UT1553BRTIGPX [ETC]

RTI Remote Terminal Interface; RTI的远程终端接口
UT1553BRTIGPX
型号: UT1553BRTIGPX
厂家: ETC    ETC
描述:

RTI Remote Terminal Interface
RTI的远程终端接口

文件: 总52页 (文件大小:1271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UT1553B RTI Remote Terminal Interface  
Operational status available via dedicated lines or  
FEATURES  
internal status register  
Complete MIL-STD-1553B Remote Terminal  
ASD/ENASC (formerly SEAFAC) tested and  
interface compliance  
approved  
Dual-redundant data bus operation supported  
Available in ceramic 84-lead leadless chip carrier and  
Internal illegalization of selected mode code  
84-pin pingrid array  
commands  
Full military operating temperature range, -55°C to  
+125°C, screened to the specific test methods listed in  
Table I of MIL-STD-883, Method 5004, Class B  
External illegal command definition capability  
Automatic DMA control and address generation  
JAN-qualified devices available  
MODE CODE/  
SUB ADDRESS  
HOST  
SYSTEM  
ADDRESS  
INPUTS  
ILLEGAL  
COMMAND  
DECODER  
CHANNEL  
A
IN  
MEMORY  
ADDRESS  
CONTROL  
A
OUTPUT EN  
OUT  
COMMAND  
RECOGNITION  
LOGIC  
MEMORY  
ADDRESS  
OUTPUTS  
DECODER  
CHANNEL  
B
CONTROL  
INPUTS  
CONTROL  
AND  
ERROR LOGIC  
CONTROL  
OUTPUTS  
IN  
B
TIMEOUT  
TIMERON  
12MHz  
MUX  
DATA  
TRANSFER  
LOGIC  
CLOCK AND  
RESET LOGIC  
ENCODER  
OUT  
RESET  
16  
2MHz  
DATA I/O BUS  
Figure 1. UT1553B RTI Functional Block Diagram  
RTI-1  
Table of Contents  
1.0 ARCHITECTURE AND OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1 Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1.1 Direct Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1.2 Transparent Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Internal Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.3 Mode Codes and Subaddresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.4 MIL-STD-1553B Subaddress and Mode Codes . . . . . . . . . . . . . . . . . . . . . . . .9  
1.5 Remote Terminal Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.6 Internal Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.7 Power-up and Master Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.8 Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.9 Illegal Command Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
MEMORY MAP EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PIN IDENTIFICATION AND DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAXIMUM AND RECOMMENDED OPERATING CONDITIONS. . . . . . . . . . . . . . . . . 21  
DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
AC ELECTRICAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PACKAGE OUTLINE DRAWINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
RTI-2  
Output Multiplexing and Self-Test Logic  
This logic directs the output of the encoder to one of four  
places:- Channel A outputs  
- Channel B outputs  
- Channel A decoders during self-test  
- Channel B decoders during self-test  
1.0 ARCHITECTURE AND OPERATION  
The UT1553B RTI is an interface device linking a MIL-  
STD-1553serialdatabusandahostmicroprocessorsystem.  
The RTI’s MIL-STD-1553B interface includes encoding/  
decoding logic, error detection, command recognition,  
memory address control, clock, and reset circuits.  
Clock and Reset Logic  
Decoders  
The UT1553B RTI requires a 12MHz input clock to operate  
properly. The RTI provides a 2MHz output for the system  
designer to use. The device provides a hardware reset pin  
as well as software-generated reset.  
The UT1553B RTI contains two separate free-running  
decoders to insure that all redundancy requirements of MIL-  
STD-1553B are met. Each decoder receives, decodes, and  
verifies biphase Manchester II data. Proper frequency and  
edge skew are also verified.  
Timer Logic  
The UT1553B RTI has a built-in 730ms timer that is  
activated when the encoder is about to transmit. The timer  
is reset upon receipt of a valid command, master reset, or a  
time-out condition.  
Command Recognition Logic  
The command recognition logic monitors the output of both  
decoders at all times. Recognition of a valid command  
causes a reset of present interface activity followed by  
execution of the command. This procedure meets the  
requirement for superseding valid commands.  
1.1 HOST INTERFACE  
Configure the RTI into the host system for either a direct  
memory or transparent memory access. The following  
sections discuss the system configuration for each method  
of memory management.  
Encoder  
Theencoderreceivesserialdatafromthedatatransferlogic,  
converts it to Manchester II form with proper  
synchronization and parity, and passes it to the output and  
self-test logic.  
1.1.1 Direct Memory Access  
In the direct memory access configuration the RTI and host  
arbitrate for the shared 2K x 16 memory space. To request  
access to memory the RTI asserts direct memory request  
output (DMARQ); the system bus arbiter grants the RTI  
access to memory by asserting the direct memory access  
grantsignal(MEMCK).Thesystemarbitershouldnotassert  
the MEMCK signal before the RTI has requested access to  
memory (i.e., DMARQ asserted).  
Data Transfer Logic  
The data transfer logic provides double-buffered 16-bit  
parallel-to-serial and serial-to-parallel conversion during  
reception and transmission of data.  
Memory Address Control  
The memory address control logic controls the output of the  
three-state address lines during memory access. In DMA  
system implementations, the memory address control  
provides RTI-generated addresses. In a pseudo-dual-port  
memory configuration, the memory address control logic  
provides either RTI-generated or host system addressing.  
Once granted access to memory, the RTI address out  
(ADDR OUT(10:0)), RAM chip select (RCS), RAM read/  
write(RRD/RWR), andDatabus(DATAI/O(15:0))provide  
the interface signals to control the memory access. Figure  
2 shows an example of a direct memory access system  
configuration; for clarity the interface buffers and logic are  
excluded. The host microprocessor also gains access to  
memory by arbitration.  
Control and Error Logic  
The control and error logic performs the following four  
major functions:  
Take care to insure that bus contention does not occur  
between the host and RTIAddress buses or memory control  
signals. To place the RTI Address Out bus in a high  
impedance state negate the ADOEN input pin. Also note  
thatoutputsRCSandRRD/RWRarenotthree-stateoutputs.  
When the RTI is not writing to memory, bidirectional Data  
bus DATA I/O(15:0) is an input (i.e., not actively driving  
the bus).  
-
-
-
-
Interface control for proper processing of MIL-  
STD-1553B commands  
Error checking of both MIL-STD-1553B data and  
RTI operation  
Memory control (DMA or pseudo-dual-port) for  
proper data transfer  
Operational status and control signal generation  
RTI-3  
Shared  
Memory  
CONTROL  
CONTROL  
Host  
Computer  
RTI  
UT1553B  
DATA(15:0)  
ADDR(10:0)  
DMA  
CONTROLLER  
Figure 2. Direct Memory Access Configuration  
The host microprocessor gains access to the RTI internal  
registers by controlling input pins CS, CTRL, ADDR IN  
(10:0), and RD/WR. During message processing the host  
microprocessorshouldlimitaccesstoRTIinternalregisters.  
The host microprocessor gains access to the RTI internal  
registers by controlling input pins CS, CTRL, ADDR IN  
(10:0), and RD/WR. During message processing the host  
microprocessorshouldlimitaccesstoRTIinternalregisters.  
The host should not assert CS while the RTI is performing  
a memory access.  
1.1.2 Transparent Memory Access  
Configured in the transparent memory mode the host  
microprocessor accesses shared memory through the RTI.  
Arbitration for access to the bus is performed as discussed  
in section 1.1.1 of this document.  
1.2 Internal Register Description  
The RTI uses three internal registers to allow the host to  
control the RTI operation and monitor its status. The host  
uses the following inputs Control (CTRL), Chip Select  
(CS), Read/Write (RD/WR), and ADDR IN (0) to read the  
16-bitSystemRegisterorwritetothe8-bitControlRegister.  
The Control Register toggles bits in the MIL-STD-1553B  
status word, enables biphase inputs, selects terminal active  
flag, and puts the part in self-test. The System Register  
supplies operational status of the UT1553B RTI to the host.  
The Last Command Register saves the command word for  
a Transmit Last Command mode code, along with  
operational status from the System Register.  
When granted access to memory, the RTI asserts memory  
control signals ADDR OUT(10:0), RCS, and RRD/RWR.  
For host-controlled memory accesses the RAM memory  
address from the host is propagated from theAddress In bus  
ADDRIN(10:0)totheAddressOutbusADDROUT(10:0).  
MemorycontrolsignalsRD/WRandCSarealsopropagated  
through the RTI as RRD/RWR and RCS. Input CTRL is  
negated during all transparent memory accesses to prevent  
the RTI from inadvertently performing an internal register  
access or software reset. While CS is asserted, the RTI’s  
bidirectional Data bus DATA I/O (15:0) is an input (i.e., not  
actively driving bus).  
DATA(15:0)  
CONTROL  
CONTROL  
Host  
RTI  
UT1553B  
Shared  
Memory  
Computer  
DATA I/O (15:0)  
ADDR OUT (10:0)  
ADDR IN (10:0)  
DMA  
CONTROLLER  
Figure 3. Transparent Memory Access Configuration  
Control Register (Write Only)  
RTI-4  
The 8-bit write-only Control Register manages the operation of the RTI. Write to the Control Register by applying a logic zero  
to CS, CTRL, RD/WR, and ADDR IN (0); if ADDR IN (0) is a logic one a master reset occurs. Data is loaded into the Control  
Register via I/O pins DATA(7:0). Control Register writes must occur 50ns before the rising edge of COMSTR to latch data in  
the outgoing status word.  
Bit  
Initial  
Number  
Condition  
Description  
0
1
2
3
[0]  
[0]  
[0]  
[0]  
Channel A Enable. A logic one enables Channel A biphase inputs.  
Channel B Enable. A logic one enables Channel B biphase inputs.  
Terminal Flag. A logic one sets the Terminal Flag bit of the Status Register.  
System Busy. A logic one sets the Busy bit of the System Register and inhibits  
RTI access to memory. No data words are retrieved or stored; command word is  
stored.  
4
5
[0]  
[0]  
Subsystem Busy. A logic one sets the Subsystem Flag bit of the Status Register.  
Self-Test Channel Select. This bit selects which channel the internal self-test  
checks; a logic one selects Channel A and a logic zero selects Channel B.  
6
[0]  
Self-Test Enable. A logic one sets the RTI in the internal self-test mode and inhib-  
its normal operation. Internal testing is not visible on biphase output  
channels.  
7
[0]  
Service Request. A logic one sets the Service Request bit of the Status Register.  
CONTROL REGISTER (WRITE ONLY)  
TF  
[0]  
CH B  
EN  
BUSY  
[0]  
CH A  
EN  
SUBS  
[0]  
SELF  
TEST  
SELF  
CH  
SRV  
RQ  
X
X
X
X
X
X
X
X
[0]  
[0]  
[0]  
[0]  
[0]  
LSB  
MSB  
[ ] defines reset state  
Figure 4. Control Register  
System Register (Read Only)  
The 16-bit read-only System Register provides the RTI system status. Read the System Register by applying a logic zero to  
CS, CTRL, ADDR IN (0), and a logic one to RD/WR. The 16-bit contents of the System Register are read from data I/O pins  
DATA(15:0).  
Bit  
Initial  
Number  
Condition  
Description  
0
[0]  
MCSA(0). The LSB of the mode code or subaddress as indicated by the  
logic state of bit 5.  
1
2
3
4
5
[0]  
[0]  
[0]  
[0]  
[0]  
MCSA(1). Mode code or subaddress as indicated by the state of bit 5.  
MCSA(2). Mode code or subaddress as indicated by the state of bit 5.  
MCSA(3). Mode code or subaddress as indicated by the state of bit 5.  
MCSA(4). Mode code or subaddress as indicated by the state of bit 5.  
MC/SA. A logic one indicates that bits 4 through 0 are the subaddress of  
the last command word, and that the last command word was a normal  
transmit orreceive command. A logic zero indicates that bits 4 through 0  
are a mode code, and that the last command was a mode code.  
6
[1]  
Channel A/B. A logic one indicates that the most recent command arrived  
onChannel A; a logic zero indicates that it arrived on Channel B.  
RTI-5  
7
8
9
[0]  
[0]  
[1]  
Channel B Enabled. A logic one indicates that Channel B is available for  
both reception and transmission.  
Channel A Enabled. A logic one indicates that Channel A is available for  
both reception and transmission.  
Terminal Flag Enabled. A logic one indicates that the Bus Controller has  
not issued an Inhibit Terminal Flag mode code. A logic zero indicates that  
the Bus Controller, via the above mode code, is overriding the host sys-  
tem’s ability to set the Terminal Flag bit of the status word.  
10  
11  
12  
[0]  
[0]  
[0]  
Busy. A logic one indicates the Busy bit is set. This bit is reset when the  
SystemBusy bit in the Control Register is reset.  
Self-Test. A logic one indicates that the RTI is in the self-test mode. This  
bit isreset when the self-test is terminated.  
TA Parity Error. A logic one indicates the wrong Terminal Address parity;  
it causes the biphase inputs to be disabled and a message error condition.  
This bit is reset by reloading the terminal address latch with correct parity.  
13  
14  
15  
[0]  
[0]  
[0]  
Message Error. A logic one indicates that a message error has occurred  
since the last System Register read. This bit is not reset until the System  
Register has been examined and the message error condition is removed.  
Valid Message. A logic one indicates that a valid message has been  
received since the last System Register read. This bit is not reset until the  
System Register has been examined.  
Terminal Active. A logic one indicates the device is executing a transmit or  
receive operation. The state of this bit is the logical NAND of the external  
XMIT and RCV pins.  
SYSTEM REGISTER (READ ONLY)  
TERM  
ACTV  
VAL MESS TAPA SELF- BUSY  
TFEN CH A  
EN  
CH B  
EN  
CHNL  
A/B  
MC/  
SA  
MCSA MCSA MCSA MCSA MCSA  
MESS  
ERR  
ERR  
TEST  
4
3
2
1
0
[0]  
[0]  
[0]  
[0]  
[0]  
[1]  
[0]  
[0]  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
LSB  
[0]  
MSB  
[ ] defines reset state  
Figure 5. System Registers  
RTI-6  
Last Command Register (Read Only)  
The 16-bit read-only Last Command Register provides the host with last command and operational status information. The  
RTI transmits the lower 11 bits of this register along with terminal address upon receipt of a Transmit Last Command mode  
code. Read the Last Command Register by applying a logic zero to CS, CTRL, and a logic one to RD/WR and ADDR IN (0).  
The 16-bit contents of the Last Command Register are read from data I/O pins DATA(15:0).  
Bit  
Initial  
Number  
Condition  
Description  
0 through 10  
[all 1s]  
[0]  
Least significant 11 bits of the last command word.  
Busy Bit. System Register bit 10.  
11  
12  
13  
14  
15  
[0]  
Self-test. System Register bit 11.  
[1]  
Terminal Flag Enabled. System Register bit 9.  
Channel A/B. System Register bit 6.  
Illegal Command. The RTI illegalized the last command.  
[1]  
[1]  
1.3 Mode Codes and Subaddresses  
Mode codes which involve data transfer are processed like  
receive and transmit commands. The RTI will not generate  
DMA request for Transmit Status Word and Transmit Last  
Command mode codes since the information is stored  
internal to the RTI.  
The UT1553B RTI provides subaddress and mode code  
decoding meetingMIL-STD-1553B. Inaddition, the device  
has automatic internal illegal command decoding for  
reserved MIL-STD-1553B mode codes. Upon command  
word validation and decode, status pins MCSA(4:0) and  
MC/SA become valid. Status pin MC/SA will indicate  
whether the data pins MCSA(4:0) are mode code or  
subaddress information. Status Register bits 5 through 0  
contain the same information as pins MCSA(4:0) and MC/  
SA.  
The following mode codes require assistance from the host:  
- Synchronize  
-
Initiate Self-Test  
- Reset Remote Terminal  
For example, the RTI will accept and respond to a Reset  
Remote Terminal mode code; however it will not perform  
a reset operation. The host must interpret the mode code and  
take appropriate action.  
The system designer can use signals MCSA(4:0), MC/SA,  
BRDCST, XMIT, and RCV to illegalize mode codes,  
subaddresses, and other message formats via the Illegal  
Command (ILL COMM) input (see figure 23 on  
page 36).  
The RTI does not define or interpret the following data  
words associated with mode code commands:  
The RTI will internally decode the following mode codes  
as illegal:  
- Transmit Vector Word  
- Dynamic Bus Control  
-
-
Synchronize With Data Word  
Transmit Bit Word  
- Selected Transmitter Shutdown  
- Override Selected Transmitter Shutdown  
- All Reserved Mode Codes  
The RTI will accept and respond to mode code with data;  
the host must interpret or define the data word. The RTI will  
store or retrieve the data required for mode code command  
from block #1 of the receive or transmit page  
If the RTI receives one of the above mode codes, the RTI  
responds by transmitting a status word with the Message  
Error bit set to logic one.  
.
RTI-7  
RTI MODE CODE HANDLING PROCEDURE  
T/R  
Mode Code  
Function  
Operation  
2
0
10100  
Selected Transmitter Shutdown  
1. Command word stored  
2. MES ERR pin asserted  
3. Message error latch set in System Register  
4. Status word transmitted  
0
10101  
Override Selected Transmitter  
Shutdown  
1. Command word stored  
2. MES ERR pin asserted  
2
3. Message error latch set in System Register  
4. Status word transmitted  
0
1
10001  
00000  
Synchronize (w/data)  
1. Command word stored  
2. Data word stored  
3. Status word transmitted  
2
Dynamic Bus Control  
1. Command word stored  
2. MES ERR pin asserted  
3. Message error latch set in System Register  
4. Status word transmitted  
1
1
1
1
1
00001  
00010  
00011  
00100  
Synchronize  
1. Command word stored  
2. Status word transmitted  
3
Transmit Status Word  
1. Command word stored  
2. Status word transmitted  
1
Initiate Self-Test  
1. Command word stored  
2. Status word transmitted  
Transmitter Shutdown  
1. Command word stored  
2. Alternate bus shutdown  
3. Status word transmitted  
1
1
1
00101  
00110  
00111  
Override Transmitter Shutdown  
Inhibit Terminal Flag Bit  
1. Command word stored  
2. Alternate bus enabled  
3. Status word transmitted  
1. Command word stored  
2. Terminal Flag bit set to zero and disabled  
3. Status word transmitted  
Override Inhibit Terminal Flag Bit 1. Command word stored Bit  
2. Terminal Flag bit enabled, but not set to logic one  
3. Status word transmitted  
1
1
1
1
01000  
10010  
10000  
Reset Remote Terminal  
1. Command word stored  
2. Status word transmitted  
3
Transmit Last Command Word  
Transmit Vector Word  
1. Status word transmitted  
2. Last command word transmitted  
1. Command word stored  
2. Status word transmitted  
3. Data word transmitted  
1
10011  
Transmit BIT Word  
1. Command word stored  
2. Status word transmitted  
3. Data word transmitted  
Notes:  
1. Further host interaction required for mode code operation.  
2. Reserved mode code; A) MES ERR pin asserted, B) Message Error bit set, C) status word transmitted (ME bit set to logic one).  
3.Status word not affected.  
RTI-8  
1.4 MIL-STD-1553B Subaddress and Mode Code Definitions  
Table 1. Subaddress and Mode Code Definitions Per MIL-STD-1553B  
Message Format  
Transmit  
Subaddress Field  
Binary (Decimal)  
Receive  
Description  
00000 (00)  
00001 (01)  
00010 (02)  
00011 (03)  
00100 (04)  
00101 (05)  
00110 (06)  
00111 (07)  
01000 (08)  
01001 (09)  
01010 (10)  
01011 (11)  
01100 (12)  
01101 (13)  
01110 (14)  
01111 (15)  
10000 (16)  
10001 (17)  
10010 (18)  
10011 (19)  
10100 (20)  
10101 (21)  
10110 (22)  
10111 (23)  
11000 (24)  
11001 (25)  
11010 (26)  
11011 (27)  
11100 (28)  
11101 (29)  
11110 (30)  
11111 (31)  
1
1
Mode Code Indicator  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
1
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
1
Mode Code Indicator  
Note:  
1. Refer to mode code assignments per MIL-STD-1553B  
1.5 Remote Terminal Address  
Parity Checker  
Assign the RTI remote terminal address by either a software  
or hardware exercise. The host assigns the RTI remote  
terminal address by performing a Control Register write;  
the Terminal Address bus (TA(4:0)) is strobed into the RTI  
Remote TerminalAddress Register upon completion of the  
Control Register write. To assign the RTI remote terminal  
address via hardware, use the TALEN/PARITY input pin  
operating in the terminal latch address enable mode. The  
Terminal Address bus is latched into the RTI while the  
TALEN is asserted (i.e., logic low). Valid remote terminal  
addresses (RTA) include decimal 0 through 31 if Broadcast  
is disabled, 0 through 30 if Broadcast is enabled  
An address parity check is performed to insure the remote  
terminal address applied to TA(4:0) was properly latched  
into the Remote Terminal Address Register. To perform a  
parity check, enable the RTI parity circuit via EXT TEST  
and EXT TST CH SEL A/B input pins. The parity bit is  
entered through theTALEN/PARITY input pin operating in  
the parity mode. Input pins EXT TEST and EXT TST CH  
SELA/B control dual-function input pin TALEN/PARITY;  
see table 2 for description of operation.  
If a parity error exists, the Parity Error bit of the System  
Register is set to a logic one, biphase Channels A and B are  
disabled(settologiczero), theMessageErrorbitsettologic  
one, and the message error pin is asserted.  
RTI-9  
Table 2. Parity Checking  
STATE #  
EXT TEST  
EXT TST CH SEL A/B  
Function of TALEN/PARITY  
0
0
0
Terminal Address Latch Enable. Active low  
signal used to latch TA(4:0) into RTI. Internal  
parity checker disabled.  
1
0
1
Parity. Internal remote terminal address parity  
checker enabled. TALEN/PARITY pin func-  
tions as parity bit for TA(4:0) bus. Proper oper-  
ation requires odd parity.  
2
3
1
1
0
1
Terminal Address Latch Enable. Do not assert  
EXT TST during reset, otherwise self-test is  
invoked.  
Terminal Address Latch Enable. Do not assert  
EXT TST during reset, otherwise self-test is  
invoked.  
The following are examples of sequences used to enter  
remote terminal addresses into the RTI.  
1.6 Internal Self-Test  
Setting bit 6 of the Control Register to a logic one enables  
the internal self-test. Disable ChannelsA and B at this time  
to prevent bus activity during self-test by setting bits 0 and  
1 of the Control Register to a logic zero. Normal operation  
is inhibited when internal self-test is enabled. The RTI’s  
self-test capability is based on the fact that the MIL-STD-  
1553B status word sync pulse is identical to the command  
word sync pulse. Thus, if the status word from the encoder  
is fed back to the decoder, the RTI will recognize the  
incoming status word as a command word and thus cause  
the RTI to transmit another status word. After the host  
invokes self-test, the RTI self-test logic forces a status word  
transmission even though the RTI has not received a  
command word. The status word is sent to decoder A or B  
depending on the channel the host selected for self-test. The  
host controls the self-test by periodically changing the bit  
patterns in the status word being transmitted. Writing to the  
Control Register bits 2, 3, 4, and 8 changes the status word.  
Monitortheself-testbysamplingeithertheSystemRegister  
or the external status pins (i.e. Command Strobe  
Example 1.  
Hardware-Controlled Remote Terminal  
Address (parity check disabled):  
STATE 0, 2, or 3 (i.e., 00, 10, or 11)  
TALEN - asserted (i.e., logic low)  
TA(4:0) - valid RTA  
Example 2.  
Software-Controlled Remote Terminal  
Address (parity check disabled):  
EXT TEST and EXT TST CH SEL A/B  
in STATE 0, 2, or 3 (i.e., 00, 10, or 11)  
CTRL - logic zero  
CS - logic zero  
RD/WR - logic zero  
ADDR IN (0) - logic zero  
TALEN - logic one  
TA(4:0) - valid RTA  
Example 3.  
Software Controlled Remote Terminal  
Address (parity check enabled):  
EXT TEST and EXT TST CH SEL A/B  
in STATE 1 (i.e., 01)  
CTRL - logic zero  
(COMSTR),Transmit(XMIT),Receive(RCV)).Foramore  
detailed explanation of internal self-test, consult the UTMC  
publication RTI Internal Self-Test Routine.  
CS - logic zero  
RD/WR - logic zero  
ADDR IN (0) - logic zero  
PARITY - input must provide odd  
parity  
1.7 Power-up Master Reset  
Reset the RTI by invoking either a hardware or software  
master reset after power-up to place the device in a known  
state. The master reset clears the decoder and encoder  
registers, the command recognition logic, the control and  
error logic (which includes the Status, Control and System  
Registers), the data transfer logic, and the memory address  
control logic.After reset, configure the device for operation  
via a Control Register write.  
for the TA(4:0) bus  
TA(4:0) - valid RTA  
For examples 1 and 2, enabling the parity check circuit  
(STATE1)aftertheremoteterminaladdressisstoredresults  
inaparitycheckofthedataloadedintotheRemoteTerminal  
Address Register.  
RTI-10  
Perform a hardware reset by asserting the MRST input pin  
foraminimumof500ns. DuringresetnegatetheEXTTEST  
pin (i.e., logic low); assertion of the EXT TEST pin forces  
the RTI to enter the external self-test mode of operation.  
word, sets the Message Error output, and sets the message  
error latch in the System Register.  
Use the following RTI outputs to externally decode an  
illegal command, Mode Code or Subaddress indicator (MC/  
SA), ModeCodeorSubaddressbusMCSA(4:0), Command  
Strobe (COMSTR), Broadcast (BRDCST), etc. (See figure  
6 pages 11-12).  
Software reset the RTI by simultaneously applying a logic  
zero to input pins CS, RD/WR, and CTRL while the least  
significant bit of the address input bus is a logic one (ADDR  
IN (0)=0).  
To illegalize a transmit command the ILL COMM pin is  
asserted 3.3ms after STATUS goes to a logic one.Assertion  
of the ILL COMM pin within 3.3ms allows the RTI to  
respond with the Message Error bit of the outgoing status  
word at a logic one.  
1.8 Encoder and Decoder  
The RTI interfaces directly to a bus transmitter/receiver via  
the RTI Manchester II encoder/decoder. The UT1553B RTI  
receives the command word from the MIL-STD-1553B bus  
and processes it either by the primary or secondary decoder.  
Each decode checks for the proper sync pulse and  
Manchester waveform, edge skew, correct number of bits,  
and parity. If the command is a receive command, the RTI  
processes each incoming data word for correct word count  
and contiguous data. If an invalid message error is detected,  
the message error pin is asserted, the RTI ceases processing  
the remainder (if any) of the message, and it then suppresses  
status word transmission. Upon command validation  
recognition, the external status outputs are enabled.  
Reception of illegal commands does not suppress status  
word transmission.  
For an illegal receive command, the ILL COMM pin is  
asserted within 18.2ms after the COMSTR transitions to a  
logic zero in order to suppress data words from being stored  
(suppressDMARQassertions).Inaddition,theILLCOMM  
pin must be at a logic one throughout the reception of the  
message until STATUS is asserted.  
If the illegal command is mode code 2, 4, 5, 6, 7, or 18,  
assert the ILL COMM pin within 664ns after Command  
Strobe (COMSTR) transitions to logic zero. Asserting the  
ILL COMM pin within the 664 nanoseconds inhibits the  
mode code function.  
The above timing conditions also apply when the host  
externally decodes an illegal broadcast command. The host  
must remove the illegal command condition so that the next  
command is not falsely decoded as illegal. These  
requirements are easily met if the COMSTR output is used  
to qualify the ILL COMM input to the RTI.  
A timer precludes transmission greater than 730ms by the  
assertion of fail-safe timer (TIMERON). This timer is reset  
upon receipt of another valid command.  
1.9 Illegal Command Decoding  
The host has the option of asserting the ILL COMM pin to  
illegalize a received command word. On receipt of an illegal  
command, the RTI sets the message error bit in the status  
BIPHASE IN  
COMSTR  
RCV  
CS  
COMMAND WORD  
P
DS  
DATA WORD  
P
DS  
DATA WORD  
P
18.2µs  
ILL COMM  
DMA Activity Suppressed  
STATUS  
SS  
STATUS WORD  
P
BIPHASE OUT  
Note:  
1. Illegalcommandcondition;statuswordMessageErrorbitsettologicone,RTIMESERRpinsettoalogicone, RTIStatusRegisterMessage  
Error bit set to logic one.  
Figure 6a. Illegal Receive Command Decoding  
RTI-11  
BIPHASE IN  
COMSTR  
CS  
COMMAND WORD  
P
XMIT  
1.0µs (min)  
ILL COMM  
3.3µs  
DMA Activity Suppressed  
STATUS  
BIPHASE OUT  
SS  
STATUS WORD  
P
Note:  
1. Illegal command condition; status word Message Error bit set to logic one, RTI MES ERR pin set to a logic one, RTI Status Register  
Message Error bit set to logic one.  
Figure 6b. Illegal Transmit Command Decoding  
P
CS  
COMMAND WORD  
BIPHASE IN  
COMSTR  
MC/SA  
664ns  
ILL COMM  
Note:  
1. To illegalize mode codes 2, 4, 5, 6, 7, or 18 assert ILL COMM within 664ns of COMSTR’s transition to logic zero. Asserting  
the ILL COMM within 664ns inhibits the mode code function.  
Figure 6c. Mode Code Command Decoding  
The T/R bit of the command word becomes the most  
significant bit of the data pointer; theT/R bit servestodivide  
2.0 MEMORY MAP EXAMPLE  
The RTI is capable of addressing 2048 x 16 of external  
memory for message storage. The 2K memory space is  
divided into two 1K pages and subdivided into 32 blocks of  
32 x 16:  
the RAM into transmit and receive pages of 1K each. The  
5-bit subaddress/mode field is used to select 1 of 32 possible  
message storage blocks within the transmit or receive  
message page. The 5-bit word count/mode code field acts  
as a data pointer to select one of 32 locations within the  
message storage block. Multiple word messages are stored  
from top to bottom within the message storage block.  
Page 1 (Receive): 32 blocks for receive messages  
(32 x 16)  
Page 2 (Transmit): 32 blocks for transmit messages  
(32 x 16)  
For mode commands, the address data pointer always  
contains 00000 in the MC/SA field, regardless of whether  
00000 or 11111 was received. Forcing the mode code field  
to 00000 reserves the first message storage block on both  
pages (receive and transmit) for mode code messages that  
require data. The 5-bit mode code specifies which of the 32  
locations within the message storage block to access.  
Address Decode  
The RTI derives addresses (i.e., data pointers) for external  
memory directly from the 11 least significant bits of the  
command word. The address data pointer corresponds to  
ADDR OUT (10:0) during RTI memory accesses.  
T/R = ADDR OUT (10)  
SUBADDRESS/MODE = ADDR OUT (9:5) WORD  
COUNT/MODE CODE = ADDR OUT (4:0)  
RTI-12  
For “wrap-around” applications (transmission of data  
previously received), force the RTI to store and receive  
messages on one memory page. To accomplish one-page  
operation do not use the T/R output pin. Eliminating the T/  
R limits the RTI access to only one page and the RTI will  
not differentiate between receive and transmit pages.  
Table 3. RTI Memory Map  
1: Receive Memory Map  
Block # Operation  
2: Transmit Memory map  
Address Field (hex) Block #  
Operation  
Address Field (hex)  
400 to 41F  
1
1
1
2
Mode Code  
000 to 01F  
020 to 03F  
1
2
Mode Code  
Subaddress 1  
Subaddress 2  
Subaddress 3  
Subaddress 4  
Subaddress 5  
Subaddress 6  
Subaddress 7  
Subaddress 8  
Subaddress 9  
Subaddress 10  
Subaddress 11  
Subaddress 12  
Subaddress 13  
Subaddress 14  
Subaddress 15  
Subaddress 16  
Subaddress 17  
Subaddress 18  
Subaddress 19  
Subaddress 20  
Subaddress 21  
Subaddress 22  
Subaddress 23  
Subaddress 24  
Subaddress 25  
Subaddress 26  
Subaddress 27  
Subaddress 28  
Subaddress 29  
Subaddress 30  
Unused  
Subaddress 1  
Subaddress 2  
Subaddress 3  
Subaddress 4  
Subaddress 5  
Subaddress 6  
Subaddress 7  
Subaddress 8  
Subaddress 9  
Subaddress 10  
Subaddress 11  
Subaddress 12  
Subaddress 13  
Subaddress 14  
Subaddress 15  
Subaddress 16  
Subaddress 17  
Subaddress 18  
Subaddress 19  
Subaddress 20  
Subaddress 21  
Subaddress 22  
Subaddress 23  
Subaddress 24  
Subaddress 25  
Subaddress 26  
Subaddress 27  
Subaddress 28  
Subaddress 29  
Subaddress 30  
Unused  
420 to 43F  
3
4
5
6
7
8
9
040 to 05F  
060 to 07F  
080 to 09F  
0A0 to 0BF  
0C0 to 0DF  
0E0 to 0FF  
100 to 11F  
120 to 13F  
140 to 15F  
160 to 17F  
180 to 19F  
1A0 to 1BF  
1C0 to 1DF  
1E0 to 1FF  
200 to 21F  
220 to 23F  
240 to 25F  
260 to 27F  
280 to 29F  
2A0 to 2BF  
2C0 to 2DF  
2E0 to 2FF  
300 to 31F  
320 to 33F  
340 to 35F  
360 to 37F  
380 to 39F  
3A0 to 3BF  
3C0 to 3DF  
3E0 to 3FF  
3
440 to 45F  
460 to 47F  
480 to 49F  
4A0 to 4BF  
4C0 to 4DF  
4E0 to 4FF  
500 to 51F  
520 to 53F  
540 to 55F  
560 to 57F  
580 to 59F  
5A0 to 5BF  
5C0 to 5DF  
5E0 to 5FF  
600 to 61F  
620 to 63F  
640 to 65F  
660 to 67F  
680 to 69F  
6A0 to 6BF  
6C0 to 6DF  
6E0 to 6FF  
700 to 71F  
720 to 73F  
740 to 75F  
760 to 77F  
780 to 79F  
7A0 to 7BF  
7C0 to 7DF  
7E0 to 7FF  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Notes:  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
1. Receive mode codes with data:  
- Synchronize with data  
- Selected Transmitter Shutdown (Illegal)  
- Override Selected Transmitter Shutdown (Illegal)  
2. Transmit mode codes with data:  
- Transmit Vector Word  
- Transmit Bit Word  
RTI-13  
3.0 PIN IDENTIFICATION AND DESCRIPTION  
(K3) 13  
ADDR IN 0  
ADDR IN 1  
ADDR IN 2  
ADDR IN 3  
ADDR IN 4  
ADDR IN 5  
ADDR IN 6  
ADDR IN 7  
ADDR IN 8  
ADDR IN 9  
ADDR IN 10  
ADDRESS BUS  
ADDR IN(10:0)  
BIPHASE  
OUT  
BIPHASE OUT A O  
BIPHASE OUT A Z  
27 (L8)  
28 (K8)  
(K1)  
(H2)  
(G3)  
(G1)  
(F3)  
(E1)  
(F2)  
(D2)  
(B1)  
(B2)  
9
7
5
3
BIPHASE OUT B O  
BIPHASE OUT B Z  
32 (L11)  
30 (L10)  
1
8
8
7
7
7
BIPHASE  
IN  
BIPHASE IN A O  
BIPHASE IN A Z  
37 (H10)  
39 (G9)  
BIPHASE IN B O  
BIPHASE IN B Z  
33 (K10)  
34 (J10)  
(A1) 74  
DATA I/O 0  
DATA BUS  
DATA(15:0)  
(B3) 73  
(A2) 72  
(A3) 71  
(B4) 70  
(A4) 69  
(C5) 68  
(B5) 67  
(A5) 66  
(A6) 65  
(C7) 63  
(B6) 61  
DATA I/O 1  
DATA I/O 2  
DATA I/O 3  
DATA I/O 4  
DATA I/O 5  
DATA I/O 6  
DATA I/O 7  
DATA I/O 8  
DATA I/O 9  
DATA I/O 10  
DATA I/O 11  
TERMINAL  
ADDRESS  
TA0  
TA1  
TA2  
64 (C6)  
62 (A7)  
60 (B7)  
TA3  
TA4  
58 (B8)  
56 (B9)  
TALEN/PARITY  
52 (C10)  
(A8) 59  
(A9) 57  
(A10) 55  
(A11) 53  
DATA I/O 12  
DATA I/O 13  
DATA I/O 14  
DATA I/O 15  
MODE/CODE  
MCSA0  
MCSA1  
MCSA2  
MCSA3  
14 (L2)  
16 (K4)  
17 (L4)  
18 (J5)  
SUBADDRESS  
UT1553B  
RTI  
(L1) 11  
(J2) 10  
ADDR OUT 0  
ADDR OUT 1  
ADDR OUT 2  
ADDRESS BUS  
ADDR OUT  
(10:0)  
MCSA4  
19 (K5)  
(J1)  
(H1)  
(G2)  
(F1)  
8
6
4
2
ADDR OUT 3  
ADDR OUT 4  
ADDR OUT 5  
ADDR OUT 6  
ADDR OUT 7  
ADDR OUT 8  
ADDR OUT 9  
ADDR OUT 10  
STATUS  
SIGNALS  
MES ERR  
TIMERON  
COMSTR  
49 (D10)  
41 (G11)  
22 (J6)  
(E3) 84  
(E2) 82  
(D1) 80  
(C1) 78  
(C2) 76  
MC/SA  
RCV  
21 (K6)  
51 (B11)  
XMIT  
38 (H11)  
45 (E11)  
43 (F9)  
RRD/RWR  
RCS  
(L9) 29  
(K9) 31  
EXT TEST  
EXT TST CH SEL A/B  
TEST  
STATUS  
CH A/B  
23 (J7)  
26 (L6)  
(D11) 48  
(F11) 47  
MEMCK  
DMARQ  
DMA  
BRDCST  
36 (J11)  
(B10) 54  
V
POWER  
CONTROL  
SIGNALS  
BCEN  
CS  
25 (K7)  
44 (E9)  
DD  
(K2) 12  
(F10) 42  
V
V
GROUND  
SS  
SS  
RD/WR  
CTRL  
46 (E10)  
50 (C11)  
(K11) 35  
12MHz  
CLOCK  
RESET  
(L7) 24  
(G10) 40  
2MHz  
MRST  
ADOEN  
ILL COMM  
15 (L3)  
20 (L5)  
Note:  
Pingrid array numbers are in parentheses. LCC pin numbers are not in parentheses.  
Figure 7. UT1553B RTI Pin Description  
RTI-14  
Legend for TYPE and ACTIVE fields:  
TI = TTL input  
TO = TTL output  
TUI = TTL input (pull-up)  
TDI = TTL input (pull-down)  
TTO = Three-state TTL output  
TTB = Three-state TTL bidirectional  
[ ] - Values in parentheses indicate the initialized state of  
output pin.  
DATA BUS  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
LCC  
PGA  
53  
A11  
TTB  
--  
DATA I/O 15  
Bit 15 (MSB) of the bidirectional Data  
bus.  
55  
57  
59  
61  
63  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
A10  
A9  
A8  
B6  
C7  
A6  
A5  
B5  
C5  
A4  
B4  
A3  
A2  
B3  
A1  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
DATA I/O 14  
DATA I/O 13  
DATA I/O 12  
DATA I/O 11  
DATA I/O 10  
DATA I/O 9  
DATA I/O 8  
DATA I/O 7  
DATA I/O 6  
DATA I/O 5  
DATA I/O 4  
DATA I/O 3  
DATA I/O 2  
DATA I/O 1  
DATA I/O 0  
Bit 14 of the bidirectional Data bus.  
Bit 13 of the bidirectional Data bus.  
Bit 12 of the bidirectional Data bus.  
Bit 11 of the bidirectional Data bus.  
Bit 10 of the bidirectional Data bus.  
Bit 9 of the bidirectional Data bus.  
Bit 8 of the bidirectional Data bus.  
Bit 7 of the bidirectional Data bus.  
Bit 6 of the bidirectional Data bus.  
Bit 5 of the bidirectional Data bus.  
Bit 4 of the bidirectional Data bus.  
Bit 3 of the bidirectional Data bus.  
Bit 2 of the bidirectional Data bus.  
Bit 1 of the bidirectional Data bus.  
Bit 0 (LSB) of the bidirectional Data bus.  
INPUT ADDRESS BUS  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
LCC  
75  
77  
79  
81  
83  
1
PGA  
B2  
B1  
D2  
F2  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
ADDR IN 10  
ADDR IN 9  
ADDR IN 8  
ADDR IN 7  
ADDR IN 6  
ADDR IN 5  
ADDR IN 4  
ADDR IN 3  
ADDR IN 2  
ADDR IN 1  
ADDR IN 0  
Bit 10 (MSB) of the Address Input bus.  
Bit 9 of the Address Input bus.  
Bit 8 of the Address Input bus.  
Bit 7 of the Address Input bus.  
Bit 6 of the Address Input bus.  
Bit 5 of the Address Input bus.  
Bit 4 of the Address Input bus.  
Bit 3 of the Address Input bus.  
Bit 2 of the Address Input bus.  
Bit 1 of the Address Input bus.  
Bit 0 (LSB) of the Address Input bus.  
E1  
F3  
3
G1  
G3  
H2  
K1  
K3  
5
7
9
13  
RTI-15  
OUTPUT ADDRESS BUS  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
LCC  
76  
78  
80  
82  
84  
2
PGA  
C2  
C1  
D1  
E2  
E3  
F1  
TTO  
TTO  
TTO  
TTO  
TTO  
TTO  
TTO  
TTO  
TTO  
TTO  
TTO  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
ADDR OUT 10  
ADDR OUT 9  
ADDR OUT 8  
ADDR OUT 7  
ADDR OUT 6  
ADDR OUT 5  
ADDR OUT 4  
ADDR OUT 3  
ADDR OUT 2  
ADDR OUT 1  
ADDR OUT 0  
Bit 10 (MSB) of the Address Output bus.  
Bit 9 of the Address Output bus.  
Bit 8 of the Address Output bus.  
Bit 7 of the Address Output bus.  
Bit 6 of the Address Output bus.  
Bit 5 of the Address Output bus.  
Bit 4 of the Address Output bus.  
Bit 3 of the Address Output bus.  
Bit 2 of the Address Output bus.  
Bit 1 of the Address Output bus.  
Bit 0 (LSB) of the Address Output bus.  
4
G2  
H1  
J1  
6
8
10  
11  
J2  
L1  
REMOTE TERMINAL ADDRESS INPUTS  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
LCC  
56  
PGA  
B9  
TUI  
TUI  
TUI  
TUI  
TUI  
TUI  
--  
--  
--  
--  
--  
--  
TA4  
TA3  
TA2  
TA1  
TA0  
Remote Terminal Address bit 4 (MSB).  
Remote Terminal Address bit 3.  
Remote Terminal Address bit 2.  
Remote Terminal Address bit 1.  
Remote Terminal Address bit 0.  
58  
B8  
60  
B7  
62  
A7  
C6  
52  
64  
C10  
TALEN/PARITY  
Remote Terminal Address Latch Enable/  
Remote Terminal Parity Input. Function  
of input is defined by he state of pin EXT  
TEST and EXT TST CH SEL A/B. For  
EXT TEST = 0, EXT TST CH SEL A/B  
= 1, TALEN/PARITY must provide odd  
parity for the Remote Terminal Address.  
For all other states of EXT TEST and  
EXT TST CH SEL A/B (i.e., 00, 10, 11)  
TALEN/PARITY functions as an active  
low address strobe.  
;
RTI-16  
MODE CODE/SUBADDRESS OUTPUTS  
TYPE  
ACTIVE  
PIN NUMBER  
NAME  
MC/SA  
DESCRIPTION  
LCC  
PGA  
21  
K6  
TO  
--  
Mode Code/Subaddress Indicator. If MC/SA is  
low, it indicates that the most recent command  
word is a mode code command. If MC/SA is  
high, it indicates that the most recent command  
word is for a subaddress. This output indicates  
whether the mode code/subaddress outputs  
(i.e., MCSA(4:0)) contain mode code or sub-  
address information.  
K5  
TO  
--  
MCSA4 19  
Mode Code/Subaddress 4. If MC/SA is low,  
this pin represents the most significant bit of  
the the most recent command word (the MSB  
of the mode code). If MC/SA is high, this pin  
represents the MSB of the subaddress.  
J5  
TO  
TO  
TO  
TO  
--  
--  
--  
--  
MCSA3 18  
MCSA2 17  
MCSA1 16  
MCSA0 14  
Mode Code/Subaddress 3.  
Mode Code/Subaddress 2.  
Mode Code/Subaddress 1.  
L4  
K4  
L2  
Mode Code/Subaddress 0. If MC/SA is low,  
this pin represents the least significant bit of  
the the most recent command word. If MC/SA  
is high, this pin represents the LSB of the sub-  
address  
BIPHASE INPUTS  
PIN NUMBER  
NAME  
DESCRIPTION  
LCC  
39  
PGA  
G9  
TI  
TI  
TI  
TI  
--  
--  
--  
--  
BIPHASE IN A Z  
Receiver - Channel A, Zero Input. Idle low  
Manchester input from the 1553 bus transceiver.  
37  
34  
33  
H10  
J10  
BIPHASE IN A O  
BIPHASE IN B Z  
BIPHASE IN B O  
Receiver - Channel A, One Input. This input is  
thecomplement of BIPHASE IN A Z.  
Receiver - Channel B, Zero Input. Idle low  
Manchester input from the 1553 bus transceiver.  
K10  
Receiver - Channel B, One Input. This input is  
the complement of BIPHASE IN B Z.  
RTI-17  
BIPHASE OUTPUTS  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
LCC  
PGA  
28  
K8  
TO  
--  
BIPHASE OUT A Z  
Transmitter - Channel A, Zero Output. This  
Manchester-encoded data output is connected  
to the 1553 bus transmitter input. The output is  
idle low.  
27  
30  
L8  
TO  
TO  
--  
--  
BIPHASE OUT A O  
BIPHASE OUT B Z  
Transmitter - Channel A, One Output. This  
output is the complement of BIPHASE OUT  
A Z. The output is idle low.  
L10  
Transmitter - Channel B, Zero Output. This  
Manchester-encoded data output is connected  
to the 1553 bus transmitter. The output is idle  
low.  
32  
L11  
TO  
--  
BIPHASE OUT B O  
Transmitter - Channel B, One Output. This  
output is the complement of BIPHASE OUT  
B Z. The output is idle low.  
MASTER RESET AND CLOCK  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
LCC  
PGA  
40  
G10  
TUI  
AL  
MRST  
Master Reset. Initializes all internal functions of the  
RTI. MRST must be asserted 500 nanoseconds  
before normal RTI operation. (500ns minimum).  
35  
24  
K11  
L7  
TI  
--  
12MHz  
2MHz  
12MHz Input Clock. This is the RTI system clock  
that requires an accuracy greater than 0.01% with a  
duty cycle from 50% ±10%.  
TO  
--  
2MHz Clock Output. This is a 2MHz output gener-  
ated by the 12MHz input clock. This clock is  
stopped when MRST is low.  
POWER AND GROUND  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DESCRIPTION  
+5V . Power supply must be +5V ±10%.  
LCC  
PGA  
54  
B10  
PWR  
--  
V
V
DD  
SS  
DC  
DC  
12  
42  
K2  
F10  
GND  
GND  
--  
--  
Ground reference. Zero V logic ground.  
DC  
RTI-18  
CONTROL PINS  
PIN NUMBER  
LCC PGA  
44 E9  
TYPE  
ACTIVE  
NAME  
CS  
DESCRIPTION  
TI  
AL  
Chip Select. Active low input for host access of  
transparent memory or the RTI internal registers. In  
the transparent memory configuration CS is propa-  
gated through the RTI to the RCS output.  
50  
C11  
TI  
AL  
CTRL  
Control. The host processor uses the active low  
CTRL input signal in conjunction with CS and RD/  
WR to access the RTI internal registers. CTRL is  
also used in the software assignment of the terminal  
address and programmed reset.  
15  
46  
L3  
TI  
TI  
AL  
--  
ADOEN  
RD/WR  
Address Output Enable. When ADOEN is low the  
Address Out bus (ADDR OUT (15:0)) is active. If  
ADOEN = 1 the Address Out bus is high impedance.  
E10  
Read/Write. The host processor uses a high level on  
this input in conjunction with CS and CTRL to read  
the RTI internal registers. A low level on this input is  
used in conjunction with CS and CTRL to write to  
internal RTI registers. In the transparent memory  
configuration RD/WR is propagated through the RTI  
to the RRD/RWR output.  
25  
20  
K7  
L5  
TUI  
TDI  
AL  
AH  
BCEN  
Broadcast Enable. Active low input enables broad-  
cast commands.  
ILL COMM  
Illegal Command. The host processor uses the ILL  
COMM input to inform the RTI that the present  
command is illegal. ILL COMM is used in conjunc-  
tion with MCSA(4:0) and MC/SA to define system  
dependent illegal commands.  
RTI-19  
STATUS OUTPUTS  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
RCS  
DESCRIPTION  
LCC  
PGA  
43  
F9  
TO  
TO  
AL  
--  
RAM Chip Select. Active low output used to  
enable memory for access.  
45  
22  
41  
E11  
J6  
RRD/RWR  
COMSTR  
TIMERON  
RAM Read/Write. High output enables memory  
read, low output enables memory write, used in  
conjunction with RCS). Normally high output.  
TO  
TO  
AL  
AL  
Command Strobe. COMSTR is an active low  
output of 500ns duration identifying receipt of a  
valid command.  
G11  
Fail-safe Timer. The TIMERON output pulses  
low for 730ms when the RTI begins transmit-  
ting (i.e., rising edge of STATUS) to provide a  
fail-safe timer meeting the requirements of  
MIL-STD-1553B. This pulse is reset when  
COMSTR goes low or during Master Reset. in  
the external self-test mode TIMERON does not  
recognize COMSTR and resets after 730ms.  
49  
D10  
TO  
AH  
MES ERR  
Message Error. The active high MES ERR out-  
put signals that the Message Error bit in the Sta-  
tus Register has been set due to receipt of an  
invalid command or an error during message  
sequence. MES ERR will reset to logic zero on  
receipt of next valid command.  
26  
38  
51  
36  
23  
L6  
H11  
B11  
J11  
J7  
TO  
TO  
TO  
TO  
TO  
--  
CH A/B  
XMIT  
Channel A/B. Output identifying the channel on  
which the most recent valid command was  
received. Channel A = 1, Channel B = 0.  
AL  
AL  
AL  
AH  
Transmit. Active low output identifies a  
transmit command message transfer by the RTI  
is in progress.  
RCV  
Receive. Active low output identifies a receive  
command message transfer by the RTI is in  
progress.  
BRDCST  
STATUS  
Broadcast. BRDCST is an active low output  
that identifies receipt of a valid broadcast com-  
mand.  
Status. Active high output pulse indicating that  
the RTI is in the process of transmitting a status  
word.  
RTI-20  
BUS ARBITRATION  
PIN NUMBER  
TYPE  
ACTIVE  
NAME  
DMARQ  
DESCRIPTION  
LCC  
PGA  
47  
F11  
TO  
TI  
AH  
AL  
Direct Memory Access Request. Active high  
output requesting RTI access to memory.  
48  
29  
31  
D11  
L9  
MEMCK  
Memory Clock (DMA Grant). Active low input  
signaling the RTI that a memory access is  
granted. Internal to the RTI, receipt of MEMCK  
generates RAM chip select and RAM read/write  
signals.  
TDI  
TUI  
--  
--  
EXT TST  
External Self-test Enable. Multi-function input  
pin. In self-test mode forcing this pin high  
allows the monitoring of self-test activity at the  
bus stub. When the RTI is not in self-test this  
pin defines the function of TALEN/PARITY.  
K9  
EXT TST CH SEL  
A/B  
External Self-test Channel Select. A/B Multi-  
function input pin. In self-test mode forcing this  
pin high selects the channel on which the self-  
test is performed (Channel A = 1, Channel B =  
0). When the RTI is not in self-test this pin  
defines the function of TALEN/PARITY.  
4.0 OPERATING CONDITIONS  
1
ABSOLUTE MAXIMUM RATINGS  
(referenced to VSS)  
SYMBOL  
PARAMETER  
LIMITS  
UNIT  
V
V
DC supply voltage  
-0.3 to +7.0  
V
DD  
IO  
Voltage on any pin  
DC input current  
Storage temperature  
-0.3 to V +0.3  
V
mA  
°C  
DD  
I
±10  
-65 to +150  
300  
I
T
STG  
P
Maximum power dissipation  
mW  
°C  
D
T
Maximum junction temperature  
Thermal resistance, junction-to-case  
+175  
J
Θ
20  
°C/W  
JC  
Note:  
1. Stressesoutsidethelistedabsolutemaximumratingsmaycausepermanentdamagetothedevice.Thisisastressratingonly, andfunctional  
operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification is not  
recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
SYMBOL  
PARAMETER  
LIMITS  
4.5 to 5.5  
0 to V  
UNIT  
V
V
DC supply voltage  
DC input voltage  
Temperature range  
Operating frequency  
V
DD  
V
IN  
C
DD  
T
-55 to +125  
°C  
F
12 ± .01%  
MHz  
O
RTI-21  
5.0 DC ELECTRICAL CHARACTERISTICS  
(VDD = 5.0V ± 10%; -55°C < TC < +125°C)  
SYMBOL  
PARAMETER  
Low-level input voltage  
High-level input voltage  
CONDITION  
MINIMUM MAXIMUM  
UNIT  
V
V
0.8  
V
IL  
2.0  
V
IH  
I
Input leakage current  
TTL inputs  
IN  
V
V
V
= V or V  
SS  
-10  
110  
-2750  
10  
2750  
-110  
µA  
µA  
µA  
IN  
IN  
IN  
DD  
Inputs with pull-down resistors  
Inputs with pull-up resistors  
= V  
DD  
SS  
= V  
V
V
Low-level output voltage  
High-level output voltage  
I
I
= 4mA  
0.4  
V
OL  
OL  
OH  
= -400µA  
2.4  
-10  
V
OH  
I
Three-state output  
leakage current  
V
= V or V  
SS  
+10  
µA  
OZ  
O
DD  
1, 2  
I
Short-circuit output current  
V
V
= 5.5V, V = V  
DD  
90  
mA  
mA  
OS  
DD  
DD  
O
= 5.5V, V = 0V  
-90  
O
3
C
C
C
Input capacitance  
ƒ = 1MHz @ 0V  
ƒ = 1MHz @ 0V  
ƒ = 1MHz @ 0V  
ƒ = 12MHz, CL = 50pF  
Note 5  
10  
15  
25  
50  
1.5  
pF  
IN  
3
Output capacitance  
pF  
OUT  
IO  
3
Bidirect I/O capacitance  
pF  
1, 4  
I
Average operating current  
mA  
mA  
DD  
QI  
Quiescent current  
DD  
Notes:  
1. Supplied as a design limit but not guaranteed or tested.  
2. Not more than one output may be shorted at a time for a maximum duration of one second.  
3. Measured only for initial qualification, and after process or design changes that could affect input/output capacitance.  
4. Includes current through input pull-ups. Instantaneous surge currents on the order of 1 ampere can occur during output switching.  
Voltage supply should be adequately sized and decoupled to handle a large surge current.  
5. All inputs with internal pull-ups or pull-downs should be left open circuit. All other inputs tied high or low.  
BIT TIMES  
1 2 3  
4 5 6 7 8  
5
9
10 11 12 13 14  
5
15 16 17 18 19  
5
20  
1
1
COMMAND  
WORD  
P
T/R  
DATA WORD COUNT/  
MODE CODE  
SYNC  
REMOTE TERMINAL  
ADDRESS  
SUBADDRESS/MODE  
CODE  
1
16  
DATA WORD  
P
DATA  
SYNC  
SYNC  
1
1
1
1
1
1
5
1
1
1
STATUS WORD  
REMOTE TERMINAL  
RESERVED  
ADDRESS  
Figure 8. MIL-STD-1553B Word Formats  
RTI-22  
3, 4  
6.0 AC ELECTRICAL CHARACTERISTICS  
(Over recommended operating conditions)  
V
V
MIN  
MAX  
V
V
MIN  
MAX  
IH  
IL  
IH  
IL  
1
2
INPUT  
t
b
t
a
V
MIN  
MAX  
OH  
2
IN-PHASE  
OUTPUT  
1
1
V
OL  
t
OUT-OF-PHASE  
OUTPUT  
d
V
MIN  
MAX  
OH  
2
V
t
OL  
c
t
e
V
MIN  
MAX  
OH  
BUS  
V
OL  
t
f
t
g
t
h
SYMBOL  
PARAMETER  
t
a
INPUT↑  
to response↑  
t
t
b
INPUTto response↓  
c
INPUTto response↓  
INPUTto response↑  
INPUTto data valid  
INPUTto high Z  
INPUTto high Z  
INPUTto data valid  
t
t
d
e
f
t
t
g
h
t
Notes:  
1. Timing measurements made at (VIH MIN + VIL MAX)/2.  
2. Timing measurements made at (VOL MAX + VOH MIN)/2.  
3. Based on 50pF load.  
Figure 9a. Typical Timing Measurements  
5V  
I
(source)  
REF  
3V  
90%  
90%  
V
REF  
10%  
10%  
50pF  
0V  
< 2ns  
< 2ns  
I
(sink)  
REF  
Input Pulses  
Note:  
30pF including scope probe and test socket  
Figure 9b. AC Test Loads and Input Waveforms  
RTI-23  
t
10a  
DMARQ  
MEMCK  
t
10b  
t
10e  
t
10d  
RCS  
t
10c  
t
10i  
t
10h  
RRD/RWR  
t
10g  
t
10f  
DATA BUS  
ADDR OUT BUS  
Figure 10. RTI Memory Write  
SYMBOL  
PARAMETER  
ADDR OUT valid to DMARQ active  
MINIMUM  
MAXIMUM  
UNITS  
ns  
3
t
t
t
t
t
883  
992  
-
10a  
10b  
10c  
2, 3  
ns  
DMARQ active to MEMCK active  
0
-
4
ns  
MEMCK active to RCS active  
67  
61  
-
4
ns  
MEMCK inactive to RCS inactive  
-
10d  
10e  
1, 2, 4  
ns  
MEMCK pulse width  
83  
-
4
t
t
ns  
MEMCK active to DATA bus valid  
115  
101  
10f  
MEMCK inactive to DATA bus high  
10g  
ns  
5
3
impedance  
t
t
ns  
ns  
MEMCK active to RRD/RWR active  
-
-
61  
58  
10h  
10i  
MEMCK inactive to RRD/RWR inactive  
Notes:  
1. Allows a 20ns data valid set-up time before RCS and RRD/RWR go high.  
2. The sum tb + te must not exceed 18.8ms.  
3. Supplied as a design limit, but not guaranteed or tested.  
4. Guaranteed by test.  
RTI-24  
t
11a  
DMARQ  
MEMCK  
RCS  
t
11h  
t
11b  
t
11e  
t
11d  
t
11c  
t
t
11g  
11f  
DATA BUS  
ADDR OUT BUS  
Figure 11. RTI Memory Read  
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNITS  
ns  
3
t
ADDR OUT valid to DMARQ active  
883  
0
992  
11a  
3
14.9  
t
DMARQ active to MEMCK active  
µs  
11b  
4
t
MEMCK active to RCS active  
-
67  
61  
-
ns  
11c  
4
t
MEMCK inactive to RCS inactive  
-
ns  
11d  
1, 2, 4  
MEMCK pulse width  
50  
45  
5
ns  
t
11e  
4
t
t
Input DATA valid to MEMCK inactive  
Input DATA valid after RCS inactive  
-
ns  
11f  
4
-
ns  
11g  
4
t
DMARQ active to MEMCK inactive  
-
18.3  
µs  
11h  
Notes:  
1. Allows a 20ns data valid set-up time before RCS and RRD/RWR go high.  
2. The sum tb + te must not exceed 18.8ms.  
3. Supplied as a design limit, but not guaranteed or tested.  
4. Guaranteed by test.  
RTI-25  
ADDR IN (0)  
t
t
12d  
12c  
WRITE CONTROL  
(CNTRL + CS + RD/WR)  
Logical OR  
t
t
12b  
12a  
DATA BUS  
Figure 12. Control Register Write Timing  
SYMBOL  
PARAMETER  
MINIMUM  
20  
MAXIMUM  
-
UNITS  
ns  
Input DATA valid before WRITE  
CONTROL inactive (set-up time)  
t
t
3
12a  
12b  
Input DATA valid after WRITE  
CONTROL inactive (hold-time)  
25  
20  
20  
-
-
-
ns  
ns  
ns  
3
ADDR IN valid before WRITE CONTROL  
t
12c  
12d  
1, 3  
asserts  
ADDR IN valid after WRITE CONTROL  
t
2, 3  
negates  
Notes:  
1. Set-up time required to prevent inadvertent software reset.  
2. Hold-time required to prevent inadvertent software reset.  
3. Guaranteed by test.  
RTI-26  
ADDR IN (0)  
READ CONTROL  
(CNTRL + CS )  
1, 2  
Logical OR  
t
t
13b  
13c  
DATA BUS  
t
13a  
Figure 13. System and Last Command Register Read Timing  
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNITS  
DATA bus valid after READ CONTROL  
valid whilve ADDR IN (0) = 0 or 1  
t
-
ns  
13a  
132  
DATA bus valid after ADDR IN (0) = 0 or  
1 while READ CONTROL = 0  
t
-
-
ns  
ns  
13b  
70  
t
READ CONTROL negation to DATA bus  
13c  
3
101  
high impedance  
Notes:  
1. ADDR IN (0) = 0 System Register read.  
2. ADDR IN (0) = 1 Last Command Register read.  
3. Supplied as a design limit but not guaranteed or tested.  
RTI-27  
TIMERON  
STATUS  
t
14c  
t
14a  
t
14b  
BIPHASE OUT  
COMSTR  
t
14d  
Figure 14. RT Fail-Safe Timer Signal Relationships  
SYMBOL  
MINIMUM  
4
MAXIMUM  
31  
UNITS  
ns  
PARAMETER  
1
t
STATUS active to TIMERON active  
14a  
TIMERON active to first BIPHASE OUT  
-
ms  
ms  
ns  
1
t
1.2  
14b  
transition  
1
TIMERON low pulse width  
t
-
732  
31  
14c  
1
COMSTR active toTIMERON reset  
-
t
14d  
Note:  
1. Supplied as a design limit, but not guaranteed or tested.  
RTI-28  
CS  
t
15b  
RCS  
t
15a  
RD/WR  
t
15dv  
t
15c  
RRD/RWR  
ADDR IN BUS  
t
t
15e  
15f  
ADDR OUT BUS  
ADOEN  
t
t
15g  
15h  
t
15i  
t
15j  
MEMCK  
Figure 15. RTI Propagation Delays  
PARAMETER  
SYM-  
MINIMUM  
MAXIMUM  
UNITS  
2
CS active to RCS active  
CS negation to RCS negation  
RD/WR active to RRD/RWR active  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
48  
40  
45  
35  
52  
44  
42  
15a  
2
t
15b  
2
t
15c  
-
2
t
RD/WR negation to RRD/RWR negation  
15d  
-
2
t
CS active to ADDR OUT valid  
6
15e  
2
t
ADDR IN valid to ADDR OUT valid  
-
-
15f  
ADOEN negation to ADDR OUT high  
t
15g  
1
impedance  
2
t
t
ns  
ns  
ADOEN active to ADDR OUT active  
6
50  
-
15h  
CS active to MEMCK active  
15i  
1
13  
(MEMCK not recognized)  
t
CS negation to MEMCK active  
15j  
-
ns  
1
10  
(MEMCK recognized)  
Note:  
1. Supplied as a design limit, but not guaranteed or tested.  
2. Guaranteed by test.  
RTI-29  
3
COMMAND  
P
BIPHASE IN  
t
16a  
t
16b  
COMSTR  
RCV  
XMIT  
t
16c  
CH A/B  
BRDCST  
MC/SA  
MCSA(4:0)  
ADDR OUT  
MESS ERR  
1
t
t
16e  
16d  
Figure 16. Command Word Validation  
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNITS  
t
µs  
Command word parity to COMSTR and  
3.58  
3.67  
16a  
4
RCV or XMIT active  
4
ns  
µs  
ns  
t
502  
2.66  
-
COMSTR pulse width  
499  
2.58  
430  
16b  
4
t
t
Command word parity to CH A/B valid  
16c  
16d  
Status output signals valid to COMSTR  
2, 4  
active  
4
ns  
t
MES ERR reset after COMSTR active  
745  
750  
16e  
Notes:  
1. ADOEN is asserted (i.e., logic low).  
2. Status signals include BRDCST, MC/SA, MCSA(4:0), and ADDR OUT.  
3. Measured from mid-bit parity crossing.  
4. Supplied as a design limit, but not guaranteed or tested.  
RTI-30  
1
DATA  
P
t
BIPHASE IN  
17a  
2
STATUS  
SYNC  
P
BIPHASE OUT  
t
17b  
DMARQ  
STATUS  
RCV  
t
17c  
t
17d  
t
17e  
ADDR OUT  
Figure 17. Receive Command Message Processing  
UNITS  
SYMBOL  
PARAMETER  
MAXIMUM  
MINIMUM  
µs  
Data word parity bit to status word  
8.80  
9.37  
t
17a  
1, 3  
response  
2, 3  
3
t
t
t
µs  
µs  
Data word parity bit to DMARQ active  
3.58  
1.24  
4.48  
0.90  
3.68  
1.25  
4.98  
-
17b  
17c  
17d  
STATUS active to BIPHASE OUT active  
3
µs  
µs  
STATUS pulse width  
3
ADDR OUT valid before DMARQ (H)  
t
17e  
Notes:  
1. Measured from last data word mid-bit parity crossing.  
2. Measured from transmitted status word sync field mid-bit crossing.  
3. Supplied as a design limit, but not guaranteed or tested.  
RTI-31  
20  
0
20  
0
BIPHASE  
DMARQ  
XMIT  
t
t
18a  
18b  
t
18c  
Figure 18. Transmitted Data Timing  
UNITS  
PARAMETER  
MAXIMUM  
SYM-  
MINIMUM  
17.15  
µs  
DMARQ active to sync field of transmitted  
data word  
17.18  
* t  
18a  
* t  
* t  
µs  
µs  
DMARQ active to DMARQ active  
-
19.2  
500  
18b  
18c  
XMITnegationafterlastDMARQactive  
460  
Note:  
Supplied as a design limit but not guaranteed or tested.  
*
RTI-32  
1
DATA/CMD  
P
BIPHASE IN  
BIPHASE  
t
19a  
2
SYNC STATUS  
P
t
19b  
COMSTR  
t
19c  
STATUS  
XMIT  
t
19d  
t
19e  
t
19f  
t
19g  
MES ERR  
Figure 19. Mode Command Message Processing  
MAXIMUM  
SYMBOL  
PARAMETER  
MINIMUM  
UNITS  
Response time BIPHASE IN to BI-  
µs  
µs  
*
3.58  
3.67  
t
2
19a  
PHASE OUT  
*
Command word parity bit to COMSTR asser-  
t
8.80  
9.37  
1
19b  
tion  
*
µs  
µs  
µs  
µs  
µs  
1.24  
4.48  
1.25  
4.98  
t
STATUS active to BIPHASE OUT active  
STATUS pulse width  
19c  
*
t
19d  
*
3.58  
1.00  
6.57  
3.67  
-
t
Command word parity bit to XMIT assertion  
XMIT pulse width for mode code reception  
19e  
*
t
t
19f  
*
6.68  
Command word parity bit to MES ERR as-  
sertion  
19g  
Notes:  
1. Measured from data or command word mid-bit parity crossing.  
2. Measured from transmitted status word sync field mid-bit crossing.  
*
Supplied as a design limit but not guaranteed or tested.  
RTI-33  
1
P
DATA  
BIPHASE IN  
MES ERR  
t
20a  
1
P
P
RCV CMD  
XMIT CMD  
BIPHASE IN  
MES ERR  
t
20b  
Figure 20. Message Error  
MAXIMUM  
SYMBOL  
PARAMETER  
MINIMUM  
UNITS  
Data word parity bit to MES ERR  
assertion  
µs  
*
23.50  
55.4  
23.63  
t
20a  
1
*
Command word parity bit to MES ERR  
µs  
t
55.5  
20b  
2
assertion RT to RT transfer  
Notes:  
1. Measured from last data word mid-bit parity crossing.  
2. No response from transmitter.  
*
Supplied as a design limit but not guaranteed or tested.  
RTI-34  
ADDR IN (10:0)  
DATA(15:0)  
CONTROL  
HOST  
SUBSYSTEM  
UT1553B  
RTI  
UT63M125  
1553 TRANSCEIVER  
1553 BUS A  
1553 BUS B  
Figure 21. RTI General System Diagram (Idle low interface)  
IN O  
IN Z  
RXOUT  
RXOUT  
BIPHASE  
CHANNEL A  
TXIN-  
CHANNEL A  
TXIN  
TXIN  
OUT O  
OUT Z  
UTMC  
63M125  
RTI  
RXOUT  
RXOUT  
IN O  
IN Z  
BIPHASE  
CHANNEL B  
TXINHB  
CHANNEL B  
OUT O  
OUT Z  
TXIN  
TXIN  
TIMERON  
CH A/B  
LOGIC  
Figure 22. RTI Transceiver Interface Diagram  
RTI-35  
MC/SA  
MCSA0  
MCSA1  
MCSA2  
MCSA3  
MCSA4  
ILLEGAL  
COMMAND  
DECODER  
RTI  
COMSTR  
BRDCST  
RCV  
XMIT  
ILL COMM  
Figure 23. Mode Code/Subaddress Illegalization Circuit  
BIPHASE IN C  
COMSTR  
RC  
COMMAND  
P D  
DATA  
P D  
DATA  
P
DMARQ  
MEMCK  
RC  
RRD/RWR  
ADDR OUT BUS  
VALID  
VALID  
DATA  
BUS  
STATUS  
SS STATUS WORD  
P
BIPHASE OUT  
Figure 24. Receive Command with Two Data Words  
RTI-36  
BIPHASE IN CS COMMAND  
P
COMSTR  
XMIT  
DMARQ  
MEMCK  
RCS  
RRD/RWR  
ADDR OUT BUS  
VALID  
VALID  
DATA  
BUS  
STATUS  
SS  
STATUS WORD  
P
DS  
DATA WORD  
P
DS  
DATA WORD  
BIPHASE OUT  
Figure 25. Transmit Command with Two Data Words  
RTI-37  
PACKAGE OUTLINE DRAWINGS  
L
L
K
J
L
K
J
L
L
L
K
J
L
K
J
L
K
J
L
L
L1  
K1  
J1  
L1  
K1  
J1  
K
J
K
K
K
K
H
G
F
H
G
F
H
G
F
H1  
G1  
F1  
E1  
D1  
C1  
B1  
H1  
G1  
F1  
E1  
D1  
C1  
B1  
G
F
G
F
E
D
C
B
A
E
D
C
B
A
E
D
C
B
E
E
C
B
C
B
C
B
B
B
B
B
A
2
A
3
A
4
A
5
A
6
A
7
A
A
9
A1  
10  
A1  
11  
1
8
F1  
F2  
F3  
F9  
F10  
ADDR OUT 5  
ADDR IN 7  
ADDR IN 5  
RCS  
SS  
DMARQ  
J1  
J2  
J5  
J6  
J7  
ADDR OUT 2  
ADDR OUT 1  
MCSA 3  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
ADDR OUT 0  
MCSA 0  
C1  
ADDR OUT 9  
ADDR OUT 10  
DATA I/O 6  
TA 0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
DATA I/O 0  
DATA I/O 2  
DATA I/O 3  
DATA I/O 5  
DATA I/O 8  
DATA I/O 9  
TA 1  
C2  
C5  
C6  
C7  
ADOEN  
COMSTR  
MCSA 2  
V
STATUS  
BIPHASE IN B Z  
BRDCST  
ILL COMM  
CH A/B  
DATA I/O 10  
J10  
J11  
C10 TALEN/PARITY  
C11 CTRL  
F11  
2MHz  
BIPHASE OUT A  
EXT TEST  
DATA I/O 12  
DATA I/O 13  
G1  
ADDR IN 4  
ADDR OUT 4  
ADDR IN 3  
BIPHASE IN A Z  
MRST  
K1  
K2  
ADDR IN 1  
D1  
D2  
D10  
D11  
ADDR OUT 8  
ADDR IN 8  
MES ERR  
MEMCK  
G2  
V
L10 BIPHASE OUT B  
L11 BIPHASE OUT B  
A10 DATA I/O 14  
A11 DATA I/O 15  
G3  
SS  
G9  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
ADDR IN 0  
G10  
G11  
MCSA 1  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
ADDR IN 9  
ADDR IN 10  
DATA I/O 1  
DATA I/O 4  
DATA I/O 7  
DATA I/O 11  
TA 2  
TIMERON  
MCSA 4  
E1  
ADDR IN 6  
ADDR OUT 7  
ADDR OUT 6  
CS  
RD/WR  
RRD/RWR  
MC/SA  
E2  
H1  
H2  
H10  
H11  
ADDR OUT 3  
ADDR IN 2  
BIPHASE IN A O  
XMIT  
BCEN  
E3  
BIPHASE OUT A Z  
EXT TST CH SEl A/B  
E9  
E10  
E11  
K10 BIPHASE IN B O  
K11 12MHz  
TA 3  
TA 4  
V
DD  
B11 RCV  
Figure 26a. UT1553B RTI Pingrid Array Configuration  
(Bottom View)  
RTI-38  
11 10  
9
8
7
6
5
4
3
2
1
84 83 82 81 80 79 78 77 76 75  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
1
ADDR IN 5  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
MCSA 4  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
BIPHASE IN A O  
XMIT  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
DATA I/O 14  
TA4  
73  
DATA I/O 1  
2
ADDR OUT 5  
ADDR IN 4  
ILL COMM  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
DATA I/O 0  
3
MC/SA  
BIPHASE IN A Z  
MRST  
DATA I/O 13  
TA3  
ADDR IN 10  
ADDR OUT 10  
ADDR IN 9  
4
ADDR OUT 4  
ADDR IN 3  
COMSTR  
5
STATUS  
TIMERON  
DATA I/O 12  
TA2  
6
ADDR OUT 3  
ADDR IN 2  
2MHz  
V
ADDR OUT 9  
ADDR IN 8  
SS  
7
BCEN  
DATA I/O 11  
TA1  
RCS  
CS  
RRD/RWR  
RD/WR  
8
ADDR OUT 2  
ADDR IN 1  
CH A/B  
ADDR OUT 8  
ADDR IN 7  
9
BIPHASE OUT A O  
BIPHASE OUT A Z  
EXT TEST  
DATA I/O 10  
TA0  
10  
11  
12  
ADDR OUT 1  
ADDR OUT 0  
ADDR OUT 7  
ADDR IN 6  
DATA I/O 9  
DATA I/O 8  
DATA I/O 7  
DATA I/O 6  
DATA I/O 5  
DATA I/O 4  
DATA I/O 3  
DATA I/O 2  
DMARQ  
MEMCK  
MES ERR  
CTRL  
V
BIPHASE OUT B Z  
EXT TST CH SEL A/B  
BIPHASE OUT B O  
BIPHASE IN B O  
BIPHASE IN B Z  
12MHz  
ADDR OUT 6  
SS  
13  
14  
15  
16  
17  
18  
ADDR IN 0  
MCSA0  
ADOEN  
MCSA1  
MCSA2  
MCSA3  
RCV  
TALEN/PARITY  
DATA I/O 15  
BRDCST  
V
DD  
Figure 26b. UT1553B RTI Chip Carrier Configuration  
(Top View)  
RTI-39  
Package Selection Guide  
Product  
RTI RTMP RTR BCRT BCRTM BCRTMP RTS XCVR  
X
24-pin DIP  
(single cavity)  
36-pin DIP  
X
(dual cavity)  
68-pin PGA  
84-pin PGA  
144-pin PGA  
84-lead LCC  
36-lead FP  
(dual cavity)  
(50-mil ctr)  
X
X
1
1
X
X
X
X
X
X
X
X
X
X
84-lead FP  
132-lead FP  
X
X
X
NOTE:  
1. 84LCC package is not available radiation-hardened.  
Packaging-1  
A
D
0.130 MAX.  
1.565 ± 0.025  
-A-  
Q
0.040 REF.  
0.050 ± 0.010  
A
0.080 REF.  
(2 Places)  
L
0.130 ±0.010  
0.100 REF.  
(4 Places)  
E
1.565 ± 0.025  
-B-  
PIN 1 I.D.  
(Geometry Optional)  
-C-  
(Base Plane)  
A
e
b
TOP VIEW  
0.100  
TYP.  
0.018 ± 0.002  
0.030 C A  
1
B
0.010  
C
2
R
SIDE VIEW  
P
N
M
L
K
J
D1/E1  
1.400  
H
G
F
E
D
1
2
3
4 5 6 7 8 9 10 11 12 13 14 15  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN. TYP.  
BOTTOM VIEW  
Notes:  
1. True position applies to pins at base plane (datum C).  
2. True position applies at pin tips.  
3. All package finishes are per MIL-M-38510.  
4. Letter designations are for cross-reference to MIL-M-38510.  
144-Pin Pingrid Array  
Packaging-2  
D/E  
A
0.110  
0.006  
1.525 ± 0.015 SQ.  
D1/E1  
0.950 ± 0.015 SQ.  
PIN 1 I.D.  
A
(Geometry  
Optional)  
e
0.025  
SEE DETAIL A  
A
LEAD KOVAR  
TOP VIEW  
C
0.005  
+ 0.002  
- 0.001  
L
S1  
0.250  
MIN.  
REF.  
SIDE VIEW  
0.005 MIN. TYP.  
0.018 MAX. REF.  
0.014 MAX. REF.  
(At Braze Pads)  
DETAIL A  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
132-Lead Flatpack (25-MIL Lead Spacing)  
Packaging-3  
A
0.115 MAX.  
D/E  
1.150 ± 0.015 SQ.  
A1  
A
0.080 ± 0.008  
A
PIN 1 I.D.  
(Geometry Optional)  
TOP VIEW  
SIDE VIEW  
L/L1  
0.050 ± 0.005 TYP.  
h
0.040 x 45_  
REF. (3 Places)  
B1  
0.025 ± 0.003  
e
0.050  
e1  
0.015 MIN.  
J
0.020 X 455 REF.  
PIN 1 I.D.  
(Geometry Optional)  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
84-LCC  
Packaging-4  
D/E  
A
1.810 ± 0.015 SQ.  
0.110  
0.060  
D1/E1  
1.150 ± 0.012 SQ.  
PIN 1 I.D.  
(Geometry  
Optional)  
A
e
0.050  
b
0.016 ± 0.002  
SEE DETAIL A  
LEAD KOVAR  
A
C
TOP VIEW  
0.007 ± 0.001  
L
SIDE VIEW  
0.260  
MIN.  
REF.  
S1  
0.005 MIN. TYP.  
0.018 MAX. REF.  
0.014 MAX.  
REF.  
(At Braze Pads)  
DETAIL A  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
84-Lead Flatpack (50-MIL Lead Spacing)  
Packaging-5  
A
D
0.130 MAX.  
-A-  
1.100 ± 0.020  
Q
A
0.050 ± 0.010  
L
0.130 ± 0.010  
E
1.100 ± 0.020  
PIN 1 I.D.  
(Geometry Optional)  
-B-  
-C-  
TOP VIEW  
(Base Plane)  
A
b
0.018 ± 0.002  
e
0.100  
TYP.  
1
0.030 C A  
B
0.010  
C
2
L
SIDE VIEW  
K
J
H
G
F
E
D
D1/  
1.000  
1
2
3
4
5
6
7
8 9 10 11  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN.  
BOTTOM VIEW A-A  
Notes:  
1. True position applies to pins at base plane (datum C).  
2. True position applies at pin tips.  
3. All packages finishes are per MIL-M-38510.  
4. Letter designations are for cross-reference to MIL-M-38510.  
84-Pin Pingrid Array  
Packaging-6  
A
0.130 MAX.  
Q
D
0.050 ± 0.010  
-A-  
1.100 ± 0.020  
A
L
0.130 ± 0.010  
E
1.100 ± 0.020  
-B-  
PIN 1 I.D.  
(Geometry Optional)  
A
-C-  
(Base Plane)  
TOP  
b
0.010 ± 0.002  
e
0.100  
1
0.030  
0.010  
Æ
Æ
A
2
C
C
B
TYP.  
SIDE VIEW  
L
K
J
H
G
F
E
D
C
B
A
D1/E1  
1.00  
1
2
3
4
5
6
7
8
9
10 11  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN. TYP.  
BOTTOM VIEW A-A  
Notes:  
1
2
True position applies to pins at base plane (datum C).  
True position applies at pin tips.  
3. All packages finishes are per MIL-M-38510.  
4. Letterdesignationsareforcross-referencetoMIL-M-38510.  
68-Pin Pingrid Array  
Packaging-7  
L
E
0.490  
MIN.  
0.750 ± 0.015  
b
0.015 ± 0.002  
D
1.800 ± 0.025  
e
0.10  
PIN 1 I.D.  
(Geometry Optional)  
TOP VIEW  
c
+ 0.002  
- 0.001  
0.008  
A
0.130 MAX.  
Q
END VIEW  
0.080 ± 0.010  
(At Ceramic Body)  
Notes:  
All package finishes are per MIL-M-38510.  
1
2. It is recommended that package ceramic be mounted to  
aheatremovalraillocatedontheprintedcircuitboard.  
A thermally conductive material such as MERECO XLN-589 or  
equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
36-Lead Flatpack, Dual Cavity (100-MIL Lead Spacing)  
Packaging-8  
E
L
0.700 + 0.015  
0.330  
MIN.  
b
0.016 + 0.002  
D
1.000 ± 0.025  
e
0.050  
PIN 1 I.D  
(Geometry Optional)  
TOP  
+ 0.002  
c
- 0.001  
0.007  
A
0.100 MAX.  
Q
0.070 + 0.010  
(At Ceramic Body)  
END  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589  
or equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
36-Lead Flatpack, Dual Cavity (50-MIL Lead Spacing)  
Packaging-9  
E
S1  
0.005 MIN.  
S2  
0.590 ± 0.012  
e
0.005 MAX.  
0.100  
D
1.800 ± 0.025  
b
0.018 ± 0.002  
PIN 1 I.D.  
(Geometry Optional)  
A
L/L1  
0.150 MIN.  
0.155 MAX.  
TOP VIEW  
SIDE VIEW  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589  
or equivalent should be used.  
C
+ 0.002  
0.010  
- 0.001  
E1  
0.600 + 0.010  
(At Seating Plane)  
3. Letter designations are for cross-reference to MIL-M-38510.  
END VIEW  
36-Lead Side-Brazed DIP, Dual Cavity  
Packaging-10  
E
S1  
0.005 MIN.  
S2  
0.590 ± 0.015  
0.005 MAX.  
e
0.100  
D
1.200 ± 0.025  
b
0.018 ± 0.002  
L/L1  
0.150 MIN.  
PIN 1 I.D.  
(Geometry Optional)  
A
0.140 MAX.  
SIDE VIEW  
TOP VIEW  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589 or  
equivalent should be used.  
+ 0.002  
- 0.001  
C
0.010  
E1  
0.600 + 0.010  
(At Seating Plane)  
3. Letter designations are for cross-reference to MIL-M-38510.  
END VIEW  
24-Lead Side-Brazed DIP, Single Cavity  
Packaging-11  
ORDERING INFORMATION  
UT1553B RTI Remote Terminal Interface:  
5962  
*
*
*
*
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Case Outline:  
(Z) 84 pin PGA  
=
Class Designator:  
(B) Jan Class Q  
=
Device Type  
01 = 10% to 35% Clock Duty Cycle  
Drawing Number: JM38510/555  
Total Dose:  
(-)  
=
None  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
UT1553B RTI Remote Terminal Interface  
UT1553B -  
*
*
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Screening:  
(C)  
(P)  
=
=
Military Temperature  
Prototype  
Package Type:  
(G) 84 pin PGA  
=
Modifier:  
RTI = 10% to 35% Clock Duty Cycle  
UTMC Core Part Number  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
3. Mil Temp range flow per UTMC’s manufacturing flows document. Devices are tested at -55°C, room temperature, and 125°C.  
4. Prototpe flow per UTMC’s document manufacturing flows and are tested at 25°C only. Lead finish is GOLD only.  
5. Prototypes and reduced high-reliability devices are only available with 40% to 60% clock duty cycle.  

相关型号:

UT1553BRTIGPXA

RTI Remote Terminal Interface
ETC

UT1553BRTIGPXC

RTI Remote Terminal Interface
ETC

UT1553BRTR

Remote Terminal with RAM
ETC

UT1553BRTR-GA

Remote Terminal with RAM
ETC

UT1553BRTR-GC

Remote Terminal with RAM
ETC

UT1553BRTR-GX

Remote Terminal with RAM
ETC

UT1553BRTR-GXA

Remote Terminal with RAM
ETC

UT1553BRTR-GXC

Remote Terminal with RAM
ETC

UT16N10G-K08-3030-R

Power Field-Effect Transistor,
UTC

UT16N10G-TA3-R

Power Field-Effect Transistor,
UTC

UT16N10G-TN3-R

Power Field-Effect Transistor,
UTC

UT16N10L-K08-3030-R

Power Field-Effect Transistor,
UTC