LXT9781BC [ETC]

LAN TRANSCEIVER|OCTAL|BGA|272PIN|PLASTIC ; LAN收发器|八路| BGA | 272PIN |塑料\n
LXT9781BC
型号: LXT9781BC
厂家: ETC    ETC
描述:

LAN TRANSCEIVER|OCTAL|BGA|272PIN|PLASTIC
LAN收发器|八路| BGA | 272PIN |塑料\n

电信集成电路 局域网 以太网:16GBASE-T
文件: 总78页 (文件大小:1136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT9761/9781  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Datasheet  
The LXT9781 is an eight-port PHY Fast Ethernet Transceiver that supports IEEE 802.3 physical  
layer applications at both 10 Mbps and 100 Mbps. It provides a Reduced Media Independent  
Interface (RMII) for switching and other independent port applications. The LXT9761 offers the  
same features and functionality in a six-port device. This data sheet uses the singular designation  
“LXT97x1” to refer to both devices.  
All network ports provide a combination twisted-pair (TP) or pseudo-ECL (PECL) interface for  
a 10/100BASE-TX or 100BASE-FX connection.  
The LXT97x1 provides three discrete LED driver outputs for each port, as well as eight global  
serial LED outputs. The device supports both half- and full-duplex operation at 10 Mbps and 100  
Mbps, and requires only a single 3.3V power supply.  
Applications  
100BASE-T, 10/100-TX, or 100BASE-FX  
Switches and multi-port NICs.  
Product Features  
Six or eight IEEE 802.3-compliant  
10BASE-T or 100BASE-TX ports with  
integrated filters  
Supports both auto-negotiation and legacy  
systems without auto-negotiation capability  
JTAG boundary scan  
3.3V operation  
Multiple Reduced MII (RMII) ports for  
Optimized for dual-high stacked R45  
independent PHY port operation  
applications  
Configurable via MDIO port or external  
Proprietary Optimal Signal Processing™  
architecture improves SNR by 3 dB over  
ideal analog filters  
Robust baseline wander correction  
100BASE-FX fiber-optic capability on all  
ports  
control pins.  
Maskable interrupts  
Low power consumption (390 mW per  
port, typical)  
208-pin PQFP (LXT9761 and LXT9781)  
272-pin PBGA (LXT9781 only)  
As of January 15, 2001, this document replaces the Level One document  
LXT9761/9781 — Fast Ethernet 10/100 Multi-Port Transceiver with RMII.  
Order Number: 249048-001  
January 2001  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT9761/9781 may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII — LXT9761/9781  
Contents  
1.0  
2.0  
Pin Assignments and Signal Descriptions....................................................10  
Functional Description...........................................................................................21  
2.1  
2.2  
Introduction..........................................................................................................21  
2.1.1 OSPArchitecture................................................................................21  
2.1.2 Comprehensive Functionality.................................................................21  
Interface Descriptions..........................................................................................22  
2.2.1 10/100 Network Interface .......................................................................22  
2.2.1.1 Twisted-Pair Interface ...............................................................22  
2.2.1.2 Fiber Interface ...........................................................................23  
2.2.2 RMII Interface.........................................................................................23  
2.2.3 Configuration Management Interface.....................................................23  
2.2.3.1 MDIO Management Interface....................................................23  
2.2.3.2 Hardware Control Interface .......................................................25  
Operating Requirements .....................................................................................25  
2.3.1 Power Requirements..............................................................................25  
2.3.2 Clock Requirements...............................................................................26  
2.3.2.1 Reference Clock........................................................................26  
Initialization..........................................................................................................26  
2.4.1 MDIO Control Mode ...............................................................................26  
2.4.2 Hardware Control Mode .........................................................................26  
2.4.3 Power-Down Mode.................................................................................27  
2.4.3.1 Global (Hardware) Power Down................................................27  
2.4.3.2 Port (Software) Power Down.....................................................27  
2.4.4 Reset......................................................................................................28  
2.4.5 Hardware Configuration Settings ...........................................................28  
Link Establishment ..............................................................................................29  
2.5.1 Auto-Negotiation.....................................................................................29  
2.5.1.1 Base Page Exchange................................................................29  
2.5.1.2 Next Page Exchange.................................................................29  
2.5.1.3 Controlling Auto-Negotiation .....................................................29  
2.5.2 Parallel Detection ...................................................................................30  
RMII Operation....................................................................................................30  
2.6.1 Reference Clock.....................................................................................31  
2.6.2 Transmit Enable .....................................................................................31  
2.6.3 Carrier Sense & Data Valid ....................................................................31  
2.6.4 Receive Error .........................................................................................31  
2.6.5 Loopback................................................................................................31  
2.6.6 Out of Band Signalling............................................................................31  
2.6.7 4B/5B Coding Operations.......................................................................32  
100 Mbps Operation............................................................................................32  
2.7.1 100BASE-X Network Operations ...........................................................32  
2.7.2 100BASE-X Protocol Sublayer Operations ............................................33  
2.7.2.1 PCS Sublayer............................................................................33  
2.7.2.2 PMA Sublayer ...........................................................................35  
2.7.2.3 Twisted-Pair PMD Sublayer ......................................................36  
2.7.2.4 Fiber PMD Sublayer..................................................................37  
2.3  
2.4  
2.5  
2.6  
2.7  
Datasheet  
3
LXT9761/9781 — Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.8  
2.9  
10 Mbps Operation..............................................................................................37  
2.8.1 Preamble Handling.................................................................................37  
2.8.2 Dribble Bits.............................................................................................38  
2.8.3 Link Test.................................................................................................38  
2.8.3.1 Link Failure................................................................................38  
2.8.4 Jabber ....................................................................................................38  
Monitoring Operations.........................................................................................38  
2.9.1 Monitoring Auto-Negotiation...................................................................38  
2.9.2 Serial LED Functions .............................................................................38  
2.9.3 Per-Port LED Driver Functions...............................................................40  
2.9.3.1 LED Pulse Stretching ................................................................40  
2.9.4 Using the Quick Status Register ............................................................41  
2.9.5 Out-of-Band Signalling...........................................................................42  
Boundary Scan (JTAG1149.1) Functions ...........................................................42  
2.10.1 Boundary Scan Interface........................................................................42  
2.10.2 State Machine ........................................................................................42  
2.10.3 Instruction Register ................................................................................43  
2.10.4 Boundary Scan Register ........................................................................43  
2.10  
3.0  
Application Information.........................................................................................44  
3.1  
Design Recommendations..................................................................................44  
3.1.1 General Design Guidelines ....................................................................44  
3.1.2 Power Supply Filtering ...........................................................................44  
3.1.3 Power and Ground Plane Layout Considerations..................................45  
3.1.3.1 Chassis Ground.........................................................................45  
3.1.4 RMII Terminations..................................................................................45  
3.1.5 The RBIAS Pin.......................................................................................45  
3.1.6 The Twisted-Pair Interface.....................................................................46  
3.1.6.1 Magnetics Information...............................................................46  
3.1.7 The Fiber Interface.................................................................................46  
Typical Application Circuits .................................................................................46  
3.2  
4.0  
5.0  
6.0  
Test Specifications..................................................................................................52  
Register Definitions ................................................................................................62  
Package Specifications.........................................................................................77  
4
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figures  
1
2
3
4
5
6
7
8
LXT9781 Block Diagram .......................................................................................9  
LXT9781 PQFP Pin Assignments .......................................................................10  
LXT9781 PBGA Pin Assignments ......................................................................11  
LXT9761 PQFP Pin Assignments .......................................................................12  
LXT97x1 Interfaces ............................................................................................22  
Port Address Scheme .........................................................................................24  
Management Interface Read Frame Structure ...................................................24  
Management Interface Write Frame Structure ...................................................24  
Interrupt Logic .....................................................................................................25  
Initialization Sequence .......................................................................................27  
Hardware Control Settings .................................................................................28  
Auto-Negotiation Operation ................................................................................30  
Loopback Paths ..................................................................................................31  
RMII Data Flow ...................................................................................................32  
100BASE-X Frame Format ................................................................................33  
Protocol Sublayers .............................................................................................34  
Serial LED Streams.............................................................................................39  
LED Pulse Stretching ..........................................................................................41  
Quick Status Register..........................................................................................41  
RMII Programmable Out of Band Signalling .......................................................42  
Power and Ground Supply Connections ............................................................47  
Typical Twisted-Pair Interface ............................................................................48  
Typical Fiber Interface ........................................................................................49  
Typical RMII Interface ........................................................................................50  
Typical Serial LED Interface................................................................................51  
100BASE-TX Receive Timing ...........................................................................55  
100BASE-TX Transmit Timing ..........................................................................55  
100BASE-FX Receive Timing ...........................................................................56  
100BASE-FX Transmit Timing ..........................................................................57  
10BASE-T Receive Timing ................................................................................57  
10BASE-T Transmit Timing ...............................................................................58  
Auto-Negotiation and Fast Link Pulse Timing ...................................................59  
Fast Link Pulse Timing .......................................................................................59  
MDIO Write Timing (MDIO Sourced by MAC) ....................................................60  
MDIO Read Timing (MDIO Sourced by PHY) ....................................................60  
Power-Up Timing ................................................................................................61  
RESET And Power-Down Recovery Timing ......................................................61  
PHY Identifier Bit Mapping .................................................................................67  
LXT97x1 PQFP Specification .............................................................................77  
LXT9781 PBGA Specification .............................................................................78  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Tables  
1
2
3
4
5
LXT97x1 RMII Signal Descriptions......................................................................13  
LXT97x1 Signal Detect/TP Select Signal Descriptions .......................................15  
LXT97x1 Network Interface Signal Descriptions.................................................16  
LXT97x1 JTAG Test Signal Descriptions............................................................16  
LXT97x1 Miscellaneous Signal Descriptions ......................................................17  
Datasheet  
5
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
6
LXT97x1 Power Supply Signal Descriptions.......................................................18  
7
8
9
LXT97x1 LED Signal Descriptions......................................................................19  
Unused Pins........................................................................................................20  
Hardware Configuration Settings ........................................................................29  
4B/5B Coding......................................................................................................34  
BSR Mode of Operation......................................................................................43  
Supported JTAG Instructions..............................................................................43  
Device ID Register ..............................................................................................43  
Magnetics Requirements ....................................................................................46  
Absolute Maximum Ratings ................................................................................52  
Operating Conditions ..........................................................................................52  
Digital I/O Characteristics 1.................................................................................52  
Digital I/O Characteristics - RMII Pins.................................................................53  
Required Clock Characteristics...........................................................................53  
100BASE-TX Transceiver Characteristics ..........................................................53  
100BASE-FX Transceiver Characteristics ..........................................................54  
10BASE-T Transceiver Characteristics...............................................................54  
100BASE-TX Receive Timing Parameters .........................................................55  
100BASE-TX Transmit Timing Parameters ........................................................56  
100BASE-FX Receive Timing Parameters .........................................................56  
100BASE-FX Transmit Timing Parameters ........................................................57  
10BASE-T Receive Timing Parameters..............................................................58  
10BASE-T Transmit Timing Parameters.............................................................58  
Auto-Negotiation and Fast Link Pulse Timing Parameters .................................59  
MDIO Timing Parameters ...................................................................................60  
Power-Up Timing Parameters............................................................................61  
RESET and Power-Down Recovery Timing Parameters...................................61  
Register Set ........................................................................................................62  
Register Bit Map..................................................................................................63  
Control Register (Address 0)...............................................................................65  
Status Register (Address 1)................................................................................65  
PHY Identification Register 1 (Address 2)...........................................................66  
PHY Identification Register 2 (Address 3)...........................................................67  
Auto-Negotiation Advertisement Register (Address 4) .......................................67  
Auto-Negotiation Link Partner Base Page Ability Register (Address 5)..............68  
Auto-Negotiation Expansion (Address 6)............................................................69  
Auto-Negotiation Next Page Transmit Register (Address 7)...............................69  
Auto-Negotiation Link Partner Next Page Receive Register (Address 8) ...........70  
Port Configuration Register (Address 16, Hex 10)..............................................70  
Quick Status Register (Address 17, Hex 11) ......................................................71  
Interrupt Enable Register (Address 18, Hex 12) .................................................72  
Interrupt Status Register (Address 19, Hex 13) ..................................................73  
LED Configuration Register (Address 20, Hex 14) .............................................74  
Out of Band Signaling Register (Address 25) .....................................................75  
Transmit Control Register #1 (Address 28).........................................................76  
Transmit Control Register #2 (Address 30).........................................................76  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
6
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Revision History  
Revision  
Date  
Description  
Datasheet  
7
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 1. LXT9781 Block Diagram  
REFCLK  
QSTAT  
QCLK  
Clock  
Generator  
VCC  
GND  
PWRDWN  
Global Functions  
Pwr Supply /  
PwrDown  
Management /  
Mode Select  
Logic  
ADD<4:0>  
MDIO  
RESET  
MDC  
LEDS<7:0>  
LEDLATCH  
LEDCLK  
8
MDINT  
Register Set  
+
Manchester  
10  
TXENn  
TP  
Driver  
Encoder  
TM  
RMII  
TPFOPn  
TPFONn  
OSP  
Parallel/Serial  
Converter  
Scrambler  
100  
& Encoder  
-
TP / Fiber  
Out  
TXDn_0  
TXDn_1  
Pulse  
Shaper  
+
ECL  
Driver  
Auto  
CIM  
Negotiation  
Mgmt Counters  
Register Set  
-
SDn/TXn  
TM  
OSP  
+
Media  
Select  
Adaptive EQ  
with BaseLine  
Wander  
Clock  
Generator  
100TX  
100FX  
10BT  
-
+
Cancellation  
TPFIPn  
TPFINn  
Manchester  
Decoder  
TP / Fiber  
In  
Serial to  
Parallel  
RXDn_0  
RXDn_1  
RMII  
10  
TM  
OSP  
Slicer  
-
+
Converter  
CRS_DVn  
RXERn  
Decoder &  
Descrambler  
Carrier Sense  
Data Valid  
100  
Error Detect  
-
Per-Port Functions  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
Datasheet  
9
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
1.0  
Pin Assignments and Signal Descriptions  
Figure 2. LXT9781 PQFP Pin Assignments  
156..........TPFIN7  
155..........VCCR  
154..........TPFOP7  
153..........TPFON7  
152..........GNDA  
151..........TPFON6  
150..........TPFOP6  
149..........VCCT  
148..........VCCR  
147..........TPFIN6  
146..........TPFIP6  
145..........GNDA  
144..........GNDA  
143..........TPFIP5  
142..........TPFIN5  
141..........VCCR  
140..........TPFOP5  
139..........TPFON5  
138..........GNDA  
137..........TPFON4  
136..........TPFOP4  
135..........VCCT  
134..........VCCR  
133..........TPFIN4  
132..........TPFIP4  
131..........GNDA  
130..........GNDA  
129..........TPFIP3  
128..........TPFIN3  
127..........VCCR  
126..........VCCT  
125..........TPFOP3  
124..........TPFON3  
123..........GNDA  
122..........TPFON2  
121..........TPFOP2  
120..........VCCR  
119..........TPFIN2  
118..........TPFIP2  
117..........GNDA  
116..........GNDA  
115..........TPFIP1  
114..........TPFIN1  
113..........VCCR  
112..........VCCT  
111..........TPFOP1  
110..........TPFON1  
109..........GNDA  
108..........TPFON0  
107..........TPFOP0  
106..........VCCR  
105..........TPFIN0  
GNDD.......1  
RXD7_1.......2  
RXD7_0.......3  
CRS_DV7.......4  
RXER7.......5  
TXEN7.......6  
TXD7_0.......7  
TXD7_1.......8  
RXD6_1.......9  
RXD6_0.......10  
CRS_DV6.......11  
RXER6.......12  
TXEN6.......13  
TXD6_0.......14  
VCCIO .......15  
GNDD.......16  
TXD6_1.......17  
RXD5_1.......18  
RXD5_0.......19  
CRS_DV5.......20  
RXER5......21  
TXEN5.......22  
TXD5_0.......23  
TXD5_1.......24  
Part #  
LOT #  
FPO #  
LXT9781 XX  
XXXXXX  
XXXXXXXX  
Rev #  
RXD4_1.......25  
RXD4_0.......26  
CRS_DV4.......27  
RXER4.......28  
TXEN4.......29  
TXD4_0.......30  
VCCIO .......31  
GNDD.......32  
TXD4_1.......33  
RXD3_1.......34  
RXD3_0.......35  
CRS_DV3.......36  
RXER3.......37  
TXEN3.......38  
TXD3_0.......39  
TXD3_1.......40  
RXD2_1.......41  
RXD2_0.......42  
CRS_DV2.......43  
RXER2.......44  
TXEN2.......45  
TXD2_0.......46  
TXD2_1.......47  
GNDD.......48  
GNDD.......49  
GNDD.......50  
GNDD.......51  
VCCIO .......52  
1. Ports 6 and 7 are available only on the LXT9781. These ports are not bonded out on the LXT9761.  
Package Topside Markings  
Marking  
Definition  
Part #  
Rev #  
LXT9781 is the unique identifier for this product family.  
Identifies the particular silicon stepping(Refer to Specification Update for additional stepping  
information.)  
Lot #  
Identifies the batch.  
FPO #  
Identifies the Finish Process Order.  
10  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 3. LXT9781 PBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
LED/  
SD6/  
TP6  
TP  
FIN7  
TP  
FIP7  
LED/  
LED/  
LED/  
LED/  
LED/  
LED/  
LEDS_4  
LEDS_7  
N/C  
N/C  
QCLK GNDD  
VCCD  
LEDS_3  
TRST  
VCCT  
VCCT  
GNDA  
GNDA  
A
B
C
D
E
F
CFG7_3  
CFG5_2 CFG6_1  
CFG4_2  
A
B
C
D
E
F
CFG1_2  
CFG3_1  
CFG2_2  
LED/  
CFG0_1  
LED  
CLK  
SD5/  
TP5  
TP  
FON7  
TP  
FOP7  
LED/  
CFG5_3  
LED/  
CFG2_3  
LED/  
LED/  
CFG3_3  
CRS_DV7  
GNDD  
N/C  
GNDD  
QSTAT  
VCCIO  
GNDD  
VCCD VCCD LEDS_1 LEDS_5  
CFG6_2  
TMS  
RXD7  
_1  
RXD7  
_0  
LED/  
CFG2_1  
LED/  
CFG4_1  
SD4/  
TP4  
SD7/  
TP7  
TP  
FOP6  
TP  
FON6  
LED/  
CFG0_3  
LED/  
CFG6_3  
LED/  
CFG1_3  
LED/  
CFG7_2  
LED/  
CFG7_1  
GNDD  
TDO  
TCK  
LEDS_2  
LEDS_6  
TDI  
TP  
FIN6  
TXD7  
_0  
TXD7  
_1  
LEDS  
_0  
LED  
LATCH  
TP  
FIP6  
LED/  
CFG1_1  
LED/  
CFG5_1  
LED/  
LED/  
CFG3_2 CFG4_3  
LED/  
CFG0_2  
VCCR  
RXER7 TXEN7  
GNDD  
VCCIO  
GNDA  
RXD6  
GNDD  
_1  
RXD6  
_0  
VCCT  
GNDD  
VCCR GNDA VCCT  
TP  
TXD6  
_0  
TP  
FIP5  
TXEN6  
GNDA  
GNDA  
CRS_DV6 RXER6  
FIN5  
TOP VIEW  
LXT9781BC  
TP  
FON5  
TXD6  
TP  
FOP5  
GNDA  
GNDA  
VCCIO  
_1  
GNDD GNDD  
G
H
J
G
H
J
RXD5  
GNDD  
_1  
RXD5  
_0  
CRS_  
DV5  
TP  
FOP4  
TP  
FON4  
VCCR GNDA  
VCCR GNDA  
GNDA GNDA  
TXD5  
_0  
TXD5  
_1  
TP  
FIN4  
TP  
FIP4  
GNDD GNDD GNDD GNDD  
GNDD GNDD GNDD GNDD  
GNDD GNDD GNDD GNDD  
GNDD GNDD GNDD GNDD  
RXER5  
GNDD  
TXEN5  
RXD4  
_1  
RXD4  
_0  
CRS_  
DV4  
VCCT  
VCCT  
VCCT  
K
L
K
L
TXD4  
_0  
RXER4 TXEN4  
TXD4_1  
GNDA GNDA VCCT  
TP  
TP  
FIP3  
GNDA  
GNDA  
GNDA  
GNDA  
GNDD GNDD GNDD  
VCCR  
VCCIO  
M
N
P
R
T
M
N
P
R
T
FIN3  
TP  
FON3  
RXD3  
_1  
RXD3  
_0  
CRS_  
DV3  
TP  
FOP3  
VCCR  
RXER3  
TXD3  
_0  
TXD3  
_1  
TP  
FOP2  
TP  
FON2  
GNDD  
GNDA  
GNDA  
TXEN3  
TP  
FIN2  
RXD2  
_1  
RXD2  
_0  
CRS_  
DV2  
TP  
FIP2  
RXER2  
TXD2  
_0  
TXD2  
_1  
TXEN2  
N/C  
VCCR GNDA VCCT  
VCCT  
GNDD  
N/C  
RXD0  
_1  
RXD0  
_0  
SD1/  
TP1  
SD2/  
TP2  
SD3/  
TP3  
TP  
FIN1  
TP  
FIP1  
N/C  
N/C  
GNDD  
GNDD  
GNDD  
TXEN0  
GNDD  
MDC  
N/C TxSLEW_1 GNDD MDINT  
RESET  
GNDA VCCR GNDA  
SD0/  
U
V
W
Y
U
V
W
Y
TP  
FOP1  
RXD1  
_1  
TXD1  
_1  
CRS_  
DV0  
TXD0  
_0  
TP  
FON1  
ADD_3  
ADD_2 ADD_1  
N/C  
GNDS GNDD  
RBIAS  
VCCIO  
N/C  
GNDA  
RXER1  
TXEN1  
TP0  
TXD1  
_0  
TP  
FOP0  
TP  
FON0  
TXD0_1  
PAUSE  
ADD_4  
GNDD  
MDIO  
N/C  
GNDD  
GNDD GNDD ADD_0  
GNDA VCCT  
PWRDWN  
MDDIS  
RXER0  
VCCIO  
RXD1  
_0  
CRS_  
DV1  
TP  
FIP0  
TP  
FIN0  
N/C  
N/C  
N/C TxSLEW_0 VCCD VCCD VCCD  
GNDD GNDD GNDD GNDD VCCT  
REFCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
1. Ports 6 and 7 are available only on the LXT9781.  
Datasheet  
11  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 4. LXT9761 PQFP Pin Assignments  
156 ..........TPFIN5  
155 ..........VCCR  
154 ..........TPFOP5  
153 ..........TPFON5  
152 ..........GNDA  
151 ..........TPFON4  
150 ..........TPFOP4  
149 ..........VCCT  
148 ..........VCCR  
147 ..........TPFIN4  
146 ..........TPFIP4  
145 ..........GNDA  
144 ..........GNDA  
143 ..........TPFIP3  
142 ..........TPFIN3  
141 ..........VCCR  
140 ..........TPFOP3  
139 ..........TPFON3  
138 ..........GNDA  
137 ..........N/C  
136 ..........N/C  
135 ..........N/C  
134 ..........N/C  
133 ..........N/C  
132 ..........N/C  
131 ..........N/C  
130 ..........N/C  
129 ..........N/C  
128 ..........N/C  
127 ..........N/C  
126 ..........N/C  
125 ..........N/C  
GNDD ...... 1  
RXD5_1 ...... 2  
RXD5_0 ...... 3  
CRS_DV5 ...... 4  
RXER5 ...... 5  
TXEN5 ...... 6  
TXD5_0 ...... 7  
TXD5_1 ...... 8  
RXD4_1 ...... 9  
RXD4_0 ...... 10  
CRS_DV4 ...... 11  
RXER4 ...... 12  
TXEN4 ...... 13  
TXD4_0 ...... 14  
VCCIO ...... 15  
GNDD ...... 16  
TXD4_1 ...... 17  
RXD3_1 ...... 18  
RXD3_0 ...... 19  
CRS_DV3 ...... 20  
RXER3 ...... 21  
TXEN3 ...... 22  
TXD3_0 ...... 23  
TXD3_1 ...... 24  
Part #  
LOT #  
FPO #  
N/C ...... 25  
N/C ...... 26  
N/C ...... 27  
N/C ...... 28  
N/C ...... 29  
LXT9761 XX  
XXXXXX  
XXXXXXXX  
Rev  
N/C ...... 30  
VCCIO ...... 31  
GNDD ...... 32  
N/C ...... 33  
124 ..........N/C  
123 ..........GNDA  
122 ..........TPFON2  
121 ..........TPFOP2  
120 ..........VCCR  
119 ..........TPFIN2  
118 ..........TPFIP2  
117 ..........GNDA  
116 ..........GNDA  
115 ..........TPFIP1  
114 ..........TPFIN1  
113 ..........VCCR  
112 ..........VCCT  
111 ..........TPFOP1  
110 ..........TPFON1  
109 ..........GNDA  
108 ..........TPFON0  
107 ..........TPFOP0  
106 ..........VCCR  
105 ..........TPFIN0  
N/C ...... 34  
N/C ...... 35  
N/C ...... 36  
N/C ...... 37  
N/C ...... 38  
N/C ...... 39  
N/C ...... 40  
RXD2_1 ...... 41  
RXD2_0 ...... 42  
CRS_DV2 ...... 43  
RXER2 ...... 44  
TXEN2 ...... 45  
TXD2_0 ...... 46  
TXD2_1 ...... 47  
GNDD ...... 48  
GNDD ...... 49  
GNDD ...... 50  
GNDD ...... 51  
VCCIO ...... 52  
1. Ports 6 and 7 are available only on the LXT9781.  
Package Topside Markings  
Marking  
Definition  
Part #  
Rev #  
Lot #  
LXT9761 is the unique identifier for this product family.  
Identifies the particular silicon stepping(Refer to Specification Update for additional stepping information.)  
Identifies the batch.  
FPO #  
Identifies the Finish Process Order.  
12  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 1. LXT97x1 RMII Signal Descriptions  
9761 Pin#  
PQFP  
9781 Pin#  
Symbol  
Type1  
Signal Description2, 3  
PQFP  
PBGA  
RMII Data Interface Pins  
Reference Clock. 50 MHz RMII reference clock is required  
at this pin. The LXT97x1 samples RMII inputs on the rising  
edge of REFCLK, and drives RMII outputs on the falling  
edge.  
92  
92  
Y15  
REFCLK  
I
Transmit Data - Port 0. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 0 are clocked in synchronously to  
REFCLK.  
V7  
66  
69  
66  
69  
TXD0_0  
TXD0_1  
I
I
I
I
I
I
I
I
W7  
Transmit Data - Port 1. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 1 are clocked in synchronously to  
REFCLK.  
W4  
V4  
59  
60  
59  
60  
TXD1_0  
TXD1_1  
Transmit Data - Port 2. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 2 are clocked in synchronously to  
REFCLK.  
T2  
T3  
46  
47  
46  
47  
TXD2_0  
TXD2_1  
Transmit Data - Port 3. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 3 are clocked in synchronously to  
REFCLK.  
P3  
P4  
23  
24  
39  
40  
TXD3_0  
TXD3_1  
Transmit Data - Port 4. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 4 are clocked in synchronously to  
REFCLK.  
L3  
L4  
14  
17  
30  
33  
TXD4_0  
TXD4_1  
Transmit Data - Port 5. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 5 are clocked in synchronously to  
REFCLK.  
J3  
J4  
7
8
23  
24  
TXD5_0  
TXD5_1  
Transmit Data - Port 6. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 6 are clocked in synchronously to  
REFCLK.  
F4  
14  
17  
TXD6_0  
TXD6_1  
G2  
Transmit Data - Port 7. Inputs containing 2-bit parallel di-bits  
to be transmitted from port 7 are clocked in synchronously to  
REFCLK.  
D3  
D4  
7
8
TXD7_0  
TXD7_1  
Y5  
W3  
T1  
P1  
L2  
65  
58  
45  
22  
13  
6
65  
58  
45  
38  
29  
22  
13  
6
TXEN0  
TXEN1  
TXEN2  
TXEN3  
TXEN4  
TXEN5  
TXEN6  
TXEN7  
Transmit Enable - Ports 0 - 7. Active High input enables  
respective port transmitter. This signal must be synchronous  
to the REFCLK.  
I
J2  
F3  
D2  
U7  
U6  
62  
61  
62  
61  
RXD0_0  
RXD0_1  
Receive Data - Port 0. Receive data signals (2-bit parallel di-  
bits) are driven synchronously to REFCLK.  
O
O
Y2  
V2  
55  
54  
55  
54  
RXD1_0  
RXD1_1  
Receive Data - Port 1. Receive data signals (2-bit parallel di-  
bits) are driven synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain  
2. The LXT97x1 supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation,  
where X is the register number (0-32) and Y is the bit number (0-15).  
3. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
Datasheet  
13  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 1. LXT97x1 RMII Signal Descriptions (Continued)  
9761 Pin#  
PQFP  
9781 Pin#  
Symbol  
Type1  
Signal Description2, 3  
PQFP  
PBGA  
R2  
R1  
42  
41  
42  
41  
RXD2_0  
RXD2_1  
Receive Data - Port 2. Receive data signals (2-bit parallel di-  
bits) are driven synchronously to REFCLK.  
O
O
O
O
O
O
N2  
N1  
19  
18  
35  
34  
RXD3_0  
RXD3_1  
Receive Data - Port 3. Receive data signals (2-bit parallel di-  
bits) are driven synchronously to REFCLK.  
K3  
K2  
10  
9
26  
25  
RXD4_0  
RXD4_1  
Receive Data - Port 4. Receive data signals (2-bit parallel di-  
bits) are driven synchronously to REFCLK.  
H3  
H1  
3
2
19  
18  
RXD5_0  
RXD5_1  
Receive Data - Port 5. Receive data signals (2-bit parallel  
di-bits) are driven synchronously to REFCLK.  
E3  
E1  
10  
9
RXD6_0  
RXD6_1  
Receive Data - Port 6. Receive data signals (2-bit parallel di-  
bits) are driven synchronously to REFCLK.  
C2  
C1  
3
2
RXD7_0  
RXD7_1  
Receive Data - Port 7. Receive data signals (2-bit parallel  
di-bits) are driven synchronously to REFCLK.  
V6  
Y3  
R3  
N3  
K4  
H4  
F1  
B3  
63  
56  
43  
20  
11  
4
63  
56  
43  
36  
27  
20  
11  
4
CRS_DV0  
CRS_DV1  
CRS_DV2  
CRS_DV3  
CRS_DV4  
CRS_DV5  
CRS_DV6  
CRS_DV7  
Carrier Sense/Receive Data Valid - Ports 0 - 7. On  
detection of valid carrier, these signals are asserted  
asynchronously with respect to REFCLK. CRS_DVn is  
deasserted on loss of carrier, synchronous to REFCLK.  
O
W6  
V3  
R4  
N4  
L1  
64  
57  
44  
21  
12  
5
64  
57  
44  
37  
28  
21  
12  
5
RXER0  
RXER1  
RXER2  
RXER3  
RXER4  
RXER5  
RXER6  
RXER7  
Receive Error - Ports 0 - 7. These signals are synchronous  
to the respective REFCLK. Active High indicates that  
received code group is invalid, or that PLL is not locked.  
O
J1  
F2  
D1  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain  
2. The LXT97x1 supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation,  
where X is the register number (0-32) and Y is the bit number (0-15).  
3. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
14  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 1. LXT97x1 RMII Signal Descriptions (Continued)  
9761 Pin#  
PQFP  
9781 Pin#  
Symbol  
Type1  
Signal Description2, 3  
PQFP  
PBGA  
RMII Control Interface Pins  
Management Data Clock. Clock for the MDIO serial data  
channel.  
Maximum frequency is 8 MHz.  
70  
71  
84  
70  
71  
84  
V8  
W8  
U12  
MDC  
I
Management Data Input/Output. Bidirectional serial data  
channel for PHY/STA communication.  
MDIO  
MDINT  
I/O  
OD  
Management Data Interrupt. When bit 18.1 = 1, an active  
Low output on this pin indicates status change. Interrupt is  
cleared when Register 19 is read.  
Management Disable.  
When MDDIS is High, the MDIO is disabled from read and  
write operations.  
When MDDIS is Low at power up or reset, the Hardware  
Control Interface pins control only the initial or default”  
values of their respective register bits. After the power-up/  
reset cycle is complete, bit control reverts to the MDIO serial  
channel.  
85  
85  
Y12  
MDDIS  
I
1. Type Column Coding: I = Input, O = Output, OD = Open Drain  
2. The LXT97x1 supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation,  
where X is the register number (0-32) and Y is the bit number (0-15).  
3. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
Table 2. LXT97x1 Signal Detect/TP Select Signal Descriptions  
9761  
9781 Pin#  
Pin#  
Symbol  
Type1  
Signal Description2  
PQFP  
PQFP  
PBGA  
101  
100  
99  
101  
100  
99  
V16  
U13  
U14  
U15  
C16  
B17  
A17  
C17  
SD0/TP0  
SD1/TP1  
SD2/TP2  
SD3/TP3  
SD4/TP4  
SD5/TP5  
SD6/TP6  
SD7/TP7  
Signal Detect - Ports 0 - 7. Tying the SD/TPn pins High or to  
a PECL input sets bit 16.0 = 1 and the respective port is  
forced to FX mode. In the absence of an active link, the pin  
must be pulled High to enable loopback in FX mode. Do not  
enable Auto-Negotiation if FX mode is selected.  
161  
160  
159  
98  
I
162  
161  
160  
159  
The SD/TPn pins have internal pull-downs. When not using  
FX mode, SD/TPn pins should be tied to GNDA.  
TP Select - Ports 0 - 7. Tying the SD/TPn pins Low sets bit  
16.0 = 0 and forces the respective port to TP mode.  
1. Type Column Coding: I = Input, O = Output.  
2. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
Datasheet  
15  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 3. LXT97x1 Network Interface Signal Descriptions  
9761  
Pin#  
9781  
Pin#  
Symbol  
Type1  
Signal Description2  
PQFP  
PQFP  
PBGA  
W19, W20  
V20, V19  
P19, P20  
N20, N19  
H19, H20  
G20, G19  
C19, C20  
B20, B19  
Twisted-Pair/Fiber Outputs,  
Positive & Negative - Ports 0-7.  
107, 108  
111, 110  
121, 122  
140, 139  
150, 151  
154, 153  
, –  
107, 108  
111, 110  
121, 122  
125, 124  
136, 137  
140, 139  
150, 151  
154, 153  
TPFOP0, TPFON0  
TPFOP1, TPFON1  
TPFOP2, TPFON2  
TPFOP3, TPFON3  
TPFOP4, TPFON4  
TPFOP5, TPFON5  
TPFOP6, TPFON6  
TPFOP7, TPFON7  
During 100BASE-TX or 10BASE-T operation,  
TPFO pins drive 802.3 compliant pulses onto  
the line.  
AO  
During 100BASE-FX operation, TPFO pins  
produce differential PECL outputs for fiber  
transceivers.  
, –  
Y19, Y20  
U20, U19  
R19, R20  
M20, M19  
J20, J19  
F20, F19  
D19, D20  
A20, A19  
Twisted-Pair/Fiber Inputs,  
Positive & Negative - Ports 0-7.  
104, 105  
115, 114  
118, 119  
143, 142  
146, 147  
157, 156  
, –  
104, 105  
115, 114  
118, 119  
129, 128  
132, 133  
143, 142  
146, 147  
157, 156  
TPFIP0, TPFIN0  
TPFIP1, TPFIN1  
TPFIP2, TPFIN2  
TPFIP3, TPFIN3  
TPFIP4, TPFIN4  
TPFIP5, TPFIN5  
TPFIP6, TPFIN6  
TPFIP7, TPFIN7  
During 100BASE-TX or 10BASE-T operation,  
TPFI pins receive differential 100BASE-TX or  
10BASE-T signals from the line.  
AI  
During 100BASE-FX operation, TPFI pins  
receive differential PECL inputs from fiber  
transceivers.  
, –  
1. Type Column Coding: I = Input, O = Output.  
2. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
Table 4. LXT97x1 JTAG Test Signal Descriptions  
PQFP  
Pin#1  
9781 PBGA  
Pin#  
Symbol  
Type2  
Signal Description  
Test Data Input. Test data sampled with respect to the rising edge  
of TCK.  
163  
164  
D14  
C15  
TDI  
I, IP  
O
Test Data Output. Test data driven with respect to the falling edge  
of TCK.  
TDO  
165  
166  
167  
B16  
D15  
A16  
TMS  
TCK  
I, IP  
I, ID  
I, IP  
Test Mode Select.  
Test Clock. Clock input for JTAG test (REFCLK).  
Test Reset. Reset input for JTAG test.  
TRST  
1. Pin numbers apply to both the LXT9761 and the LXT9781.  
2. Type Column Coding: I = Input, O = Output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
16  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 5. LXT97x1 Miscellaneous Signal Descriptions  
PQFP  
Pin#1  
9781 PBGA  
Pin#  
Symbol  
Type2  
Signal Description3  
Tx Output Slew Controls 0 and 1. These pins select the TX output  
slew rate (rise and fall time) as follows:  
TxSLEW_1  
TxSLEW_0  
Slew Rate (Rise and Fall Time)  
76  
77  
Y8  
TxSLEW_0  
TxSLEW_1  
0
0
1
1
0
1
0
1
2.5 ns  
3.1 ns  
3.7 ns  
4.3 ns  
I
U10  
Pause. Sets the default value of bit 4.10 (PAUSE). When High, the  
LXT97x1 advertises Pause capabilities on all ports during auto-  
negotiation.  
79  
W10  
PAUSE  
I
Power-Down. When High, forces the LXT97x1 into global power-down  
mode. Refer to Power-Down Modeon page 27 for more information.  
82  
83  
W12  
V12  
PWRDWN  
RESET  
I
I
Reset. This active Low input is ORed with the control register Reset bit  
(0.15). When held Low, all outputs are forced to inactive state.  
Address <4:0>. Sets base address. Each port adds its port number  
(starting with 0) to this address to determine its PHY address.  
W16  
V15  
V13  
V14  
W15  
Port 0 Address = Base + 0.  
Port 1 Address = Base + 1.  
Port 2 Address = Base + 2.  
Port 3 Address = Base + 3.  
Port 4 Address = Base + 4.  
Port 5 Address = Base + 5.  
97  
96  
95  
94  
93  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
I
I
I
I
I
Port 6 Address = Base + 6 (LXT9781 Only).  
Port 7 Address = Base + 7 (LXT9781 Only).  
Bias. This pin provides bias current for the internal circuitry. Must be tied  
to ground through a 22.1 k1% resistor.  
Quick Status. Provides continuous PHY status updates, without the  
need for constant polling.  
102  
206  
207  
V17  
B4  
RBIAS  
QSTAT  
QCLK  
AI  
O
I
Quick Clock. Clock used for sending out QSTAT information. Maximum  
frequency is 25 MHz.  
A3  
1. Pin numbers apply to both the LXT9761 and the LXT9781.  
2. Type Column Coding: I = Input, O = Output, A = Analog, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
3. The LXT97x1 supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation,  
where X is the register number (0-32) and Y is the bit number (0-15).  
Datasheet  
17  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 6. LXT97x1 Power Supply Signal Descriptions  
PQFP  
Pin#1  
9781 PBGA  
Pin#  
Symbol  
Type  
Signal Description  
LXT9761/81:  
80, 88, 179  
A12, B11, B12, Y9, Y10,  
Y11  
Digital Power Supply - Core. +3.3V supply  
for core digital circuits.  
VCCD  
-
LXT9761 Only:  
86  
Digital Power Supply - I/O Ring. +3.3V  
supply for digital I/O circuits. Regardless of  
the IO supply, digital I/O pins remain tolerant  
of 5V signal levels.  
15, 31, 52, 67, 193, 208  
C4, D5, G1, M1, V1, Y6  
VCCIO  
VCCR  
-
-
LXT9761/81:  
D17, E17, H17, J17,  
M17, N17, T17, U17  
Analog Power Supply. +3.3V supply for all  
analog receive circuits.  
106, 113, 120, 141, 148,  
155  
LXT9781 Only:  
127, 134  
LXT9761/81:  
A18, B18, E19, E20,  
K19, K20, L19, L20,  
T19, T20, W18, Y18  
112, 149  
Analog Power Supply. +3.3V supply for all  
analog transmit circuits.  
VCCT  
GNDD  
-
-
LXT9781 Only:  
126, 135  
LXT9761/81:  
A4, B2, B8, C3, C12,  
1, 16, 32, 48-51, 53, 68,  
D11, E2, E4, G3, G4, H2,  
Digital Ground. Ground return for both core  
and I/O digital supplies (VCCD and VCCIO).  
All ground pins can be tied together using a  
single ground plane.  
72-75, 81, 87, 89, 90, 91, J9 - J12, K1, K9 - K12, L9  
178, 192  
- L12, M2, M3, M4, M9 -  
M12, P2, T4, U5, U8,  
U11, V5, V11, W2, W5,  
W11,W13, W14, Y13,  
Y14, Y16, Y17  
LXT9781 Only:  
86  
103, 109, 116, 117, 123,  
138, 144, 145, 152, 158  
(LXT9761 and LXT9781)  
C18, D16, D18, E18,  
F17, F18, G17, G18,  
H18, J18, K17, K18,  
L17, L18, M18, N18,  
P17, P18, R17, R18,  
T18, U16, U18, V18,  
W17  
Analog Ground. Ground return for analog  
supply. All ground pins can be tied together  
using a single ground plane.  
GNDA  
GNDS  
-
-
130, 131 (LXT9781 Only)  
Substrate Ground. Ground for chip  
substrate. All ground pins can be tied  
together using a single ground plane.  
78  
V10  
1. Unless otherwise noted, pin numbers apply to both the LXT9761 and the LXT9781.  
18  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 7. LXT97x1 LED Signal Descriptions  
9761  
Pin#  
9781  
Pin#  
Symbol  
Type1  
Signal Description2  
PQFP  
PQFP  
PBGA  
Serial LEDs 0 - 7. Each serial LED output indicates a  
particular status condition for every port. Bit 0 is assigned  
to Port 0, bit 1 to Port 1, etc. There are 8 possible LEDs  
per port, for a total of 48 display LEDs. However, typical  
equipment designs use no more than 3 LEDs per port,  
selected by the designer. Using per-event, rather than  
per-port outputs reduces the number of serial shift  
registers required. Instead of requiring an external serial-  
to-parallel shift register for each port, this method  
requires only one per LED type, reducing board space  
and component costs. Refer to Serial LED Functions”  
on page 38 for details.  
D12  
B13  
C13  
A14  
A13  
B14  
C14  
A15  
177  
176  
175  
174  
173  
172  
171  
170  
177  
176  
175  
174  
173  
172  
171  
170  
LEDS_0  
LEDS_1  
LEDS_2  
LEDS_3  
LEDS_4  
LEDS_5  
LEDS_6  
LEDS_7  
O
168  
169  
168  
169  
B15  
D13  
LEDCLK  
O
O
LED Clock. 1 MHz clock for LED serial data output.  
LED Framing. Framing signal for serial LED outputs.  
LEDLATCH  
Port 0 LED Drivers 1 -3. These pins drive LED  
indicators for Port 0. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
203  
204  
205  
203  
204  
205  
B5  
D6  
C5  
LED/CFG0_1  
LED/CFG0_2  
LED/CFG0_3  
I/OD/OS  
I/OD/OS  
I/OD/OS  
I/OD/OS  
Port 0 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
Port 1 LED Drivers 1 -3. These pins drive LED  
indicators for Port 1. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
200  
201  
202  
200  
201  
202  
D7  
A5  
C6  
LED/CFG1_1  
LED/CFG1_2  
LED/CFG1_3  
Port 1 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
Port 2 LED Drivers 1 -3. These pins drive LED  
indicators for Port 2. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
197  
198  
199  
197  
198  
199  
C7  
A6  
B6  
LED/CFG2_1  
LED/CFG2_2  
LED/CFG2_3  
Port 2 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
Port 3 LED Drivers 1 -3. These pins drive LED  
indicators for Port 3. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
186  
187  
188  
194  
195  
196  
A7  
D8  
B7  
LED/CFG3_1  
LED/CFG3_2  
LED/CFG3_3  
Port 3 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain, OS = Open Source.  
2. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
Datasheet  
19  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 7. LXT97x1 LED Signal Descriptions (Continued)  
9761  
Pin#  
9781  
Pin#  
Symbol  
Type1  
Signal Description2  
PQFP  
PQFP  
PBGA  
Port 4 LED Drivers 1 -3. These pins drive LED  
indicators for Port 4. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
183  
184  
185  
189  
190  
191  
C8  
A8  
D9  
LED/CFG4_1  
LED/CFG4_2  
LED/CFG4_3  
I/OD/OS  
Port 4 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
Port 5 LED Drivers 1 -3. These pins drive LED  
indicators for Port 5. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
180  
181  
182  
186  
187  
188  
D10  
A9  
LED/CFG5_1  
LED/CFG5_2  
LED/CFG5_3  
I/OD/OS  
I/OD/OS  
I/OD/OS  
Port 5 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
B9  
Port 6 LED Drivers 1 -3. These pins drive LED  
indicators for Port 6. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
183  
184  
185  
A10  
B10  
C9  
LED/CFG6_1  
LED/CFG6_2  
LED/CFG6_3  
Port 6 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
Port 7 LED Drivers 1 -3. These pins drive LED  
indicators for Port 7. Each LED can display one of  
several available status conditions as selected by the  
LED Configuration Register (refer to Table 48 on page 74  
for details).  
180  
181  
182  
C11  
C10  
A11  
LED/CFG7_1  
LED/CFG7_2  
LED/CFG7_3  
Port 7 Configuration Inputs 1-3. When operating in  
Hardware Control Mode, these pins also provide  
configuration control options (refer to Table 9 on page 29  
for details).  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain, OS = Open Source.  
2. Ports 6 and 7 are available only on the LXT9781. These pins are not bonded out on the LXT9761.  
Table 8. Unused Pins  
LXT9761 PQFP  
Pin#1  
LXT9781 PBGA  
Pin#  
Symbol  
Type  
Signal Description  
A1,A2,B1,U1,U2,U3,U4,  
U9,V9,W1,W9,  
25-30, 33-40, 98,  
124-137, 162,  
189-191, 194-196  
No Connection. These pins should be left  
unconnected.  
N/C  
Y1,Y4,Y7  
1. These pins are used for the two additional ports available on the LXT9781. They are not bonded out on the LXT9761.  
20  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
2.0  
Functional Description  
2.1  
Introduction  
The LXT9781 is an eight-port Fast Ethernet 10/100 Transceiver that supports 10 Mbps and 100  
Mbps networks. It complies with all applicable requirements of IEEE 802.3. The LXT9781  
provides a Reduced MII (RMII) for each individual network port to interface with multiple 10/100  
MACs. Each port can directly drive either a 100BASE-TX line (up to 100 meters) or a 10BASE-T  
line (up to 185 meters). The LXT9781 also supports 100BASE-FX operation via a Pseudo-ECL  
(PECL) interface. The LXT9761 offers the same features and functionality in a six-port device.  
This data sheet uses the singular designation LXT97x1to refer to both devices.  
2.1.1  
OSP™ Architecture  
Intel's LXT97x1 incorporates high-efficiency Optimal Signal Processingdesign techniques,  
combining the best properties of digital and analog signal processing to produce a truly optimal  
device.  
The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by  
as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques  
in the receive equalizer avoids the quantization noise and calculation truncation errors found in  
traditional DSP-based receivers (typically complex DSP engines with A/D converters). The result  
is improved receiver noise and cross-talk performance.  
The OSP architecture also requires substantially less computational logic than traditional DSP-  
based designs. This lowers power consumption and also reduces the logic switching noise  
generated by DSP engines clocked at speeds up to 125 MHz. The logic switching noise can be a  
considerable source of EMI generated on the devices power supplies.  
The OSP-based LXT97x1 provides improved data recovery, EMI performance and power  
consumption.  
2.1.2  
Comprehensive Functionality  
The LXT97x1 performs all functions of the Physical Coding Sublayer (PCS) and Physical Media  
Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. This device  
also performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX  
connections.  
On power-up, the LXT97x1 reads its configuration pins to check for forced operation settings. If  
not configured for forced operation, each port uses auto-negotiation/parallel detection to  
automatically determine line operating conditions. If the PHY device on the other side of the link  
supports auto-negotiation, the LXT97x1 will auto-negotiate with it using Fast Link Pulse (FLP)  
Bursts. If the PHY partner does not support auto-negotiation, the LXT97x1 will automatically  
detect the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps PHY) and set  
its operating conditions accordingly.  
The LXT97x1 provides half-duplex and full-duplex operation at 100 Mbps and 10 Mbps.  
Datasheet  
21  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.2  
Interface Descriptions  
2.2.1  
10/100 Network Interface  
The LXT97x1 supports both 10BASE-T and 100BASE-TX Ethernet over twisted-pair, or 100  
Mbps Ethernet over fiber media (100BASE-FX). Each network interface port consists of four  
external pins (two differential signal pairs). The pins are shared between twisted-pair (TP) and  
fiber. The LXT97x1 pinout is designed to interface seamlessly with dual-high stacked RJ45  
connectors. Refer to Table 3 for specific pin assignments.  
The LXT97x1 output drivers generate either 100BASE-TX, 10BASE-T, or 100BASE-FX output.  
When not transmitting data, the LXT97x1 generates 802.3-compliant link pulses or idle code.  
Input signals are decoded either as a 100BASE-TX, 100-BASE-FX, or 10BASE-T input,  
depending on the mode selected. Auto-negotiation/parallel detection or manual control is used to  
determine the speed of this interface.  
Figure 5. LXT97x1 Interfaces  
TXENn  
TXDn_0  
TXDn_1  
TPFOPn  
TPFONn  
RMII  
DATA  
I/F  
Network  
I/F  
RXDn_0  
RXDn_1  
CRS_DVn  
TPFIPn  
TPFINn  
RXERn  
MDIO  
MDC  
MDIO  
Mgmt  
I/F  
MDINT  
MDDIS  
VCC  
Port LEDs/  
Hardware  
Control I/F  
LED/CFGn_n  
LEDS_n  
LEDLAT  
LEDCLK  
RBIAS  
VCCIO  
22.1k  
ADD<4:0>  
Quick  
Status  
I/F  
+3.3V  
QSTAT  
QCLK  
VCCD  
GNDD  
+3.3V  
.01uF  
2.2.1.1  
Twisted-Pair Interface  
When operating at 100 Mbps, MLT3 symbols are continuously transmitted and received. When not  
transmitting data, the LXT97x1 generates IDLEsymbols.  
During 10 Mbps operation, Manchester-encoded data is exchanged. When no data is being  
exchanged, the line is left in an idle state.  
The LXT97x1 supports either 100BASE-TX or 10BASE-T connections over 100Ω, Category 5,  
Unshielded Twisted Pair (UTP). Only a transformer, series capacitors, load resistors, RJ45 and  
bypass capacitors are required to complete this interface. On the receive side, the internal  
22  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
impedance is high enough that it has no practical effect on the external termination circuit. On the  
transmit side, Intels patented waveshaping technology shapes the outgoing signal to help reduce  
the need for external EMI filters. Four slew rate settings (refer to Table 5 on page 17) allow the  
designer to match the output waveform to the magnetic characteristics.  
2.2.1.2  
Fiber Interface  
The LXT97x1 provides a PECL interface that complies with the ANSI X3.166 specification. This  
interface is suitable for driving a fiber-optic coupler.  
Fiber ports cannot be enabled via auto-negotiation; they must be enabled via the Hardware Control  
Interface or MDIO registers.  
2.2.2  
2.2.3  
RMII Interface  
The LXT97x1 provides a separate RMII for each network port, each complying with the RMII  
standard. The RMII includes both a data interface and an MDIO management interface.  
Configuration Management Interface  
The LXT97x1 provides both an MDIO Management interface and a Hardware Control interface  
(via the LED/CFG pins) for device configuration and management. Mode control selection is  
provided via the MDDIS pin as shown in Table 1.  
2.2.3.1  
MDIO Management Interface  
The LXT97x1 supports the IEEE 802.3 MII Management Interface also known as the Management  
Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to monitor and  
control the state of the LXT97x1. The MDIO interface consists of a physical connection, a specific  
protocol that runs across the connection, and an internal set of addressable registers. Some  
registers are required and their functions are defined by the IEEE 802.3 specification. Additional  
registers allow for expanded functionality. Specific bits in the registers are referenced using an  
X.Ynotation, where X is the register number (0-32) and Y is the bit number (0-15).  
The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this  
interface is controlled by the MDDIS input pin. When MDDIS is High, the MDIO read and write  
operations are disabled and the Hardware Control Interface provides primary configuration control.  
When MDDIS is Low, the MDIO port is enabled for both read and write operations and the  
Hardware Control Interface is not used. The timing for the MDIO Interface is shown in Table 30 on  
page 60. MDIO read and write cycles are shown in Figure 7 (read) and Figure 8 (write).  
MII Addressing  
The protocol allows one controller to communicate with multiple LXT97x1 chips. Pins  
ADD_<4:0> determine the base address. Each port adds its port number (0 through 5 for the  
LXT9761, or 0 through 7 for the LXT9781) to the base address to obtain its port address as shown  
in Figure 6.  
Datasheet  
23  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 6. Port Address Scheme  
BASE ADDR  
(ex. ADDR=4)  
LXT9781  
PHY ADDR (BASE+0)  
Port 0  
ex. 4  
PHY ADDR (BASE+1)  
Port 1  
ex. 5  
PHY ADDR (BASE+2)  
Port 2  
ex. 6  
PHY ADDR (BASE+3)  
Port 3  
ex. 7  
PHY ADDR (BASE+4)  
Port 4  
ex. 8  
PHY ADDR (BASE+5)  
Port 5  
ex. 9  
PHY ADDR (BASE+4)  
Port 6  
ex. 10  
PHY ADDR (BASE+5)  
Port 7  
ex. 11  
1. Ports 6 and 7 not available on the LXT9761.  
Figure 7. Management Interface Read Frame Structure  
MDC  
MDIO  
(Read)  
D0  
A4  
A3  
A0  
R4  
R3  
R0  
D14 D1  
D15  
Z
0
32 "1"s  
0
1
1
0
Turn  
Around  
Data  
Read  
Idle  
High Z  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Write  
Figure 8. Management Interface Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Data  
Idle  
Write  
24  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
MII Interrupts  
The LXT97x1 provides a single interrupt pin available to all ports. Interrupt logic is shown in  
Figure 9. The LXT97x1 also provides two dedicated interrupt registers for each port. Register 18  
provides interrupt enable and mask functions and Register 19 provides interrupt status. Setting bit  
18.1 = 1, enables a port to request interrupt via the MDINT pin. An active Low on this pin indicates  
a status change on the LXT97x1. However, because it is a shared interrupt, it does not indicate  
which port is requesting service.  
Interrupts may be caused by any one of the following conditions:  
Auto-negotiation complete.  
Speed status change.  
Duplex status change.  
Link status change.  
Figure 9. Interrupt Logic  
Event X Enable Reg  
AND  
Event X Status Reg  
OR  
Port  
Combine  
Logic  
Interrupt Pin  
.
.
AND  
.
.
.
Per Event  
.
Per port  
Force Interrupt  
Interrupt Enable  
1. Interrupt (Event) Status Register is cleared on read.  
2. X = Any Interrupt capability  
2.2.3.2  
Hardware Control Interface  
The LXT97x1 provides a Hardware Control Interface for applications where the MDIO is not  
desired. The Hardware Control Interface uses the three LED driver pins for each port.  
2.3  
Operating Requirements  
2.3.1  
Power Requirements  
The LXT97x1 requires four power supply inputs: VCCD, VCCT, VCCR, and VCCIO. The digital  
and analog circuits require 3.3 V supplies (VCCD, VCCT and VCCR). These inputs may be  
supplied from a single source although decoupling is required to each respective ground.  
An additional supply may be used for the RMII (VCCIO). VCCIO should be supplied from the  
same power source used to supply the controller on the other side of the RMII interface. Refer to  
Table 18 on page 53 for RMII I/O characteristics.  
Datasheet  
25  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
As a matter of good practice, these supplies should be as clean as possible. Typical filtering and  
decoupling are shown in Figure 21 on page 47.  
2.3.2  
Clock Requirements  
Reference Clock  
2.3.2.1  
The LXT97x1 requires a constant 50 MHz reference clock (REFCLK). The reference clock is used  
to generate transmit signals and recover receive signals. A crystal-based clock is recommended  
over a derived clock (i.e, PLL-based) to minmize transmit jitter. Refer to Table 19 on page 53 for  
clock timing requirements.  
2.4  
Initialization  
When the LXT97x1 is first powered on, reset, or encounters a link failure state, it checks the MDIO  
register configuration bits to determine the line speed and operating conditions to use for the  
network link. The configuration bits may be set by the Hardware Control or MDIO interface as  
shown in Figure 10.  
2.4.1  
2.4.2  
MDIO Control Mode  
In the MDIO Control mode, the LXT97x1 reads the Hardware Control Interface pins to set the  
initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts to  
the MDIO interface.  
Hardware Control Mode  
In the Hardware Control Mode, LXT97x1 disables direct write operations to the MDIO registers  
via the MDIO Interface. On power-up or hardware reset the LXT97x1 reads the Hardware Control  
Interface pins and sets the MDIO registers accordingly.  
The following modes are available using either Hardware Control or MDIO Control:  
Force network link to 100FX (Fiber).  
Force network link operation to:  
100TX, Full-Duplex.  
100TX, Half-Duplex.  
10BASE-T, Full-Duplex.  
10BASE-T, Half-Duplex.  
Allow auto-negotiation / parallel-detection.  
When the network link is forced to a specific configuration, the LXT97x1 immediately begins  
operating the network interface as commanded. When auto-negotiation is enabled, the LXT97x1  
begins the auto-negotiation / parallel-detection operation.  
26  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 10. Initialization Sequence  
Power-up or Reset  
Read H/W Control  
Interface  
Initialize MDIO Registers  
MDIO Control  
Mode  
Hardware Control  
Mode  
MDDIS Voltage  
Level?  
Low  
High  
Pass Control to MDIO  
Interface (Read/Write)  
Disable MDIO Read and  
Write Operations  
Software  
Reset?  
Yes  
Reset MDIO Registers to  
values read at H/W  
Control Interface at last  
Hardware Reset  
2.4.3  
Power-Down Mode  
The LXT97x1 offers both global and per-port power-down modes.  
2.4.3.1  
Global (Hardware) Power Down  
The global power-down mode is controlled by PWRDWN pin 82 (PQFP) or W12 (PBGA). When  
PWRDWN is High, the following conditions are true:  
All LXT97x1 ports and clock are shut down.  
All outputs are tri-stated.  
All weak pad pull-up and pull-down resistors are disabled.  
The MDIO registers are not accessible.  
The MDIO registers are reset after power down.  
2.4.3.2  
Port (Software) Power Down  
Individual port power-down control is provided by bit 0.11 in the respective port Control Registers  
(refer to Table 35 on page 65). During individual port power-down, the following conditions are  
true:  
The individual port is shut down.  
The MDIO registers remain accessible.  
The MDIO registers are unaffected.  
Datasheet  
27  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.4.4  
Reset  
The LXT97x1 provides both hardware and software resets. Configuration control of Auto-  
Negotiation, speed and duplex mode selection is handled differently for each. During a hardware  
reset, settings for bits 0.13, 0.12 and 0.8 are read in from the pins (refer to Table 9 on page 29 for  
pin settings and to Table 35 on page 65 for register bit definitions).  
During a software reset (0.15 = 1), these bit settings are not re-read from the pins. They revert back  
to the values that were read in during the last hardware reset. Therefore, any changes to pin values  
made since the last hardware reset will not be detected during a software reset.  
During a hardware reset, register information is unavailable for 1 ms after de-assertion of the reset.  
During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be  
polled to see when the part has completed reset (0.15 = 0).  
2.4.5  
Hardware Configuration Settings  
The LXT97x1 provides a hardware option to set the initial device configuration. The hardware  
option uses the three LED/CFG driver pins for each port. This provides three control bits per port,  
as listed in Table 9. The LED drivers can operate as either open drain or open source circuits as  
shown in Figure 11. The LED/CFG pins are sensitive to polarity and will automatically pull up  
or pull down to configure for either open drain or open source circuits (10 mA max current rating)  
as required by the hardware configuration. In applications where all ports are configured the same,  
several pins may be tied together with a single resistor.  
Note: Auto-Negotiation must be disabled before selecting fiber operation.  
.
Figure 11. Hardware Control Settings  
VCC  
Configuration Bit = 1  
LED/CFG Pin  
LED/CFG Pin  
Configuration Bit = 0  
1. LEDs will automatically correct their  
polarity upon power-up or reset.  
28  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 9. Hardware Configuration Settings  
Desired Configuration  
Pin Settings  
Resulting Register Bit Values  
Control Register AN Advertisement Register  
AutoNeg Speed  
LED/CFGn_1  
AutoNeg  
Speed  
Mode  
Duplex  
Mode  
Mode  
FD  
0.8  
100FD 100TX 10 FD  
10T  
4.5  
1
2
3
0.12  
0.13  
4.8  
4.7  
4.6  
Half  
Full  
Half  
Full  
Half  
Full  
Half  
Full  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
10  
100  
0
X X X X 2  
Disabled  
0
Auto-Negotiation  
Advertisement  
1
1
0
1
0
1
100  
0
0
1
Enabled3  
1
1
0
10/100  
1
1. These pins set the default values for registers 0 and 4 accordingly.  
2. X = Dont Care.  
3. Do not select Fiber mode with Auto-Negotiation enabled.  
2.5  
Link Establishment  
2.5.1  
Auto-Negotiation  
The LXT97x1 attempts to auto-negotiate with its counter-part across the link by sending Fast Link  
Pulse (FLP) bursts. Each burst consists of 33 link pulses spaced 62.5 µs apart. Odd link pulses  
(clock pulses) are always present. Even link pulses (data pulses) may be present or absent to  
indicate a 1or a 0. Each FLP burst exchanges 16 bits of data, which are referred to as a  
page. All devices that support auto-negotiation must implement the Base Pagedefined by  
IEEE 802.3 (registers 4 and 5). The LXT97x1 also supports the optional Next Pagefunction  
(registers 7 and 8).  
2.5.1.1  
Base Page Exchange  
By exchanging Base Pages, the LXT97x1 and its link partner communicate their capabilities to  
each other. Both sides must receive at least three identical base pages for negotiation to proceed.  
Each side finds the highest common capabilities that both sides support. Both sides then exchange  
more pages, and finally agree on the operating state of the line.  
2.5.1.2  
2.5.1.3  
Next Page Exchange  
Additional information, above that required by base page exchange is also sent via Next Pages.  
The LXT97x1 fully supports the 802.3 method of negotiation via Next Page exchange.  
Controlling Auto-Negotiation  
When auto-negotiation is controlled by software, the following steps are recommended:  
Datasheet  
29  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
After power-up, power-down, or reset, the power-down recovery time, (see Table 31 on  
page 61), must be exhausted before proceeding.  
Set the auto-negotiation advertisement bits.  
Enable auto-negotiation (set MDIO bit 0.12 = 1).  
Note: Do not enable Auto-Negotiation if fiber mode is selected.  
2.5.2  
Parallel Detection  
In parallel with auto-negotiation, the LXT97x1 also monitors for 10 Mbps Normal Link Pulses  
(NLP) or 100 Mbps Idle symbols. If either is detected, the device automatically reverts to the  
corresponding operating mode. Parallel detection allows the LXT97x1 to communicate with  
devices that do not support auto-negotiation.  
Figure 12. Auto-Negotiation Operation  
Power-Up, Reset,  
Link Failure  
Start  
Disable  
Auto-Negotiation  
Enable  
0.12 = 0  
0.12 = 1  
Auto-Neg/Parallel Detection  
Check Value  
0.12  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Set  
2.6  
RMII Operation  
The LXT97x1 provides an independent Reduced MII port for each network port. Each RMII uses  
four signals to pass received data to the MAC: RXDn<1:0>, RXERn, and CRS_DVn (where n  
reflects the port number). Three signals are used to transmit data from the MAC: TXDn_<1:0>,  
and TXENn. Both Receive and transmit signals are clocked by REFCLK. Data transmission  
across the RMII is implemented in di-bit pairs which equal a 4-bit-wide nibble.  
30  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
2.6.1  
2.6.2  
Reference Clock  
The LXT97x1 requires a 50 MHz reference clock (REFCLK). The LXT97x1 samples the RMII  
input signals on the rising edge of REFCLK and drives RMII output signals on the falling edge.  
Transmit Enable  
TXENn must be asserted and de-asserted synchronously with REFCLK. The MAC must assert  
TXENn the same time as the first nibble of preamble. TXENn must be de-asserted after the last bit  
of the packet.  
2.6.3  
2.6.4  
Carrier Sense & Data Valid  
The LXT97x1 asserts CRS_DVn when it detects activity on the line. However, RXDn outputs  
zeros until the received data is decoded and available for transfer to the controller.  
Receive Error  
Whenever the LXT97x1 receives an errored symbol from the network, it asserts RXERn. When it  
detects a bad Start-of-Stream Delimiter (SSD) it drives a 10jam pattern on the RXD pins to  
indicate a false carrier event.  
2.6.5  
Loopback  
A test loopback function is available for 100 Mbps RMII testing. Bits 0.8, 0.13 and 0.14 must be  
set High for correct operation. When data is looped back, whatever the MAC transmits is looped  
back in its entirety, including the preamble. In FX mode, the respective SIGDET pin must be  
pulled High to enable loopback.  
Figure 13. Loopback Paths  
LXT97x1  
FX Driver  
TX Driver  
10T  
Loopback  
Digital  
Block  
100X  
Loopback  
Analog  
Block  
MII  
2.6.6  
Out of Band Signalling  
The LXT97x1 has the capability of encoding status information in the RXData stream during IPG.  
Refer to the section on Monitoring Operations (page 42) for details.  
Datasheet  
31  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.6.7  
4B/5B Coding Operations  
The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media.  
However, data is normally transmitted across the RMII interface in 2-bit nibblets or di-bits. The  
LXT97x1 incorporates a parallel/serial converter that translates between di-bit pairs and 4-bit  
nibbles, and a 4B/5B encoder/decoder circuit that translates between 4-bit nibbles and 5-bit  
symbols for the 100BASE-X connection. Figure 14 shows the data conversion flow from nibbles to  
symbols. Table 10 on page 34 shows 4B/5B symbol coding (not all symbols are valid).  
Figure 14. RMII Data Flow  
Reduced MII Mode Data Flow  
+1  
Parallel  
to  
Serial  
0
0
0
Scramble  
D0 D0  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
D1 D1  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
di-bit  
pairs  
4-bit  
nibbles  
5-bit  
symbols  
1. An independent RMII port serves each independent Network port. Network port configurations are independently  
selectable.  
2. The Scrambler can be bypassed by setting 16.12 = 0.  
2.7  
100 Mbps Operation  
2.7.1  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT97x1 transmits and receives 5-bit symbols across the  
network link. Figure 15 shows the structure of a standard frame packet. When the MAC is not  
actively transmitting data, the LXT97x1 sends out Idle symbols on the line.  
In 100TX mode, the LXT97x1 scrambles the data and transmits it to the network using MLT-3 line  
code. The MLT-3 signals received from the network are descrambled and decoded and sent across  
the RMII to the MAC.  
In 100FX mode, the LXT97x1 transmits and receives NRZI signals across the PECL interface. An  
external 100FX transceiver module is required to complete the fiber connection.  
As shown in Figure 15, the MAC starts each transmission with a preamble pattern. As soon as the  
LXT97x1 detects the start of preamble, it transmits a J/K Start of Stream Delimiter (SSD) symbol  
to the network. It then encodes and transmits the rest of the packet, including the balance of the  
preamble, the Start of Frame Delimiter (SFD), packet data, and CRC. Once the packet ends, the  
LXT97x1 transmits the T/R End of Stream Delimiter (ESD) symbol and then returns to  
transmitting Idle symbols.  
32  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 15. 100BASE-X Frame Format  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
SFD  
P0 P1 P6  
DA DA SA SA L1  
L2 D0 D1 Dn  
I0  
Replaced by  
/T/R/ code-groups  
End-of-Stream Delimiter (ESD)  
Replaced by  
Start-of-Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start-of-Stream  
Delimiter (SSD)  
2.7.2  
100BASE-X Protocol Sublayer Operations  
With respect to the 7-layer communications model, the LXT97x1 is a Physical Layer 1 (PHY)  
device. The LXT97x1 implements the Physical Coding Sublayer (PCS), Physical Medium  
Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model  
defined by the IEEE 802.3u specification. The following paragraphs discuss LXT97x1 operation  
from the reference model point of view.  
2.7.2.1  
PCS Sublayer  
The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B encoding/  
decoding function.  
For 100TX and 100FX operation, the PCS layer provides IDLE symbols to the PMD-layer line  
driver as long as TXEN is de-asserted.  
For 10T operation, the PCS layer merely provides a bus interface and serialization/de-serialization  
function. 10T operation does not use the 4B/5B encoder.  
Preamble Handling  
When the MAC asserts TXEN, the PCS substitutes a /J/K symbol pair, also known as the Start of  
Stream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS layer  
continues to encode the remaining RMII data, following Table 10 on page 34, until TXEN is de-  
asserted. It then returns to supplying IDLE symbols to the line driver.  
In the receive direction, the PCS layer performs the opposite function, substituting two preamble  
nibbles for the SSD.  
Dribble Bits  
The LXT97x1 handles dribbles bits in all modes. If between 1-4 dribble bits are received, the  
nibble will be passed across the RMII. If between 5-7 dribble bits are received, the second nibble  
will not be sent onto the RMII bus.  
Datasheet  
33  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 16. Protocol Sublayers  
MII Interface  
LXT97x1  
PCS  
Sublayer  
Encoder/Decoder  
Serializer/De-serializer  
PMA  
Link/Carrier Detect  
Sublayer  
PECL Interface  
PMD  
Sublayer  
Scrambler/  
De-scrambler  
Fiber Transceiver  
100BASE-TX  
100BASE-FX  
Table 10. 4B/5B Coding  
4B Code  
Code Type  
5B Code  
4 3 2 1 0  
Name  
Interpretation  
3 2 1 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
DATA  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
34  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 10. 4B/5B Coding (Continued)  
4B Code  
3 2 1 0  
5B Code  
4 3 2 1 0  
Code Type  
Name  
Interpretation  
IDLE  
undefined  
0 1 0 1  
I 1  
1 1 1 11  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Idle. Used as inter-stream fill code  
J 2  
Start-of-Stream Delimiter (SSD), part 1 of 2  
CONTROL  
0 1 0 1  
K 2  
Start-of-Stream Delimiter (SSD), part 2 of 2  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
T 3  
End-of-Stream Delimiter (ESD), part 1 of 2  
R 3  
End-of-Stream Delimiter (ESD), part 2 of 2  
H 4  
Transmit Error. Used to force signaling errors  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
2.7.2.2  
PMA Sublayer  
Link  
In 100Mbps mode, the LXT97x1 establishes a link whenever the scrambler becomes locked and  
remains locked for approximately 50 ms. Whenever the scrambler loses lock (<12 consecutive idle  
symbols during a 2 ms window), the link will be taken down. This provides a very robust link,  
essentially filtering out any small noise hits that may otherwise disrupt the link. Furthermore  
100M idle patterns will not bring up a 10M link.  
The LXT97x1 reports link failure via the RMII status bits (1.2, 17.10, and 19.4) and interrupt  
functions. If auto-negotiate is enabled, link failure causes the LXT97x1 to re-negotiate.  
Link Failure Override  
The LXT97x1 will normally transmit 100 Mbps data packets or Idle symbols only if it detects the  
link is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1 overrides this  
function, allowing the LXT97x1 to transmit data packets even when the link is down. This feature  
is provided as a diagnostic tool. Note that auto-negotiation must be disabled to transmit data  
packets in the absence of link. If auto-negotiation is enabled, the LXT97x1 will automatically  
begin transmitting FLP bursts if the link goes down.  
Datasheet  
35  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Carrier Sense/Data Valid  
The LXT97x1 asserts CRS_DV whenever the respective port receiver is non-idle (as defined by  
the RMII Specification Revision 1.2), including false carrier events. Assertion of CRS_DV is  
asynchronous with respect to REFCLK. In the event that signal decoding is not complete when  
CRS_DV is asserted, the LXT97x1 outputs 00 on the RXD1:0 lines until the decoded data is  
available.  
When the line returns to an idle state CRS_DV is de-asserted, asynchronously with respect to  
REFCLK. In the event that the FIFO still contains data to be passed to the MAC via the RMII  
when CRS is de-asserted, CRS_DV will toggle on nibble boundaries until the FIFO is empty. For  
100BASE-X signals, CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles at  
2.5 MHz.  
2.7.2.3  
Twisted-Pair PMD Sublayer  
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for 100TX, Manchester for 10T), as well as  
receiving, polarity correction, and baseline wander correction functions.  
Scrambler/Descrambler (100TX Only)  
The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using  
an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial  
whenever IDLE symbols are received.  
The scrambler/descrambler can be bypassed by setting bit 16.12 = 1. The scrambler is  
automatically bypassed when the fiber port is enabled. Scramber bypass is provided for diagnostic  
and test support.  
Baseline Wander Correction (100TX Only)  
The LXT97x1 provides a baseline wander correction function which makes the device robust  
under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is by  
definition unbalanced. This means that the DC average value of the signal voltage can wander”  
significantly over short time intervals (tenths of seconds). This wander can cause receiver errors,  
particularly in less robust designs, at long line lengths (100 meters). The exact characteristics of the  
wander are completely data dependent.  
The LXT97x1 baseline wander correction characteristics allow the device to recover error-free data  
while receiving worst-case killerpackets over all cable lengths.  
Polarity Correction  
The LXT97x1 automatically detects and corrects for the condition where the receive signal  
(TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link pulses, or four inverted  
End-of-Frame (EOF) markers, are received consecutively. If link pulses or data are not received  
by the maximum receive time-out period, the polarity state is reset to a non-inverted state.  
36  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
2.7.2.4  
Fiber PMD Sublayer  
The LXT97x1 provides a PECL interface for connection to an external fiber-optic transceiver.  
(The external transceiver provides the PMD function for fiber media.) The LXT97x1 uses an  
NRZI format and operates at 100 Mbps. The LXT97x1 does not support 10FL applications.  
Signal Fault Indications  
The LXT97x1 Signal Detect pins receive signal fault indications from local fiber transceivers via  
the SD pins. The device can also detect far end fault code in the received data stream. The  
LXT97x1 ORsboth fault conditions to set bit 1.4. Bit 1.4 is set once and clears when read.  
Either fault condition causes the LXT97x1 to drop the link unless Forced Link Pass is selected  
(16.14 = 1). Link down condition is then reported via interrupts and status bits.  
In response to locally detected signal faults (SD activated by the local fiber transceiver), the  
affected port can transmit the far end fault code if fault code transmission is enabled by bit 16.2.  
When bit 16.2 = 1, transmission of the far end fault code is enabled. The LXT97x1 transmits  
far end fault code if fault conditions are detected by the Signal Detect pins.  
When bit 16.2 = 0, the LXT97x1 does not transmit far end fault code. It continues to transmit  
idle code and may or may not drop link depending on the setting for bit 16.14.  
2.8  
10 Mbps Operation  
The LXT97x1 will operate as a standard 10BASE-T transceiver and supports all the standard 10  
Mbps functions.  
During 10BASE-T (10T) operation, the LXT97x1 transmits and receives Manchester-encoded data  
across the network link. When the MAC is not actively transmitting data, the LXT97x1 sends out  
link pulses on the line.  
In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals  
received from the network are decoded by the LXT97x1 and sent across the RMII to the MAC.  
The 10M reversed polarity correction function is the same as the 100M function described on  
page 36.  
The LXT97x1 does not support fiber connections at 10 Mbps.  
2.8.1  
Preamble Handling  
The LXT97x1 offers two options for preamble handling, selected by bit 16.5. In 10T Mode when  
16.5 = 0, the LXT97x1 strips the entire preamble off of received packets. CRS_DV is asserted  
coincident with SFD. CRS_DV is held Low for the duration of the preamble. When CRS_DV is  
asserted, the very first two nibbles driven by the LXT97x1 are the SFD 5Dhex followed by the  
body of the packet.  
In 10T mode with 16.5 = 1, the LXT97x1 passes the preamble through the RMII and asserts  
CRS_DV simultaneously.  
Datasheet  
37  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.8.2  
2.8.3  
Dribble Bits  
The LXT97x1 device handles dribbles bits in all modes. If between 1-4 dribble bits are received,  
the nibble will be passed across the RMII, padded with 1s if necessary. If between 5-7 dribble bits  
are received, the second nibble will not be sent onto the RMII bus.  
Link Test  
In 10T mode, the LXT97x1 always transmit link pulses. If the link test function is enabled, it  
monitors the connection for link pulses. Once link pulses are detected, data transmission will be  
enabled and will remain enabled as long as either the link pulses or data transmission continue. If  
the link pulses stop, the data transmission will be disabled.  
If the link test function is disabled, the LXT97x1 will transmit to the connection regardless of  
detected link pulses. The link test function can be disabled by setting bit 16.14 = 1.  
2.8.3.1  
2.8.4  
Link Failure  
Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this  
condition occurs, the LXT97x1 returns to the auto-negotiation phase if auto-negotiation is enabled.  
Jabber  
If a transmission exceeds the jabber timer, the LXT97x1 will disable the transmit and loopback  
functions. The RMII does not include a Jabber pin, however the MAC may read Register 1 to  
determine Jabber status.  
The LXT97x1 automatically exits jabber mode after the unjab time has expired. This function can  
be disabled by setting bit 16.10 = 1.  
2.9  
Monitoring Operations  
2.9.1  
Monitoring Auto-Negotiation  
Auto-negotiation can be monitored as follows:  
Bits 1.2 and 17.10 = 1 once the link is established.  
Additional bits in Register 1 (refer to Table 36 on page 65) and Register 17 (refer to Table 45  
on page 71) can be used to determine the link operating conditions and status.  
2.9.2  
Serial LED Functions  
The LXT97x1 provide eight serial LED outputs (LEDS7:0) which may be attached to external  
HC595-type shift registers (refer to Figure 25 on page 51). The LEDCLK signal is used to shift  
data into the 595s internal shift register. The LEDLATCH signal is used to load data from the  
595s internal shift register to the 595s internal storage register. The LXT97x1 drives the LEDSn  
and LEDLATCH outputs on the falling edge of LEDCLK. All serial LEDs will be stretched in  
accordance with 20.1 & 20.3:2.  
38  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Each serial output reports a specific status condition for all ports. Ports 0 through 7 are assigned  
bits 0:7 in each stream (bits 3 and 4 are not used on the LXT9761).  
Serial outputs report the following conditions for each port:  
LEDS0 Serial Output indicates Activity.  
0 = Active1 = Inactive  
LEDS1 Serial Output indicates Polarity  
0 = Switched Polarity1 = Normal Polarity  
LEDS2 Serial Output indicates Duplex (D).  
0 = Full Duplex1 = Half Duplex  
LEDS3 Serial Output indicates Link.  
0 = Link active1 = Link inactive  
LEDS4 Serial Output indicates Collision.  
0 = Collision active1 = Collision inactive  
LEDS5 Serial Output indicates Receive.  
0 = Receive active1 = Receive inactive  
LEDS6 Serial Output indicates Transmit.  
0 = Transmit active1 = Transmit inactive  
LEDS7 Serial Output indicates Speed.  
0 = 100 Mbps1 = 10 Mbps  
Figure 17. Serial LED Streams  
LEDCLK  
(1 MHz)  
activity activity activity activity activity activity  
activity activity activity activity activity activity activity activity  
LEDS(0)  
LEDS(1)  
LEDS(2)  
LEDS(3)  
LEDS(4)  
LEDS(5)  
LEDS(6)  
LEDS(7)  
LEDLATCH  
(port 0) (port 1) (port 3) (port 5) (port 6) (port 7) (port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
(port 2)  
(port 4)  
polarity polarity polarity polarity polarity polarity polarity polarity polarity polarity polarity polarity polarity polarity  
(port 6) (port 7)  
(port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
(port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
duplex  
(port 0)  
duplex  
duplex duplex  
duplex  
duplex  
duplex duplex duplex duplex  
duplex  
(port 2)  
duplex duplex duplex  
(port 3) (port 4) (port 5)  
(port 1) (port 2) (port 3) (port 4) (port 5) (port 6)  
(port 0) (port 1)  
(port 7)  
link  
link  
link  
link  
(port 3)  
link  
link  
link  
link  
link  
link  
link  
link  
link  
link  
(port 0) (port 1) (port 2)  
(port 4) (port 5) (port 6) (port 7) (port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
collision collision collision collision collision collision collision collision collision collision collision collision collision collision  
(port 1) (port 2) (port 3) (port 4) (port 5) (port 6) (port 7) (port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
(port 0)  
receive receive receive receive receive receive receive receive receive receive receive receive receive receive  
(port 7) (port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
(port 0) (port 1) (port 2) (port 3) (port 4) (port 5) (port 6)  
transmit transmit transmit transmit transmit transmit transmit transmit transmit transmit transmit transmit transmit transmit  
(port 5)  
(port 1) (port 2) (port 3) (port 4) (port 5) (port 6) (port 7) (port 0) (port 1) (port 2) (port 3) (port 4)  
(port 0)  
speed  
speed  
speed  
speed  
speed  
speed  
(port 5)  
speed  
(port 6)  
speed speed  
speed  
speed  
speed  
speed  
speed  
(port 0) (port 1) (port 2) (port 3) (port 4)  
(port 0) (port 1) (port 2) (port 3) (port 4) (port 5)  
(port 7)  
Spare on LXT9761  
Spare on LXT9761  
Alternate Port Positions for LXT9761  
Port 5  
LEDS(0:7)  
Port 0  
Port 1  
Port 2  
Spare  
Spare  
Port 3  
Port 4  
Port 5  
Port 0  
Port 1  
Port 2  
Spare  
Spare  
Port 3  
Datasheet  
39  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.9.3  
Per-Port LED Driver Functions  
The LXT97x1 incorporates three direct drive LEDs per port. On power up all the LEDs will light  
for approximately 1 second after reset de-asserts. Each LED can be programmed to one of several  
different display modes using the LED Configuration Register. Each per-port LED can be  
programmed (refer to Table 48 on page 74) to indicate one the following conditions:  
Operating Speed.  
Transmit Activity.  
Receive Activity.  
Collision Condition.  
Link Status.  
Duplex Mode.  
The LEDs can also be programmed to display various combined status conditions. For example,  
setting bits 20.15:12 = 1101 produces the following combination of Link and Activity indications:  
If Link is down LED is off.  
If Link is up LED is on.  
If Link is up AND activity is detected, the LED will blink at the stretch interval selected by  
bits 20.3:2 and will continue to blink as long as activity is present.  
The LED/CFG driver pins are also used to provide initial configuration settings. The LED pins are  
sensitive to polarity and will automatically pull up or pull down to configure for either open drain  
or open source circuits (10mA max current rating) as required by the hardware configuration.  
Refer to the discussion of Hardware Control Interfaceon page 25 for details.  
2.9.3.1  
LED Pulse Stretching  
The LED Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms.  
If during this pulse stretch period, the event occurs again, the pulse stretch time will be further  
extended.  
When an event such as receiving a packet occurs it will be edge detected and it will start the stretch  
timer. The LED driver will remain asserted until the stretch timer expires. If another event occurs  
before the stretch timer expires then the stretch timer will be reset and the stretch time will be  
extended.  
When a long event (such as duplex status) occurs it will be edge detected and it will start the stretch  
timer. When the stretch timer expires the edge detector will be reset so that a long event will cause  
another pulse to be generated from the edge detector which will reset the stretch timer and cause  
the LED driver to remain asserted. Figure 18 shows how the stretch operation functions.  
40  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 18. LED Pulse Stretching  
Event  
LED  
stretch  
stretch  
stretch  
Note: The direct drive LED outputs in this diagram are shown as active Low.  
2.9.4  
Using the Quick Status Register  
The LXT97x1 continuously sends out the Quick Status Register (Address 17) contents on the  
QSTAT pin.  
This output provides a continuous, real-time status update of several different LXT97x1 attributes  
and modes. The information can be used to sense RX, TX, COL and to monitor the status and  
speed of the auto-negotiation process.  
A simple signature is used to delineate the start of the QSTAT register information allowing a very  
simple interface to be designed. The 16 bits of the Quick Status Register are separated by a 16-bit  
signature frame (1111111111111111).  
The LXT97x1 sources this status information separated by the signature with respect to the falling  
edge of the QCLK input. This allows an ASIC to provide only 1 clock output for multiple PHY  
devices. The ASIC can also select a frequency up to 25 MHz to operate this interface. Refer to  
Table 45 on page 71 for Quick Status bits descriptions.  
Figure 19. Quick Status Register  
16 BIT SIGNATURE  
QSTAT  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
QUICK STATUS REGISTER-Port 0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
(0)  
(0)  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Port 2 thru n-1  
QUICK STATUS REGISTER-Port n  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
(0)  
(0)  
1. QCLK is used to output the above information.  
2. Bits D15 and D0 are always set to 0.  
Datasheet  
41  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
2.9.5  
Out-of-Band Signalling  
The LXT97x1 provides an out-of-band signalling option to transfer status information across the  
RMII receive interface. Enabled when 25.0=1, this feature uses the RXD(1:0) data bus during the  
IPG time as shown in Figure 20.  
The two status bits that are transferred across the RXD bus are software selectable via Register 25  
(refer to Table 49 on page 75).  
In normal operation the LXT97x1 stuffs the RXD bus with zeros during the Inter-Packet Gap  
(IPG). A software-selectable bit enables the RMII out of band signalling feature. Once this bit is  
set the LXT97x1 replaces those zeros with the selected status bits during the IPG.  
Figure 20. RMII Programmable Out of Band Signalling  
REFCLK  
CRS_DV  
RXD(1)  
RXD(0)  
status 1  
status 0  
status 1  
status 0  
data  
data  
data  
data  
data  
data  
data  
data  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
0s  
0s  
1. When network activity is detected, the LXT97x1 asserts CRS_DV asynchronously with respect to REFCLK.  
2. After CRS_DV is asserted, the LXT97x1 will zero-stuff the RXData bits until the received data has been processed through the  
FIFO.  
3. When network activity ceases, the LXT97x1 de-asserts CRS_DV synchronously with respect to REFCLK. CRS_DV will toggle  
until all data in the FIFO has been processed through the RMII. Once the FIFO is empty, the LXT97x1 will drive the status bits  
selected by the Out-of-Band Signalling Register (refer to Table 49 on page 75) on the RXD outputs.  
2.10  
Boundary Scan (JTAG1149.1) Functions  
The LXT97x1 includes a IEEE 1149.1 boundary scan test port for board level testing. All digital  
input, output, and input/output pins are accessible.  
2.10.1  
Boundary Scan Interface  
This interface consists of five pins (TMS,TDI,TDO, TCK and TRST). It includes a state machine,  
data register array, and instruction register. The TMS and TDI pins are internally pulled up. TCK is  
internally pulled down. TDO does not have an internal pull-up or pull-down.  
2.10.2  
State Machine  
The TAP controller is a 16 Bit state machine driven by the TCK and TMS pins. Upon reset the  
TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS is high for five  
TCK periods.  
42  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
2.10.3  
2.10.4  
Instruction Register  
After the state machine resets, the IDCODE instruction is always invoked. The decode logic  
ensures the correct data flow to the Data registers according to the current instruction. Valid  
instructions are listed in Table 12.  
Boundary Scan Register  
Each BSR cell has two stages. A flip-flop and a latch are used for the serial shift stage and the  
parallel output stage. There are four modes of operation as listed in Table 11.  
Table 11. BSR Mode of Operation  
Mode  
Description  
1
2
3
4
Capture  
Shift  
Update  
System Function  
Table 12. Supported JTAG Instructions  
Name  
EXTEST  
Code  
Description  
External Test  
Data Register  
0000000000000000  
1111111111111110  
1111111111111110  
1111111111001111  
1111111111101111  
1111111111111111  
BSR  
IDCODE  
SAMPLE  
High Z  
ID Code Inspection  
Sample Boundary  
Force Float  
ID REG  
BSR  
Bypass  
BSR  
Clamp  
Clamp  
BYPASS  
Bypass Scan  
Bypass  
Table 13. Device ID Register  
31:28  
27:12  
11:8  
7:1  
0
Version  
Part ID (hex)  
Jedec Continuation Characters  
JEDEC ID1  
Reserved  
2621 (LXT9761)  
2635 (LXT9781)  
0000  
0000  
111 1110  
1
1. The JEDEC ID is an 8-bit identifier. The MSB is for parity and is ignored.  
Intels JEDEC ID is FE (1111 1110) which becomes 111 1110.  
Datasheet  
43  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
3.0  
Application Information  
3.1  
Design Recommendations  
The LXT97x1 is designed to comply with IEEE requirements and to provide outstanding receive  
Bit Error Rate (BER) and long-line-length performance. To achieve maximum performance from  
the LXT97x1, attention to detail and good design practices are required. Refer to the LXT97x1  
Design and Layout Guide for detailed design and layout information.  
3.1.1  
General Design Guidelines  
Adherence to generally accepted design practices is essential to minimize noise levels on power  
and ground planes. Up to 50 mV of noise is considered acceptable. 50 to 80 mV of noise is  
considered marginal. High-frequency switching noise can be reduced, and its effects can be  
eliminated, by following these simple guidelines throughout the design:  
Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC  
or ground plane that is not located adjacent to the signal layer.  
Use ample bulk and decoupling capacitors throughout the design (a value of .01 µF is  
recommended for decoupling caps).  
Provide ample power and ground planes.  
Provide termination on all high-speed switching signals and clock lines.  
Provide impedance matching on long traces to prevent reflections.  
Route high-speed signals next to a continuous, unbroken ground plane.  
Filter and shield DC-DC converters, oscillators, etc.  
Do not route any digital signals between the LXT97x1 and the RJ45 connectors at the edge of  
the board.  
Do not extend any circuit power and ground plane past the center of the magnetics or to the  
edge of the board. Use this area for chassis ground, or leave it void.  
3.1.2  
Power Supply Filtering  
Power supply ripple and digital switching noise on the VCC plane can cause EMI problems and  
degrade line performance. The best approach is to minimize ground noise as much as possible  
using good general techniques and by filtering the VCC plane. It is generally difficult to predict in  
advance the performance of any design, although certain factors greatly increase the risk of having  
problems:  
Poorly-regulated or over-burdened power supplies  
Wide data busses (32-bits+) running at a high clock rate  
DC-to-DC converters  
44  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Intel recommends filtering the power supply to the analog VCC pins of the LXT97x1. This has  
two benefits. First, it keeps digital switching noise out of the analog circuitry inside the LXT97x1,  
which helps line performance. Second, if the VCC planes are laid out correctly, it keeps digital  
switching noise away from external connectors, reducing EMI problems.  
The recommended implementation is to break the VCC plane into two sections. The digital section  
supplies power to the VCCD and VCCIO pins of the LXT97x1. The analog section supplies power  
to the VCCA pins. The break between the two planes should run underneath the device. In  
designs with more than one LXT97x1, a single continuous analog VCC plane can be used to supply  
them all.  
The digital and analog VCC planes should be joined at one or more points by ferrite beads. The  
beads should produce at least a 100impedance at 100 MHz. Beads should be placed so that  
current flow is evenly distributed. The maximum current rating of the beads should be at least  
150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10 uF) should  
be place on each side of each bead.  
In addition, a high-frequency bypass cap (.01uf) should be placed near each analog VCC pin.  
3.1.3  
Power and Ground Plane Layout Considerations  
Great care needs to be taken when laying out the power and ground planes.  
Follow the guidelines in the LXT97x1 Design and Layout Guide for locating the split between  
the digital and analog VCC planes.  
Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, away from the  
magnetics, and away from the RJ45 connectors.  
Place the layers so that the TPFOP/N and TFPIP/N signals can be routed near or next to the  
ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N.  
3.1.3.1  
Chassis Ground  
For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the  
board and is isolated via moats and keep-out areas from all circuit-ground planes and active  
signals. Chassis ground should extend from the RJ-45 connectors to the magnetics, and can be  
used to terminate unused signal pairs (Bob Smithtermination). In single-point grounding  
applications, provide a single connection between chassis and circuit grounds with a 2kV isolation  
capacitor. In multi-point grounding schemes (chassis and circuit grounds joined at multiple  
points), provide 2kV isolation to the Bob Smith termination.  
3.1.4  
3.1.5  
RMII Terminations  
Series termination resistors are not typically required on the RMII signals driven by the LXT97x1.  
The RBIAS Pin  
The LXT97x1 requires a 22.1 kΩ, 1% resistor directly connected between the RBIAS pin and  
ground. Place the RBIAS resistor as close to the RBIAS pin as possible. Run an etch directly from  
the pin to the resistor, and sink the other side of the resistor to a filtered ground. Surround the  
RBIAS trace with a filtered ground; do not run high-speed signals next to RBIAS.  
Datasheet  
45  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
3.1.6  
The Twisted-Pair Interface  
Follow standard guidelines for a twisted-pair interface:  
Place the magnetics as close as possible to the LXT97x1.  
Keep transmit pair traces as short as possible; both traces should have the same length.  
Avoid vias and layer changes as much as possible.  
Keep the transmit and receive pairs apart to avoid cross-talk.  
Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the  
transmit traces two to three layers from the ground plane, with no intervening signals.  
Improve EMI performance by filtering the TPO center tap. A single ferrite bead may be used  
to supply center tap current to all ports. All ports draw a combined total of 505 mA so the bead  
should be rated at 760 mA.  
3.1.6.1  
Magnetics Information  
The LXT97x1 requires a 1:1 ratio for the receive transformers and a 1:1 ratio for the transmit  
transformers. The transformer isolation voltage should be rated at 1.5 kV to protect the circuitry  
from static voltages across the connectors and cables. Refer to Table 14 for transformer  
requirements. Before committing to a specific component, designers should contact the  
manufacturer for current product specifications, and validate the magnetics for the specific  
application.  
3.1.7  
The Fiber Interface  
The fiber interface consists of a PECL transmit and receive pair to an external fiber-optic  
transceiver. The transmit and receive pair should be DC-coupled to the transceiver, and biased  
appropriately. Refer to the fiber transceiver manufacturers recommendations for termination  
circuitry. Figure 23 on page 49 shows a typical example.  
Table 14. Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx turns ratio  
Tx turns ratio  
Insertion loss  
1 : 1  
1 : 1  
0.6  
0.0  
350  
1.1  
dB  
µH  
kV  
dB  
dB  
dB  
dB  
Primary inductance  
Transformer isolation  
1.5  
Differential to common mode rejection  
40  
35  
-16  
-10  
.1 to 60 MHz  
60 to 100 MHz  
30 MHz  
Return Loss  
80 MHz  
3.2  
Typical Application Circuits  
Figure 21 through Figure 25 show typical application circuits.  
46  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 21. Power and Ground Supply Connections  
LXT97x1  
GNDS  
22.1 k  
1%  
RBIAS  
GNDA  
.01µF  
.01µ  
F
VCCT  
VCCR  
10µF  
+
Analog Supply Plane  
Digital Supply Plane  
Ferrite  
Bead  
10µF  
+3.3V  
+3.3V  
VCCD  
GNDD  
VCCIO  
.01µF  
.01µF  
10µF  
Datasheet  
47  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 22. Typical Twisted-Pair Interface  
TPFOP  
RJ45  
1:1  
1
2
3
4
5
6
7
8
1
TPFON  
TPFIP  
50  
50  
50  
270 pF 5%  
1:1  
50Ω 1%  
LXT97x1  
2
50  
50  
50Ω 1%  
50  
TPFIN  
270 pF 5%  
0.01  
3
* = 0.001 µF / 2.0 kV  
µF  
*
*
4
VCCT  
GNDA  
.01µF  
0.1µF  
5
1. The 100transmit load termination resistor typically required is integrated in the LXT97xx.  
2. Magnetics without a receive pair center-tap do not require a 2 kV termination.  
3. Center tap current may be supplied from 3.3V VCCA as shown. However, additional power savings may be  
realized by supplying the center-tap from from a 2.5V current source. In either case a single ferrite bead  
(rated at 800 mA) may be used to supply center tap current to all ports.  
4. Receive common mode bypass cap may improve BER performance in systems with noisy power supplies.  
5. Recommended 0.1µF capacitor to improve the EMI performance.  
48  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 23. Typical Fiber Interface  
VCCD  
+3.3V  
16  
0.1  
GNDD  
F
50  
50  
TPFONn  
TPFOPn  
TD-  
TD+  
VCCD  
+3.3V  
LXT97x1  
Fiber Txcvr  
130  
SD/TPn  
SD  
VCCD  
+3.3V  
82  
1
0.1  
F
130  
130 Ω  
GNDD  
GNDD  
TPFINn  
TPFIPn  
RD-  
RD+  
82  
82  
GNDD  
1. Refer to fiber transceiver manufacturers recommendations for termination circuitry.  
Example shown above is suitable for HFBR5900-series devices.  
Datasheet  
49  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 24. Typical RMII Interface  
LXT9781  
8 Port MAC  
8
8
8
TXDn_0  
TXDn_1  
TXENn  
TxData  
8
8
8
RXDn_0  
RXDn_1  
RXERn  
RxData  
SysCLK  
8
CRS_DVn  
REFCLK  
50MHz System Clock  
from Switch ASIC or  
external source  
50  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 25. Typical Serial LED Interface  
595  
rclk Qa  
595  
rclk  
activity(7)  
activity(6)  
activity(5)  
activity(4)  
activity(3)  
activity(2)  
activity(1)  
activity(0)  
collision(7)  
collision(6)  
collision(5)  
collision(4)  
collision(3)  
collision(2)  
collision(1)  
collision(0)  
LEDLATCH  
Qa  
LEDLATCH  
LXT9781  
LEDCLK srclk  
LEDCLK srclk  
LEDS(0) ser  
leds(4) ser  
Qh  
Qh  
Qa  
See Detail for LXT9761 configuration.  
595  
595  
polarity(7)  
receive(7)  
receive(6)  
receive(5)  
receive(4)  
receive(3)  
receive(2)  
receive(1)  
receive(0)  
Qa  
polarity(6)  
LEDLATCH rclk  
LEDLATCH rclk  
polarity(5)  
polarity(4)  
LEDCLK srclk  
LEDCLK srclk  
polarity(3)  
polarity(2)  
LEDS(1) ser  
LEDS(5) ser  
polarity(1)  
polarity(0)  
Qh  
Qh  
595  
595  
duplex(7)  
transmit(7)  
transmit(6)  
transmit(5)  
transmit(4)  
transmit(3)  
transmit(2)  
transmit(1)  
transmit(0)  
Qa  
duplex(6)  
Qa  
LEDLATCH rclk  
LEDLATCH rclk  
duplex(5)  
duplex(4)  
LEDCLK srclk  
LEDCLK srclk  
duplex(3)  
duplex(2)  
LEDS(2) ser  
duplex(1)  
LEDS(6) ser  
Qh  
Qh  
duplex(0)  
595  
595  
link(7)  
speed(7)  
speed(6)  
speed(5)  
speed(4)  
speed(3)  
speed(2)  
speed(1)  
speed(0)  
Qa  
Qa  
link(6)  
link(5)  
link(4)  
link(3)  
link(2)  
link(1)  
link(0)  
LEDLATCH rclk  
LEDCLK srclk  
LEDLATCH rclk  
LEDCLK srclk  
LEDS(3) ser  
LEDS(7) ser  
Qh  
Qh  
Alternate Configuration for LXT9761  
595  
activity(5)  
LEDLATCH  
rclk Qa  
activity(4)  
activity(3)  
Not Used  
Not Used  
activity(2)  
activity(1)  
activity(0)  
LEDCLK srclk  
LEDS(0) ser  
1. Note: The outputs are always enabled on the 595 chips.  
2. Ports 6 and 7 are not available on the LXT9761.  
Serial outputs are re-mapped as shown in Detail at right.  
Qh  
Datasheet  
51  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
4.0  
Test Specifications  
Note: Table 15 through Table 31 and Figure 26 through Figure 36 represent the performance  
specifications of the LXT97x1.  
These specifications are guaranteed by test, except where noted by design.Minimum and  
maximum values listed in Table 17 through Table 31 apply over the recommended operating  
conditions specified in Table 16.  
Table 15. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Units  
Supply voltage  
Operating temperature  
VCC  
TOPA  
TOPC  
TST  
-0.3  
-15  
TBD  
+85  
V
Ambient  
Case  
ºC  
ºC  
ºC  
+120  
+150  
Storage temperature  
-65  
Caution: Exceeding these values may cause permanent damage.  
Functional operation under these conditions is not implied.  
Exposure to maximum rating conditions for extended periods may affect device reliability.  
Table 16. Operating Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Ambient  
TOPA  
TOPC  
Vcca, Vccd  
Vccio  
ICC  
0
0
70  
110  
3.45  
3.45  
1383  
ºC  
ºC  
Recommended operating temperature  
Case  
Analog & Digital  
I/O  
3.15  
3.15  
V
Recommended supply voltage2  
VCC current  
V
100BASE-TX  
100BASE-FX  
10BASE-T  
1183  
mA  
mA  
mA  
mA  
mA  
ICC  
ICC  
1183  
25  
1383  
Power-Down Mode  
Auto-Negotiation3  
ICC  
ICC  
114.53  
1383  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
3. Per-port @ 3.3V.  
Table 17. Digital I/O Characteristics 1  
2
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Input Low voltage3  
Input High voltage3  
VIL  
0.8  
V
V
VIH  
2.0  
1. Applies to all pins except RMII pins. Refer to Table 18 for RMII I/O Characteristics.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
3. Does not apply to REFCLK. Refer to Table 19 for clock input levels.  
52  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 17. Digital I/O Characteristics 1 (Continued)  
2
Parameter  
Input current  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
II  
-100  
100  
0.4  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
Output Low voltage  
Output High voltage  
VOL  
VOH  
2.4  
V
IOH = -4 mA  
1. Applies to all pins except RMII pins. Refer to Table 18 for RMII I/O Characteristics.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
3. Does not apply to REFCLK. Refer to Table 19 for clock input levels.  
Table 18. Digital I/O Characteristics - RMII Pins  
2
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
II  
2.0  
-100  
0.8  
V
V
Input High voltage  
Input current  
100  
0.4  
µA  
V
0.0 < VI < VCC  
Output Low voltage  
Output High voltage  
VOL  
VOH  
IOL = 4 mA  
2.2  
V
IOH = -4 mA, VCC = 3.3V  
VCC = 2.5V  
1
RO  
100  
100  
Driver output resistance  
(Line driver output enabled)  
1
RO  
VCC = 3.3V  
1. Parameter is guaranteed by design; not subject to production testing.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 19. Required Clock Characteristics  
2
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
F
2.0  
0.8  
V
V
Input High voltage  
Input frequency  
50  
MHz  
ppm  
%
Input clock frequency tolerance1  
Input clock duty cycle1  
f  
± 50  
65  
Tdc  
35  
50  
1. Parameter is guaranteed by design; not subject to production testing.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 20. 100BASE-TX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak differential output voltage  
Signal amplitude symmetry  
Signal rise/fall time  
VP  
0.95  
98  
1.05  
102  
5.0  
V
%
ns  
Note 2  
Note 2  
Note 2  
Vss  
TRF  
3.0  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
Datasheet  
53  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 20. 100BASE-TX Transceiver Characteristics (Continued)  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Rise/fall time symmetry  
TRFS  
0.5  
ns  
Note 2  
Offset from 16ns pulse width at 50% of  
pulse peak  
Duty cycle distortion  
Overshoot  
± 0.5  
5
ns  
%
VO  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
Table 21. 100BASE-FX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
(single ended)  
VOP  
0.6  
1.5  
V
Signal rise/fall time  
TRF  
1.9  
1.4  
ns  
ns  
10 <> 90% 2.0 pF load  
Jitter (measured differentially)  
Receiver  
Peak differential input voltage  
Common mode input range  
VIP  
0.55  
1.5  
V
V
VCMIR  
VCC - 0.7  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 22. 10BASE-T Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
Link transmit period  
VOP  
2.2  
8
2.5  
2.8  
24  
V
Note 2  
ms  
Transmit timing jitter added by the  
MAU and PLS sections 3, 4  
0
11  
ns  
Note 5  
Receiver  
Link min receive timer  
Link max receive timer  
Time link loss receive  
TLRmin  
TLRmax  
TLL  
2
50  
50  
4
7
ms  
ms  
64  
150  
150  
64  
ms  
Differential squelch threshold  
VDS  
390  
mV Peak  
5 MHz square wave input  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
3. Parameter is guaranteed by design; not subject to production testing.  
4. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns from the MAU.  
5. After line model specified by IEEE 802.3 for 10BASE-T MAU  
54  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 26. 100BASE-TX Receive Timing  
REFCLK  
t
1
t2  
RXD(1:0)  
TPFI  
t
3
t
4
CRS_DV  
Table 23. 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units Test Conditions  
RXD<1:0>, CRS_DV, RXER setup to REFCLK rising edge  
RXD<1:0>, CRS_DV, RXER hold from REFCLK rising edge  
Receive start of Jto CRS_DV asserted  
t1  
t2  
t3  
t4  
4
2
ns  
ns  
14  
22  
BT  
BT  
Receive start of Tto CRS_DV de-asserted  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 27. 100BASE-TX Transmit Timing  
REFCLK  
t
1
t
2
TXD(1:0)  
TPFO  
t
4
t3  
t
5
TX_EN  
Datasheet  
55  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 24. 100BASE-TX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
TXD<1:0> setup to REFCLK rising edge  
TXD<1:0> hold from REFCLK rising edge  
TX_EN sampled to TPFO out (Tx latency)  
TX_EN setup to REFCLK rising edge  
TX_EN hold from REFCLK rising edge  
t1  
t2  
t3  
t4  
t5  
4
2
4
2
ns  
ns  
BT  
ns  
ns  
13  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 28. 100BASE-FX Receive Timing  
REFCLK  
t
1
t2  
RXD(1:0)  
TPFI  
t
3
t
4
CRS_DV  
Table 25. 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RXD<1:0>, CRS_DV, RXER setup to REFCLK rising edge  
RXD<1:0>, CRS_DV, RXER hold from REFCLK rising edge  
Receive start of Jto CRS_DV asserted  
t1  
t2  
t3  
t4  
4
2
ns  
ns  
12  
20  
BT  
BT  
Receive start of Tto CRS_DV de-asserted  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
56  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 29. 100BASE-FX Transmit Timing  
REFCLK  
t
1
t
2
TXD(1:0)  
TPFO  
t
4
t3  
t
5
TX_EN  
Table 26. 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
TXD<1:0> setup to REFCLK rising edge  
TXD<1:0> hold from REFCLK rising edge  
TX_EN sampled to TPFO out (Tx latency)  
TX_EN setup to REFCLK rising edge  
TX_EN hold from REFCLK rising edge  
t1  
t2  
t3  
t4  
t5  
4
2
4
2
ns  
ns  
BT  
ns  
ns  
13  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 30. 10BASE-T Receive Timing  
REFCLK  
t
1
t2  
RXD(1:0)  
TPFI  
t
3
t
4
CRS_DV  
Datasheet  
57  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 27. 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RXD<1:0>, CRS_DV setup to REFCLK rising edge  
RXD<1:0>, RX_DV hold from REFCLK rising edge  
TPFI in to CRS_DV asserted  
t1  
t2  
t3  
t4  
4
2
ns  
ns  
3
BT  
BT  
TPFI quiet to CRS_DV de-asserted  
13  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 31. 10BASE-T Transmit Timing  
REFCLK  
t
1
t
2
TXD(1:0)  
TPFO  
t4  
t3  
t5  
TX_EN  
Table 28. 10BASE-T Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
TXD<1:0> setup to REFCLK rising edge  
TXD<1:0> hold from REFCLK rising edge  
TX_EN sampled to TPFO out (Tx latency)  
TX_EN setup to REFCLK rising edge  
TX_EN hold from REFCLK rising edge  
t1  
t2  
t3  
t4  
t5  
4
2
4
2
ns  
ns  
BT  
ns  
ns  
15  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
58  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 32. Auto-Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPFOP  
t1  
t1  
t3  
t2  
Figure 33. Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPFOP  
t4  
t5  
Table 29. Auto-Negotiation and Fast Link Pulse Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
111  
100  
69.5  
139  
ns  
µs  
µs  
2
ms  
ms  
ea  
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
59  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 34. MDIO Write Timing (MDIO Sourced by MAC)  
MDC  
t2  
t1  
MDIO  
Figure 35. MDIO Read Timing (MDIO Sourced by PHY)  
MDC  
t3  
MDIO  
Table 30. MDIO Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
10  
1
ns  
ns  
ns  
ns  
ns  
ns  
MDC = 2.5 MHz  
MDC = 8 MHz  
MDC = 2.5 MHz  
MDC = 8 MHz  
MDC = 2.5 MHz  
MDC = 8 MHz  
MDIO setup before MDC, sourced by  
STA  
t1  
10  
1
MDIO hold after MDC,  
sourced by STA  
t2  
t3  
10  
300  
MDC to MDIO output delay, sourced  
by PHY  
130  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
60  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Figure 36. Power-Up Timing  
v1  
t1  
VCC  
MDIO,etc  
Table 31. Power-Up Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Voltage threshold  
Power Up delay  
v1  
t1  
2.9  
V
500  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 37. RESET And Power-Down Recovery Timing  
t1  
RESET  
t2  
MDIO,etc  
Table 32. RESET and Power-Down Recovery Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RESET pulse width  
RESET recovery delay  
t1  
t2  
10  
ns  
1
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
61  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
5.0  
Register Definitions  
The LXT97x1 register set includes multiple 16-bit registers. Table 33 presents a complete register  
listing and Table 34 provides a consolidated memory map of all registers. Table 35 through Table  
49 define individual registers.  
Base registers (0 through 8) are defined in accordance with the Reconciliation Sublayer and  
Media Independent Interfaceand Physical Layer Link Signaling for 10/100 Mbps Auto-  
Negotiationsections of the IEEE 802.3 specification.  
Additional registers (16 through 30) are defined in accordance with the IEEE 802.3  
specification for adding unique chip functions.  
Table 33. Register Set  
Address  
Register Name  
Bit Assignments  
0
1
Control Register  
Refer to Table 35 on page 65  
Refer to Table 36 on page 65  
Refer to Table 37 on page 66  
Refer to Table 38 on page 67  
Refer to Table 39 on page 67  
Refer to Table 40 on page 68  
Refer to Table 41 on page 69  
Refer to Table 42 on page 69  
Refer to Table 43 on page 70  
Not Implemented  
Status Register  
2
PHY Identification Register 1  
PHY Identification Register 2  
3
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Base Page Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Transmit Register  
Auto-Negotiation Link Partner Received Next Page Register  
1000BASE-T/100BASE-T2 Control Register  
1000BASE-T/100BASE-T2 Status Register  
Extended Status Register  
5
6
7
8
9
10  
15  
16  
17  
18  
19  
20  
21-24  
25  
26 - 27  
28  
29  
30  
31  
Not Implemented  
Not Implemented  
Port Configuration Register  
Refer to Table 44 on page 70  
Refer to Table 45 on page 71  
Refer to Table 46 on page 72  
Refer to Table 47 on page 73  
Refer to Table 48 on page 74  
Quick Status Register  
Interrupt Enable Register  
Interrupt Status Register  
LED Configuration Register  
Reserved  
Out of Band Signalling Register  
Reserved  
Refer to Table 49 on page 75  
Refer to Table 50 on page 76  
Refer to Table 51 on page 76  
Transmit Control Register #1  
Reserved  
Transmit Control Register #2  
Reserved  
62  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Datasheet  
63  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
64  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 35. Control Register (Address 0)  
Bit  
Name  
Description  
Type 1  
Default  
1 = PHY reset  
R/W  
SC  
0.15  
Reset  
0
0 = normal operation  
1 = enable loopback mode  
0 = disable loopback mode  
0.14  
0.13  
0.12  
Loopback  
R/W  
R/W  
R/W  
0
0.6  
0.13  
1
1
0
0
1
0
1
0
= Reserved  
= 1000 Mbps (not allowed)  
= 100 Mbps  
Note 2  
00  
Speed Selection  
= 10 Mbps  
Auto-Negotiation  
Enable3  
1 = Enable Auto-Negotiation Process  
0 = Disable Auto-Negotiation Process  
Note 2  
0
1 = power-down  
0 = normal operation  
0.11  
0.10  
Power-Down  
Reserved  
R/W  
R/W  
0
0
Write as zero. Ignore on read.  
R/W  
SC  
Restart  
Auto-Negotiation  
1 = Restart Auto-Negotiation Process  
0 = normal operation  
0.9  
0.8  
0
1 = Full Duplex  
0 = Half Duplex  
Note 2  
0
Duplex Mode  
Collision Test  
R/W  
R/W  
This bit is ignored by the LXT97x1.  
0.7  
0
1 = Enable COL signal test  
0 = Disable COL signal test  
0.6  
0.13  
1
1
0
0
1
0
1
0
= Reserved  
= 1000 Mbps (not allowed)  
= 100 Mbps  
Speed Selection  
1000 Mb/s  
0.6  
R/W  
R/W  
00  
= 10 Mbps  
0.5:0  
Reserved  
Write as 0, ignore on Read  
00000  
1. R/W = Read/Write  
RO = Read Only  
SC = Self Clearing  
2. Default value of bits 0.12, 0.13 and 0.8 are determined by hardware pins.  
3. Do not enable Auto-Negotiation if Fiber Mode is selected.  
Table 36. Status Register (Address 1)  
Defaul  
t
Bit  
Name  
Description  
Type 1  
1 = PHY able to perform 100BASE-T4  
0 = PHY not able to perform 100BASE-T4  
1.15  
100BASE-T4  
RO  
RO  
RO  
0
1
1
1 = PHY able to perform full-duplex 100BASE-X  
0 = PHY not able to perform full-duplex 100BASE-X  
1.14  
1.13  
100BASE-X Full Duplex  
100BASE-X Half Duplex  
1 = PHY able to perform half-duplex 100BASE-X  
0 = PHY not able to perform half-duplex 100BASE-X  
1. RO = Read Only  
LL = Latching Low  
LH = Latching High  
2. Bit 1.4 is not valid if Auto-Negotiation is selected while operating in Fiber mode.  
Datasheet  
65  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 36. Status Register (Address 1) (Continued)  
Defaul  
t
Bit  
Name  
Description  
Type 1  
1 = PHY able to operate at 10 Mbps in full-duplex mode  
0 = PHY not able to operate at 10 Mbps full-duplex mode  
1.12  
10 Mbps Full Duplex  
10 Mbps Half Duplex  
RO  
RO  
RO  
RO  
1
1
0
0
1 = PHY able to operate at 10 Mbps in half-duplex mode  
0 = PHY not able to operate at 10 Mbps in half-duplex  
1.11  
1.10  
1.9  
100BASE-T2 Full  
Duplex  
1 = PHY able to perform full-duplex 100BASE-T2  
0 = PHY not able to perform full-duplex 100BASE-T2  
100BASE-T2 Half  
Duplex  
1 = PHY able to perform half duplex 100BASE-T2  
0 = PHY not able to perform half-duplex 100BASE-T2  
1 = Extended status information in register 15  
0 = No extended status information in register 15  
1.8  
1.7  
Extended Status  
Reserved  
RO  
RO  
0
0
1 = ignore when read  
1 = PHY will accept management frames with preamble suppressed  
0 = PHY will not accept management frames with preamble  
suppressed  
MF Preamble  
Suppression  
1.6  
RO  
0
Auto-Negotiation  
complete  
1 = Auto-negotiation complete  
0 = Auto-negotiation not complete  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
RO  
RO/LH  
RO  
0
0
1
0
0
1
1 = Remote fault condition detected  
0 = No remote fault condition detected  
Remote Fault2  
1 = PHY is able to perform Auto-Negotiation  
0 = PHY is not able to perform Auto-Negotiation  
Auto-Negotiation Ability  
Link Status  
1 = Link is up  
0 = Link is down  
RO/LL  
RO/LH  
RO  
1 = Jabber condition detected  
0 = Jabber condition not detected  
Jabber Detect  
1 = Extended register capabilities  
0 = Extended register capabilities  
Extended Capability  
1. RO = Read Only  
LL = Latching Low  
LH = Latching High  
2. Bit 1.4 is not valid if Auto-Negotiation is selected while operating in Fiber mode.  
Table 37. PHY Identification Register 1 (Address 2)  
Bit  
Name  
Description  
Type 1  
RO  
Default  
2.15:0  
PHY ID Number The PHY identifier composed of bits 3 through 18 of the OUI.  
0013 hex  
1. RO = Read Only  
66  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 38. PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type 1  
Default  
The PHY identifier composed of bits 19 through 24 of the  
OUI.  
3.15:10  
PHY ID number  
RO  
011110  
Manufacturers  
model number  
000111 (LXT9761)  
001010 (LXT9781)  
3.9:4  
3.3:0  
6 bits containing manufacturers part number.  
4 bits containing manufacturers revision number.  
RO  
RO  
Manufacturers  
revision number  
XXXX  
1. RO = Read Only  
Figure 38. PHY Identifier Bit Mapping  
a
1
r
s
x
b
2
c
Organizationally Unique Identifier  
18 19  
24  
3
0
0
1
3
9
3
I/G  
0
15  
0
0
1
15  
0
10  
4
0
PHY ID Register #1 (Address 2)  
PHY ID Register #2 (Address 3)  
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
1
1
0
X
X
X
X
X
X
X
X
X
X
0
0
0
2
B
7
5
0
3
0
00  
20  
7B  
Manufacturers  
Model Number  
Revision  
Number  
OUI is 00207B hex.  
The Intel  
Table 39. Auto-Negotiation Advertisement Register (Address 4)  
Bit  
Name  
Description  
Type 1 Default  
1 = Port has ability to send multiple pages.  
4.15  
4.14  
4.13  
4.12  
4.11  
Next Page  
Reserved  
R/W  
RO  
0
0
0
0
0
0 = Port has no ability to send multiple pages.  
Ignore.  
1 = Remote fault.  
0 = No remote fault.  
Remote Fault  
Reserved  
R/W  
R/W  
R/W  
Ignore.  
Asymmetric  
Pause  
Pause operation defined in Clause 40 and 27  
1 = Pause operation enabled for full-duplex links.  
0 = Pause operation disabled.  
4.10  
Pause  
R/W  
Note 2  
1. R/W = Read/Write  
RO = Read Only  
2. The default setting of bit 4.10 (PAUSE) is determined by pin 79.  
3. Default settings for bits 4.5:8 are determined by LED?CFG pins as described in Table 9 on page 29.  
Datasheet  
67  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 39. Auto-Negotiation Advertisement Register (Address 4) (Continued)  
Bit  
Name  
Description  
Type 1 Default  
1 = 100BASE-T4 capability is available.  
0 = 100BASE-T4 capability is not available.  
(The LXT97x1 does not support 100BASE-T4 but allows this bit to be set to  
advertise in the Auto-Negotiation sequence for 100BASE-T4 operation. An  
external 100BASE-T4 transceiver could be switched in if this capability is  
desired.)  
4.9  
100BASE-T4  
R/W  
0
100BASE-TX  
full duplex  
1 = Port is 100BASE-TX full duplex capable.  
0 = Port is not 100BASE-TX full duplex capable.  
4.8  
4.7  
R/W  
R/W  
Note 2  
Note 2  
1 = Port is 100BASE-TX capable.  
0 = Port is not 100BASE-TX capable.  
100BASE-TX  
1 = Port is 10BASE-T full duplex capable.  
0 = Port is not 10BASE-T full duplex capable.  
10BASE-T  
full duplex  
4.6  
4.5  
R/W  
R/W  
Note 2  
Note 2  
1 = Port is 10BASE-T capable.  
10BASE-T  
0 = Port is not 10BASE-T capable.  
<00001> = IEEE 802.3.  
<00010> = IEEE 802.9 ISLAN-16T.  
Selector Field,  
S<4:0>  
4.4:0  
<00000> = Reserved for future Auto-Negotiation development.  
<11111> = Reserved for future Auto-Negotiation development.  
Unspecified or reserved combinations should not be transmitted.  
R/W  
00001  
1. R/W = Read/Write  
RO = Read Only  
2. The default setting of bit 4.10 (PAUSE) is determined by pin 79.  
3. Default settings for bits 4.5:8 are determined by LED?CFG pins as described in Table 9 on page 29.  
Table 40. Auto-Negotiation Link Partner Base Page Ability Register (Address 5)  
Bit  
5.15  
Name  
Description  
Type 1 Default  
1 = Link Partner has ability to send multiple pages.  
0 = Link Partner has no ability to send multiple pages.  
Next Page  
RO  
RO  
0
0
1 = Link Partner has received Link Code Word from LXT97x1.  
0 = Link Partner has not received Link Code Word from the  
LXT97x1.  
5.14  
Acknowledge  
1 = Remote fault.  
0 = No remote fault.  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
0
0
Ignore.  
Pause operation defined in Clause 40 and 27.  
Asymmetric  
Pause  
5.11  
RO  
0
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
5.10  
5.9  
5.8  
5.7  
Pause  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Link Partner is 100BASE-T4 capable.  
0 = Link Partner is not 100BASE-T4 capable.  
100BASE-T4  
100BASE-TX  
full duplex  
1 = Link Partner is 100BASE-TX full duplex capable.  
0 = Link Partner is not 100BASE-TX full duplex capable.  
1 = Link Partner is 100BASE-TX capable.  
0 = Link Partner is not 100BASE-TX capable.  
100BASE-TX  
1. RO = Read Only  
68  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 40. Auto-Negotiation Link Partner Base Page Ability Register (Address 5) (Continued)  
Bit  
Name  
Description  
Type 1 Default  
10BASE-T  
full duplex  
1 = Link Partner is 10BASE-T full duplex capable.  
0 = Link Partner is not 10BASE-T full duplex capable.  
5.6  
RO  
RO  
0
0
1 = Link Partner is 10BASE-T capable.  
0 = Link Partner is not 10BASE-T capable.  
5.5  
10BASE-T  
<00001> = IEEE 802.3.  
<00010> = IEEE 802.9 ISLAN-16T.  
Selector Field  
S<4:0>  
5.4:0  
<00000> = Reserved for future Auto-Negotiation development.  
<11111> = Reserved for future Auto-Negotiation development.  
Unspecified or reserved combinations shall not be transmitted.  
RO  
00000  
1. RO = Read Only  
Table 41. Auto-Negotiation Expansion (Address 6)  
Bit  
Name  
Reserved  
Description  
Type 1 Default  
6.15:6  
Ignore on read.  
RO  
0
This bit indicates the status of the Auto_Negotiation variable, base page. It  
flags synchronization with the Auto_Negotiation state diagram allowing  
detection of interrupted links. This bit is only used if bit 16.1 (Alternate NP  
feature) is set.  
6.5  
Base Page  
RO  
0
1 = base_page = true  
0 = base_page = false  
Parallel  
Detection Fault  
1 = Parallel detection fault has occurred.  
0 = Parallel detection fault has not occurred.  
RO/  
LH  
6.4  
6.3  
6.2  
0
0
1
Link Partner  
Next Page Able  
1 = Link partner is next page able.  
0 = Link partner is not next page able.  
RO  
RO  
1 = Local device is next page able.  
0 = Local device is not next page able.  
Next Page Able  
Page Received  
1 = 3 identical and consecutive link code words have been received from link  
partner.  
RO  
LH  
6.1  
6.0  
0
0
0 = 3 identical and consecutive link code words have not been received from  
link partner.  
Link Partner A/N 1 = Link partner is auto-negotiation able.  
Able 0 = Link partner is not auto-negotiation able.  
RO  
1. RO = Read Only  
LH = Latching High  
Table 42. Auto-Negotiation Next Page Transmit Register (Address 7)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
(NP)  
1 = Additional next pages follow.  
0 = Last page.  
7.15  
7.14  
7.13  
R/W  
RO  
0
0
1
Reserved  
Write as 0, ignore on read.  
Message Page  
(MP)  
1 = Message page.  
0 = Unformatted page.  
R/W  
1. R/W = Read Write  
RO = Read Only  
Datasheet  
69  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 42. Auto-Negotiation Next Page Transmit Register (Address 7)  
Bit  
Name  
Description  
Type 1  
Default  
Acknowledge 2  
(ACK2)  
1 = Will comply with message.  
0 = Can not comply with message.  
7.12  
R/W  
0
1 = Previous value of the transmitted Link Code Word equalled logic  
zero.  
0 = Previous value of the transmitted Link Code Word equalled logic  
one.  
Toggle  
(T)  
7.11  
R/W  
R/W  
0
Message/Unformatted  
Code Field  
7.10:0  
00000000001  
1. R/W = Read Write  
RO = Read Only  
Table 43. Auto-Negotiation Link Partner Next Page Receive Register (Address 8)  
Bit  
8.15  
Name  
Description  
Type 1 Default  
Next Page  
1 = Link Partner has additional next pages to send.  
0 = Link Partner has no additional next pages to send.  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
(NP)  
Acknowledge  
(ACK)  
1 = Link Partner has received Link Code Word from LXT97x1.  
0 = Link Partner has not received Link Code Word from LXT97x1.  
8.14  
8.13  
8.12  
8.11  
Message Page  
(MP)  
1 = Page sent by the Link Partner is a Message Page.  
0 = Page sent by the Link Partner is an Unformatted Page.  
Acknowledge 2  
(ACK2)  
1 = Link Partner Will comply with the message.  
0 = Link Partner can not comply with the message.  
Toggle  
(T)  
1 = Previous value of the transmitted Link Code Word equalled logic zero.  
0 = Previous value of the transmitted Link Code Word equalled logic one.  
Message/Unformatted  
Code Field  
8.10:0  
1. RO = Read Only  
Table 44. Port Configuration Register (Address 16, Hex 10)  
Bit  
Name  
Description  
Type 1 Default  
16.15 Reserved  
Write as zero. Ignore on read.  
R/W  
R/W  
0
0
1 = Force Link Pass. Sets appropriate registers and LEDs to Pass.  
0 = Normal operation.  
16.14 Force Link Pass  
1 = Disable Twisted Pair transmitter.  
0 = Normal Operation.  
16.13 Transmit Disable  
R/W  
0
Bypass Scramble 1 = Bypass Scrambler and Descrambler.  
16.12  
R/W  
R/W  
R/W  
0
0
0
(100BASE-TX)  
0 = Normal Operation.  
16.11 Reserved  
Write as zero. Ignore on read.  
Jabber  
16.10  
1 = Disable Jabber.  
0 = Normal operation.  
(10BASE-T)  
1. R/W = Read /Write  
2. The default value of bit 16.0 is determined by the SD/TPn pin for the respective port.  
If SD/TPn is tied Low, the default value of bit 16.0 = 0. If SD/TPn is not tied Low, the default value of bit 16.0 = 1.  
70  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 44. Port Configuration Register (Address 16, Hex 10)  
Bit  
Name  
Description  
Type 1 Default  
This bit is ignored by the LXT97x1.  
SQE  
(10BASE-T)  
16.9  
R/W  
0
1 = Enable Heart Beat.  
0 = Disable Heart Beat.  
TP Loopback  
(10BASE-T)  
1 = Disable TP loopback during half duplex operation.  
0 = Normal Operation.  
16.8  
16.7  
R/W  
R/W  
1
1
CRS Select  
(10BASE-T)  
1 = CRS de-assert extends to RXDV de-assert.  
0 = Normal operation.  
0 = FIFO allows packets up to 2 KBytes.  
1 = FIFO allows packets up to 10 KBytes.  
16.6  
16.5  
FIFO Size  
R/W  
R/W  
0
0
Packet sizes assume a 450 ppm difference between the reference clock and the  
recovered clock.  
Preamble Enable.  
0 = Set RX_DV high coincident with SFD.  
1 = Set RX_DV high and RXD=preamble when CRS is asserted.  
PRE_EN  
(10BASE-T)  
16.4  
16.3  
Reserved  
Reserved  
Write as zero. Ignore on read.  
Write as zero. Ignore on read.  
R/W  
R/W  
0
0
Far End Fault  
Transmit Enable  
1 = Enable Far End Fault code transmission.  
0 = Disable Far End Fault code transmission.  
16.2  
16.1  
16.0  
R/W  
R/W  
R/W  
1
0
Alternate NP  
feature  
1 = Enable alternate auto-negotiate next page feature.  
0 = Disable alternate auto-negotiate next page feature.  
1 = Select fiber mode for this port.  
0 = Select TP mode for this port.  
Fiber Select  
Note 2  
1. R/W = Read /Write  
2. The default value of bit 16.0 is determined by the SD/TPn pin for the respective port.  
If SD/TPn is tied Low, the default value of bit 16.0 = 0. If SD/TPn is not tied Low, the default value of bit 16.0 = 1.  
Table 45. Quick Status Register (Address 17, Hex 11)  
Bit  
Name  
Reserved  
Description  
Type 1 Default  
17.15  
Always 0.  
RO  
RO  
0
0
1 = LXT97x1 is operating in 100BASE-TX mode.  
0 = LXT97x1 is not operating 100BASE-TX mode.  
17.14  
17.13  
17.12  
17.11  
17.10  
17.9  
10/100 Mode  
Transmit Status  
Receive Status  
Collision Status  
Link  
1 = LXT97x1 is transmitting a packet.  
0 = LXT97x1 is not transmitting a packet.  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
1 = LXT97x1 is receiving a packet.  
0 = LXT97x1 is not receiving a packet.  
1 = Collision is occurring.  
0 = No collision.  
1 = Link is up.  
0 = Link is down.  
1 = Full duplex.  
0 = Half duplex.  
Duplex Mode  
Auto-Negotiation  
1 = LXT97x1 is in Auto-Negotiation Mode.  
0 = LXT97x1 is in manual mode.  
17.8  
1. RO = Read Only  
Datasheet  
71  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 45. Quick Status Register (Address 17, Hex 11)  
Bit  
Name  
Description  
Type 1 Default  
1 = Auto-negotiation process completed.  
0 = Auto-negotiation process not completed.  
Auto-Negotiation  
Complete  
17.7  
RO  
0
This bit is only valid when auto-negotiate is enabled, and is equivalent to  
bit 1.5.  
17.6  
17.5  
Reserved  
Polarity  
Reserved.  
RO  
RO  
0
0
1= Polarity is reversed.  
0= Polarity is not reversed.  
1 = The LXT97x1 is Pause capable.  
0 = The LT97x1 is Not Pause capable.  
17.4  
Pause  
RO  
0
1 = Error Occurred (Remote Fault, X,Y,Z).  
0 = No error occurred.  
17:3  
Error  
RO  
RO  
0
0
17:2:0  
Reserved  
Ignore.  
1. RO = Read Only  
Table 46. Interrupt Enable Register (Address 18, Hex 12)  
Bit  
Name  
Reserved  
Description  
Type 1 Default  
18.15:8  
Write as 0; ignore on read.  
R/W  
N/A  
Mask for Auto-Negotiate Complete  
18.7  
18.6  
18.5  
18.4  
ANMSK  
R/W  
0
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Speed Interrupt  
SPEEDMSK  
DUPLEXMSK  
LINKMSK  
R/W  
R/W  
R/W  
0
0
0
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Duplex Interrupt  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Link Status Interrupt  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
18.3  
18.2  
Reserved  
Reserved  
Write as 0, ignore on read.  
Write as 0, ignore on read.  
R/W  
R/W  
0
0
1 = Enable interrupts on this port.  
0 = Disable interrupts on this port.  
18.1  
18.0  
INTEN  
TINT  
R/W  
R/W  
0
0
1 = Force interrupt on MDINT.  
0 = Normal operation.  
1. R/W = Read /Write  
72  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 47. Interrupt Status Register (Address 19, Hex 13)  
Bit  
Name  
Reserved  
Description  
Type 1 Default  
19.15:8  
Ignore  
RO  
N/A  
Auto-Negotiation Status  
19.7  
19.6  
19.5  
19.4  
ANDONE  
RO/SC  
N/A  
1= Auto-Negotiation has completed.  
0= Auto-Negotiation has not completed.  
Speed Change Status  
SPEEDCHG  
DUPLEXCHG  
LINKCHG  
RO/SC  
RO/SC  
RO/SC  
0
0
0
1 = A Speed Change has occurred since last reading this register.  
0 = A Speed Change has not occurred since last reading this register.  
Duplex Change Status  
1 = A Duplex Change has occurred since last reading this register.  
0 = A Duplex Change has not occurred since last reading this register.  
Link Status Change Status  
1 = A Link Change has occurred since last reading this register.  
0 = A Link Change has not occurred since last reading this register.  
19.3  
Reserved  
MDINT  
Ignore.  
RO  
RO/SC  
RO  
0
0
0
1 = RMII interrupt pending.  
0 = No RMII interrupt pending.  
19.2  
19.1:0  
Reserved  
Ignore.  
1. R/W = Read/Write  
RO = Read Only  
SC = Self Clearing  
Datasheet  
73  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 48. LED Configuration Register (Address 20, Hex 14)  
Bit  
Name  
Description  
Type 1 Default  
0000 = Display Speed Status (Continuous, Default).  
0001 = Display Transmit Status (Stretched).  
0010 = Display Receive Status (Stretched).  
0011 = Display Collision Status (Stretched).  
0100 = Display Link Status (Continuous).  
0101 = Display Duplex Status (Continuous)5.  
0110 =Reserved.  
LED1  
0111 = Display Receive or Transmit Activity (Stretched).  
1000 = Test mode- turn LED on (Continuous).  
1001 = Test mode- turn LED off (Continuous).  
1010 = Test mode- blink LED fast (Continuous).  
1011 = Test mode- blink LED slow (Continuous).  
1100 = Display Link and Receive Status combined 2 (Stretched)3 .  
1101 = Display Link and Activity Status combined 2 (Stretched)3.  
1110 = Display Duplex & Collision Status combined 4 (Stretched)3,5  
1111 = Reserved.  
20.15:12  
R/W  
R/W  
R/W  
0000  
0100  
0010  
Programming  
bits  
.
.
.
0000 = Display Speed Status.  
0001 = Display Transmit Status.  
0010 = Display Receive Status.  
0011 = Display Collision Status.  
0100 = Display Link Status (Default).  
0101 = Display Duplex Status5.  
0110 = Reserved.  
0111 = Display Receive or Transmit Activity.  
1000 = Test mode- turn LED on.  
1001 = Test mode- turn LED off.  
1010 = Test mode- blink LED fast.  
1011 = Test mode- blink LED slow.  
1100 = Display Link and Receive Status combined 2 (Stretched)3.  
1101 = Display Link and Activity Status combined 2 (Stretched)3.  
1110 = Display Duplex & Collision Status combined 4 (Stretched)3,5  
1111 = Reserved.  
LED2  
20.11:8  
Programming  
bits  
0000 = Display Speed Status.  
0001 = Display Transmit Status.  
0010 = Display Receive Status (Default).  
0011 = Display Collision Status.  
0100 = Display Link Status.  
0101 = Display Duplex Status5.  
0110 = Reserved.  
0111 = Display Receive or Transmit Activity.  
1000 = Test mode- turn LED on.  
1001 = Test mode- turn LED off.  
1010 = Test mode- blink LED fast.  
1011 = Test mode- blink LED slow.  
1100 = Display Link and Receive Status combined 2 (Stretched)3.  
1101 = Display Link and Activity Status combined 2 (Stretched)3.  
1110 = Display Duplex & Collision Status combined 4 (Stretched)3,5  
1111 = Reserved.  
LED3  
20.7:4  
Programming  
bits  
1. R/W = Read /Write  
RO = Read Only  
LH = Latching High  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive or Activity) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of  
the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
5. Duplex LED maybe active for a brief time after loss of link.  
74  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
Table 48. LED Configuration Register (Address 20, Hex 14) (Continued)  
Bit  
Name  
Description  
Type 1 Default  
00 = Stretch LED events to 30 ms.  
01 = Stretch LED events to 60 ms.  
10 = Stretch LED events to 100 ms.  
11 = Reserved.  
20.3:2  
LEDFREQ  
R/W  
00  
PULSE-  
STRETCH  
1 = Enable pulse stretching of all LEDs.  
0 = Disable pulse stretching of all LEDs 2.  
20.1  
20.0  
R/W  
R/W  
1
0
1 = Use active High polarity for serial LEDs.  
0 = Use active Low polarity for serial LEDs.  
INVPOL  
1. R/W = Read /Write  
RO = Read Only  
LH = Latching High  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive or Activity) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of  
the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
5. Duplex LED maybe active for a brief time after loss of link.  
Table 49. Out of Band Signaling Register (Address 25)  
Bit  
Name  
Reserved  
Description  
Type 1 Default  
25:15:7  
Reserved.  
R/W  
0
These 3 bits select which status information is available on the RXD(1) bit of  
the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
25:6:4  
BIT1  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Reserved  
These 3 bits select which status information is available on the RXD(0) bit of  
the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
25.3:1  
BIT0  
R/W  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Reserved  
1 = Enable programmable RMII Out of Band signalling. When enabled, bits  
6:1 specify which status bits are available on the RMII RXD data bus.  
25.0  
PROGRMII  
0
0 = Disable Out of Band signalling.  
1. R/W = Read/Write  
RO = Read Only  
Datasheet  
75  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Table 50. Transmit Control Register #1 (Address 28)  
Bit  
Name  
Reserved  
Description  
Type2 Default  
28.15:4  
Ignore.  
R/W  
N/A  
00 = Nominal Differential Amp Bandwidth  
Bandwidth  
Control  
01 = Slower  
10 = Fastest  
11 = Faster  
28.3:2  
28.1:0  
R/W  
00  
00 = 2.5ns  
01 = 3.1ns  
10 = 3.7ns  
11 = 4.3ns  
Risetime  
Control  
R/W  
Note 3  
1. Transmit Control functions are approximations. They are not guaranteed and not subject to production testing.  
2. RO = Read Only.  
R/W = Read/Write.  
3. The default setting of bits 28.1:0 (Risetime) are determined by pins 91 and 94.  
Table 51. Transmit Control Register #2 (Address 30)  
Bit  
Name  
Description  
Type Default  
30.15:14  
Reserved  
R/W  
R/W  
R/W  
N/A  
0
1 = Increase Driver Amplitude 5% in all modes.  
0 = Normal operation.  
Increase Driver  
Amplitude  
30.13  
30.12:0  
Reserved  
N/A  
1. RO = Read Only.  
76  
Datasheet  
Fast Ethernet 10/100 Multi-Port Transceiver with RMII LXT9761/9781  
6.0  
Package Specifications  
Figure 39. LXT97x1 PQFP Specification  
208-Pin Plastic Quad Flat Package  
Part Number LXT9761HC (6-port model)  
Part Number LXT9781HC (8-port model)  
Commercial Temperature Range (0°C to 70°C)  
D
Millimeters  
Max  
D1  
Dim  
Min  
A
-
4.10  
-
A1  
A2  
b
0.25  
e
3.20  
3.60  
0.27  
30.90  
28.30  
30.90  
28.30  
E1  
E
0.17  
e
D
30.30  
27.70  
30.30  
27.70  
/
2
D
1
E
E
1
e
L
.50 BASIC  
1.30 REF  
θ2  
0.50  
0.75  
L1  
L
1
A2  
A
q
0°  
5°  
5°  
7°  
θ
θ
16°  
16°  
2
3
A1  
θ3  
θ
b
L
Datasheet  
77  
LXT9761/9781 Fast Ethernet 10/100 Multi-Port Transceiver with RMII  
Figure 40. LXT9781 PBGA Specification  
272-Lead Plastic Ball Grid Array  
Part Number LXT9781BC (8-port model)  
Commercial Temperature Range (0°C to 70°C)  
24.13  
1.435 REF  
1.27  
A
27.00 ±0.20  
24.00 ±0.20  
0.75  
±0.15  
B
C
D
E
F
8.00 ±0.10  
PIN #A1  
CORNER  
1.27  
G
H
J
PIN #A1 ID  
8.00 ±0.10  
K
L
24.13  
27.00 ±0.20  
M
N
P
R
T
24.00 ±0.20  
U
V
W
Y
Ø1.00  
(3 plcs)  
TOP VIEW  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
1.435 REF  
BOTTOM VIEW  
2.13  
0.92  
± 0.19  
NOTE:  
± 0.05  
1. ALL DIMENSIONS IN MILLIMETERS  
2. ALL DIMENSIONS AND TOLERANCES  
CONFORM TO ASME Y 14.5M-1994  
3. TOLERANCE = ± 0.05 UNLESS  
SPECIFIED OTHERWISE  
0.61  
±0.04  
0.60  
± 0.10  
SEATING PLANE  
SIDE VIEW  
78  
Datasheet  

相关型号:

LXT9781HC

LAN TRANSCEIVER|OCTAL|QFP|208PIN|PLASTIC
ETC

LXT9782

Fast Ethernet 10/100 Multi-Port Transceiver with Serial MII
INTEL

LXT9782BC

LAN TRANSCEIVER|OCTAL|BGA|272PIN|PLASTIC
ETC

LXT9782HC

LAN TRANSCEIVER|OCTAL|QFP|208PIN|PLASTIC
ETC

LXT9784

Transceiver Hardware Integrity Function Overview
INTEL

LXT9784BC

LAN TRANSCEIVER|OCTAL|BGA|324PIN|PLASTIC
ETC

LXT9784BE

LAN TRANSCEIVER|OCTAL|BGA|324PIN|PLASTIC
ETC

LXT9785

Advanced 8-Port 10/100 Mbps PHY Transceivers
INTEL

LXT9785BC

LAN TRANSCEIVER|OCTAL|BGA|241PIN|PLASTIC
ETC

LXT9785HC

LAN TRANSCEIVER|OCTAL|QFP|208PIN|PLASTIC
ETC

LXT980AHC

LAN HUB CONTROLLER
ETC

LXT980QC

LAN HUB CONTROLLER
ETC