator (PRNG)  
DA16200 provides a function, PRNG, to generate a pseudo random number. The features of PRNG  
in DA16200 are summarized as follows:  
Operation clock frequency is up to 160 MHz, the same as CPU clock  
Supports partial parallel processing of 8-bit, 16-bit, and 32-bit unit  
Generator polynomial is G(x) = x^31 + x^28 + 1 (Ref. [3])  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
39 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
7.7 DMA Operation  
7.7.1  
DMA1  
DA16200 includes a DMA controller of its own with a single AHB master. The DMA1 has sixteen  
channels for fast data transfers from/to I2S, I2C, UARTs, and ADC to/from any on-chip RAM. The  
DMA requests of each module are directly connected to the dedicated DMA channels. Each DMA  
channel has a priority level, a smaller channel number standing for a higher priority.  
Figure 17: DMA1 Controller Block Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
40 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 31: DMA1 Served Peripherals  
DMA Channel  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
Channel 8  
Channel 9  
Channel 10  
Channel 11  
Channel 12  
Channel 13  
Channel 14  
Channel 15  
Module Name  
Direction  
T/RX  
RX  
Transfer Size  
Word  
Mem-to-mem  
I2S  
Word  
I2S  
TX  
Word  
I2C  
RX  
Byte  
I2C  
TX  
Byte  
UART0  
RX  
Byte  
UART0  
TX  
Byte  
UART1  
RX  
Byte  
UART1  
TX  
Byte  
ADCFIFO[0]  
ADCFIFO[1]  
ADCFIFO[2]  
ADCFIFO[3]  
UART2  
READ  
READ  
READ  
READ  
RX  
Halfword  
Halfword  
Halfword  
Halfword  
Byte  
UART2  
TX  
Byte  
Mem-to-mem  
T/RX  
Word  
DA16200’s DMA1 controller supports the Linked-List Item (LLI) function that can sequentially operate  
multiple DMA tasks. It is possible to reduce the SW burden and process delay with this function.  
Figure 18 shows the DMA1 state machine.  
Request  
Finish IDLE0 Start  
W_FIRST9  
INIT10  
R_FIRST1  
R_FIRST_LOAD11  
Arbitration  
necessary  
R_COMMAND2  
R_SRC_ADDR3  
R_DST_ADDR4  
Start next DMA task  
C_NEXT13  
Next descriptor  
doesn't exist  
Next descriptor  
exist  
R_NEXT_LOAD12  
R_NEXT8  
R_DATA5  
W_DATA6  
LLI  
No arbitration  
necessary, and DMA  
task not finished  
W_COMMNAD7  
Arbitration necessary, or finish current DMA task  
Current DMA task  
not finished  
(arbitration necessary)  
Figure 18: DMA1 State Machine  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
41 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
IDLE: waits for the DMA request. When the DMA request appears, the state moves to R_FIRST  
R_FIRST: reads the address of the first DMA descriptor (head node of the linked list)  
R_COMMAND: reads the Command Field of the DMA descriptor  
R_SRC_ADDR: reads the Src_start_addr Field of the DMA descriptor  
R_DST_ADDR: reads the Dst_start_addr Field of the DMA descriptor  
R_DATA: reads the data from the source address  
W_DATA: writes the data read in the R_DATA state to the destination address. By the  
information written in the DMA descriptor, if data read/write is required, the state moves to  
R_DATA. If the DMA task is required to be suspended or stopped, the state moves to  
W_COMMAND  
R_NEXT: reads the next_descriptor field to check whether the next DMA task exists or not,  
before stopping the current DMA task  
W_FIRST: writes the address of the next DMA descriptor read in R_NEXT to the memory region  
where the first address of the DMA descriptor is stored. If arbitration is required, the state moves  
to IDLE state. If the current DMA channel is required to be operated, the state moves to R_FIRST  
state  
INIT, R_FIRST_LOAD, R_NEXT_LOAD, and C_NEXT: reduce the critical path delay in the DMA  
block. These states generate one clock delay  
7.7.2  
DMA2 (Fast DMA)  
DMA2 (Fast DMA) controller consists of a master read port, a master write port, and a slave port for  
configuration register setting. Fast DMA performs bulk data transfers, data reading from the source  
address range, and data writing to the destination address range. Fast DMA is mainly used for fast  
data transfer from memory to memory.  
The features of Fast DMA in DA16200 are summarized as follows:  
Transfer size is programmable from 1 byte to 1 Megabytes  
Up to four channels can be set at the same time  
LLI function of ring type is supported by using configuration registers of four channels  
Interrupt enable can be set for each channel  
Provides a hold function to pause data transfer for each channel  
The basic unit of bus transmission is 32-bit and has a function to automatically correct address align,  
even if the source and destination addresses are not in word units.  
For example, assuming that the transfer size is 23 bytes, the source base address is 0x001 for read  
access, and the destination base address is 0x102 for write access, the number of bytes per  
transaction is performed as follows:  
Source base address [1:0] = 0x1: the master read port of fast DMA performs read access with  
the following sequences:  
1 -> 2 -> 4 -> 4 -> 4 -> 4 -> 4 bytes  
Destination base address [1:0] = 0x2: the master write port of fast DMA performs write access  
with the following sequences:  
2 -> 4 -> 4 -> 4 -> 4 -> 4 -> 1 bytes  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
42 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 19 shows the DMA2 block diagram.  
AHB  
BusMatrix  
M0  
M1  
S
DMA2  
Configuration  
Figure 19: DMA2 Block Diagram  
7.8 Simple Memory Protection  
DA16200 provides simple protection for internal SRAM, ROM, and Retention Memory.  
The memory controllers are AMBA AHB slaves and simple protection operates between the main  
AHB bus and the AHB slave port of the memory controllers.  
The features of memory protection in DA16200 are summarized as follows:  
Memory protection provides the function to set the security area of each memory that should be  
protected  
The setting unit to set the security area for each memory is different:  
SRAM: 1 kB/unit  
MROM: 16 bytes/unit  
Retention Memory: 4 bytes/unit  
Provides the access protection for the security zone for each AHB master  
Provides the write protection function for each AHB master  
Provides the read protection function for each AHB master  
Latency is 0 cycle  
The index numbers to distinguish AHB masters are:  
0x0: Cortex M4 DCode bus  
0x1: Cortex M4 ICode bus  
0x2: Cortex M4 System bus  
0x3: MAC DMA  
0x4: DMA1  
0x5: SD/eMMC (SD Host)  
0x6: Serial Slave Interface (SPI, I2C, SDIO)  
0x7: DMA2_M0 (read port)  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
43 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
0x8: DMA2_M1 (write port)  
0x9: DMA of Crypto Engine  
0xA: QSPI master flash controller with XIP  
0xB: Hardware Security Unit for Temporal Key Integrity Protocol (HSU for TKIP)  
0xC: SPI master for another external SPI slaves  
For more information to use this function, see Ref. [2].  
7.9 Bus Protection of Serial Slave Interfaces  
DA16200 supports a variety of serial slave interfaces, including SPI, I2C, and SDIO slaves.  
When DA16200 interfaces with an external host, it is necessary to provide the access to the  
authorized area. Therefore, DA16200 provides bus protection for serial slave interfaces.  
The features of bus protection in DA16200 are summarized as follows:  
Up to two accessible areas can be set and the setting unit is 4-byte  
The bus protection provides the write/read protection function outside the set area  
For more information to use this function, see Ref. [2].  
7.10 Watchdog Timer  
The watchdog timer in DA16200 is based on a 32-bit down-counter that is initialized from the reload  
register, WDOGLOAD. The watchdog timer generates a regular interrupt, WDOGINT, depending on  
the programmed value. The counter decrements by one on each positive clock edge of WDOGCLK  
when the clock enable, WDOGCLKEN, is HIGH.  
The watchdog monitors the interrupt and asserts a reset request signal, WDOGRES, when the  
counter reaches 0, and the counter is stopped. On the next enabled WDOGCLK clock edge, the  
counter is reloaded from the WDOGLOAD register and the countdown sequence continues. If the  
interrupt is not cleared by the time the counter reaches 0 for a second time, the watchdog timer  
reasserts the reset signal.  
The watchdog timer applies a reset to the system in the event of a software failure, providing a way  
to recover from software crashes. The watchdog unit can be enabled or disabled as required.  
Figure 20 shows the watchdog timer block diagram.  
Figure 20: Watchdog Timer Block Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
44 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 21 shows the flow diagram for the watchdog operation.  
Counter reloaded  
and count down  
Count down  
Without  
without reprogram  
reprogram  
Watchdog is  
programmed  
Counter  
reaches zero  
Counter  
reaches zero  
If the INTEN bit in the  
If the RESET bit in the  
WDOGCONTROL register WDOGCONTROL register  
is set to 1, WDOGINT is  
asserted  
is set to 1, WDOGERS is  
asserted  
Figure 21: Watchdog Operation Flow Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
45 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
7.11 Clock Generator  
The generation of the system's clocks is described in detail in Figure 22.  
PHY Clock  
Generator  
Divide by  
PLL_CLK_DIV_0_CPU  
HCLK_FR  
PLL480M  
XTAL40M  
Free running  
modules  
CK  
EN  
CPU Core (CM4F)  
BusMatrix  
CG  
CG  
CK  
EN  
CK  
EN  
Internal SRAM  
Mask ROM  
CG  
CG  
CG  
CK  
EN  
CK  
EN  
PHY Bus  
Divide by  
CLK_DIV_EMMC  
SD/eMMC  
Divide by  
PLL_CLK_DIV_1_XFC  
HCLK_XFC  
CK  
EN  
QSPI Flash  
Controller  
CG  
CG  
2nd SPI Host  
Controller  
CK  
EN  
Divide by  
PLL_CLK_DIV_2_UART  
CLK_UART  
UART_0  
UART_1  
UART_2  
Divide by  
PLL_CLK_DIV_3_OTP  
CLK_OTP  
OTP  
Divide by 2  
CLK_AUXA  
Divide by  
Divide by  
CLK_DIV_AUXA  
PLL_CLK_DIV_6_AUXA  
Aux. ADC  
Divide by  
PLL_CLK_DIV_7_C312  
HCLK_CC312  
CK  
EN  
CG  
CC312 (Security IP)  
Divide by  
PLL_CLK_DIV_5_I2S  
CLK_I2S  
Divide by  
CLK_DIV_I2S  
I2S  
I/O PAD  
Figure 22: Clock Tree Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
46 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
8
Crypto Engine  
HW crypto engine can be used for accelerating many crypto algorithms, such as hashing, secret key  
generation, and others.  
Table 32 shows the supported HW acceleration crypto algorithms in DA16200. This table is cited  
from Ref. [4]. How to use these crypto functions is explained in Ref. [2].  
Table 32: HW Acceleration Crypto Algorithms in DA16200  
Algorithm  
Mode  
Key Sizes  
ECB, CBC, CTR, OFB,  
CMAC, CBC-MAC,  
AESCCM, AES-CCM*, AES-  
GCM  
AES  
128 bits, 192 bits, and 256 bits.  
AES key wrapping  
N/A  
N/A  
All  
Chacha and Chacha-Poly1305  
Diffie-hellman  
N/A  
ANSI X9.42-2003: Public Key  
Cryptography for the Financial  
Services Industry: Agreement of  
Symmetric Keys Using Discrete  
Logarithm Cryptography  
N/A  
1024 bits, 2048 bits, and 3072 bits.  
Public-Key Cryptography Standards  
(PKCS) #3: Diffie Hellman Key  
Agreement Standard  
ECC key generation  
ECIES  
N/A  
N/A  
N/A  
N/A  
NIST curves and 25519 curves.  
NIST curves and 25519 curves.  
NIST curves and ED25519.  
ECDSA  
ECDH  
NIST curves and 25519 curves.  
Hash  
SHA1, SHA224 and SHA256. N/A  
N/A N/A  
HKDF  
HMAC  
SHA1, SHA224 and SHA256. N/A  
KDF  
N/A  
NIST SP 800-108: Recommendation for  
Key Derivation Using Pseudorandom  
Functions  
CMAC or HMAC.  
RSA PKCS#1 operations  
Public-Key Cryptography Standards  
(PKCS) #1 v2.1: RSA Cryptography  
Specifications  
Encryption and signature  
schemes.  
2048 bits, 3072 bits, and 4096 bits.  
Public-Key Cryptography Standards  
(PKCS) #1 v1.5: RSA Encryption  
RSA key generation  
N/A  
2048 bits and 3072 bits.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
47 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9
Peripherals  
This section describes the peripherals that are supported by the DA16200 device.  
9.1 QSPI Master with XIP Feature  
QSPI master supports 4-line SPI communication with commercial flash memory devices and uses a  
Motorola SPI-compatible interface among SPI communication modes. The highest communication  
speed is the same as the AMBA bus clock, and the speed is adjustable in integer multiples. The  
designed QSPI supports 4-/2-/1-line types depending on the purpose. These types should be  
combined. Especially when the 1-line communication mode is used, it can be used as the SPI  
master.  
QSPI master is an IP for communication between the flash memory and AMBA AHB bus and is  
designed to support XIP. The features of the QSPI master are summarized as follows:  
Serial flash interface:  
SPI compatible serial bus interface  
Configurable SPI I/O modes:  
Single I/O mode  
Dual I/O mode  
Quad I/O mode  
JEDEC Standard: JESD216B  
24-bit and 32-bit addressing  
Supports to access flash with XIP mode  
Read access without command  
Read access without address and command  
Programmable SPI clock phase and polarity  
Maximum number of SPI CS is four that can be operated  
Compatible with serial NOR flash devices, such as Macronix, Micron, Spansion, ESMT, and ISSI  
AMBA slave interface  
Compliance to the AMBA AHB bus specification, Rev 3.0 [7]  
Direct code execution: directly addressable access without additional driver software  
Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16)  
Supports byte, half-word, and word transaction  
AMBA slave interface is optional to access configuration and status registers  
Simple timer is used to check the completion time of flash operation  
XIP path of QSPI master supports HW remapping function to execute selected boot image for  
over-the-air programming (OTA)  
AMBA master interface  
Compliance to the AMBA AHB bus specification, Rev 3.0 [7]  
Supports DMA operation to access serial flash devices  
Automatic copy of code image from serial flash to system RAM  
Automatic programming of code image from system RAM to serial flash  
Performs a mem-to-mem copy in units of 32 bits, regardless of the address and length  
Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16)  
Supports byte, half-word, and word transaction  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
48 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 23 shows the QSPI Master Block Diagram.  
AHB  
BusMatrix  
XIP path  
Configuration  
DMA  
I-Cache  
Controller  
S
M
S0  
S1  
AHB  
Bus  
AHB  
Bus  
QSPI  
Master  
External  
Serial  
NOR Flash  
AHB  
Bus  
with XIP feature  
M
DMA  
AHB  
Bus  
Figure 23: QSPI Master Block Diagram  
Figure 24 shows the timing diagram for the QSPI master.  
TCSB.OF  
TCLK.ON  
TDO.DLY  
TDI.SU  
F
QSPI_CSB  
QSPI_CLK  
QSPI_D[3:0]  
Figure 24: QSPI Master Timing Diagram (Mode 0)  
Table 33 lists the timing parameters for the QSPI master.  
Table 33: QSPI Master Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
%
QSPI_CLK frequency  
QSPI_CLK clock duty  
FCLK  
10  
120  
50  
TCLK  
1st CLK active rising transition time  
TCLK.ON  
0.5 ×TCLK  
ns  
(Note 1)  
QSPI_CSB non-active rising transition time  
QSPI_D[3:0] input setup time  
TCSB.OFF  
TDI.SU  
0
6
TCLK  
ns  
ns  
ns  
QSPI_D[3:0] output delay time  
TDO.DLY  
2
Note 1 TCLK = (FCLK× 106)-1 seconds.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
49 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.2 SPI Master  
QSPI can use the SPI master with the use of a single line interface. Table 34 shows the pin definition  
of the SPI master interface. SPI signal timing is the same as QSPI.  
To use DA16200 as an SPI master, the CSB signal can be used with any of the GPIO pins. CSB  
[3:1] can be selected from the GPIO special function by setting the registers in the GPIO.  
Table 34: SPI Master Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
fcCSP  
GPIOx  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
GPIOA10  
GPIOA11  
O
O
E_SPI_CSB[3:1]  
E_SPI_CSB[0]  
32  
31  
30  
29  
28  
27  
E3  
E1  
G3  
H2  
F2  
G1  
O
E_SPI_CLK  
I/O  
I/O  
I/O  
I/O  
E_SPI_MOSI or E_SPI_D[0]  
E_SPI_MISO or E_SPI_D[1]  
E_SPI_D[2]  
E_SPI_D[3]  
TCSB.OF  
TCLK.ON  
TDO.DLY  
TDI.SU  
F
E_SPI_CSB  
E_SPI_CLK  
E_SPI_D[3:0]  
Figure 25: SPI Master Timing Diagram (Mode 0)  
Table 35: SPI Master Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
%
QSPI_CLK frequency  
FCLK  
5
60  
QSPI_CLK clock duty  
50  
TCLK  
1st CLK active rising transition time  
TCLK.ON  
0.5 × TCLK  
ns  
(Note 1)  
QSPI_CSB non-active rising transition time TCSB.OFF  
0
6
TCLK  
ns  
ns  
ns  
QSPI_D[3:0] input setup time  
QSPI_D[3:0] output delay time  
Note 1 TCLK = (FCLK× 106)-1 seconds.  
TDI.SU  
TDO.DLY  
2
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
50 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.3 SPI Slave  
The SPI slave interface supports that an external host can control the DA16200. The range of the  
SPI clock speed is the same as that of the internal bus clock speed. The SPI slave supports both the  
Burst mode and Non-burst mode. In the Burst mode, SPI_CSB remains active from the start to the  
end of communication. In the Non-burst mode, SPI_CLK remains active at every eight bits.  
Address  
Decoder  
Command  
Decoder  
APB bus  
Controller  
SPI Signals  
Data  
Decoder  
Figure 26: SPI Slave Block Diagram  
Communication protocols of the SPI slave interface use either 4-byte or 8-byte control signals.  
Between the two available communication protocols, the CPU chooses one before initiating the  
control.  
Figure 27 and Figure 28 shows the 8-byte and 4-byte control types.  
SPI_CSB  
SPI_CLK  
D [ 31 : 24 ]  
C [ 7 : 0 ]  
L [ 23 : 16 ]  
L [ 15 : 8 ]  
L [ 7 : 0 ]  
D [ 7 : 0 ]  
D [ 15 : 8 ]  
D [ 23 : 16 ]  
SPI_MOSI  
A [ 31 : 24 ]  
A [ 23 : 16 ]  
A [ 15 : 8 ]  
A [ 7 : 0 ]  
Figure 27: 8-byte Control Type  
SPI_CSB  
SPI_CLK  
L [ 7 : 0 ]  
D [ 23 : 16 ]  
D [ 31 : 24 ]  
SPI_MOSI  
A [ 15 : 8 ]  
A [ 7 : 0 ]  
C [ 7 : 0 ]  
D [ 7 : 0 ]  
D [ 15 : 8 ]  
Figure 28: 4-byte Control Type  
The 8-byte control type uses a 4-byte address, 1-byte control, and 3-byte length. The 4-byte address  
displays the address of registers subject to internal access. The 1-byte control is for communication  
control and 3-byte length shows the length of data subject to continuous access in bytes. Hence,  
when the 8-byte control type is applied, the maximal length of data subject to continuous access is  
16 MB.  
The 4-byte control type uses a 2-byte address, 1-byte control, and 1-byte length. The 2-byte address  
displays the address of registers subject to internal access. The 1-byte control is for communication  
control and 1-byte length shows the length of data subject to continuous access in bytes. Since the  
32-bit address map is used internally, the 2-byte address is not enough to express everything. Thus,  
the upper 2-byte base address is designated, and then the lower 2-byte address is used.  
Table 36 and Table 37 shows the meaning of each bit in the 1-byte control in the 8-byte control type  
and the 4-byte control type, respectively.  
Table 36: Control Field of the 8-byte Control Type  
Control Bit  
Abr.  
Description  
7
Auto Inc.  
1 = Internal Address auto-increment  
0 = Address fixed  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
51 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Control Bit  
Abr.  
Description  
6
Read/Write  
1 = Read  
0 = Write  
5:0  
Not used. Set all bits to ‘0’  
Table 37: Control Field of the 4-byte Control Type  
Control Bit  
Abr.  
Description  
7
6
Auto Inc.  
1 = Internal address auto-increment  
1 = Read  
0 = Address fixed  
0 = Write  
Read/Write  
Common  
5
1 = Refer base address as common area  
1 = Refer to register value  
Length field upper  
0 = Refer base address  
0 = Refer to length field  
4
Length section  
Length[12:8]  
3:0  
Table 38 shows the pin definition of the SPI slave interface.  
Table 38: SPI Slave Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
SPI_CSB  
QFN  
37  
32  
36  
31  
38  
29  
27  
39  
30  
28  
fcCSP  
GPIOA2  
GPIOA6  
GPIOA3  
GPIOA7  
GPIOA1  
GPIOA9  
GPIOA11  
GPIOA0  
GPIOA8  
GPIOA10  
B2  
I
I
E3  
D4  
I
SPI_CLK  
E1  
I
C3  
I
H2  
I
SPI_MOSI  
SPI_MISO  
G1  
A3  
I
O
O
O
G3  
F2  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
52 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 29 shows the timing diagram for the SPI slave.  
SPI_CSB  
TSCLKOFF  
TCSBOFF  
TSCLKL  
TSCLKH  
TSCLKON  
SPI_CLK  
(CPOL=0)  
TSCLKL  
TSCLKH  
SPI_CLK  
(CPOL=1)  
TSSU  
TMSU  
TMHD  
SPI_MOSI  
SPI_MISO  
MSB  
LSB  
LSB  
TTR  
Figure 29: SPI Slave Timing Diagram  
Table 39 lists the timing parameters for the SPI slave.  
Table 39: SPI Slave Timing Parameters  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
MHz  
%
SCLK frequency  
SCLK clock duty  
Non active duration  
FSCLK  
-
-
50  
40  
TSCLKOFF 400  
-
-
-
-
ns  
TSCLKL(CPOL=0)  
1st CLK active rising transition time  
CSB non active rising transition time  
MOSI setup time  
TSCLKON  
TCSBOFF  
TMSU  
ns  
ns  
ns  
TSCLKH (CPOL=1)  
TSCLKH (CPOL=0)  
TSCLKL (CPOL=1)  
-
-
-
TSCLK  
8
(Note 1)  
MOSI hold time  
MISO delay time  
TMHD  
TSSU  
8
-
-
-
TSCLK  
8
ns  
ns  
MISO transition time (10 % to 90 %  
transition)  
TTR  
-
4
5
ns  
Note 1 TSCLK = 0.5 × (FSCLK x 106)-1 second.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
53 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.4 SDIO  
SDIO is a full/high speed card suitable for memory card and I/O card applications with low power  
consumption. The full/high speed card supports SPI, 1-bit SD, and 4-bit SD transfer modes at the full  
clock range of 0 to 50 MHz. To be compatible with the serviceable SDIO clock, the internal BUS  
clock needs to be set to minimum 50 MHz. The CIS and CSA areas are located inside the internal  
memory and the SDIO registers (CCCR and FBR) are programmed by the SD host.  
Command  
Decoder  
Fn0 / Fn1  
Decoder  
DAT  
Decoder  
APB bus  
Interface  
Response  
Generator  
CRC  
Generator  
REG.  
2 port  
DMA  
Control  
Memory  
Controller  
Figure 30: SDIO Slave Block Diagram  
Table 40 shows the pin definition of the SDIO interface.  
The GPIOA4 and GPIOA5 pins are set to SDIO CMD and CLK by default. If SDIO initialization is  
done and SDIO communication is enabled, then the SDIO data pin setting is done automatically. In  
other words, when the SDIO communication is detected, the pin used as the SDIO data among the  
GPIO pins is automatically activated in the SDIO use mode. However, the auto setting function is not  
supported for the F_xxx pin used as the flash function.  
Table 40: SDIO Slave Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
34  
fcCSP  
F4  
GPIOA4  
GPIOA5  
GPIOA9  
GPIOA8  
GPIOA7  
GPIOA6  
I/O  
I
SDIO_CMD  
SDIO_CLK  
SDIO_D0  
SDIO_D1  
SDIO_D2  
SDIO_D3  
33  
D2  
29  
H2  
I/O  
I/O  
I/O  
I/O  
30  
G3  
31  
E1  
32  
E3  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
54 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 31 shows the timing diagram for the SDIO slave.  
TCO.DLY  
TDO.DLY  
TCI.SU  
TDI.SU  
SDIO_CLK  
SDIO_D[3:0]  
SDIO_CMD  
Figure 31: SDIO Slave Timing Diagram  
Table 41 lists the timing parameters for the SDIO slave.  
Table 41: SDIO Slave Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
MHz  
%
SDIO_CLK frequency  
FSCLK  
-
50  
SDIO_CLK clock duty  
50  
SDIO_CMD input setup time  
SDIO_CMD output delay time  
SDIO_D[3:0] input setup time  
SDIO_D[3:0] output delay time  
TCI.SU  
3
3
ns  
TCO.DLY  
TDI.SU  
11 (Note 1)  
11 (Note 1)  
ns  
ns  
TDO.DLY  
ns  
Note 1 SDIO signals can set previous output from half cycle.  
9.5 I2C Interface  
9.5.1  
I2C Master  
DA16200 includes an I2C master module. Four ranges of clock speed are supported: standard (100  
kHz), fast (400 kHz), fast plus (1.0 MHz) and High Speed (3.4 MHz) mode. Table 42 shows the pin  
definition of the I2C master interface.  
Table 42: I2C Master Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
38  
fcCSP  
C3  
GPIOA1  
GPIOA5  
GPIOA9  
GPIOA0  
GPIOA4  
GPIOA8  
O
33  
D2  
O
I2C_CLK  
29  
H2  
O
39  
A3  
I/O  
I/O  
I/O  
34  
F4  
I2C_SDA  
32  
G3  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
55 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 32 shows the I2C timing diagram. The timing diagram is the same as that of the I2C slave  
timing diagram.  
TR  
...  
SDA  
TR  
TSU;DAT  
TVD;ACK  
cont.  
...  
TLOW  
SCL  
THD;STA  
THD;DAT  
THIGH  
S
TBUF  
...  
SDA  
SCL  
cont.  
...  
THD;STA  
TSU;STO  
TSU;STA  
Sr  
P
S
Figure 32: I2C Master Timing Diagram  
Table 43 lists the I2C master timing parameters.  
Table 43: I2C Master Timing Parameters  
Fast Mode  
High Speed Mode  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Operating Bus clock frequency  
SCL clock frequency  
Fop_clk  
FSCLK  
30  
120  
30  
120  
MHz  
kHz  
3400  
(Note 2)  
100  
400  
100  
Clock Duty (Note 1)  
Hold time of START  
40  
0.2  
60  
-
40  
60  
-
%
μs  
μs  
μs  
μs  
THD;STA  
TLOW  
0.2  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for START condition  
1.27  
1.23  
1.1  
-
0.55  
0.45  
0.37  
-
THIGH  
-
-
TSU;STA  
-
-
3x Top_clk  
(Note 3)  
3x Top_clk  
(Note 3)  
Data hold time  
Data setup time  
THD;DAT  
-
-
μs  
μs  
TLOW  
TLOW  
TSU;DAT  
-
-
- THD;DAT  
- THD;DAT  
TR  
Rise time of both SDA and SCL  
Setup time for STOP condition  
Data valid acknowledge time  
0.02  
0.36  
0.3  
0.05  
0.45  
0.05  
μs  
μs  
μs  
(Note 4)  
TSU;STO  
-
-
-
-
3x Top_clk  
(Note 3)  
3x Top_clk  
(Note 3)  
TVD;ACK  
Buffer free time between  
START and STOP condition  
TBUF  
0.5  
-
0.5  
-
μs  
Note 1 Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/FSCLK.  
Note 2 Max. clock = 3.4 MHz (TSCLK = 294 ns) over 40 MHz of the Fop_clk  
.
Max. clock = 1.0 MHz (TSCLK = 1000 ns) under 40 MHz of the Fop_clk.  
Note 3 Top_clk = (1 / Fop_clk ) x 106 μsec.  
Note 4 TR depends on a pull-up resistor value.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
56 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.5.2  
I2C Slave  
The I2C slave interface supports that an external host can control the DA16200. The pin mux  
condition is defined in Table 44. Four ranges of clock speed are supported: standard (100 kHz), fast  
(400 kHz), fast plus (1.0 MHz) and High Speed (3.4 MHz) mode.  
Table 44: I2C Slave Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
38  
36  
33  
31  
39  
37  
34  
32  
fcCSP  
C3  
GPIOA1  
GPIOA3  
GPIOA5  
GPIOA7  
GPIOA0  
GPIOA2  
GPIOA4  
GPIOA6  
I
I
D4  
I2C_CLK  
D2  
I
E1  
I
A3  
I/O  
I/O  
I/O  
I/O  
B2  
I2C_SDA  
F4  
E3  
Figure 33 shows the I2C slave timing diagram.  
TR  
...  
SDA  
TR  
TSU;DAT  
TVD;ACK  
cont.  
...  
TLOW  
SCL  
THD;STA  
THD;DAT  
THIGH  
S
TBUF  
...  
SDA  
SCL  
cont.  
...  
THD;STA  
TSU;STO  
TSU;STA  
Sr  
P
S
Figure 33: I2C Slave Timing Diagram  
Table 45 lists the I2C slave timing parameters.  
Table 45: I2C Slave Timing Parameters  
Fast Mode  
High Speed Mode  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
SCL clock frequency  
100  
400  
100  
3400  
kHz  
FSCLK  
(Note 2)  
Clock Duty (Note 1)  
Hold time of START  
40  
0.6  
1.3  
1.2  
0.6  
60  
-
40  
60  
-
%
μs  
μs  
μs  
μs  
THD;STA  
TLOW  
0.26  
0.15  
0.14  
0.26  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for START condition  
-
-
THIGH  
-
-
TSU;STA  
-
-
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
57 of 94  
© 2021 Dialog Semiconductor  
 
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Fast Mode  
High Speed Mode  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Data hold time  
THD;DAT  
TSU;DAT  
TR  
0
0.1  
0.02  
0.6  
-
-
0
0.05  
-
-
μs  
μs  
μs  
μs  
μs  
Data setup time  
-
0.3  
-
-
Rise time of both SDA and SCL  
Setup time for STOP condition  
Data valid acknowledge time  
0.12  
TSU;STO  
TVD;ACK  
0.26  
-
-
-
-
Buffer free time between  
START and STOP condition  
TBUF  
1.3  
-
0.5  
-
μs  
Note 1 Clock duty ratio = (THIGH/TSCLK) × 100[%], TSCLK = 1/FSCLK  
Note 2 Max. clock = 3.4 MHz (TSCLK = 294 ns) over 40 MHz of the Fop_clk  
Max. clock = 1.0 MHz (TSCLK = 1000 ns) under 40 MHz of the Fop_clk.  
.
.
9.6 SD/SDeMMC  
The SD/eMMC host IP provides the function for DA16200 to access SD or eMMC cards. This  
SD/eMMC host IP only supports a 4-bit data bus and the maximum clock rate is 50 MHz. The  
maximum data rate is 25 MB/s (200 Mbps) under the 4-bit data bus and 50 MHz clock.  
The SD/eMMC pin mux condition is defined in Table 46.  
Table 46: SD/eMMC Master Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
34  
33  
29  
30  
31  
32  
28  
38  
fcCSP  
F4  
GPIOA4  
GPIOA5  
GPIOA9  
GPIOA8  
GPIOA7  
GPIOA6  
GPIOA10  
GPIOA1  
I/O  
O
SD/eMMC_CMD  
SD/eMMC_CLK  
SD/eMMC_D0  
SD/eMMC_D1  
SD/eMMC_D2  
SD/eMMC_D3  
D2  
H2  
I/O  
I/O  
I/O  
I/O  
I
G3  
E1  
E3  
F2  
SD/eMMC_WRP  
C3  
I
9.6.1  
Block Diagram  
Figure 34 shows the block diagram of the SD/eMMC host IP and includes the control register, clock  
control, command/response pipe, data pipe, and AHB master interface blocks.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
58 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
HCLK  
AHB  
Control  
Clock  
Slave  
Registers  
Control  
32  
HCMD  
CMD/RSP  
Pipe  
HDATA[3:0]  
4
AHB  
Master  
AHB  
FIFO  
Data  
Pipe  
32  
32  
Figure 34: SD/eMMC Block Diagram  
Figure 35 shows the timing diagram for the SD/eMMC master.  
TCO.DLY  
TDO.DLY  
TCI.SU  
TDI.SU  
SD/eMMC_CLK  
SD/eMMC_D[3:0]  
SD/eMMC_CMD  
Figure 35: SD/eMMC Master Timing Diagram  
Table 47 lists the timing parameters for the SD/eMMC master.  
Table 47: SD/eMMC Master Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
MHz  
%
SD/eMMC_CLK frequency  
FSCLK  
-
50  
SD/eMMC_CLK clock duty  
50  
SD/eMMC_CMD input setup time  
SD/eMMC_CMD output delay time  
SD/eMMC_D[3:0] input setup time  
SD/eMMC_D[3:0] output delay time  
TCI.SU  
TCO.DLY  
TDI.SU  
8
8
ns  
3
8
ns  
ns  
TDO.DLY  
ns  
9.7 I2S  
DA16200 provides an I2S interface. Once an I2S block receives audio data through the DMA, that  
audio data is sent to the external port according to the I2S standard. To use the external DAC, output  
through the GPIO port is possible when a register setting is made according to the pin configuration  
(Table 48).  
The I2S also provides a receive function. However, I2S transmission and reception functions cannot  
be used at the same time. The transmit and receive functions can be selected by register setting. If  
the I2S signal is input from outside after the reception function is set, the audio signal can be  
decoded, stored in the FIFO, and read out through the DMA. The decodable reception function  
provides 8/16/24/32-bit modes and can receive either mono or stereo.  
Using the I2S clock divider register, the internal PLL clock can be variably applied to the I2S clock  
source. The available I2S clock source is 24/48 MHz. There is also a way to apply the I2S clock  
source directly from outside using the GPIO pin. For accurate I2S audio sampling, the I2S clock  
source can be input to external GPIO pins. It needs to select the GPIO pin setting as the I2S clock  
input and apply the appropriate clock source. The available I2S clock pins are shown in Table 48.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
59 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 48: I2S Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
38  
33  
29  
39  
34  
30  
36  
31  
37  
32  
36  
28  
fcCSP  
C3  
D2  
H2  
A3  
GPIOA1  
GPIOA5  
GPIOA9  
GPIOA0  
GPIOA4  
GPIOA8  
GPIOA3  
GPIOA7  
GPIOA2  
GPIOA6  
GPIOA3  
GPIOA10  
O
O
O
O
O
O
O
O
I/O  
I/O  
I
I2S_MCLK  
F4  
I2S_BCLK  
G3  
D4  
E1  
I2S_LRCK  
I2S_SDO  
B2  
E3  
D4  
F2  
I2S_CLK_IN  
I
9.7.1  
Block Diagram  
I2S has the following features:  
Master Clock Mode only  
I2S Data pin can work in either Input mode or Output mode  
Clock source can be "internal 480 MHz/N" (currently using 24 MHz) or "external clock source"  
Max Sampling Rate: 48 KHz  
Mono/Stereo Mode  
Figure 36: I2S Block Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
60 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.7.2  
I2S Clock Scheme  
The I2S uses a 24 MHz clock as default from the RF reference clock (40 MHz), so it can support  
46.875 KHz of sampling rate. External clock sources are needed to support the standard sampling  
rate. See Table 49.  
Figure 37: I2S Clock Scheme  
Table 49: I2S Clock Selection Guide  
Parameter  
Units  
KHz  
LRCK  
BCLK  
MCLK  
Fs  
8
12  
16  
24  
32  
44.1  
46.875  
48  
64Fs  
512Fs  
0.512  
4.096  
0.768  
6.144  
1.024  
1.536  
2.048  
2.8224  
3
3.072  
MHz  
8.192 12.288 16.384 22.5792  
24  
24.576 MHz  
1
N
Clk Div2  
6
4
3
2
2
1
1
(=1,2,3…)  
24  
I2S_CLK  
24.576 24.576 24.576 24.576 32.768 22.5792  
(Internal  
PLL)  
24.576 MHz  
NOTE  
To confirm the exact LRCK operation, drive the Clock source at I2S_CLK.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
61 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.7.3  
I2S Transmit and Receive Timing Diagram  
I2S output is possible in the following three modes. The main clock (MCLK) always outputs in 512×fs.  
I2S Mode  
Right Channel  
LRCK  
Left Channel  
SCLK  
SDATA  
-1  
+1  
-1  
+1  
MSB  
-2  
-3  
+3  
+2  
LSB  
MSB  
-2  
-3  
-4  
+3  
+2  
LSB  
Figure 38: I2S Timing Diagram  
Left Justified Mode  
Left Channel  
LRCK  
Right Channel  
SCLK  
SDATA  
-1  
+1  
LSB  
-1  
+1  
LSB  
MSB  
-2  
-3  
+3  
+2  
MSB  
-2  
-3  
-4  
+3  
+2  
Figure 39: Left Justified Mode Timing Diagram  
Right Justified Mode  
Right Channel  
Left Channel  
LRCK  
SCLK  
14  
15  
14  
SDATA  
15  
13  
13  
2
1
0
2
1
0
Figure 40: Right Justified Mode Timing Diagram  
T2  
fBCLK  
T3  
I2S_BCLK  
I2S_SDO  
T4  
(falling edge)  
T5  
I2S_SDO  
(rising edge)  
Figure 41: I2S Transmit Timing Diagram  
T4  
T2  
fBCLK  
T3  
I2S_BCLK  
I2S_SDO  
T5  
Figure 42: I2S Receive Timing Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
62 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 50: I2S Transmit Timing Parameters  
Description  
Timing  
fBCLK  
T2  
Min  
Typ  
Max  
3.072  
½ fBCLK  
½ fBCLK  
-
Unit  
MHz  
ns  
I2S_BCLK frequency  
-
-
High period of the BCLK clock  
Low period of the BCLK clock  
I2S_SDO output hold (falling edge)  
I2S_SDO output hold (rising edge)  
T3  
-
ns  
T4  
160  
160  
ns  
T5  
-
ns  
Table 51: I2S Receive Timing Parameters  
Description  
Timing  
fBCLK  
T2  
Min  
-
Typ  
Max  
3.072  
½ fBCLK  
½ fBCLK  
-
Unit  
MHz  
ns  
I2S_BCLK frequency  
High period of the BCLK clock  
Low period of the BCLK clock  
I2S_SDO input setup time  
I2S_SDO input hold time  
-
T3  
-
ns  
T4  
15  
60  
ns  
T5  
-
ns  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
63 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
9.8 ADC (Aux 12-bit)  
9.8.1  
Overview  
DA16200 includes a high precision, ultra-low power, and wide dynamic range SAR ADC with a 12-bit  
resolution. It has a 4-channel single-end ADC.  
Analog input is measured by four pins from GPIOA0 to GPIOA3, and pin selection is changed  
through the register setting.  
Figure 43 shows the control block diagram.  
VI_N[1]  
ADC  
12b  
Max : 1Ms  
CH_SEL  
Ready  
VI_N[2]  
VI_N[3]  
VI_N[4]  
Counter  
16-bit  
Figure 43: ADC Control Block Diagram  
9.8.2  
Timing Diagram  
The input is digitized at a maximum of 1.0 Msps throughput rate. And the maximum input clock rate  
is 15 MHz.  
Figure 44 shows the conversion timing, and Table 52 describes the DC specifications.  
CLK  
15MHz  
15*CLK  
15*CLK  
15*CLK  
15*CLK  
15*CLK  
15*CLK  
AUXADC_EN  
OSC_EN  
N+1  
N+4  
N+2  
N+3  
N
SAMPLE  
1M  
D<11:0>  
N
N+1  
N+2  
N+3  
CLKOUT  
1M  
Figure 44: 12-bit ADC Timing Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
64 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 52: DC Specification  
Description  
Min  
4
Typ  
Max  
12  
15  
1
Unit  
Bits  
Resolution  
12  
Max clock input  
Conversion frequency  
Accuracy:  
MHz  
MHz  
SNR  
67.2  
61.7  
dB  
dB  
SNDR  
Analog input voltage  
0
1.4  
V
Reference voltage  
0.7  
10  
V
Input tolerance (approximately)  
mV  
9.8.3  
DMA Transfer  
There are four ADC channel settings available. Once the input data of each channel reaches the  
FIFO level, it is possible to read the data through the DMA path.  
9.8.4  
Sensor Wake-up  
The DA16200 has an external sensor wake-up function that uses the analog input signal through an  
Aux ADC. Even in Sleep modes, it detects the change of an external analog signal, wakes up from  
Sleep mode, and converts the DA16200 into a normal operation. This function can be used in up to  
four channels. Also, when multiple external sensors are used, analog signals are detected while the  
channel are automatically changed. For example, if all four channels are set as input sources which  
have their threshold register respectively, the channels are measured sequentially from 0 to 3.  
If one of the four values exceeds the allowed range of values set by the threshold register, the  
DA16200 awakes from the Sleep mode. The value setting of the input change can be either over  
threshold or under threshold.  
9.8.5  
ADC Ports  
Table 53 shows the pin definition of the ADC.  
Table 53: ADC Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
fcCSP  
GPIOA3  
GPIOA2  
GPIOA1  
GPIOA0  
36  
D4  
B2  
C3  
A3  
A
A
A
A
Analog signal  
Analog signal  
Analog signal  
Analog signal  
37  
38  
39  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
65 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.9 GPIO  
All digital pads can be used as GPIO, and each GPIO port is mixed with a multi-functional interface.  
The GPIO features of DA16200 are listed below:  
Input or output lines in a programmable direction  
Word and half word read/write access  
Address-masked byte writes to facilitate quick bit set and clear operations  
Address-based byte reads to facilitate quick bit test operations  
Maskable interrupt generation based on input value change  
Possible to be output signal of PWM[3:0], external interrupt, QSPI_CSB[3:1], RF_SW[1:0], and  
UART_TXDOE[2:0] on the GPIO pins:  
It provides special functions for GPIO pin use. PWM [3:0], external interrupt, QSPI_CSB [3:1],  
RF_SW [1:0], and UART_TXDOE [2:0] signals can be output by selecting unused pins  
among the GPIO pins. It is possible to select the function to be output from the GPIO register  
setting and select the remaining GPIO pin without using it to output the specific function to  
the desired GPIO pins  
9.9.1  
Antenna Switching Diversity  
DA16200 provides the antenna switching diversity function for performance improvement in a multi-  
path environment. A PHY block measures the RSSI of each antenna and selects the antenna with  
the largest RSSI. The selected antenna is also used for transmission. To use this function, an  
external switching element is required, and switching control is done through the GPIO. Two GPIOs  
can be used for switching control, and for this purpose any unused pins among the GPIO pins can be  
selected. The control signal can be changed by register setting to suit the external switching device.  
Antenna1  
RF Switch  
DA16200  
Antenna2  
ANT  
GPIO  
2
Figure 45: Antenna Switching Internal Block Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
66 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
If the Antenna Switching Diversity function is enabled, the function is automatically done by PHY  
hardware block. The basic operation scheme is as follows:  
The antenna's RSSI decision is made for 11b PPDU, except for 11g/n PPDU  
When PHY hardware detects the existence of 11b PPDU, it stores the RSSI  
After the switch to another antenna, the RSSI is stored and a decision is made about which  
antenna has better RSSI  
This operation is done during 11b PPDU's preamble duration to protect corruption of 11b PPDU  
data reception  
The decided antenna is not changed until there is a new 11b PPDU  
Example case when RSSI of Antenna 2 is higher  
11b PPDU  
Preamble Header  
11g/n PPDU  
11b PPDU  
Preamble Header  
PSDU  
PSDU  
Antenna  
Time  
1
2
2
1
2
Figure 46: Antenna Switching Timing Diagram  
For reference, this antenna switching diversity is different from MRC (Maximum Ratio Combining).  
9.10 UART  
DA16200 provides three UARTs, features of which are described below:  
Programmable use of UART (UART1 and UART2)  
Compliance to the AMBA AHB bus specification [7] for easy integration into SoC implementation  
Supports both byte and word access for reduction of bus burden  
Supports both RS-232 and RS-485  
Separate 32×8 bit transmit and 32×12 bit receive FIFO memory buffers to reduce CPU interrupts  
Programmable FIFO disabling for 1-byte depth  
Programmable baud rate generator  
Standard asynchronous communication bits (start, stop, and parity), which are added prior to  
transmission and removed on reception  
Independent masking of transmit FIFO, receive FIFO, and receive timeout  
Supports for DMA  
False start bit detection  
Programmable flow control (CTS/RTS, UART1)  
Fully programmable serial interface characteristics:  
Data can be of 5, 6, 7, or 8 bits  
Even, odd, stick, or no-parity bit generation and detection  
1- or 2- stop bit generation  
Baud rate generation  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
67 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Figure 47: DA16200 UART Block Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
68 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
9.10.1 RS-232  
As the serial communication between the UART and the selected device is asynchronous, additional  
bits (start and stop) are inserted into the data line to indicate the beginning and end. With these bits,  
two devices can be synchronized. This structure of serial data accompanied by start and stop bits is  
referred to as a character, as shown in Figure 48.  
Bit Time  
Data  
Start  
Data bits  
5 - 8  
Parity  
Stop  
1- or 2-  
One Character  
Figure 48: Serial Data Format  
An additional parity bit may be added to the serial character. This bit appears between the last data  
bit and the stop bit(s) in the character structure. It provides the UART with the ability to do simple  
error checking on the received data.  
The UART Line Control Register is used to control the serial character characteristics. The individual  
bits of the data word are sent after the start bit, starting with the least significant bit (LSB). These are  
followed by the optional parity bit, followed by the stop bit(s), which can be 1 or 2.  
Serial Data In  
Start  
Data Bit 0 (LSB)  
Data Bit 1  
8
16  
16  
Figure 49: Receiver Serial Data Sampling Points  
All the bits in the transmission are transmitted for exactly the same time duration. This is referred to  
as a Bit Period or Bit Time. One Bit Time equals 16 baud clocks. To ensure stability on the line, the  
receiver samples the serial input data at approximately the mid-point of the Bit Time, once the start  
bit has been detected. As the exact number of baud clocks that each bit was transmitted for is  
known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the  
mid-point sample of the start bit. Figure 49 shows the sampling points of the first couple of bits in a  
serial character.  
9.10.2 RS-485  
DA16200 UART supports RS-485. A UART485EN register (0x054) is required to be assigned to  
enable the RS-485. In order to use RS-485, an additional signal (UARTTXDOE) is required to notice  
TXD intervals. This signal can be an output by selecting any of the unused GPIO pins.  
Figure 50: UARTTXDOE Output Signal for UART RS-485  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
69 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.10.3 Baud Rate  
The UART clock frequency (FUARTCLK) is fixed at 80 MHz. The Baud Rate Divisor can be  
calculated as (FUARTCLK / (16 x Baud Rate)). The Baud Rate Divisor is comprised of the integer  
part (UART_INTBRDIV) and fractional part (UART_FRABRDIV). The maximum baud rate of  
DA16200 UART is 2.5 MBaud.  
The example below shows how to calculate the divisor value.  
If the required baud rate is 921600 with 80 MHz FUARTCLK, the Baud Rate Divisor becomes:  
(8 x 107) / (16 x 921600) = 5.425.  
This means that the integer value is 5 and the fractional value is 0.425.  
Then, the fraction part becomes integer ((0.425 x 64) + 0.5) = 27.  
Then, the generated baud rate divider is 5 + 27/64 = 5.422.  
Finally, the generated baud rate becomes (8 x 107) / (16 x 5.422) = 922169.  
And the error between the required baud rate and the generated baud rate is:  
(922169 921600) / 921600 x100 = 0.062 %  
9.10.4 Hardware Flow Control  
The hardware flow control feature is fully selectable, and serial data flow is controlled by using  
nUARTRTS output and nUARTCTS input signals. Figure 51 shows how two different UARTs can  
communicate using hardware flow control.  
Figure 51: UART Hardware Flow Control  
When RTS flow control is enabled, nUARTRTS signal is asserted until the receive FIFO is filled up to  
programmed level. When CTS flow control is enabled, the transmitter can transmit the data when the  
nUARTCTS signal is asserted. CTSEn (CTS enable) and RTSEn (RTS enable) bits are determined  
by 14th (RTS) and 15th bit (CTS) of UARTCR register.  
Table 54: Control Bits to Enable and Disable Hardware Flow Control  
CTSEn  
RTSEn  
Description  
1
1
0
0
1
0
1
0
Both RTS and CTS flow control are enabled  
Only CTS flow control is enabled  
Only RTS flow control is enabled  
Both RTS and CTS flow control are disabled  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
70 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.10.5 Interrupts  
The DA16200 UART block provides five interrupt signals by separate interrupt lines. Each interrupt  
conditions are Modem Status, Receive FIFO Request, Transmit FIFO Request, Receive Timeout and  
Reception Error. These conditions are logically ORed to provide a single combined interrupt,  
UARTINTR. Table 55 shows the interrupt signals.  
Table 55: UART Interrupt Signals  
Signal Name  
UARTMSINTR  
UARTRXINTR  
UARTTXINTR  
UARTRTINTR  
UARTEINTR  
UARTINTR  
Description  
UART Modem Status Interrupt  
UART Receive FIFO Interrupt  
UART Transmit FIFO Interrupt  
UART Receive Timeout Interrupt  
UART Error Interrupt  
UART Interrupt. Five Interrupt signals are combined by OR function  
9.10.6 DMA Interface  
The DA16200 UART block can generate DMA request signals with register settings by using a DMA  
interrupt generator module to connect to DA16200 DMA Controller (DMA1). The DMA operation of  
the UART is controlled with the DMA Control Register.  
The DA16200 UART provides four DMA signals and receives two DMA signals, two signals to  
transmit (TXDMASREQ, TXDMABREQ), which are cleared by a TX clear signal (TXDMACLR) and  
two signals to receive (RXDMASREQ, RXDMABREQ), which are cleared by a RX clear signal  
(RXDMACLR).  
When the DMA interface is not used, the TXDMACLR and RXDMACLR lines should be connected to  
a logic 0.  
Table 56 shows the pin definition of the UART interface.  
Table 56: UART Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
12  
11  
31  
33  
36  
38  
32  
34  
37  
39  
33  
34  
27  
9
fcCSP  
M10  
L9  
UART0_RXD  
UART0_TXD  
GPIOA7  
GPIOA5  
GPIOA3  
GPIOA1  
GPIOA6  
GPIOA4  
GPIOA2  
GPIOA0  
GPIOA5  
GPIOA4  
GPIOA11  
GPIOC7  
I
O
I
UART0_RXD  
UART0_TXD  
E1  
D2  
I
UART1_RXD  
UART1_TXD  
D4  
I
C3  
I
E3  
O
O
O
O
I
F4  
B2  
A3  
D2  
UART1_CTS  
UART1_RTS  
F4  
O
I
G1  
K12  
UART2_RXD  
I
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
71 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
28  
fcCSP  
F2  
GPIOA10  
GPIOC6  
O
O
UART2_TXD  
10  
L11  
9.11 PWM  
Pulse Width Modulation (PWM) is a modulation technique used to encode a message into a pulse  
signal. The blocks are designed to adjust output pulse duration by the CPU bus clock (HCLK).  
Figure 52 shows the structure of the PWM block.  
Counter  
PWM OUT  
PWM Block 0  
PWM OUT  
PWM OUT  
PWM OUT  
PWM Block 1  
HCLK  
PWMBlock 2  
Register  
PWMBlock 3  
AHB  
Bus  
Matrix  
Counter (Period)  
AHB Bus  
Counter (High Duty)  
Register  
Figure 52: PWM Block Diagram  
Table 57 shows the pin definition of the PWM interface. GPIOx means that PWM signals can go out  
through any GPIO pins via a register setting.  
Table 57: PWM Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
fcCSP  
GPIOx  
PWM[3:0] output  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
72 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.11.1 Timing Diagram  
Table 58 shows the relation between the internal bus clock and PWM output wave patterns.  
Figure 53 shows the conversion timing diagram. a and b can be adjusted through the register setting,  
and PWM wave patterns vary depending on the ratio. a controls the high width of pulses (nCycle  
High), while b controls the general cycle (nCycle Period).  
BUS CLK  
a
PWM  
b
Figure 53: PWM Timing Diagram  
Table 58: PWM Timing Diagram Description  
Time  
Description  
a
b
Bus Clock Period × (nCycle High + 1)  
Bus Clock Period × (nCycle Period + 1)  
9.12 Debug Interface  
DA16200 supports both IEEE Standard 1149.1 JTAG (5-wire) and the low-pin-count Arm SWD (2-  
wire, TCLK/TMS) debug interfaces. The SWD protocol can handle the same debug features as the  
JTAG.  
The JTAG port is an IEEE standard that defines a test access port (TAP) and boundary scan  
architecture for digital integrated circuits and provides a standardized serial interface to control the  
associated test logic. For detailed information on the operation of the JTAG port and TAP controller,  
see Ref. [5].  
Figure 54 shows the JTAG timing diagram.  
Figure 54: JTAG Timing Diagram  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
73 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 59 shows the JTAG timing parameters.  
Table 59: JTAG Timing Parameters  
Parameter Number  
Parameter  
fTCK  
Parameter Name  
Clock Frequency  
Clock Period  
Min  
Max  
15  
Unit  
MHz  
ns  
J1  
J2  
tTCK  
1/fTCK  
tTCK/2  
tTCK/2  
J3  
tCL  
Clock Low Period  
Clock High Period  
TMS Setup Time  
TMS Hold Time  
TDI Setup Time  
TDI Hold Time  
ns  
J4  
tCH  
ns  
J7  
tTMS_SU  
tTMS_HO  
tTDI_SU  
tTDI_HO  
tTDO_HO  
1
16  
1
J8  
J9  
J10  
J11  
16  
TDO Hold Time  
15  
Table 60 shows the pin definition of the JTAG interface.  
Table 60: JTAG Pin Configuration  
Pin Number  
Pin Name  
I/O  
Function Name  
QFN  
fcCSP  
TMS  
6
J11  
I/O  
Data  
TCLK  
7
J9  
I
I
Clock  
GPIOC8  
GPIOC7  
GPIOC6  
8
K10  
K12  
L11  
TDI: Data Input  
TDO: Data Output  
nTRST: Reset  
9
O
I
10  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
74 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
9.13 Bluetooth Coexistence  
DA16200 provides the Bluetooth coexistence function to be properly aligned with external devices  
activated at 2.4 GHz.  
9.13.1 Interface Configuration  
The following three pins can be set in pin multiplexing:  
BT_sig0 (oWlanAct)  
It indicates that Output, WLAN is currently active  
BT_sig1 (iBtAct)  
It indicates that Input, BT/BLE is currently active  
BT_sig2 (iBTPri)  
It indicates that Input (Optional), BT/BLE has a higher priority  
A variety of configurable settings are available, including active high/low, manual force mode, use  
status of the optional iBTPri function, and whether or not to switch oWlanAct to active in the event of  
TX/RX/TRX.  
oWlanAct  
iBtAct  
iBtPri  
DA16200  
BT/BLE  
Figure 55: Bluetooth Coexistence Interface  
9.13.2 Operation Scenario  
The Bluetooth coexistence can be turned on/off by the configurable register, and the activation  
scenarios based on the status of each pin are described below:  
BT_sig0 (oWlanAct)  
When asserted, external BT/BLE is expected to stop occupying RF  
BT_sig1 (iBtAct)  
When asserted, DA16200 stops occupying RF  
BT_sig2 (iBTPri)  
It is optional and thus may not be used  
If it is used and DA16200’s iBtAct = Active while iBTPri = Non-Active, DA16200 may ignore  
iBtAct  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
75 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
10 Applications Schematic  
10.1 Typical Application: QFN, 3.3 V Flash  
Figure 56 shows the schematics for an application that uses the DA16200 in 3.3 V Flash mode.  
Note: Remove R3 and C12 when MCU controls  RTC_PWR_KEY  
C13  
C12  
C11  
RF1  
R4  
C17  
L2  
C10  
L3  
C15  
C19  
C18  
VDD_DIO1  
VSS  
(1.8V ~ 3.3V)  
GPIOA3  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD_DIO1  
VDD_ANA  
R1  
C1  
RBIAS  
RF_XI  
GPIOA4  
GPIOA5  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
GPIOA10  
GPIOA11  
DCDC_FB  
DCDC_LX  
3
DA16200  
QFN  
C9  
4
C2  
C3  
RF_XO  
5
TMS  
TCLK  
6
7
GPIOC8  
8
GPIOC7  
9
GPIOC6  
10  
11  
12  
UART_TXD  
UART_RXD  
L1  
C8  
VBAT (3.3V)  
VDD_DIO2  
(1.8V ~ 3.3V)  
C7  
U1  
C4  
R5  
C5  
R2  
C6  
VDD_FDIO  
( Connect to  
External Flash)  
RTC_GPO (High/Low)  
Figure 56: Typical Application QFN, 3.3 V Flash  
The power supply of the External Flash memory is the same as VDD_FDIO.  
VDD_DIO1/2 can be connected to the same power source as the external component that is  
connected to the DA16200.  
Remove R3 and C12 when MCU control ‘RTC_PWR_KEY’.  
Table 61 lists the components for an application that uses the DA16200 QFN in 3.3 V Flash mode.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
76 of 94  
© 2021 Dialog Semiconductor  
 
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 61: Components for DA16200 QFN, 3.3 V Flash Mode  
Quantity Part Reference  
Value  
Description  
1
R1  
30 kΩ (1 %)  
These values may be changed by crystal component  
characteristics and board condition.  
2
C2, C3  
1.2pF  
Part: FCX-07L  
5
1
1
1
1
C1, C4, C5, C7, C9  
1µF  
C6  
R2  
L1  
470nF  
10 kΩ  
4.7µH  
10µF  
LQM21PN4R7MGH (Murata)  
C8  
These values may be changed by crystal component  
characteristics and board condition.  
2
C10, C11  
15pF  
Part: TFX-03  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT.  
1
R3  
470 kΩ  
For detail information, see Section 6.1  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT. Not to exceed 1uF.  
1
C12  
1uF  
For detail information, see Section 6.1  
2
1
1
1
1
2
1
R4, R5  
C13  
4.7 kΩ  
4.7µF  
DNI  
C15  
Optional  
L3  
2.2 nH  
0.5pF  
1pF  
C17  
Optional  
Optional  
Optional  
C18, C19  
L2  
1.8nH  
Optional, load switch for disconnecting VBAT for  
VDD_FDIO  
1
U1  
(Use any 5 % tolerance)  
Table 62: IO Power Domain  
IO Power Domain  
VDD_DIO1  
VDD_DIO2  
VDD_FDIO  
GPIOA[11:0]  
GPIOC[8:6], TMS, TCLK, UART_TXD, UART_RXD  
F_IO[3:0], F_CSN, F_CLK  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
77 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
10.2 Typical Application: QFN, 1.8 V Flash  
Figure 57 shows the schematics for an application that uses the DA16200 QFN in 1.8 V Flash mode.  
Note: Remove R3 and C12 when MCU controls  RTC_PWR_KEY  
C13  
C12  
RF1  
R4  
C17  
L2  
C11  
C10  
L3  
C15  
C19  
C18  
VDD_DIO1  
VSS  
(1.8V ~ 3.3V)  
GPIOA3  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD_DIO1  
VDD_ANA  
R1  
C1  
RBIAS  
RF_XI  
GPIOA4  
GPIOA5  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
GPIOA10  
GPIOA11  
DCDC_FB  
DCDC_LX  
3
DA16200  
QFN  
C9  
4
C2  
C3  
RF_XO  
5
TMS  
TCLK  
6
7
GPIOC8  
8
GPIOC7  
9
GPIOC6  
10  
11  
12  
UART_TXD  
UART_RXD  
L1  
C8  
VBAT (3.3V)  
VDD_DIO2  
(1.8V ~ 3.3V)  
C7  
C4  
R5  
C5  
R2  
C6  
VDD_FDIO  
( Connect to  
External Flash)  
Figure 57: Typical Application QFN, 1.8 V Flash  
The power supply of the External Flash memory is the same as VDD_FDIO.  
VDD_DIO1/2 can be connected to the same power source as the external component that is  
connected to the DA16200.  
Remove R3 and C12 when MCU control ‘RTC_PWR_KEY’.  
Table 63 lists the components for an application that uses the DA16200 QFN in 1.8 V Flash mode.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
78 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 63: Component for DA16200 QFN, 1.8 V Flash Mode  
Quantity Part Reference  
Value  
Description  
1
R1  
30 kΩ (1 %)  
These values may be changed by crystal component  
characteristics and board condition.  
2
C2, C3  
1.2 pF  
Part: FCX-07L  
5
1
1
1
1
C1, C4, C5, C7, C9  
1 µF  
C6  
R2  
L1  
470 nF  
10 kΩ  
4.7 µH  
10 µF  
LQM21PN4R7MGH (Murata)  
C8  
These values may be changed by crystal component  
characteristics and board condition.  
2
C10, C11  
15 pF  
Part: TFX-03  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT.  
1
R3  
470 kΩ  
For detail information, see Section 6.1  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT. Not to exceed 1uF.  
1
C12  
1uF  
For detail information, see Section 6.1  
2
1
1
1
1
2
1
R4, R5  
C13  
4.7 kΩ  
4.7 µF  
DNI  
C15  
Optional  
L3  
2.2 nH  
0.5 pF  
1 pF  
C17  
Optional  
Optional  
Optional  
C18, C19  
L2  
1.8 nH  
(Use any 5 % tolerance)  
Table 64: IO Power Domain  
IO Power Domain  
VDD_DIO1  
VDD_DIO2  
VDD_FDIO  
GPIOA[11:0]  
GPIOC[8:6], TMS, TCLK, UART_TXD, UART_RXD  
F_IO[3:0], F_CSN, F_CLK  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
79 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
10.3 Typical Application: fcCSP,1.8 V Flash Normal Power Mode  
Figure 58 shows the schematics for an application that uses the DA16200 fcCSP in 1.8 V Flash  
mode.  
RF1  
Note: Remove R3 and C12 when MCU controls  RTC_PWR_KEY  
C17  
L2  
L3  
C11  
C10  
C15  
C18 C19  
R4  
C13  
A7  
A5  
RTC_PWR_  
KEY  
A1  
A3  
A9  
A11  
VDD_DA  
/PA  
GND  
GPIOA0  
GND  
ANT  
C9  
VDD_DIO1  
( 1.8V ~ 3.3V)  
B8  
B2  
B4  
B6  
B10  
B12  
VDD_DA  
/PA  
GPIOA2  
RTC_XI  
GND  
GND  
GND  
C1  
VDD_DI  
O1  
C3  
C5  
C7  
C9  
C11  
GPIOA1  
RTC_XO  
GND  
GND  
GND  
GPIOA3  
GPIOA5  
GPIOA6  
C1  
R1  
D12  
VDD_AN  
A
D6  
RTC_WAKE  
_UP  
D2  
D4  
D8  
D10  
GPIOA5  
GPIOA3  
GND  
GND  
GPIOA7  
E1  
E3  
E5  
E7  
E9  
E11  
GPIOA7  
GPIOA6  
GND  
RTC_GPO  
GND  
RBIAS  
GPIOA4  
GPIOA10  
GPIOA8  
F2  
F4  
F6  
F8  
F10  
F12  
GPIOA10  
GPIOA4  
GND  
GND  
GND  
GND  
C2  
C3  
GPIOA11  
G1  
G3  
G5  
G7  
G9  
G11  
GPIOA11  
GPIOA8  
GND  
GND  
GND  
RF_XI  
H6  
RTC_WAKE  
_UP2  
GPIOA9  
H2  
H8  
H10  
H12  
H4  
GPIOA9  
GND  
GND  
RF_XO  
GND  
RTC_WAKE_UP2  
TMS  
TCLK  
J3  
J5  
J7  
J9  
J11  
J1  
R5  
DCDC_FB  
GND  
F_CSN  
F_IO2  
TCLK  
TMS  
GPIOC7  
K12  
K2  
K6  
K10  
K4  
K8  
GPIOC7  
GND  
F_IO3  
GPIOC8  
F_CLK  
F_IO0  
GPIOC8  
GPIOC6  
L1  
C8  
L3  
VDD_DI  
G
L9  
UART_T  
XD  
L1  
L5  
L7  
L11  
DCDC_LX  
GND  
F_IO1  
GPIOC6  
M10  
M4  
VDD_FDI  
O
M6  
M12  
M2  
M8  
UART_R  
XD  
GND  
GND  
VBAT  
DIO2  
C6  
C5  
R2  
C4  
C7  
VBAT  
Figure 58: Typical Application fcCSP, 1.8 V Flash, Normal Power Mode  
The power supply of the External Flash memory is the same as VDD_FDIO.  
VDD_DIO1/2 can be connected to the same power source as the external component that is  
connected to the DA16200.  
Remove R3 and C12 when MCU control ‘RTC_PWR_KEY’.  
Table 65 lists the components for an application that uses the DA16200 fcCSP in 1.8 V Flash mode.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
80 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 65: Component for DA16200 fcCSP, 1.8 V Flash, Normal Power Mode  
Quantity Part Reference  
Value  
Description  
1
2
R1  
30 kΩ (1 %)  
1.2 pF  
C2, C3  
These values may be changed by crystal component  
characteristics and board condition.  
Part: FCX-07L  
1
4
1
1
1
1
2
C6  
470 nF  
1 µF  
C1, C4, C5, C9  
C7  
2.2 µF  
10 kΩ  
4.7 µH  
10 µF  
15 pF  
R2  
L1  
LQM21PN4R7MGH (Murata)  
C8  
C10, C11  
These values may be changed by crystal component  
characteristics and board condition.  
Part: TFX-03  
1
1
R3  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT.  
470 kΩ  
For detail information, see Section 6.1  
C12  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT. Not to exceed 1uF.  
1uF  
For detail information, see Section 6.1  
1
1
1
1
1
2
1
R4, R5  
C13  
4.7 kΩ  
4.7 µF  
0.5 pF  
2.7 nH  
0.5 pF  
1 pF  
C15  
Normal power mode  
Normal power mode  
Optional  
L3  
C17  
C18, C19  
L2  
Optional  
1.8 nH  
Optional  
(Use any 5 % tolerance)  
Table 66: IO Power Domain  
IO Power Domain  
VDD_DIO1  
VDD_DIO2  
GPIOA[11:0]  
GPIOC[8:6], TMS, TCLK, UART_TXD, UART_RXD  
F_IO[3:0], F_CSN, F_CLK  
VDD_FDIO (Note 1)  
Note 1 VDD_FDIO is internally connected to FDIO_LDO_OUT.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
81 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
10.4 Typical Application: fcCSP,1.8 V Flash Low Power Mode  
Figure 59 shows the schematics for an application that uses the DA16200 fcCSP in 1.8 V Flash  
mode.  
RF1  
Note: Remove R3 and C12 when MCU controls  RTC_PWR_KEY  
C17  
L2  
L3  
C11  
C10  
C15  
C18 C19  
R4  
C13  
A7  
A5  
RTC_PWR_  
KEY  
A1  
A3  
A9  
A11  
VDD_DA  
/PA  
GND  
GPIOA0  
GND  
ANT  
C9  
B8  
VDD_DIO1  
( 1.8V ~ 3.3V)  
B2  
B4  
B6  
B10  
B12  
VDD_DA  
/PA  
GPIOA2  
RTC_XI  
GND  
GND  
GND  
C1  
C3  
C5  
C7  
C9  
C11  
VDD_DI  
O1  
GPIOA1  
RTC_XO  
GND  
GND  
GND  
GPIOA3  
GPIOA5  
GPIOA6  
C1  
R1  
D12  
VDD_AN  
A
D6  
RTC_WAKE  
_UP  
D2  
D4  
D8  
D10  
GPIOA5  
GPIOA3  
GND  
GND  
GPIOA7  
E1  
E3  
E5  
E7  
E9  
E11  
GPIOA7  
GPIOA6  
GND  
RTC_GPO  
GND  
RBIAS  
GPIOA4  
GPIOA10  
GPIOA8  
F2  
F4  
F6  
F8  
F10  
F12  
GPIOA10  
GPIOA4  
GND  
GND  
GND  
GND  
C2  
C3  
GPIOA11  
G1  
G3  
G5  
G7  
G9  
G11  
GPIOA11  
GPIOA8  
GND  
GND  
GND  
RF_XI  
H6  
RTC_WAKE  
_UP2  
GPIOA9  
H2  
H8  
H10  
H12  
H4  
GPIOA9  
GND  
GND  
RF_XO  
GND  
RTC_WAKE_UP2  
TMS  
TCLK  
J3  
J5  
J7  
J9  
J11  
J1  
R5  
DCDC_FB  
GND  
F_CSN  
F_IO2  
TCLK  
TMS  
GPIOC7  
K12  
K2  
K6  
K10  
K4  
K8  
GPIOC7  
GND  
F_IO3  
GPIOC8  
F_CLK  
F_IO0  
GPIOC8  
GPIOC6  
L1  
C8  
L3  
L9  
L1  
L5  
L7  
L11  
VDD_DI  
G
UART_T  
XD  
DCDC_LX  
GND  
F_IO1  
GPIOC6  
M10  
UART_R  
XD  
M4  
M6  
M12  
M2  
M8  
VDD_FDI  
O
GND  
GND  
VBAT  
DIO2  
C6  
C5  
R2  
C4  
C7  
VBAT  
Figure 59: Typical Application fcCSP, 1.8 V Flash, Low Power Mode  
The power supply of the External Flash memory is the same as VDD_FDIO.  
VDD_DIO1/2 can be connected to the same power source as the external component that is  
connected to the DA16200.  
Remove R3 and C12 when MCU control ‘RTC_PWR_KEY’.  
Table 67 lists the components for an application that uses the DA16200 fcCSP in 1.8 V Flash mode.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
82 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 67: Component for DA16200 fcCSP, 1.8 V Flash, Low Power Mode  
Quantity Part Reference  
Value  
Description  
1
2
R1  
30 kΩ (1 %)  
1.2 pF  
C2, C3  
These values may be changed by crystal component  
characteristics and board condition.  
Part: FCX-07L  
1
4
1
1
1
1
2
C6  
470 nF  
1 µF  
C1, C4, C5, C9  
C7  
2.2 µF  
10 kΩ  
4.7 µH  
10 µF  
15 pF  
R2  
L1  
LQM21PN4R7MGH (Murata)  
C8  
C10, C11  
These values may be changed by crystal component  
characteristics and board condition.  
Part: TFX-03  
1
1
R3  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT.  
470 kΩ  
For detail information, see Section 6.1  
C12  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT. Not to exceed 1uF.  
1uF  
For detail information, see Section 6.1  
1
1
1
1
1
2
1
R4, R5  
C13  
4.7 kΩ  
4.7 µF  
DNI  
C15  
Low power mode  
Low power mode  
Optional  
L3  
2.2 nH  
0.5 pF  
1 pF  
C17  
C18, C19  
L2  
Optional  
1.8 nH  
Optional  
(Use any 5 % tolerance)  
Table 68: IO Power Domain  
IO Power Domain  
VDD_DIO1  
VDD_DIO2  
GPIOA[11:0]  
GPIOC[8:6], TMS, TCLK, UART_TXD, UART_RXD  
F_IO[3:0], F_CSN, F_CLK  
VDD_FDIO (Note 1)  
Note 1 VDD_FDIO is internally connected to FDIO_LDO_OUT.  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
83 of 94  
© 2021 Dialog Semiconductor  
 
 
DA16200  
Ultra Low Power Wi-Fi SoC  
11 Package Information  
11.1 Moisture Sensitivity Level (MSL)  
The MSL is an indicator for the maximum allowable time period (floor life time) in which a moisture  
sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a  
maximum temperature of 30 °C and a maximum relative humidity of 60 % RH before the solder  
reflow process.  
QFN and fcCSP packages are qualified for MSL 3.  
MSL Level  
MSL 4  
Floor Life Time  
72 hours  
MSL 3  
168 hours  
MSL 2A  
MSL 2  
4 weeks  
1 year  
MSL 1  
Unlimited at 30 °C/85 %RH  
11.2 Top View: QFN and fcCSP  
Figure 60: DA16200 48-Pin QFN Package  
Figure 61: DA16200 72-Pin fcCSP Package  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
84 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
11.3 Dimension: 48-Pin QFN  
Figure 62: Top View  
Figure 63: Bottom View  
Figure 65: DA16200 48-Pin QFN Package  
Dimensions  
Figure 64: Side View  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
85 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
11.4 Dimension: 72-Pin fcCSP  
Figure 66: Top View  
Figure 67: Bottom View  
Figure 69: DA16200 72-Pin fcCSP Package  
Dimensions  
Figure 68: Side View  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
86 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
11.5 Land Pattern: 48-Pin QFN  
Unit: Millimeters (mm)  
Pad: Metal mask = 1:1  
6.6  
4.6  
0.7  
24  
13  
25  
12  
6.6 4.6  
0.4  
36  
1
0.22  
37  
48  
0.3  
Figure 70: DA16200 48-Pin QFN Land Pattern  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
87 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
11.6 Land Pattern: 72-Pin fcCSP  
Unit: Millimeters (mm)  
Pad: Metal mask = 1:1  
3.8  
3.11  
0.25  
0.4  
A
B
C
D
E
F
G
H
J
K
L
M
3.11 3.8  
1 2 3 4 5 6 7 8 9 10 1112  
Figure 71: DA16200 72-Pin FcCSP Land Pattern  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
88 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
11.7 Soldering Information  
11.7.1 Recommended Condition for Reflow Soldering  
Figure 72 shows the typical process flow to install surface mount packages to the PCB.  
The reflow profile depends on the solder paste being used and the recommendations from the paste  
manufacturer should be followed to determine the proper reflow profile. Figure 72 shows a typical  
reflow profile when a no-clean paste is used. Oven time above liquidus (260 °C for lead-free solder)  
is 30 to 60 seconds.  
Since solder joints are not exposed in QFN packages, any retouch is not possible and the whole  
package has to be removed if the surface mount process results in shorts or opens. Furthermore,  
rework of QFN packages can be a challenge due to their small size. In most applications, QFNs will  
be installed on smaller, thinner, and denser PCBs, and introduces further challenges due to handling  
and heating issues. Since reflow of adjacent parts is not desirable during rework, the proximity of  
other components may further complicate this process. Because of the product dependent  
complexities, the following steps only provide a guideline and a starting point for the development of  
a successful rework process for the QFN packages.  
The rework process involves the following steps:  
1. Component removal  
2. Site redress  
3. Solder paste application  
4. Component placement  
5. Component attachment  
Figure 72: Typical PCB Mounting Process Flow  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
89 of 94  
© 2021 Dialog Semiconductor  
 
DA16200  
Ultra Low Power Wi-Fi SoC  
Table 69: Typical Reflow Profile (Lead Free): J-STD-020C  
Profile Feature  
Lead Free SMD  
Average ramp up rate (Tsmax to Tp)  
3 °C/s Max.  
Preheat  
Temperature Min (Tsmin  
Temperature Max (Tsmax  
Time (Tsmax to Tsmin  
)
150 °C  
200 °C  
)
)
60 to 180 seconds  
Time maintained above  
Temperature (TL)  
Time (tL)  
217 °C  
60 to 150 seconds  
Peak/Classification temperature (Tp)  
Time within 5 °C of peak temperature (tp)  
Ramp down rate  
260 °C  
20 to 40 seconds  
6 °C/s Max.  
8 minutes Max.  
Time from 25 °C to peak temperature  
Figure 73: Reflow Condition  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
90 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
12 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
For details and availability, please consult Dialog Semiconductor’s customer support portal or your  
local sales representative.  
Table 70: Ordering Information (Samples)  
Part Number  
Package  
QFN48  
Size (mm)  
6 × 6  
Shipment Form  
Pack Quantity  
100/500  
DA16200-00000A32  
DA16200-00000F22  
Reel  
Reel  
fcCSP72  
3.8 × 3.8  
100/500  
Table 71: Ordering Information (Production)  
Part Number  
Package  
QFN48  
Size (mm)  
6 × 6  
Shipment Form  
Pack Quantity  
3000  
DA16200-00000A32  
DA16200-00000F22  
Reel  
Reel  
fcCSP72  
3.8 × 3.8  
4000  
Part Number Legend:  
DA16200-RRXXXYYZ  
RR: Chip revision number  
XXX: variant (000: No Flash)  
YY: package code (A3: QFN48, F2: fcCSP72)  
Z: packing method (1: Tray, 2: Reel, A: Mini-Reel)  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
91 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Revision History  
Revision  
Date  
Description  
Table 1 Updated Pinout Description  
Section 6.1 Added Note for Power on Sequence and Updated  
Table 26 and Figure 11  
3.3  
03-Fab-2021  
Section 9.7.3 Fixed typo  
Section 10 Updated RC Delay Description (Table 61, Table 63,  
Table 65, Table 67 and Figure 56, Figure 57, Figure 58, Figure  
59)  
Section 6.3 Updated Sleep mode Description  
Removed F_xx pins in Interface Parts  
Section 4.3 (Table 3) Updated Pin Multiplexing  
Section 9.8 (Table 52) Updated ADC Reference Voltage  
Section 9.5.1 and 9.5.2 Updated I2C Speed Description  
Section 9.5 Updated I2C interface (Table 43) and (Table 45)  
3.2  
28-Sep-2020  
Section 9.7.1 and 9.7.2 Added, I2S Description, Block Diagram,  
and Clock Scheme  
Section 9.8.2 Table 52 Swapped SNDR, SNR value  
Section 3, Modified Description to Network subsystem layer.  
Section 3, Figure 2 Modified Hardware Block diagram  
Section 4.2 (Table 1), Reset state changed to Initial state.  
Section 4.3 (Table 3) Updated Pin multiplexing.  
Section 5.2 (Table 5) Updated FDIO_LDO_OUT value  
Section 5.3 Updated Electrical Characteristics  
Section 5.4.2 (Table 14) Updated fcCSP TX min/max value  
Section 5.5 Updated Current Consumption value  
Section 6.2 Added Description and Updated Power management  
block diagram (Figure 12).  
Section 6.3 Updated Sleep mode Description  
3.1  
3-Jul-2020  
Section 7.4 (Table 28) Updated RTC_PWR_KEY description and  
Remove one sentence which leads to misunderstanding.  
Section 9.5.1 (Table 43),(Table 45) Updated I2C Speed  
Section 9.9.1 Added Diversity Description and (Figure 46)  
Section 9.10.3 Added UART Baud rate Description  
Section 10.1, 10.2 Updated QFN Application Schematic (Figure  
56),(Figure 57) and Description.  
Section 10.3, 10.4 Updated fcCSP Application Schematic (Figure  
58),(Figure 59) and Description, (Table 65),(Table 67). And Added  
note after table IO Power Domain  
Page 93 Updated Description about Reach and RoHS  
Compliance  
3.0  
26-Mar-2020  
Final release  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
92 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Revision  
Date  
Description  
Feature, Wi-Fi Alliance certification: Detailed added  
Section 5.4.1 and 5.4.2 measurement condition CH1 added  
Section 9.10.1 RS-232 added  
Section 9.10.3 Hardware Flow Control added  
Section 9.10.4 Interrupts added  
Table 3 Pin Multiplexing changed  
Section 11.1 MSL added  
Figure 54. DA16200 fcCSP Package Top view added  
Application circuit (QFN, fcCSP) BOM changed  
Feature deleted: DPD function support  
2.9  
11-Feb-2020  
Rx and Tx min/max value added for the QFN package (Table 12  
and Table 14)  
Rx and Tx min/max value added for the fcCSP package (Table 13  
and Table 15)  
Table 17 and Table 20 updated  
ESD ratings added for the QFN and fcCSP packages in Table 21  
and Table 22  
Pin name "RTC_SEN_OUT" changed to "RTC_GPO"  
Pull-down resistor added in Figure50, Figure51, Figure52  
QFN48 package "RTC_WAKE_UP" and "RTC_WAKE_UP2"  
fcCSP72 package "RTC_WAKE_UP"  
2.3  
2.2  
5-Sep-2019  
Ordering information sample and production pack quantity  
updated  
Application circuit revised in QFN and fcCSP package  
RTC_WAKE_UP pull-down resistor added  
Added Figure 71: DA16200 72-Pin fcCSP Land Pattern  
AC characteristics and current consumption of fcCSP data  
updated in Table 13, Table 15, and Table 18  
12-Aug-2019  
Ordering information added  
Added "3.8 mm × 3.8 mm, 0.4 mm pitch, 72-Pin, fcCSP" in  
package type in key features  
Added Figure 5, Figure 8, and Figure 10  
Added pin numbers for fcCSP package in Table 1, Table 28,  
Table 34, Table 38, Table 40, Table 42, Table 44, Table 46, Table  
48, Table 53, Table 56, and Table 60  
Added "GPIOC6~GPIOC8, TMS/TCLK, TXD/RXD" in the  
description of Pin13/M8 in Table 1  
Added "GPIOA0~GPIOA11" in the description of Pin35/C1 in  
Table 1  
2.1  
30-Jul-2019  
Added "fcCSP GND Pin  
A1,A9,B6,B10,B12,C7,C9,C11,D8,D10,F6,F8,F10,F12,G5,G7,G9,  
H4,H8,H10,J3,K2,L5,M6,M12,E5" in Table 1  
In Table 3 SPI master contents updated  
Added information on fcCSP pins in section 5.1 and 5.2  
Added Table 13, Table 15, and Table 18  
Added section 10.3  
Updated section 11.1 to include information on fcCSP  
Added section 11.4  
Changed the caption of Table 27 to "OTP Map"  
2.0  
03-Jul-2019  
Preliminary datasheet  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
93 of 94  
© 2021 Dialog Semiconductor  
DA16200  
Ultra Low Power Wi-Fi SoC  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for product development.  
Specifications may be changed in any manner without notice.  
1.<n>  
Target  
Development  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
2.<n>  
3.<n>  
Preliminary  
Qualification  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification changes  
are communicated via Customer Product Notifications. Datasheet changes  
are communicated via www.dialog-semiconductor.com.  
Final  
Production  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
4.<n>  
Obsolete  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not  
designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications  
where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury,  
death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog  
Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or  
warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no  
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the  
specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive  
grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without  
limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard  
automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes  
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further  
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog  
Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications  
referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard  
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service  
names and marks are the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
Reach and RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of REACH and Directive 2015/863/EU of the  
European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from  
our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Hong Kong  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 3.3  
03-Feb-2021  
CFR0011-120-00  
94 of 94  
© 2021 Dialog Semiconductor  

相关型号:

DA16200-00000A32

Ultra Low Power Wi-Fi SoC
DIALOG

DA16200-00000F22

Ultra Low Power Wi-Fi SoC
DIALOG

DA16200MOD

Ultra Low Power Wi-Fi Module
DIALOG

DA16200MOD-AAC4WA32

Ultra Low Power Wi-Fi Module
DIALOG

DA16200MOD-AAE4WA32

Ultra Low Power Wi-Fi Module
DIALOG

DA1629

Double Balanced Mixer
DYNEX

DA16600MOD

Ultra-Low Power Wi-Fi Bluetooth® LE Combo Module
DIALOG

DA16600MOD-AAC4WA32

Ultra-Low Power Wi-Fi Bluetooth® LE Combo Module
DIALOG

DA16600MOD-AAE4WA32

Ultra-Low Power Wi-Fi Bluetooth® LE Combo Module
DIALOG

DA1664

Down Converter
DYNEX

DA1753

Double Balanced Mixer
DYNEX

DA1763

Up Converter
DYNEX